1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/bootmem.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * of_fdt_limit_memory - limit the number of regions in the /memory node
37  * @limit: maximum entries
38  *
39  * Adjust the flattened device tree to have at most 'limit' number of
40  * memory entries in the /memory node. This function may be called
41  * any time after initial_boot_param is set.
42  */
of_fdt_limit_memory(int limit)43 void of_fdt_limit_memory(int limit)
44 {
45 	int memory;
46 	int len;
47 	const void *val;
48 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 	const __be32 *addr_prop;
51 	const __be32 *size_prop;
52 	int root_offset;
53 	int cell_size;
54 
55 	root_offset = fdt_path_offset(initial_boot_params, "/");
56 	if (root_offset < 0)
57 		return;
58 
59 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 				"#address-cells", NULL);
61 	if (addr_prop)
62 		nr_address_cells = fdt32_to_cpu(*addr_prop);
63 
64 	size_prop = fdt_getprop(initial_boot_params, root_offset,
65 				"#size-cells", NULL);
66 	if (size_prop)
67 		nr_size_cells = fdt32_to_cpu(*size_prop);
68 
69 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70 
71 	memory = fdt_path_offset(initial_boot_params, "/memory");
72 	if (memory > 0) {
73 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 		if (len > limit*cell_size) {
75 			len = limit*cell_size;
76 			pr_debug("Limiting number of entries to %d\n", limit);
77 			fdt_setprop(initial_boot_params, memory, "reg", val,
78 					len);
79 		}
80 	}
81 }
82 
83 /**
84  * of_fdt_is_compatible - Return true if given node from the given blob has
85  * compat in its compatible list
86  * @blob: A device tree blob
87  * @node: node to test
88  * @compat: compatible string to compare with compatible list.
89  *
90  * On match, returns a non-zero value with smaller values returned for more
91  * specific compatible values.
92  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)93 static int of_fdt_is_compatible(const void *blob,
94 		      unsigned long node, const char *compat)
95 {
96 	const char *cp;
97 	int cplen;
98 	unsigned long l, score = 0;
99 
100 	cp = fdt_getprop(blob, node, "compatible", &cplen);
101 	if (cp == NULL)
102 		return 0;
103 	while (cplen > 0) {
104 		score++;
105 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
106 			return score;
107 		l = strlen(cp) + 1;
108 		cp += l;
109 		cplen -= l;
110 	}
111 
112 	return 0;
113 }
114 
115 /**
116  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
117  * @blob: A device tree blob
118  * @node: node to test
119  *
120  * Returns true if the node has a "big-endian" property, or if the kernel
121  * was compiled for BE *and* the node has a "native-endian" property.
122  * Returns false otherwise.
123  */
of_fdt_is_big_endian(const void * blob,unsigned long node)124 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
125 {
126 	if (fdt_getprop(blob, node, "big-endian", NULL))
127 		return true;
128 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
129 	    fdt_getprop(blob, node, "native-endian", NULL))
130 		return true;
131 	return false;
132 }
133 
of_fdt_device_is_available(const void * blob,unsigned long node)134 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
135 {
136 	const char *status = fdt_getprop(blob, node, "status", NULL);
137 
138 	if (!status)
139 		return true;
140 
141 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
142 		return true;
143 
144 	return false;
145 }
146 
147 /**
148  * of_fdt_match - Return true if node matches a list of compatible values
149  */
of_fdt_match(const void * blob,unsigned long node,const char * const * compat)150 int of_fdt_match(const void *blob, unsigned long node,
151                  const char *const *compat)
152 {
153 	unsigned int tmp, score = 0;
154 
155 	if (!compat)
156 		return 0;
157 
158 	while (*compat) {
159 		tmp = of_fdt_is_compatible(blob, node, *compat);
