1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25 #include <linux/sched/signal.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/dma_fence.h>
29 
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
32 
33 /*
34  * fence context counter: each execution context should have its own
35  * fence context, this allows checking if fences belong to the same
36  * context or not. One device can have multiple separate contexts,
37  * and they're used if some engine can run independently of another.
38  */
39 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0);
40 
41 /**
42  * DOC: DMA fences overview
43  *
44  * DMA fences, represented by &struct dma_fence, are the kernel internal
45  * synchronization primitive for DMA operations like GPU rendering, video
46  * encoding/decoding, or displaying buffers on a screen.
47  *
48  * A fence is initialized using dma_fence_init() and completed using
49  * dma_fence_signal(). Fences are associated with a context, allocated through
50  * dma_fence_context_alloc(), and all fences on the same context are
51  * fully ordered.
52  *
53  * Since the purposes of fences is to facilitate cross-device and
54  * cross-application synchronization, there's multiple ways to use one:
55  *
56  * - Individual fences can be exposed as a &sync_file, accessed as a file
57  *   descriptor from userspace, created by calling sync_file_create(). This is
58  *   called explicit fencing, since userspace passes around explicit
59  *   synchronization points.
60  *
61  * - Some subsystems also have their own explicit fencing primitives, like
62  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
63  *   fence to be updated.
64  *
65  * - Then there's also implicit fencing, where the synchronization points are
66  *   implicitly passed around as part of shared &dma_buf instances. Such
67  *   implicit fences are stored in &struct reservation_object through the
68  *   &dma_buf.resv pointer.
69  */
70 
71 /**
72  * dma_fence_context_alloc - allocate an array of fence contexts
73  * @num: amount of contexts to allocate
74  *
75  * This function will return the first index of the number of fence contexts
76  * allocated.  The fence context is used for setting &dma_fence.context to a
77  * unique number by passing the context to dma_fence_init().
78  */
dma_fence_context_alloc(unsigned num)79 u64 dma_fence_context_alloc(unsigned num)
80 {
81 	WARN_ON(!num);
82 	return atomic64_add_return(num, &dma_fence_context_counter) - num;
83 }
84 EXPORT_SYMBOL(dma_fence_context_alloc);
85 
86 /**
87  * dma_fence_signal_locked - signal completion of a fence
88  * @fence: the fence to signal
89  *
90  * Signal completion for software callbacks on a fence, this will unblock
91  * dma_fence_wait() calls and run all the callbacks added with
92  * dma_fence_add_callback(). Can be called multiple times, but since a fence
93  * can only go from the unsignaled to the signaled state and not back, it will
94  * only be effective the first time.
95  *
96  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
97  * held.
98  *
99  * Returns 0 on success and a negative error value when @fence has been
100  * signalled already.
101  */
dma_fence_signal_locked(struct dma_fence * fence)102 int dma_fence_signal_locked(struct dma_fence *fence)
103 {
104 	struct dma_fence_cb *cur, *tmp;
105 	int ret = 0;
106 
107 	lockdep_assert_held(fence->lock);
108 
109 	if (WARN_ON(!fence))
110 		return -EINVAL;
111 
112 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
113 		ret = -EINVAL;
114 
115 		/*
116 		 * we might have raced with the unlocked dma_fence_signal,
117 		 * still run through all callbacks
118 		 */
119 	} else {
120 		fence->timestamp = ktime_get();
121 		set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
122 		trace_dma_fence_signaled(fence);
123 	}
124 
125 	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
126 		list_del_init(&cur->node);
127 		cur->func(fence, cur);
128 	}
129 	return ret;
130 }
131 EXPORT_SYMBOL(dma_fence_signal_locked);
132 
133 /**
134  * dma_fence_signal - signal completion of a fence
135  * @fence: the fence to signal
136  *
137  * Signal completion for software callbacks on a fence, this will unblock
138  * dma_fence_wait() calls and run all the callbacks added with
139  * dma_fence_add_callback(). Can be called multiple times, but since a fence
140  * can only go from the unsignaled to the signaled state and not back, it will
141  * only be effective the first time.
