1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
23
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 114 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 125 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 100 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 110 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 110 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffffff, .repeat_period = 100 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 114 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 114 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 114 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 [RC_PROTO_IMON] = { .name = "imon",
72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 };
74
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
79
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
82
seek_rc_map(const char * name)83 static struct rc_map_list *seek_rc_map(const char *name)
84 {
85 struct rc_map_list *map = NULL;
86
87 spin_lock(&rc_map_lock);
88 list_for_each_entry(map, &rc_map_list, list) {
89 if (!strcmp(name, map->map.name)) {
90 spin_unlock(&rc_map_lock);
91 return map;
92 }
93 }
94 spin_unlock(&rc_map_lock);
95
96 return NULL;
97 }
98
rc_map_get(const char * name)99 struct rc_map *rc_map_get(const char *name)
100 {
101
102 struct rc_map_list *map;
103
104 map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 if (!map) {
107 int rc = request_module("%s", name);
108 if (rc < 0) {
109 pr_err("Couldn't load IR keymap %s\n", name);
110 return NULL;
111 }
112 msleep(20); /* Give some time for IR to register */
113
114 map = seek_rc_map(name);
115 }
116 #endif
117 if (!map) {
118 pr_err("IR keymap %s not found\n", name);
119 return NULL;
120 }
121
122 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
123
124 return &map->map;
125 }
126 EXPORT_SYMBOL_GPL(rc_map_get);
127
rc_map_register(struct rc_map_list * map)128 int rc_map_register(struct rc_map_list *map)
129 {
130 spin_lock(&rc_map_lock);
131 list_add_tail(&map->list, &rc_map_list);
132 spin_unlock(&rc_map_lock);
133 return 0;
134 }
135 EXPORT_SYMBOL_GPL(rc_map_register);
136
rc_map_unregister(struct rc_map_list * map)137 void rc_map_unregister(struct rc_map_list *map)
138 {
139 spin_lock(&rc_map_lock);
140 list_del(&map->list);
141 spin_unlock(&rc_map_lock);
142 }
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
144
145
146 static struct rc_map_table empty[] = {
147 { 0x2a, KEY_COFFEE },
148 };
149
150 static struct rc_map_list empty_map = {
151 .map = {
152 .scan = empty,
153 .size = ARRAY_SIZE(empty),
154 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
155 .name = RC_MAP_EMPTY,
156 }
157 };
158
159 /**
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
166 *
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
169 *
170 * return: zero on success or a negative error code
171 */
ir_create_table(struct rc_dev * dev,struct rc_map * rc_map,const char * name,u64 rc_proto,size_t size)172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 const char *name, u64 rc_proto, size_t size)
174 {
175 rc_map->name = kstrdup(name, GFP_KERNEL);
176 if (!rc_map->name)
177 return -ENOMEM;
178 rc_map->rc_proto = rc_proto;
179 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 if (!rc_map->scan) {
183 kfree(rc_map->name);
184 rc_map->name = NULL;
185 return -ENOMEM;
186 }
187
188 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map->size, rc_map->alloc);
190 return 0;
191 }
192
193 /**
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
196 *
197 * This routine will free memory alloctaed for key mappings used by given
198 * scancode table.
199 */
ir_free_table(struct rc_map * rc_map)200 static void ir_free_table(struct rc_map *rc_map)
201 {
202 rc_map->size = 0;
203 kfree(rc_map->name);
204 rc_map->name = NULL;
205 kfree(rc_map->scan);
206 rc_map->scan = NULL;
207 }
208
209 /**
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
214 *
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
217 *
218 * return: zero on success or a negative error code
219 */
ir_resize_table(struct rc_dev * dev,struct rc_map * rc_map,gfp_t gfp_flags)220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 gfp_t gfp_flags)
222 {
223 unsigned int oldalloc = rc_map->alloc;
224 unsigned int newalloc = oldalloc;
225 struct rc_map_table *oldscan = rc_map->scan;
226 struct rc_map_table *newscan;
227
228 if (rc_map->size == rc_map->len) {
229 /* All entries in use -> grow keytable */
230 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 return -ENOMEM;
232
233 newalloc *= 2;
234 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
235 }
236
237 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
239 newalloc /= 2;
240 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
241 }
242
243 if (newalloc == oldalloc)
244 return 0;
245
246 newscan = kmalloc(newalloc, gfp_flags);
247 if (!newscan)
248 return -ENOMEM;
249
250 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 rc_map->scan = newscan;
252 rc_map->alloc = newalloc;
253 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 kfree(oldscan);
255 return 0;
256 }
257
258 /**
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
264 *
265 * This routine is used to update scancode->keycode mapping at given
266 * position.
267 *
268 * return: previous keycode assigned to the mapping
269 *
270 */
ir_update_mapping(struct rc_dev * dev,struct rc_map * rc_map,unsigned int index,unsigned int new_keycode)271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 struct rc_map *rc_map,
273 unsigned int index,
274 unsigned int new_keycode)
275 {
276 int old_keycode = rc_map->scan[index].keycode;
277 int i;
278
279 /* Did the user wish to remove the mapping? */
280 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
281 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
282 index, rc_map->scan[index].scancode);
283 rc_map->len--;
284 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
285 (rc_map->len - index) * sizeof(struct rc_map_table));
286 } else {
287 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 index,
289 old_keycode == KEY_RESERVED ? "New" : "Replacing",
290 rc_map->scan[index].scancode, new_keycode);
291 rc_map->scan[index].keycode = new_keycode;
292 __set_bit(new_keycode, dev->input_dev->keybit);
293 }
294
295 if (old_keycode != KEY_RESERVED) {
296 /* A previous mapping was updated... */
297 __clear_bit(old_keycode, dev->input_dev->keybit);
298 /* ... but another scancode might use the same keycode */
299 for (i = 0; i < rc_map->len; i++) {
300 if (rc_map->scan[i].keycode == old_keycode) {
301 __set_bit(old_keycode, dev->input_dev->keybit);
302 break;
303 }
304 }
305
306 /* Possibly shrink the keytable, failure is not a problem */
307 ir_resize_table(dev, rc_map, GFP_ATOMIC);
308 }
309
310 return old_keycode;
311 }
312
313 /**
314 * ir_establish_scancode() - set a keycode in the scancode->keycode table
315 * @dev: the struct rc_dev device descriptor
316 * @rc_map: scancode table to be searched
317 * @scancode: the desired scancode
318 * @resize: controls whether we allowed to resize the table to
319 * accommodate not yet present scancodes
320 *
321 * This routine is used to locate given scancode in rc_map.
322 * If scancode is not yet present the routine will allocate a new slot
323 * for it.
324 *
325 * return: index of the mapping containing scancode in question
326 * or -1U in case of failure.
327 */
ir_establish_scancode(struct rc_dev * dev,struct rc_map * rc_map,unsigned int scancode,bool resize)328 static unsigned int ir_establish_scancode(struct rc_dev *dev,
329 struct rc_map *rc_map,
330 unsigned int scancode,
331 bool resize)
332 {
333 unsigned int i;
334
335 /*
336 * Unfortunately, some hardware-based IR decoders don't provide
337 * all bits for the complete IR code. In general, they provide only
338 * the command part of the IR code. Yet, as it is possible to replace
339 * the provided IR with another one, it is needed to allow loading
340 * IR tables from other remotes. So, we support specifying a mask to
341 * indicate the valid bits of the scancodes.