160 		if (tmp && (score == 0 || (tmp < score)))
161 			score = tmp;
162 		compat++;
163 	}
164 
165 	return score;
166 }
167 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)168 static void *unflatten_dt_alloc(void **mem, unsigned long size,
169 				       unsigned long align)
170 {
171 	void *res;
172 
173 	*mem = PTR_ALIGN(*mem, align);
174 	res = *mem;
175 	*mem += size;
176 
177 	return res;
178 }
179 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)180 static void populate_properties(const void *blob,
181 				int offset,
182 				void **mem,
183 				struct device_node *np,
184 				const char *nodename,
185 				bool dryrun)
186 {
187 	struct property *pp, **pprev = NULL;
188 	int cur;
189 	bool has_name = false;
190 
191 	pprev = &np->properties;
192 	for (cur = fdt_first_property_offset(blob, offset);
193 	     cur >= 0;
194 	     cur = fdt_next_property_offset(blob, cur)) {
195 		const __be32 *val;
196 		const char *pname;
197 		u32 sz;
198 
199 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
200 		if (!val) {
201 			pr_warn("Cannot locate property at 0x%x\n", cur);
202 			continue;
203 		}
204 
205 		if (!pname) {
206 			pr_warn("Cannot find property name at 0x%x\n", cur);
207 			continue;
208 		}
209 
210 		if (!strcmp(pname, "name"))
211 			has_name = true;
212 
213 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
214 					__alignof__(struct property));
215 		if (dryrun)
216 			continue;
217 
218 		/* We accept flattened tree phandles either in
219 		 * ePAPR-style "phandle" properties, or the
220 		 * legacy "linux,phandle" properties.  If both
221 		 * appear and have different values, things
222 		 * will get weird. Don't do that.
223 		 */
224 		if (!strcmp(pname, "phandle") ||
225 		    !strcmp(pname, "linux,phandle")) {
226 			if (!np->phandle)
227 				np->phandle = be32_to_cpup(val);
228 		}
229 
230 		/* And we process the "ibm,phandle" property
231 		 * used in pSeries dynamic device tree
232 		 * stuff
233 		 */
234 		if (!strcmp(pname, "ibm,phandle"))
235 			np->phandle = be32_to_cpup(val);
236 
237 		pp->name   = (char *)pname;
238 		pp->length = sz;
239 		pp->value  = (__be32 *)val;
240 		*pprev     = pp;
241 		pprev      = &pp->next;
242 	}
243 
244 	/* With version 0x10 we may not have the name property,
245 	 * recreate it here from the unit name if absent
246 	 */
247 	if (!has_name) {
248 		const char *p = nodename, *ps = p, *pa = NULL;
249 		int len;
250 
251 		while (*p) {
252 			if ((*p) == '@')
253 				pa = p;
254 			else if ((*p) == '/')
255 				ps = p + 1;
256 			p++;
257 		}
258 
259 		if (pa < ps)
260 			pa = p;
261 		len = (pa - ps) + 1;
262 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
263 					__alignof__(struct property));
264 		if (!dryrun) {
265 			pp->name   = "name";
266 			pp->length = len;
267 			pp->value  = pp + 1;
268 			*pprev     = pp;
269 			pprev      = &pp->next;
270 			memcpy(pp->value, ps, len - 1);
271 			((char *)pp->value)[len - 1] = 0;
272 			pr_debug("fixed up name for %s -> %s\n",
273 				 nodename, (char *)pp->value);
274 		}
275 	}
276 
277 	if (!dryrun)
278 		*pprev = NULL;
279 }
280 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)281 static bool populate_node(const void *blob,
282 			  int offset,
283 			  void **mem,
284 			  struct device_node *dad,
285 			  struct device_node **pnp,
286 			  bool dryrun)
287 {
288 	struct device_node *np;
289 	const char *pathp;
290 	unsigned int l, allocl;
291 
292 	pathp = fdt_get_name(blob, offset, &l);
293 	if (!pathp) {
294 		*pnp = NULL;
295 		return false;
296 	}
297 
298 	allocl = ++l;
299 
300 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
301 				__alignof__(struct device_node));
302 	if (!dryrun) {
303 		char *fn;
304 		of_node_init(np);
305 		np->full_name = fn = ((char *)np) + sizeof(*np);
306 
307 		memcpy(fn, pathp, l);
308 
309 		if (dad != NULL) {
310 			np->parent = dad;