142  *
143  * Returns 0 on success and a negative error value when @fence has been
144  * signalled already.
145  */
dma_fence_signal(struct dma_fence * fence)146 int dma_fence_signal(struct dma_fence *fence)
147 {
148 	unsigned long flags;
149 
150 	if (!fence)
151 		return -EINVAL;
152 
153 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
154 		return -EINVAL;
155 
156 	fence->timestamp = ktime_get();
157 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
158 	trace_dma_fence_signaled(fence);
159 
160 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
161 		struct dma_fence_cb *cur, *tmp;
162 
163 		spin_lock_irqsave(fence->lock, flags);
164 		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
165 			list_del_init(&cur->node);
166 			cur->func(fence, cur);
167 		}
168 		spin_unlock_irqrestore(fence->lock, flags);
169 	}
170 	return 0;
171 }
172 EXPORT_SYMBOL(dma_fence_signal);
173 
174 /**
175  * dma_fence_wait_timeout - sleep until the fence gets signaled
176  * or until timeout elapses
177  * @fence: the fence to wait on
178  * @intr: if true, do an interruptible wait
179  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
180  *
181  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
182  * remaining timeout in jiffies on success. Other error values may be
183  * returned on custom implementations.
184  *
185  * Performs a synchronous wait on this fence. It is assumed the caller
186  * directly or indirectly (buf-mgr between reservation and committing)
187  * holds a reference to the fence, otherwise the fence might be
188  * freed before return, resulting in undefined behavior.
189  *
190  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
191  */
192 signed long
dma_fence_wait_timeout(struct dma_fence * fence,bool intr,signed long timeout)193 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
194 {
195 	signed long ret;
196 
197 	if (WARN_ON(timeout < 0))
198 		return -EINVAL;
199 
200 	trace_dma_fence_wait_start(fence);
201 	if (fence->ops->wait)
202 		ret = fence->ops->wait(fence, intr, timeout);
203 	else
204 		ret = dma_fence_default_wait(fence, intr, timeout);
205 	trace_dma_fence_wait_end(fence);
206 	return ret;
207 }
208 EXPORT_SYMBOL(dma_fence_wait_timeout);
209 
210 /**
211  * dma_fence_release - default relese function for fences
212  * @kref: &dma_fence.recfount
213  *
214  * This is the default release functions for &dma_fence. Drivers shouldn't call
215  * this directly, but instead call dma_fence_put().
216  */
dma_fence_release(struct kref * kref)217 void dma_fence_release(struct kref *kref)
218 {
219 	struct dma_fence *fence =
220 		container_of(kref, struct dma_fence, refcount);
221 
222 	trace_dma_fence_destroy(fence);
223 
224 	/* Failed to signal before release, could be a refcounting issue */
225 	WARN_ON(!list_empty(&fence->cb_list));
226 
227 	if (fence->ops->release)
228 		fence->ops->release(fence);
229 	else
230 		dma_fence_free(fence);
231 }
232 EXPORT_SYMBOL(dma_fence_release);
233 
234 /**
235  * dma_fence_free - default release function for &dma_fence.
236  * @fence: fence to release
237  *
238  * This is the default implementation for &dma_fence_ops.release. It calls
239  * kfree_rcu() on @fence.
240  */
dma_fence_free(struct dma_fence * fence)241 void dma_fence_free(struct dma_fence *fence)
242 {
243 	kfree_rcu(fence, rcu);
244 }
245 EXPORT_SYMBOL(dma_fence_free);
246 
__dma_fence_enable_signaling(struct dma_fence * fence)247 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
248 {
249 	bool was_set;
250 
251 	lockdep_assert_held(fence->lock);
252 
253 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
254 				   &fence->flags);
255 
256 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
257 		return false;
258 
259 	if (!was_set && fence->ops->enable_signaling) {
260 		trace_dma_fence_enable_signal(fence);
261 
262 		if (!fence->ops->enable_signaling(fence)) {
263 			dma_fence_signal_locked(fence);
264 			return false;
265 		}
266 	}
267 
268 	return true;
269 }
270 
271 /**
272  * dma_fence_enable_sw_signaling - enable signaling on fence
273  * @fence: the fence to enable
274  *
275  * This will request for sw signaling to be enabled, to make the fence
276  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
277  * internally.