342 */
343 if (dev->scancode_mask)
344 scancode &= dev->scancode_mask;
345
346 /* First check if we already have a mapping for this ir command */
347 for (i = 0; i < rc_map->len; i++) {
348 if (rc_map->scan[i].scancode == scancode)
349 return i;
350
351 /* Keytable is sorted from lowest to highest scancode */
352 if (rc_map->scan[i].scancode >= scancode)
353 break;
354 }
355
356 /* No previous mapping found, we might need to grow the table */
357 if (rc_map->size == rc_map->len) {
358 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
359 return -1U;
360 }
361
362 /* i is the proper index to insert our new keycode */
363 if (i < rc_map->len)
364 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
365 (rc_map->len - i) * sizeof(struct rc_map_table));
366 rc_map->scan[i].scancode = scancode;
367 rc_map->scan[i].keycode = KEY_RESERVED;
368 rc_map->len++;
369
370 return i;
371 }
372
373 /**
374 * ir_setkeycode() - set a keycode in the scancode->keycode table
375 * @idev: the struct input_dev device descriptor
376 * @ke: Input keymap entry
377 * @old_keycode: result
378 *
379 * This routine is used to handle evdev EVIOCSKEY ioctl.
380 *
381 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
382 */
ir_setkeycode(struct input_dev * idev,const struct input_keymap_entry * ke,unsigned int * old_keycode)383 static int ir_setkeycode(struct input_dev *idev,
384 const struct input_keymap_entry *ke,
385 unsigned int *old_keycode)
386 {
387 struct rc_dev *rdev = input_get_drvdata(idev);
388 struct rc_map *rc_map = &rdev->rc_map;
389 unsigned int index;
390 unsigned int scancode;
391 int retval = 0;
392 unsigned long flags;
393
394 spin_lock_irqsave(&rc_map->lock, flags);
395
396 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 index = ke->index;
398 if (index >= rc_map->len) {
399 retval = -EINVAL;
400 goto out;
401 }
402 } else {
403 retval = input_scancode_to_scalar(ke, &scancode);
404 if (retval)
405 goto out;
406
407 index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 if (index >= rc_map->len) {
409 retval = -ENOMEM;
410 goto out;
411 }
412 }
413
414 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
415
416 out:
417 spin_unlock_irqrestore(&rc_map->lock, flags);
418 return retval;
419 }
420
421 /**
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @from: the struct rc_map to copy entries from
425 *
426 * This routine is used to handle table initialization.
427 *
428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
429 */
ir_setkeytable(struct rc_dev * dev,const struct rc_map * from)430 static int ir_setkeytable(struct rc_dev *dev,
431 const struct rc_map *from)
432 {
433 struct rc_map *rc_map = &dev->rc_map;
434 unsigned int i, index;
435 int rc;
436
437 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
438 from->size);
439 if (rc)
440 return rc;
441
442 for (i = 0; i < from->size; i++) {
443 index = ir_establish_scancode(dev, rc_map,
444 from->scan[i].scancode, false);
445 if (index >= rc_map->len) {
446 rc = -ENOMEM;
447 break;
448 }
449
450 ir_update_mapping(dev, rc_map, index,
451 from->scan[i].keycode);
452 }
453
454 if (rc)
455 ir_free_table(rc_map);
456
457 return rc;
458 }
459
rc_map_cmp(const void * key,const void * elt)460 static int rc_map_cmp(const void *key, const void *elt)
461 {
462 const unsigned int *scancode = key;
463 const struct rc_map_table *e = elt;
464
465 if (*scancode < e->scancode)
466 return -1;
467 else if (*scancode > e->scancode)
468 return 1;
469 return 0;
470 }
471
472 /**
473 * ir_lookup_by_scancode() - locate mapping by scancode
474 * @rc_map: the struct rc_map to search
475 * @scancode: scancode to look for in the table
476 *
477 * This routine performs binary search in RC keykeymap table for
478 * given scancode.
479 *
480 * return: index in the table, -1U if not found
481 */
ir_lookup_by_scancode(const struct rc_map * rc_map,unsigned int scancode)482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 unsigned int scancode)
484 {
485 struct rc_map_table *res;
486
487 res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 sizeof(struct rc_map_table), rc_map_cmp);
489 if (!res)
490 return -1U;
491 else
492 return res - rc_map->scan;
493 }
494
495 /**
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @ke: Input keymap entry
499 *
500 * This routine is used to handle evdev EVIOCGKEY ioctl.
501 *
502 * return: always returns zero.
503 */
ir_getkeycode(struct input_dev * idev,struct input_keymap_entry * ke)504 static int ir_getkeycode(struct input_dev *idev,
505 struct input_keymap_entry *ke)
506 {
507 struct rc_dev *rdev = input_get_drvdata(idev);
508 struct rc_map *rc_map = &rdev->rc_map;
509 struct rc_map_table *entry;
510 unsigned long flags;
511 unsigned int index;
512 unsigned int scancode;
513 int retval;
514
515 spin_lock_irqsave(&rc_map->lock, flags);
516
517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 index = ke->index;
519 } else {
520 retval = input_scancode_to_scalar(ke, &scancode);
521 if (retval)
522 goto out;
523
524 index = ir_lookup_by_scancode(rc_map, scancode);
525 }
526
527 if (index < rc_map->len) {
528 entry = &rc_map->scan[index];
529
530 ke->index = index;
531 ke->keycode = entry->keycode;
532 ke->len = sizeof(entry->scancode);
533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
534
535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
536 /*
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
540 */
541 ke->index = index;
542 ke->keycode = KEY_RESERVED;
543 } else {
544 retval = -EINVAL;
545 goto out;
546 }
547
548 retval = 0;
549
550 out:
551 spin_unlock_irqrestore(&rc_map->lock, flags);
552 return retval;
553 }
554
555 /**
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
559 *
560 * This routine is used by drivers which need to convert a scancode to a
561 * keycode. Normally it should not be used since drivers should have no
562 * interest in keycodes.
563 *
564 * return: the corresponding keycode, or KEY_RESERVED
565 */
rc_g_keycode_from_table(struct rc_dev * dev,u32 scancode)566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
567 {
568 struct rc_map *rc_map = &dev->rc_map;
569 unsigned int keycode;
570 unsigned int index;
571 unsigned long flags;
572
573 spin_lock_irqsave(&rc_map->lock, flags);
574
575 index = ir_lookup_by_scancode(rc_map, scancode);
576 keycode = index < rc_map->len ?
577 rc_map->scan[index].keycode : KEY_RESERVED;
578
579 spin_unlock_irqrestore(&rc_map->lock, flags);
580
581 if (keycode != KEY_RESERVED)
582 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
583 dev->device_name, scancode, keycode);
584
585 return keycode;
586 }
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
588
589 /**
590 * ir_do_keyup() - internal function to signal the release of a keypress
591 * @dev: the struct rc_dev descriptor of the device
592 * @sync: whether or not to call input_sync
593 *
594 * This function is used internally to release a keypress, it must be
595 * called with keylock held.