311 			np->sibling = dad->child;
312 			dad->child = np;
313 		}
314 	}
315 
316 	populate_properties(blob, offset, mem, np, pathp, dryrun);
317 	if (!dryrun) {
318 		np->name = of_get_property(np, "name", NULL);
319 		np->type = of_get_property(np, "device_type", NULL);
320 
321 		if (!np->name)
322 			np->name = "<NULL>";
323 		if (!np->type)
324 			np->type = "<NULL>";
325 	}
326 
327 	*pnp = np;
328 	return true;
329 }
330 
reverse_nodes(struct device_node * parent)331 static void reverse_nodes(struct device_node *parent)
332 {
333 	struct device_node *child, *next;
334 
335 	/* In-depth first */
336 	child = parent->child;
337 	while (child) {
338 		reverse_nodes(child);
339 
340 		child = child->sibling;
341 	}
342 
343 	/* Reverse the nodes in the child list */
344 	child = parent->child;
345 	parent->child = NULL;
346 	while (child) {
347 		next = child->sibling;
348 
349 		child->sibling = parent->child;
350 		parent->child = child;
351 		child = next;
352 	}
353 }
354 
355 /**
356  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
357  * @blob: The parent device tree blob
358  * @mem: Memory chunk to use for allocating device nodes and properties
359  * @dad: Parent struct device_node
360  * @nodepp: The device_node tree created by the call
361  *
362  * It returns the size of unflattened device tree or error code
363  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)364 static int unflatten_dt_nodes(const void *blob,
365 			      void *mem,
366 			      struct device_node *dad,
367 			      struct device_node **nodepp)
368 {
369 	struct device_node *root;
370 	int offset = 0, depth = 0, initial_depth = 0;
371 #define FDT_MAX_DEPTH	64
372 	struct device_node *nps[FDT_MAX_DEPTH];
373 	void *base = mem;
374 	bool dryrun = !base;
375 
376 	if (nodepp)
377 		*nodepp = NULL;
378 
379 	/*
380 	 * We're unflattening device sub-tree if @dad is valid. There are
381 	 * possibly multiple nodes in the first level of depth. We need
382 	 * set @depth to 1 to make fdt_next_node() happy as it bails
383 	 * immediately when negative @depth is found. Otherwise, the device
384 	 * nodes except the first one won't be unflattened successfully.
385 	 */
386 	if (dad)
387 		depth = initial_depth = 1;
388 
389 	root = dad;
390 	nps[depth] = dad;
391 
392 	for (offset = 0;
393 	     offset >= 0 && depth >= initial_depth;
394 	     offset = fdt_next_node(blob, offset, &depth)) {
395 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
396 			continue;
397 
398 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
399 		    !of_fdt_device_is_available(blob, offset))
400 			continue;
401 
402 		if (!populate_node(blob, offset, &mem, nps[depth],
403 				   &nps[depth+1], dryrun))
404 			return mem - base;
405 
406 		if (!dryrun && nodepp && !*nodepp)
407 			*nodepp = nps[depth+1];
408 		if (!dryrun && !root)
409 			root = nps[depth+1];
410 	}
411 
412 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
413 		pr_err("Error %d processing FDT\n", offset);
414 		return -EINVAL;
415 	}
416 
417 	/*
418 	 * Reverse the child list. Some drivers assumes node order matches .dts
419 	 * node order
420 	 */
421 	if (!dryrun)
422 		reverse_nodes(root);
423 
424 	return mem - base;
425 }
426 
427 /**
428  * __unflatten_device_tree - create tree of device_nodes from flat blob
429  *
430  * unflattens a device-tree, creating the
431  * tree of struct device_node. It also fills the "name" and "type"
432  * pointers of the nodes so the normal device-tree walking functions
433  * can be used.
434  * @blob: The blob to expand
435  * @dad: Parent device node
436  * @mynodes: The device_node tree created by the call
437  * @dt_alloc: An allocator that provides a virtual address to memory
438  * for the resulting tree
439  * @detached: if true set OF_DETACHED on @mynodes
440  *
441  * Returns NULL on failure or the memory chunk containing the unflattened
442  * device tree on success.