278  */
dma_fence_enable_sw_signaling(struct dma_fence * fence)279 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
280 {
281 	unsigned long flags;
282 
283 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
284 		return;
285 
286 	spin_lock_irqsave(fence->lock, flags);
287 	__dma_fence_enable_signaling(fence);
288 	spin_unlock_irqrestore(fence->lock, flags);
289 }
290 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
291 
292 /**
293  * dma_fence_add_callback - add a callback to be called when the fence
294  * is signaled
295  * @fence: the fence to wait on
296  * @cb: the callback to register
297  * @func: the function to call
298  *
299  * @cb will be initialized by dma_fence_add_callback(), no initialization
300  * by the caller is required. Any number of callbacks can be registered
301  * to a fence, but a callback can only be registered to one fence at a time.
302  *
303  * Note that the callback can be called from an atomic context.  If
304  * fence is already signaled, this function will return -ENOENT (and
305  * *not* call the callback).
306  *
307  * Add a software callback to the fence. Same restrictions apply to
308  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
309  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
310  * when software access is enabled, the creator of the fence is required to keep
311  * the fence alive until after it signals with dma_fence_signal(). The callback
312  * itself can be called from irq context.
313  *
314  * Returns 0 in case of success, -ENOENT if the fence is already signaled
315  * and -EINVAL in case of error.
316  */
dma_fence_add_callback(struct dma_fence * fence,struct dma_fence_cb * cb,dma_fence_func_t func)317 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
318 			   dma_fence_func_t func)
319 {
320 	unsigned long flags;
321 	int ret = 0;
322 
323 	if (WARN_ON(!fence || !func))
324 		return -EINVAL;
325 
326 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
327 		INIT_LIST_HEAD(&cb->node);
328 		return -ENOENT;
329 	}
330 
331 	spin_lock_irqsave(fence->lock, flags);
332 
333 	if (__dma_fence_enable_signaling(fence)) {
334 		cb->func = func;
335 		list_add_tail(&cb->node, &fence->cb_list);
336 	} else {
337 		INIT_LIST_HEAD(&cb->node);
338 		ret = -ENOENT;
339 	}
340 
341 	spin_unlock_irqrestore(fence->lock, flags);
342 
343 	return ret;
344 }
345 EXPORT_SYMBOL(dma_fence_add_callback);
346 
347 /**
348  * dma_fence_get_status - returns the status upon completion
349  * @fence: the dma_fence to query
350  *
351  * This wraps dma_fence_get_status_locked() to return the error status
352  * condition on a signaled fence. See dma_fence_get_status_locked() for more
353  * details.
354  *
355  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
356  * been signaled without an error condition, or a negative error code
357  * if the fence has been completed in err.
358  */
dma_fence_get_status(struct dma_fence * fence)359 int dma_fence_get_status(struct dma_fence *fence)
360 {
361 	unsigned long flags;
362 	int status;
363 
364 	spin_lock_irqsave(fence->lock, flags);
365 	status = dma_fence_get_status_locked(fence);
366 	spin_unlock_irqrestore(fence->lock, flags);
367 
368 	return status;
369 }
370 EXPORT_SYMBOL(dma_fence_get_status);
371 
372 /**
373  * dma_fence_remove_callback - remove a callback from the signaling list
374  * @fence: the fence to wait on
375  * @cb: the callback to remove
376  *
377  * Remove a previously queued callback from the fence. This function returns
378  * true if the callback is successfully removed, or false if the fence has
379  * already been signaled.