596 */
ir_do_keyup(struct rc_dev * dev,bool sync)597 static void ir_do_keyup(struct rc_dev *dev, bool sync)
598 {
599 if (!dev->keypressed)
600 return;
601
602 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
603 del_timer(&dev->timer_repeat);
604 input_report_key(dev->input_dev, dev->last_keycode, 0);
605 led_trigger_event(led_feedback, LED_OFF);
606 if (sync)
607 input_sync(dev->input_dev);
608 dev->keypressed = false;
609 }
610
611 /**
612 * rc_keyup() - signals the release of a keypress
613 * @dev: the struct rc_dev descriptor of the device
614 *
615 * This routine is used to signal that a key has been released on the
616 * remote control.
617 */
rc_keyup(struct rc_dev * dev)618 void rc_keyup(struct rc_dev *dev)
619 {
620 unsigned long flags;
621
622 spin_lock_irqsave(&dev->keylock, flags);
623 ir_do_keyup(dev, true);
624 spin_unlock_irqrestore(&dev->keylock, flags);
625 }
626 EXPORT_SYMBOL_GPL(rc_keyup);
627
628 /**
629 * ir_timer_keyup() - generates a keyup event after a timeout
630 *
631 * @t: a pointer to the struct timer_list
632 *
633 * This routine will generate a keyup event some time after a keydown event
634 * is generated when no further activity has been detected.
635 */
ir_timer_keyup(struct timer_list * t)636 static void ir_timer_keyup(struct timer_list *t)
637 {
638 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
639 unsigned long flags;
640
641 /*
642 * ir->keyup_jiffies is used to prevent a race condition if a
643 * hardware interrupt occurs at this point and the keyup timer
644 * event is moved further into the future as a result.
645 *
646 * The timer will then be reactivated and this function called
647 * again in the future. We need to exit gracefully in that case
648 * to allow the input subsystem to do its auto-repeat magic or
649 * a keyup event might follow immediately after the keydown.
650 */
651 spin_lock_irqsave(&dev->keylock, flags);
652 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
653 ir_do_keyup(dev, true);
654 spin_unlock_irqrestore(&dev->keylock, flags);
655 }
656
657 /**
658 * ir_timer_repeat() - generates a repeat event after a timeout
659 *
660 * @t: a pointer to the struct timer_list
661 *
662 * This routine will generate a soft repeat event every REP_PERIOD
663 * milliseconds.
664 */
ir_timer_repeat(struct timer_list * t)665 static void ir_timer_repeat(struct timer_list *t)
666 {
667 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
668 struct input_dev *input = dev->input_dev;
669 unsigned long flags;
670
671 spin_lock_irqsave(&dev->keylock, flags);
672 if (dev->keypressed) {
673 input_event(input, EV_KEY, dev->last_keycode, 2);
674 input_sync(input);
675 if (input->rep[REP_PERIOD])
676 mod_timer(&dev->timer_repeat, jiffies +
677 msecs_to_jiffies(input->rep[REP_PERIOD]));
678 }
679 spin_unlock_irqrestore(&dev->keylock, flags);
680 }
681
repeat_period(int protocol)682 static unsigned int repeat_period(int protocol)
683 {
684 if (protocol >= ARRAY_SIZE(protocols))
685 return 100;
686
687 return protocols[protocol].repeat_period;
688 }
689
690 /**
691 * rc_repeat() - signals that a key is still pressed
692 * @dev: the struct rc_dev descriptor of the device
693 *
694 * This routine is used by IR decoders when a repeat message which does
695 * not include the necessary bits to reproduce the scancode has been
696 * received.
697 */
rc_repeat(struct rc_dev * dev)698 void rc_repeat(struct rc_dev *dev)
699 {
700 unsigned long flags;
701 unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
702 msecs_to_jiffies(repeat_period(dev->last_protocol));
703 struct lirc_scancode sc = {
704 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
705 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
706 .flags = LIRC_SCANCODE_FLAG_REPEAT |
707 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
708 };
709
710 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
711 ir_lirc_scancode_event(dev, &sc);
712
713 spin_lock_irqsave(&dev->keylock, flags);
714
715 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
716 input_sync(dev->input_dev);
717
718 if (dev->keypressed) {
719 dev->keyup_jiffies = jiffies + timeout;
720 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
721 }
722
723 spin_unlock_irqrestore(&dev->keylock, flags);
724 }
725 EXPORT_SYMBOL_GPL(rc_repeat);
726
727 /**
728 * ir_do_keydown() - internal function to process a keypress
729 * @dev: the struct rc_dev descriptor of the device
730 * @protocol: the protocol of the keypress
731 * @scancode: the scancode of the keypress
732 * @keycode: the keycode of the keypress
733 * @toggle: the toggle value of the keypress
734 *
735 * This function is used internally to register a keypress, it must be
736 * called with keylock held.
737 */
ir_do_keydown(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u32 keycode,u8 toggle)738 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
739 u32 scancode, u32 keycode, u8 toggle)
740 {
741 bool new_event = (!dev->keypressed ||
742 dev->last_protocol != protocol ||
743 dev->last_scancode != scancode ||
744 dev->last_toggle != toggle);
745 struct lirc_scancode sc = {
746 .scancode = scancode, .rc_proto = protocol,
747 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
748 .keycode = keycode
749 };
750
751 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
752 ir_lirc_scancode_event(dev, &sc);
753
754 if (new_event && dev->keypressed)
755 ir_do_keyup(dev, false);
756
757 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
758
759 dev->last_protocol = protocol;
760 dev->last_scancode = scancode;
761 dev->last_toggle = toggle;
762 dev->last_keycode = keycode;
763
764 if (new_event && keycode != KEY_RESERVED) {
765 /* Register a keypress */
766 dev->keypressed = true;
767
768 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
769 dev->device_name, keycode, protocol, scancode);
770 input_report_key(dev->input_dev, keycode, 1);
771
772 led_trigger_event(led_feedback, LED_FULL);
773 }
774
775 /*
776 * For CEC, start sending repeat messages as soon as the first
777 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
778 * is non-zero. Otherwise, the input layer will generate repeat
779 * messages.
780 */
781 if (!new_event && keycode != KEY_RESERVED &&
782 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
783 !timer_pending(&dev->timer_repeat) &&
784 dev->input_dev->rep[REP_PERIOD] &&
785 !dev->input_dev->rep[REP_DELAY]) {
786 input_event(dev->input_dev, EV_KEY, keycode, 2);
787 mod_timer(&dev->timer_repeat, jiffies +
788 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
789 }
790
791 input_sync(dev->input_dev);
792 }
793
794 /**
795 * rc_keydown() - generates input event for a key press
796 * @dev: the struct rc_dev descriptor of the device
797 * @protocol: the protocol for the keypress
798 * @scancode: the scancode for the keypress
799 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
800 * support toggle values, this should be set to zero)
801 *
802 * This routine is used to signal that a key has been pressed on the
803 * remote control.
804 */
rc_keydown(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u8 toggle)805 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
806 u8 toggle)
807 {
808 unsigned long flags;
809 u32 keycode = rc_g_keycode_from_table(dev, scancode);
810
811 spin_lock_irqsave(&dev->keylock, flags);
812 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
813
814 if (dev->keypressed) {
815 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
816 msecs_to_jiffies(repeat_period(protocol));
817 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
818 }
819 spin_unlock_irqrestore(&dev->keylock, flags);
820 }
821 EXPORT_SYMBOL_GPL(rc_keydown);
822
823 /**
824 * rc_keydown_notimeout() - generates input event for a key press without
825 * an automatic keyup event at a later time
826 * @dev: the struct rc_dev descriptor of the device
827 * @protocol: the protocol for the keypress
828 * @scancode: the scancode for the keypress
829 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
830 * support toggle values, this should be set to zero)
831 *
832 * This routine is used to signal that a key has been pressed on the
833 * remote control. The driver must manually call rc_keyup() at a later stage.