443  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)444 void *__unflatten_device_tree(const void *blob,
445 			      struct device_node *dad,
446 			      struct device_node **mynodes,
447 			      void *(*dt_alloc)(u64 size, u64 align),
448 			      bool detached)
449 {
450 	int size;
451 	void *mem;
452 
453 	pr_debug(" -> unflatten_device_tree()\n");
454 
455 	if (!blob) {
456 		pr_debug("No device tree pointer\n");
457 		return NULL;
458 	}
459 
460 	pr_debug("Unflattening device tree:\n");
461 	pr_debug("magic: %08x\n", fdt_magic(blob));
462 	pr_debug("size: %08x\n", fdt_totalsize(blob));
463 	pr_debug("version: %08x\n", fdt_version(blob));
464 
465 	if (fdt_check_header(blob)) {
466 		pr_err("Invalid device tree blob header\n");
467 		return NULL;
468 	}
469 
470 	/* First pass, scan for size */
471 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
472 	if (size < 0)
473 		return NULL;
474 
475 	size = ALIGN(size, 4);
476 	pr_debug("  size is %d, allocating...\n", size);
477 
478 	/* Allocate memory for the expanded device tree */
479 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
480 	if (!mem)
481 		return NULL;
482 
483 	memset(mem, 0, size);
484 
485 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
486 
487 	pr_debug("  unflattening %p...\n", mem);
488 
489 	/* Second pass, do actual unflattening */
490 	unflatten_dt_nodes(blob, mem, dad, mynodes);
491 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
492 		pr_warning("End of tree marker overwritten: %08x\n",
493 			   be32_to_cpup(mem + size));
494 
495 	if (detached && mynodes) {
496 		of_node_set_flag(*mynodes, OF_DETACHED);
497 		pr_debug("unflattened tree is detached\n");
498 	}
499 
500 	pr_debug(" <- unflatten_device_tree()\n");
501 	return mem;
502 }
503 
kernel_tree_alloc(u64 size,u64 align)504 static void *kernel_tree_alloc(u64 size, u64 align)
505 {
506 	return kzalloc(size, GFP_KERNEL);
507 }
508 
509 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
510 
511 /**
512  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
513  * @blob: Flat device tree blob
514  * @dad: Parent device node
515  * @mynodes: The device tree created by the call
516  *
517  * unflattens the device-tree passed by the firmware, creating the
518  * tree of struct device_node. It also fills the "name" and "type"
519  * pointers of the nodes so the normal device-tree walking functions
520  * can be used.
521  *
522  * Returns NULL on failure or the memory chunk containing the unflattened
523  * device tree on success.
524  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)525 void *of_fdt_unflatten_tree(const unsigned long *blob,
526 			    struct device_node *dad,
527 			    struct device_node **mynodes)
528 {
529 	void *mem;
530 
531 	mutex_lock(&of_fdt_unflatten_mutex);
532 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
533 				      true);
534 	mutex_unlock(&of_fdt_unflatten_mutex);
535 
536 	return mem;
537 }
538 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
539 
540 /* Everything below here references initial_boot_params directly. */
541 int __initdata dt_root_addr_cells;
542 int __initdata dt_root_size_cells;
543 
544 void *initial_boot_params;
545 
546 #ifdef CONFIG_OF_EARLY_FLATTREE
547 
548 static u32 of_fdt_crc32;
549 
550 /**
551  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
552  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)553 static int __init __reserved_mem_reserve_reg(unsigned long node,
554 					     const char *uname)
555 {
556 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
557 	phys_addr_t base, size;
558 	int len;
559 	const __be32 *prop;
560 	int nomap, first = 1;
561 
562 	prop = of_get_flat_dt_prop(node, "reg", &len);
563 	if (!prop)
564 		return -ENOENT;
565 
566 	if (len && len % t_len != 0) {
567 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
568 		       uname);
569 		return -EINVAL;
570 	}
571 
572 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
573 
574 	while (len >= t_len) {
575 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
576 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
577 
578 		if (size &&
579 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
580 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
581 				uname, &base, (unsigned long)(size / SZ_1M));
582 		else
583 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
584 				uname, &base, (unsigned long)(size / SZ_1M));
585 
586 		len -= t_len;
587 		if (first) {
588 			fdt_reserved_mem_save_node(node, uname, base, size);
589 			first = 0;
590 		}
591 	}
592 	return 0;