380  *
381  * *WARNING*:
382  * Cancelling a callback should only be done if you really know what you're
383  * doing, since deadlocks and race conditions could occur all too easily. For
384  * this reason, it should only ever be done on hardware lockup recovery,
385  * with a reference held to the fence.
386  *
387  * Behaviour is undefined if @cb has not been added to @fence using
388  * dma_fence_add_callback() beforehand.
389  */
390 bool
dma_fence_remove_callback(struct dma_fence * fence,struct dma_fence_cb * cb)391 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
392 {
393 	unsigned long flags;
394 	bool ret;
395 
396 	spin_lock_irqsave(fence->lock, flags);
397 
398 	ret = !list_empty(&cb->node);
399 	if (ret)
400 		list_del_init(&cb->node);
401 
402 	spin_unlock_irqrestore(fence->lock, flags);
403 
404 	return ret;
405 }
406 EXPORT_SYMBOL(dma_fence_remove_callback);
407 
408 struct default_wait_cb {
409 	struct dma_fence_cb base;
410 	struct task_struct *task;
411 };
412 
413 static void
dma_fence_default_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)414 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
415 {
416 	struct default_wait_cb *wait =
417 		container_of(cb, struct default_wait_cb, base);
418 
419 	wake_up_state(wait->task, TASK_NORMAL);
420 }
421 
422 /**
423  * dma_fence_default_wait - default sleep until the fence gets signaled
424  * or until timeout elapses
425  * @fence: the fence to wait on
426  * @intr: if true, do an interruptible wait
427  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
428  *
429  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
430  * remaining timeout in jiffies on success. If timeout is zero the value one is
431  * returned if the fence is already signaled for consistency with other
432  * functions taking a jiffies timeout.
433  */
434 signed long
dma_fence_default_wait(struct dma_fence * fence,bool intr,signed long timeout)435 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
436 {
437 	struct default_wait_cb cb;
438 	unsigned long flags;
439 	signed long ret = timeout ? timeout : 1;
440 
441 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
442 		return ret;
443 
444 	spin_lock_irqsave(fence->lock, flags);
445 
446 	if (intr && signal_pending(current)) {
447 		ret = -ERESTARTSYS;
448 		goto out;
449 	}
450 
451 	if (!__dma_fence_enable_signaling(fence))
452 		goto out;
453 
454 	if (!timeout) {
455 		ret = 0;
456 		goto out;
457 	}
458 
459 	cb.base.func = dma_fence_default_wait_cb;
460 	cb.task = current;
461 	list_add(&cb.base.node, &fence->cb_list);
462 
463 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
464 		if (intr)
465 			__set_current_state(TASK_INTERRUPTIBLE);
466 		else
467 			__set_current_state(TASK_UNINTERRUPTIBLE);
468 		spin_unlock_irqrestore(fence->lock, flags);
469 
470 		ret = schedule_timeout(ret);
471 
472 		spin_lock_irqsave(fence->lock, flags);
473 		if (ret > 0 && intr && signal_pending(current))
474 			ret = -ERESTARTSYS;
475 	}
476 
477 	if (!list_empty(&cb.base.node))
478 		list_del(&cb.base.node);
479 	__set_current_state(TASK_RUNNING);
480 
481 out:
482 	spin_unlock_irqrestore(fence->lock, flags);
483 	return ret;
484 }
485 EXPORT_SYMBOL(dma_fence_default_wait);
486 
487 static bool
dma_fence_test_signaled_any(struct dma_fence ** fences,uint32_t count,uint32_t * idx)488 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
489 			    uint32_t *idx)
490 {
491 	int i;
492 
493 	for (i = 0; i < count; ++i) {
494 		struct dma_fence *fence = fences[i];
495 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
496 			if (idx)
497 				*idx = i;
498 			return true;
499 		}
500 	}
501 	return false;
502 }
503 
504 /**
505  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
506  * or until timeout elapses
507  * @fences: array of fences to wait on
508  * @count: number of fences to wait on
509  * @intr: if true, do an interruptible wait
510  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
511  * @idx: used to store the first signaled fence index, meaningful only on
512  *	positive return
513  *
514  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
515  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
516  * on success.