834 */
rc_keydown_notimeout(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u8 toggle)835 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
836 u32 scancode, u8 toggle)
837 {
838 unsigned long flags;
839 u32 keycode = rc_g_keycode_from_table(dev, scancode);
840
841 spin_lock_irqsave(&dev->keylock, flags);
842 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
843 spin_unlock_irqrestore(&dev->keylock, flags);
844 }
845 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
846
847 /**
848 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
849 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
850 * @proto: protocol
851 * @scancode: scancode
852 */
rc_validate_scancode(enum rc_proto proto,u32 scancode)853 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
854 {
855 switch (proto) {
856 /*
857 * NECX has a 16-bit address; if the lower 8 bits match the upper
858 * 8 bits inverted, then the address would match regular nec.
859 */
860 case RC_PROTO_NECX:
861 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
862 return false;
863 break;
864 /*
865 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
866 * of the command match the upper 8 bits inverted, then it would
867 * be either NEC or NECX.
868 */
869 case RC_PROTO_NEC32:
870 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
871 return false;
872 break;
873 /*
874 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
875 * is regular mode-6a 32 bit
876 */
877 case RC_PROTO_RC6_MCE:
878 if ((scancode & 0xffff0000) != 0x800f0000)
879 return false;
880 break;
881 case RC_PROTO_RC6_6A_32:
882 if ((scancode & 0xffff0000) == 0x800f0000)
883 return false;
884 break;
885 default:
886 break;
887 }
888
889 return true;
890 }
891
892 /**
893 * rc_validate_filter() - checks that the scancode and mask are valid and
894 * provides sensible defaults
895 * @dev: the struct rc_dev descriptor of the device
896 * @filter: the scancode and mask
897 *
898 * return: 0 or -EINVAL if the filter is not valid
899 */
rc_validate_filter(struct rc_dev * dev,struct rc_scancode_filter * filter)900 static int rc_validate_filter(struct rc_dev *dev,
901 struct rc_scancode_filter *filter)
902 {
903 u32 mask, s = filter->data;
904 enum rc_proto protocol = dev->wakeup_protocol;
905
906 if (protocol >= ARRAY_SIZE(protocols))
907 return -EINVAL;
908
909 mask = protocols[protocol].scancode_bits;
910
911 if (!rc_validate_scancode(protocol, s))
912 return -EINVAL;
913
914 filter->data &= mask;
915 filter->mask &= mask;
916
917 /*
918 * If we have to raw encode the IR for wakeup, we cannot have a mask
919 */
920 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
921 return -EINVAL;
922
923 return 0;
924 }
925
rc_open(struct rc_dev * rdev)926 int rc_open(struct rc_dev *rdev)
927 {
928 int rval = 0;
929
930 if (!rdev)
931 return -EINVAL;
932
933 mutex_lock(&rdev->lock);
934
935 if (!rdev->registered) {
936 rval = -ENODEV;
937 } else {
938 if (!rdev->users++ && rdev->open)
939 rval = rdev->open(rdev);
940
941 if (rval)
942 rdev->users--;
943 }
944
945 mutex_unlock(&rdev->lock);
946
947 return rval;
948 }
949
ir_open(struct input_dev * idev)950 static int ir_open(struct input_dev *idev)
951 {
952 struct rc_dev *rdev = input_get_drvdata(idev);
953
954 return rc_open(rdev);
955 }
956
rc_close(struct rc_dev * rdev)957 void rc_close(struct rc_dev *rdev)
958 {
959 if (rdev) {
960 mutex_lock(&rdev->lock);
961
962 if (!--rdev->users && rdev->close && rdev->registered)
963 rdev->close(rdev);
964
965 mutex_unlock(&rdev->lock);
966 }
967 }
968
ir_close(struct input_dev * idev)969 static void ir_close(struct input_dev *idev)
970 {
971 struct rc_dev *rdev = input_get_drvdata(idev);
972 rc_close(rdev);
973 }
974
975 /* class for /sys/class/rc */
rc_devnode(struct device * dev,umode_t * mode)976 static char *rc_devnode(struct device *dev, umode_t *mode)
977 {
978 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
979 }
980
981 static struct class rc_class = {
982 .name = "rc",
983 .devnode = rc_devnode,
984 };
985
986 /*
987 * These are the protocol textual descriptions that are
988 * used by the sysfs protocols file. Note that the order
989 * of the entries is relevant.
990 */
991 static const struct {
992 u64 type;
993 const char *name;
994 const char *module_name;
995 } proto_names[] = {
996 { RC_PROTO_BIT_NONE, "none", NULL },
997 { RC_PROTO_BIT_OTHER, "other", NULL },
998 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
999 { RC_PROTO_BIT_RC5 |
1000 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
1001 { RC_PROTO_BIT_NEC |
1002 RC_PROTO_BIT_NECX |
1003 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1004 { RC_PROTO_BIT_RC6_0 |
1005 RC_PROTO_BIT_RC6_6A_20 |
1006 RC_PROTO_BIT_RC6_6A_24 |
1007 RC_PROTO_BIT_RC6_6A_32 |
1008 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1009 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1010 { RC_PROTO_BIT_SONY12 |
1011 RC_PROTO_BIT_SONY15 |
1012 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1013 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1014 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1015 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1016 { RC_PROTO_BIT_MCIR2_KBD |
1017 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1018 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1019 { RC_PROTO_BIT_CEC, "cec", NULL },
1020 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
1021 };
1022
1023 /**
1024 * struct rc_filter_attribute - Device attribute relating to a filter type.
1025 * @attr: Device attribute.
1026 * @type: Filter type.
1027 * @mask: false for filter value, true for filter mask.
1028 */
1029 struct rc_filter_attribute {
1030 struct device_attribute attr;
1031 enum rc_filter_type type;
1032 bool mask;
1033 };
1034 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1035
1036 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1037 struct rc_filter_attribute dev_attr_##_name = { \
1038 .attr = __ATTR(_name, _mode, _show, _store), \
1039 .type = (_type), \
1040 .mask = (_mask), \
1041 }
1042
1043 /**
1044 * show_protocols() - shows the current IR protocol(s)
1045 * @device: the device descriptor
1046 * @mattr: the device attribute struct
1047 * @buf: a pointer to the output buffer
1048 *
1049 * This routine is a callback routine for input read the IR protocol type(s).
1050 * it is trigged by reading /sys/class/rc/rc?/protocols.
1051 * It returns the protocol names of supported protocols.
1052 * Enabled protocols are printed in brackets.
1053 *
1054 * dev->lock is taken to guard against races between
1055 * store_protocols and show_protocols.
1056 */
show_protocols(struct device * device,struct device_attribute * mattr,char * buf)1057 static ssize_t show_protocols(struct device *device,
1058 struct device_attribute *mattr, char *buf)
1059 {
1060 struct rc_dev *dev = to_rc_dev(device);
1061 u64 allowed, enabled;
1062 char *tmp = buf;
1063 int i;
1064
1065 mutex_lock(&dev->lock);
1066
1067 enabled = dev->enabled_protocols;
1068 allowed = dev->allowed_protocols;
1069 if (dev->raw && !allowed)
1070 allowed = ir_raw_get_allowed_protocols();
1071
1072 mutex_unlock(&dev->lock);
1073
1074 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1075 __func__, (long long)allowed, (long long)enabled);
1076
1077 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1078 if (allowed & enabled & proto_names[i].type)
1079 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1080 else if (allowed & proto_names[i].type)
1081 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1082
1083 if (allowed & proto_names[i].type)
1084 allowed &= ~proto_names[i].type;
1085 }
1086
1087 #ifdef CONFIG_LIRC
1088 if (dev->driver_type == RC_DRIVER_IR_RAW)
1089 tmp += sprintf(tmp, "[lirc] ");
1090 #endif
1091
1092 if (tmp != buf)
1093 tmp--;
1094 *tmp = '\n';
1095
1096 return tmp + 1 - buf;
1097 }
1098
1099 /**
1100 * parse_protocol_change() - parses a protocol change request
1101 * @dev: rc_dev device
1102 * @protocols: pointer to the bitmask of current protocols
1103 * @buf: pointer to the buffer with a list of changes
1104 *
1105 * Writing "+proto" will add a protocol to the protocol mask.
1106 * Writing "-proto" will remove a protocol from protocol mask.
1107 * Writing "proto" will enable only "proto".
1108 * Writing "none" will disable all protocols.
1109 * Returns the number of changes performed or a negative error code.
1110 */
parse_protocol_change(struct rc_dev * dev,u64 * protocols,const char * buf)1111 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1112 const char *buf)
1113 {
1114 const char *tmp;
1115 unsigned count = 0;
1116 bool enable, disable;
1117 u64 mask;
1118 int i;
1119
1120 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1121 if (!*tmp)
1122 break;
1123
1124 if (*tmp == '+') {
1125 enable = true;
1126 disable = false;
1127 tmp++;
1128 } else if (*tmp == '-') {
1129 enable = false;
1130 disable = true;
1131 tmp++;
1132 } else {
1133 enable = false;
1134 disable = false;
1135 }
1136
1137 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1138 if (!strcasecmp(tmp, proto_names[i].name)) {
1139 mask = proto_names[i].type;
1140 break;
1141 }
1142 }
1143
1144 if (i == ARRAY_SIZE(proto_names)) {
1145 if (!strcasecmp(tmp, "lirc"))
1146 mask = 0;
1147 else {
1148 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1149 tmp);
1150 return -EINVAL;
1151 }
1152 }
1153
1154 count++;
1155
1156 if (enable)
1157 *protocols |= mask;
1158 else if (disable)
1159 *protocols &= ~mask;
1160 else
1161 *protocols = mask;
1162 }
1163
1164 if (!count) {
1165 dev_dbg(&dev->dev, "Protocol not specified\n");
1166 return -EINVAL;
1167 }
1168
1169 return count;
1170 }
1171
ir_raw_load_modules(u64 * protocols)1172 void ir_raw_load_modules(u64 *protocols)
1173 {
1174 u64 available;
1175 int i, ret;
1176
1177 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1178 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1179 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1180 RC_PROTO_BIT_UNKNOWN))
1181 continue;
1182
1183 available = ir_raw_get_allowed_protocols();
1184 if (!(*protocols & proto_names[i].type & ~available))
1185 continue;
1186
1187 if (!proto_names[i].module_name) {
1188 pr_err("Can't enable IR protocol %s\n",
1189 proto_names[i].name);
1190 *protocols &= ~proto_names[i].type;
1191 continue;
1192 }
1193
1194 ret = request_module("%s", proto_names[i].module_name);
1195 if (ret < 0) {
1196 pr_err("Couldn't load IR protocol module %s\n",
1197 proto_names[i].module_name);
1198 *protocols &= ~proto_names[i].type;
1199 continue;
1200 }
1201 msleep(20);
1202 available = ir_raw_get_allowed_protocols();
1203 if (!(*protocols & proto_names[i].type & ~available))
1204 continue;
1205
1206 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1207 proto_names[i].module_name,
1208 proto_names[i].name);
1209 *protocols &= ~proto_names[i].type;
1210 }
1211 }
1212
1213 /**
1214 * store_protocols() - changes the current/wakeup IR protocol(s)
1215 * @device: the device descriptor
1216 * @mattr: the device attribute struct
1217 * @buf: a pointer to the input buffer
1218 * @len: length of the input buffer
1219 *
1220 * This routine is for changing the IR protocol type.
1221 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1222 * See parse_protocol_change() for the valid commands.
1223 * Returns @len on success or a negative error code.
1224 *
1225 * dev->lock is taken to guard against races between
1226 * store_protocols and show_protocols.
1227 */
store_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1228 static ssize_t store_protocols(struct device *device,
1229 struct device_attribute *mattr,
1230 const char *buf, size_t len)
1231 {
1232 struct rc_dev *dev = to_rc_dev(device);
1233 u64 *current_protocols;
1234 struct rc_scancode_filter *filter;
1235 u64 old_protocols, new_protocols;
1236 ssize_t rc;
1237
1238 dev_dbg(&dev->dev, "Normal protocol change requested\n");
1239 current_protocols = &dev->enabled_protocols;
1240 filter = &dev->scancode_filter;
1241
1242 if (!dev->change_protocol) {
1243 dev_dbg(&dev->dev, "Protocol switching not supported\n");
1244 return -EINVAL;
1245 }
1246
1247 mutex_lock(&dev->lock);
1248 if (!dev->registered) {
1249 mutex_unlock(&dev->lock);
1250 return -ENODEV;
1251 }
1252
1253 old_protocols = *current_protocols;
1254 new_protocols = old_protocols;
1255 rc = parse_protocol_change(dev, &new_protocols, buf);
1256 if (rc < 0)
1257 goto out;
1258
1259 if (dev->driver_type == RC_DRIVER_IR_RAW)
1260 ir_raw_load_modules(&new_protocols);
1261
1262 rc = dev->change_protocol(dev, &new_protocols);
1263 if (rc < 0) {
1264 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1265 (long long)new_protocols);
1266 goto out;
1267 }
1268
1269 if (new_protocols != old_protocols) {
1270 *current_protocols = new_protocols;
1271 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1272 (long long)new_protocols);
1273 }
1274
1275 /*
1276 * If a protocol change was attempted the filter may need updating, even
1277 * if the actual protocol mask hasn't changed (since the driver may have
1278 * cleared the filter).
1279 * Try setting the same filter with the new protocol (if any).
1280 * Fall back to clearing the filter.
1281 */
1282 if (dev->s_filter && filter->mask) {
1283 if (new_protocols)
1284 rc = dev->s_filter(dev, filter);
1285 else
1286 rc = -1;
1287
1288 if (rc < 0) {
1289 filter->data = 0;
1290 filter->mask = 0;
1291 dev->s_filter(dev, filter);
1292 }
1293 }
1294
1295 rc = len;
1296
1297 out:
1298 mutex_unlock(&dev->lock);
1299 return rc;
1300 }
1301
1302 /**
1303 * show_filter() - shows the current scancode filter value or mask
1304 * @device: the device descriptor
1305 * @attr: the device attribute struct
1306 * @buf: a pointer to the output buffer
1307 *
1308 * This routine is a callback routine to read a scancode filter value or mask.
1309 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1310 * It prints the current scancode filter value or mask of the appropriate filter
1311 * type in hexadecimal into @buf and returns the size of the buffer.