517  *
518  * Synchronous waits for the first fence in the array to be signaled. The
519  * caller needs to hold a reference to all fences in the array, otherwise a
520  * fence might be freed before return, resulting in undefined behavior.
521  *
522  * See also dma_fence_wait() and dma_fence_wait_timeout().
523  */
524 signed long
dma_fence_wait_any_timeout(struct dma_fence ** fences,uint32_t count,bool intr,signed long timeout,uint32_t * idx)525 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
526 			   bool intr, signed long timeout, uint32_t *idx)
527 {
528 	struct default_wait_cb *cb;
529 	signed long ret = timeout;
530 	unsigned i;
531 
532 	if (WARN_ON(!fences || !count || timeout < 0))
533 		return -EINVAL;
534 
535 	if (timeout == 0) {
536 		for (i = 0; i < count; ++i)
537 			if (dma_fence_is_signaled(fences[i])) {
538 				if (idx)
539 					*idx = i;
540 				return 1;
541 			}
542 
543 		return 0;
544 	}
545 
546 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
547 	if (cb == NULL) {
548 		ret = -ENOMEM;
549 		goto err_free_cb;
550 	}
551 
552 	for (i = 0; i < count; ++i) {
553 		struct dma_fence *fence = fences[i];
554 
555 		cb[i].task = current;
556 		if (dma_fence_add_callback(fence, &cb[i].base,
557 					   dma_fence_default_wait_cb)) {
558 			/* This fence is already signaled */
559 			if (idx)
560 				*idx = i;
561 			goto fence_rm_cb;
562 		}
563 	}
564 
565 	while (ret > 0) {
566 		if (intr)
567 			set_current_state(TASK_INTERRUPTIBLE);
568 		else
569 			set_current_state(TASK_UNINTERRUPTIBLE);
570 
571 		if (dma_fence_test_signaled_any(fences, count, idx))
572 			break;
573 
574 		ret = schedule_timeout(ret);
575 
576 		if (ret > 0 && intr && signal_pending(current))
577 			ret = -ERESTARTSYS;
578 	}
579 
580 	__set_current_state(TASK_RUNNING);
581 
582 fence_rm_cb:
583 	while (i-- > 0)
584 		dma_fence_remove_callback(fences[i], &cb[i].base);
585 
586 err_free_cb:
587 	kfree(cb);
588 
589 	return ret;
590 }
591 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
592 
593 /**
594  * dma_fence_init - Initialize a custom fence.
595  * @fence: the fence to initialize
596  * @ops: the dma_fence_ops for operations on this fence
597  * @lock: the irqsafe spinlock to use for locking this fence
598  * @context: the execution context this fence is run on
599  * @seqno: a linear increasing sequence number for this context
600  *
601  * Initializes an allocated fence, the caller doesn't have to keep its
602  * refcount after committing with this fence, but it will need to hold a
603  * refcount again if &dma_fence_ops.enable_signaling gets called.
604  *
605  * context and seqno are used for easy comparison between fences, allowing
606  * to check which fence is later by simply using dma_fence_later().
607  */
608 void
dma_fence_init(struct dma_fence * fence,const struct dma_fence_ops * ops,spinlock_t * lock,u64 context,unsigned seqno)609 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
610 	       spinlock_t *lock, u64 context, unsigned seqno)
611 {
612 	BUG_ON(!lock);
613 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
614 
615 	kref_init(&fence->refcount);
616 	fence->ops = ops;
617 	INIT_LIST_HEAD(&fence->cb_list);
618 	fence->lock = lock;
619 	fence->context = context;
620 	fence->seqno = seqno;
621 	fence->flags = 0UL;
622 	fence->error = 0;
623 
624 	trace_dma_fence_init(fence);
625 }
626 EXPORT_SYMBOL(dma_fence_init);
627