1312 *
1313 * Bits of the filter value corresponding to set bits in the filter mask are
1314 * compared against input scancodes and non-matching scancodes are discarded.
1315 *
1316 * dev->lock is taken to guard against races between
1317 * store_filter and show_filter.
1318 */
show_filter(struct device * device,struct device_attribute * attr,char * buf)1319 static ssize_t show_filter(struct device *device,
1320 struct device_attribute *attr,
1321 char *buf)
1322 {
1323 struct rc_dev *dev = to_rc_dev(device);
1324 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1325 struct rc_scancode_filter *filter;
1326 u32 val;
1327
1328 mutex_lock(&dev->lock);
1329
1330 if (fattr->type == RC_FILTER_NORMAL)
1331 filter = &dev->scancode_filter;
1332 else
1333 filter = &dev->scancode_wakeup_filter;
1334
1335 if (fattr->mask)
1336 val = filter->mask;
1337 else
1338 val = filter->data;
1339 mutex_unlock(&dev->lock);
1340
1341 return sprintf(buf, "%#x\n", val);
1342 }
1343
1344 /**
1345 * store_filter() - changes the scancode filter value
1346 * @device: the device descriptor
1347 * @attr: the device attribute struct
1348 * @buf: a pointer to the input buffer
1349 * @len: length of the input buffer
1350 *
1351 * This routine is for changing a scancode filter value or mask.
1352 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1353 * Returns -EINVAL if an invalid filter value for the current protocol was
1354 * specified or if scancode filtering is not supported by the driver, otherwise
1355 * returns @len.
1356 *
1357 * Bits of the filter value corresponding to set bits in the filter mask are
1358 * compared against input scancodes and non-matching scancodes are discarded.
1359 *
1360 * dev->lock is taken to guard against races between
1361 * store_filter and show_filter.
1362 */
store_filter(struct device * device,struct device_attribute * attr,const char * buf,size_t len)1363 static ssize_t store_filter(struct device *device,
1364 struct device_attribute *attr,
1365 const char *buf, size_t len)
1366 {
1367 struct rc_dev *dev = to_rc_dev(device);
1368 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1369 struct rc_scancode_filter new_filter, *filter;
1370 int ret;
1371 unsigned long val;
1372 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1373
1374 ret = kstrtoul(buf, 0, &val);
1375 if (ret < 0)
1376 return ret;
1377
1378 if (fattr->type == RC_FILTER_NORMAL) {
1379 set_filter = dev->s_filter;
1380 filter = &dev->scancode_filter;
1381 } else {
1382 set_filter = dev->s_wakeup_filter;
1383 filter = &dev->scancode_wakeup_filter;
1384 }
1385
1386 if (!set_filter)
1387 return -EINVAL;
1388
1389 mutex_lock(&dev->lock);
1390 if (!dev->registered) {
1391 mutex_unlock(&dev->lock);
1392 return -ENODEV;
1393 }
1394
1395 new_filter = *filter;
1396 if (fattr->mask)
1397 new_filter.mask = val;
1398 else
1399 new_filter.data = val;
1400
1401 if (fattr->type == RC_FILTER_WAKEUP) {
1402 /*
1403 * Refuse to set a filter unless a protocol is enabled
1404 * and the filter is valid for that protocol
1405 */
1406 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1407 ret = rc_validate_filter(dev, &new_filter);
1408 else
1409 ret = -EINVAL;
1410
1411 if (ret != 0)
1412 goto unlock;
1413 }
1414
1415 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1416 val) {
1417 /* refuse to set a filter unless a protocol is enabled */
1418 ret = -EINVAL;
1419 goto unlock;
1420 }
1421
1422 ret = set_filter(dev, &new_filter);
1423 if (ret < 0)
1424 goto unlock;
1425
1426 *filter = new_filter;
1427
1428 unlock:
1429 mutex_unlock(&dev->lock);
1430 return (ret < 0) ? ret : len;
1431 }
1432
1433 /**
1434 * show_wakeup_protocols() - shows the wakeup IR protocol
1435 * @device: the device descriptor
1436 * @mattr: the device attribute struct
1437 * @buf: a pointer to the output buffer
1438 *
1439 * This routine is a callback routine for input read the IR protocol type(s).
1440 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1441 * It returns the protocol names of supported protocols.
1442 * The enabled protocols are printed in brackets.
1443 *
1444 * dev->lock is taken to guard against races between
1445 * store_wakeup_protocols and show_wakeup_protocols.
1446 */
show_wakeup_protocols(struct device * device,struct device_attribute * mattr,char * buf)1447 static ssize_t show_wakeup_protocols(struct device *device,
1448 struct device_attribute *mattr,
1449 char *buf)
1450 {
1451 struct rc_dev *dev = to_rc_dev(device);
1452 u64 allowed;
1453 enum rc_proto enabled;
1454 char *tmp = buf;
1455 int i;
1456
1457 mutex_lock(&dev->lock);
1458
1459 allowed = dev->allowed_wakeup_protocols;
1460 enabled = dev->wakeup_protocol;
1461
1462 mutex_unlock(&dev->lock);
1463
1464 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1465 __func__, (long long)allowed, enabled);
1466
1467 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1468 if (allowed & (1ULL << i)) {
1469 if (i == enabled)
1470 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1471 else
1472 tmp += sprintf(tmp, "%s ", protocols[i].name);
1473 }
1474 }
1475
1476 if (tmp != buf)
1477 tmp--;
1478 *tmp = '\n';
1479
1480 return tmp + 1 - buf;
1481 }
1482
1483 /**
1484 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1485 * @device: the device descriptor
1486 * @mattr: the device attribute struct
1487 * @buf: a pointer to the input buffer
1488 * @len: length of the input buffer
1489 *
1490 * This routine is for changing the IR protocol type.
1491 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1492 * Returns @len on success or a negative error code.
1493 *
1494 * dev->lock is taken to guard against races between
1495 * store_wakeup_protocols and show_wakeup_protocols.
1496 */
store_wakeup_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1497 static ssize_t store_wakeup_protocols(struct device *device,
1498 struct device_attribute *mattr,
1499 const char *buf, size_t len)
1500 {
1501 struct rc_dev *dev = to_rc_dev(device);
1502 enum rc_proto protocol;
1503 ssize_t rc;
1504 u64 allowed;
1505 int i;
1506
1507 mutex_lock(&dev->lock);
1508 if (!dev->registered) {
1509 mutex_unlock(&dev->lock);
1510 return -ENODEV;
1511 }
1512
1513 allowed = dev->allowed_wakeup_protocols;
1514
1515 if (sysfs_streq(buf, "none")) {
1516 protocol = RC_PROTO_UNKNOWN;
1517 } else {
1518 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1519 if ((allowed & (1ULL << i)) &&
1520 sysfs_streq(buf, protocols[i].name)) {
1521 protocol = i;
1522 break;
1523 }
1524 }
1525
1526 if (i == ARRAY_SIZE(protocols)) {
1527 rc = -EINVAL;
1528 goto out;
1529 }
1530
1531 if (dev->encode_wakeup) {
1532 u64 mask = 1ULL << protocol;
1533
1534 ir_raw_load_modules(&mask);
1535 if (!mask) {
1536 rc = -EINVAL;
1537 goto out;
1538 }
1539 }
1540 }
1541
1542 if (dev->wakeup_protocol != protocol) {
1543 dev->wakeup_protocol = protocol;
1544 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1545
1546 if (protocol == RC_PROTO_RC6_MCE)
1547 dev->scancode_wakeup_filter.data = 0x800f0000;
1548 else
1549 dev->scancode_wakeup_filter.data = 0;
1550 dev->scancode_wakeup_filter.mask = 0;
1551
1552 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1553 if (rc == 0)
1554 rc = len;
1555 } else {
1556 rc = len;
1557 }
1558
1559 out:
1560 mutex_unlock(&dev->lock);
1561 return rc;
1562 }
1563
rc_dev_release(struct device * device)1564 static void rc_dev_release(struct device *device)
1565 {
1566 struct rc_dev *dev = to_rc_dev(device);
1567
1568 kfree(dev);
1569 }
1570
rc_dev_uevent(struct device * device,struct kobj_uevent_env * env)1571 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1572 {
1573 struct rc_dev *dev = to_rc_dev(device);
1574 int ret = 0;
1575
1576 mutex_lock(&dev->lock);
1577
1578 if (!dev->registered)
1579 ret = -ENODEV;
1580 if (ret == 0 && dev->rc_map.name)
1581 ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1582 if (ret == 0 && dev->driver_name)
1583 ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1584 if (ret == 0 && dev->device_name)
1585 ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1586
1587 mutex_unlock(&dev->lock);
1588
1589 return ret;
1590 }
1591
1592 /*
1593 * Static device attribute struct with the sysfs attributes for IR's
1594 */
1595 static struct device_attribute dev_attr_ro_protocols =
1596 __ATTR(protocols, 0444, show_protocols, NULL);
1597 static struct device_attribute dev_attr_rw_protocols =
1598 __ATTR(protocols, 0644, show_protocols, store_protocols);
1599 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1600 store_wakeup_protocols);
1601 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1602 show_filter, store_filter, RC_FILTER_NORMAL, false);
1603 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1604 show_filter, store_filter, RC_FILTER_NORMAL, true);
1605 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1606 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1607 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1608 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1609
1610 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1611 &dev_attr_rw_protocols.attr,
1612 NULL,
1613 };
1614
1615 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1616 .attrs = rc_dev_rw_protocol_attrs,
1617 };
1618
1619 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1620 &dev_attr_ro_protocols.attr,
1621 NULL,
1622 };
1623
1624 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1625 .attrs = rc_dev_ro_protocol_attrs,
1626 };
1627
1628 static struct attribute *rc_dev_filter_attrs[] = {
1629 &dev_attr_filter.attr.attr,
1630 &dev_attr_filter_mask.attr.attr,
1631 NULL,
1632 };
1633
1634 static const struct attribute_group rc_dev_filter_attr_grp = {
1635 .attrs = rc_dev_filter_attrs,
1636 };
1637
1638 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1639 &dev_attr_wakeup_filter.attr.attr,
1640 &dev_attr_wakeup_filter_mask.attr.attr,
1641 &dev_attr_wakeup_protocols.attr,
1642 NULL,
1643 };
1644
1645 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1646 .attrs = rc_dev_wakeup_filter_attrs,
1647 };
1648
1649 static const struct device_type rc_dev_type = {
1650 .release = rc_dev_release,
1651 .uevent = rc_dev_uevent,
1652 };
1653
rc_allocate_device(enum rc_driver_type type)1654 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1655 {
1656 struct rc_dev *dev;
1657
1658 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1659 if (!dev)
1660 return NULL;
1661
1662 if (type != RC_DRIVER_IR_RAW_TX) {
1663 dev->input_dev = input_allocate_device();
1664 if (!dev->input_dev) {
1665 kfree(dev);
1666 return NULL;
1667 }
1668
1669 dev->input_dev->getkeycode = ir_getkeycode;
1670 dev->input_dev->setkeycode = ir_setkeycode;
1671 input_set_drvdata(dev->input_dev, dev);
1672
1673 dev->timeout = IR_DEFAULT_TIMEOUT;
1674 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1675 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1676
1677 spin_lock_init(&dev->rc_map.lock);
1678 spin_lock_init(&dev->keylock);
1679 }
1680 mutex_init(&dev->lock);
1681
1682 dev->dev.type = &rc_dev_type;
1683 dev->dev.class = &rc_class;
1684 device_initialize(&dev->dev);
1685
1686 dev->driver_type = type;
1687
1688 __module_get(THIS_MODULE);
1689 return dev;
1690 }
1691 EXPORT_SYMBOL_GPL(rc_allocate_device);
1692
rc_free_device(struct rc_dev * dev)1693 void rc_free_device(struct rc_dev *dev)
1694 {
1695 if (!dev)
1696 return;
1697
1698 input_free_device(dev->input_dev);
1699
1700 put_device(&dev->dev);
1701
1702 /* kfree(dev) will be called by the callback function
1703 rc_dev_release() */
1704
1705 module_put(THIS_MODULE);
1706 }
1707 EXPORT_SYMBOL_GPL(rc_free_device);
1708
devm_rc_alloc_release(struct device * dev,void * res)1709 static void devm_rc_alloc_release(struct device *dev, void *res)
1710 {
1711 rc_free_device(*(struct rc_dev **)res);
1712 }
1713
devm_rc_allocate_device(struct device * dev,enum rc_driver_type type)1714 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1715 enum rc_driver_type type)
1716 {
1717 struct rc_dev **dr, *rc;
1718
1719 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1720 if (!dr)
1721 return NULL;
1722
1723 rc = rc_allocate_device(type);
1724 if (!rc) {
1725 devres_free(dr);
1726 return NULL;
1727 }
1728
1729 rc->dev.parent = dev;
1730 rc->managed_alloc = true;
1731 *dr = rc;
1732 devres_add(dev, dr);
1733
1734 return rc;
1735 }
1736 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1737
rc_prepare_rx_device(struct rc_dev * dev)1738 static int rc_prepare_rx_device(struct rc_dev *dev)
1739 {
1740 int rc;
1741 struct rc_map *rc_map;
1742 u64 rc_proto;
1743
1744 if (!dev->map_name)
1745 return -EINVAL;
1746
1747 rc_map = rc_map_get(dev->map_name);
1748 if (!rc_map)
1749 rc_map = rc_map_get(RC_MAP_EMPTY);
1750 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1751 return -EINVAL;
1752
1753 rc = ir_setkeytable(dev, rc_map);
1754 if (rc)
1755 return rc;
1756
1757 rc_proto = BIT_ULL(rc_map->rc_proto);
1758
1759 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1760 dev->enabled_protocols = dev->allowed_protocols;
1761
1762 if (dev->driver_type == RC_DRIVER_IR_RAW)
1763 ir_raw_load_modules(&rc_proto);
1764
1765 if (dev->change_protocol) {
1766 rc = dev->change_protocol(dev, &rc_proto);
1767 if (rc < 0)
1768 goto out_table;
1769 dev->enabled_protocols = rc_proto;
1770 }
1771
1772 set_bit(EV_KEY, dev->input_dev->evbit);
1773 set_bit(EV_REP, dev->input_dev->evbit);
1774 set_bit(EV_MSC, dev->input_dev->evbit);
1775 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1776 if (dev->open)
1777 dev->input_dev->open = ir_open;
1778 if (dev->close)
1779 dev->input_dev->close = ir_close;
1780
1781 dev->input_dev->dev.parent = &dev->dev;
1782 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1783 dev->input_dev->phys = dev->input_phys;
1784 dev->input_dev->name = dev->device_name;
1785
1786 return 0;
1787
1788 out_table:
1789 ir_free_table(&dev->rc_map);
1790
1791 return rc;
1792 }
1793
rc_setup_rx_device(struct rc_dev * dev)1794 static int rc_setup_rx_device(struct rc_dev *dev)
1795 {
1796 int rc;
1797
1798 /* rc_open will be called here */
1799 rc = input_register_device(dev->input_dev);
1800 if (rc)
1801 return rc;
1802
1803 /*
1804 * Default delay of 250ms is too short for some protocols, especially
1805 * since the timeout is currently set to 250ms. Increase it to 500ms,
1806 * to avoid wrong repetition of the keycodes. Note that this must be
1807 * set after the call to input_register_device().
1808 */
1809 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1810 dev->input_dev->rep[REP_DELAY] = 0;
1811 else
1812 dev->input_dev->rep[REP_DELAY] = 500;
1813
1814 /*
1815 * As a repeat event on protocols like RC-5 and NEC take as long as
1816 * 110/114ms, using 33ms as a repeat period is not the right thing
1817 * to do.
1818 */
1819 dev->input_dev->rep[REP_PERIOD] = 125;
1820
1821 return 0;
1822 }
1823
rc_free_rx_device(struct rc_dev * dev)1824 static void rc_free_rx_device(struct rc_dev *dev)
1825 {
1826 if (!dev)
1827 return;
1828
1829 if (dev->input_dev) {
1830 input_unregister_device(dev->input_dev);
1831 dev->input_dev = NULL;
1832 }
1833
1834 ir_free_table(&dev->rc_map);
1835 }
1836
rc_register_device(struct rc_dev * dev)1837 int rc_register_device(struct rc_dev *dev)
1838 {
1839 const char *path;
1840 int attr = 0;
1841 int minor;
1842 int rc;
1843
1844 if (!dev)
1845 return -EINVAL;
1846
1847 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1848 if (minor < 0)
1849 return minor;
1850
1851 dev->minor = minor;
1852 dev_set_name(&dev->dev, "rc%u", dev->minor);
1853 dev_set_drvdata(&dev->dev, dev);
1854
1855 dev->dev.groups = dev->sysfs_groups;
1856 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1857 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1858 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1859 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1860 if (dev->s_filter)
1861 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1862 if (dev->s_wakeup_filter)
1863 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1864 dev->sysfs_groups[attr++] = NULL;
1865
1866 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1867 rc = ir_raw_event_prepare(dev);
1868 if (rc < 0)
1869 goto out_minor;
1870 }
1871
1872 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1873 rc = rc_prepare_rx_device(dev);
1874 if (rc)
1875 goto out_raw;
1876 }
1877
1878 dev->registered = true;
1879
1880 rc = device_add(&dev->dev);
1881 if (rc)
1882 goto out_rx_free;
1883
1884 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1885 dev_info(&dev->dev, "%s as %s\n",
1886 dev->device_name ?: "Unspecified device", path ?: "N/A");
1887 kfree(path);
1888
1889 /*
1890 * once the the input device is registered in rc_setup_rx_device,
1891 * userspace can open the input device and rc_open() will be called
1892 * as a result. This results in driver code being allowed to submit
1893 * keycodes with rc_keydown, so lirc must be registered first.
1894 */
1895 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1896 rc = ir_lirc_register(dev);
1897 if (rc < 0)
1898 goto out_dev;
1899 }
1900
1901 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1902 rc = rc_setup_rx_device(dev);
1903 if (rc)
1904 goto out_lirc;
1905 }
1906
1907 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1908 rc = ir_raw_event_register(dev);
1909 if (rc < 0)
1910 goto out_rx;
1911 }
1912
1913 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1914 dev->driver_name ? dev->driver_name : "unknown");
1915
1916 return 0;
1917
1918 out_rx:
1919 rc_free_rx_device(dev);
1920 out_lirc:
1921 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1922 ir_lirc_unregister(dev);
1923 out_dev:
1924 device_del(&dev->dev);
1925 out_rx_free:
1926 ir_free_table(&dev->rc_map);
1927 out_raw:
1928 ir_raw_event_free(dev);
1929 out_minor:
1930 ida_simple_remove(&rc_ida, minor);
1931 return rc;
1932 }
1933 EXPORT_SYMBOL_GPL(rc_register_device);
1934
devm_rc_release(struct device * dev,void * res)1935 static void devm_rc_release(struct device *dev, void *res)
1936 {
1937 rc_unregister_device(*(struct rc_dev **)res);
1938 }
1939
devm_rc_register_device(struct device * parent,struct rc_dev * dev)1940 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1941 {
1942 struct rc_dev **dr;
1943 int ret;
1944
1945 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1946 if (!dr)
1947 return -ENOMEM;
1948
1949 ret = rc_register_device(dev);
1950 if (ret) {
1951 devres_free(dr);
1952 return ret;
1953 }
1954
1955 *dr = dev;
1956 devres_add(parent, dr);
1957
1958 return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1961
rc_unregister_device(struct rc_dev * dev)1962 void rc_unregister_device(struct rc_dev *dev)
1963 {
1964 if (!dev)
1965 return;
1966
1967 if (dev->driver_type == RC_DRIVER_IR_RAW)
1968 ir_raw_event_unregister(dev);
1969
1970 del_timer_sync(&dev->timer_keyup);
1971 del_timer_sync(&dev->timer_repeat);
1972
1973 mutex_lock(&dev->lock);
1974 if (dev->users && dev->close)
1975 dev->close(dev);
1976 dev->registered = false;
1977 mutex_unlock(&dev->lock);
1978
1979 rc_free_rx_device(dev);
1980
1981 /*
1982 * lirc device should be freed with dev->registered = false, so
1983 * that userspace polling will get notified.
1984 */
1985 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1986 ir_lirc_unregister(dev);
1987
1988 device_del(&dev->dev);
1989
1990 ida_simple_remove(&rc_ida, dev->minor);
1991
1992 if (!dev->managed_alloc)
1993 rc_free_device(dev);
1994 }
1995
1996 EXPORT_SYMBOL_GPL(rc_unregister_device);
1997
1998 /*
1999 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2000 */
2001
rc_core_init(void)2002 static int __init rc_core_init(void)
2003 {
2004 int rc = class_register(&rc_class);
2005 if (rc) {
2006 pr_err("rc_core: unable to register rc class\n");
2007 return rc;
2008 }
2009
2010 rc = lirc_dev_init();
2011 if (rc) {
2012 pr_err("rc_core: unable to init lirc\n");
2013 class_unregister(&rc_class);
2014 return 0;
2015 }
2016
2017 led_trigger_register_simple("rc-feedback", &led_feedback);
2018 rc_map_register(&empty_map);
2019
2020 return 0;
2021 }
2022
rc_core_exit(void)2023 static void __exit rc_core_exit(void)
2024 {
2025 lirc_dev_exit();
2026 class_unregister(&rc_class);
2027 led_trigger_unregister_simple(led_feedback);
2028 rc_map_unregister(&empty_map);
2029 }
2030
2031 subsys_initcall(rc_core_init);
2032 module_exit(rc_core_exit);
2033
2034 MODULE_AUTHOR("Mauro Carvalho Chehab");
2035 MODULE_LICENSE("GPL v2");
2036