593 }
594 
595 /**
596  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
597  * in /reserved-memory matches the values supported by the current implementation,
598  * also check if ranges property has been provided
599  */
__reserved_mem_check_root(unsigned long node)600 static int __init __reserved_mem_check_root(unsigned long node)
601 {
602 	const __be32 *prop;
603 
604 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
605 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
606 		return -EINVAL;
607 
608 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
609 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
610 		return -EINVAL;
611 
612 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
613 	if (!prop)
614 		return -EINVAL;
615 	return 0;
616 }
617 
618 /**
619  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
620  */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)621 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
622 					  int depth, void *data)
623 {
624 	static int found;
625 	int err;
626 
627 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
628 		if (__reserved_mem_check_root(node) != 0) {
629 			pr_err("Reserved memory: unsupported node format, ignoring\n");
630 			/* break scan */
631 			return 1;
632 		}
633 		found = 1;
634 		/* scan next node */
635 		return 0;
636 	} else if (!found) {
637 		/* scan next node */
638 		return 0;
639 	} else if (found && depth < 2) {
640 		/* scanning of /reserved-memory has been finished */
641 		return 1;
642 	}
643 
644 	if (!of_fdt_device_is_available(initial_boot_params, node))
645 		return 0;
646 
647 	err = __reserved_mem_reserve_reg(node, uname);
648 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
649 		fdt_reserved_mem_save_node(node, uname, 0, 0);
650 
651 	/* scan next node */
652 	return 0;
653 }
654 
655 /**
656  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
657  *
658  * This function grabs memory from early allocator for device exclusive use
659  * defined in device tree structures. It should be called by arch specific code
660  * once the early allocator (i.e. memblock) has been fully activated.
661  */
early_init_fdt_scan_reserved_mem(void)662 void __init early_init_fdt_scan_reserved_mem(void)
663 {
664 	int n;
665 	u64 base, size;
666 
667 	if (!initial_boot_params)
668 		return;
669 
670 	/* Process header /memreserve/ fields */
671 	for (n = 0; ; n++) {
672 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
673 		if (!size)
674 			break;
675 		early_init_dt_reserve_memory_arch(base, size, 0);
676 	}
677 
678 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
679 	fdt_init_reserved_mem();
680 }
681 
682 /**
683  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
684  */
early_init_fdt_reserve_self(void)685 void __init early_init_fdt_reserve_self(void)
686 {
687 	if (!initial_boot_params)
688 		return;
689 
690 	/* Reserve the dtb region */
691 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
692 					  fdt_totalsize(initial_boot_params),
693 					  0);
694 }
695 
696 /**
697  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
698  * @it: callback function
699  * @data: context data pointer
700  *
701  * This function is used to scan the flattened device-tree, it is
702  * used to extract the memory information at boot before we can
703  * unflatten the tree
704  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)705 int __init of_scan_flat_dt(int (*it)(unsigned long node,
706 				     const char *uname, int depth,
707 				     void *data),
708 			   void *data)
709 {
710 	const void *blob = initial_boot_params;
711 	const char *pathp;
712 	int offset, rc = 0, depth = -1;
713 
714 	if (!blob)
715 		return 0;
716 
717 	for (offset = fdt_next_node(blob, -1, &depth);
718 	     offset >= 0 && depth >= 0 && !rc;
719 	     offset = fdt_next_node(blob, offset, &depth)) {
720 
721 		pathp = fdt_get_name(blob, offset, NULL);
722 		if (*pathp == '/')
723 			pathp = kbasename(pathp);
724 		rc = it(offset, pathp, depth, data);
725 	}
726 	return rc;
727 }
728 
729 /**
730  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
731  * @it: callback function
732  * @data: context data pointer
733  *
734  * This function is used to scan sub-nodes of a node.
735  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)736 int __init of_scan_flat_dt_subnodes(unsigned long parent,
737 				    int (*it)(unsigned long node,
738 					      const char *uname,
739 					      void *data),
740 				    void *data)
741 {
742 	const void *blob = initial_boot_params;
743 	int node;
744 
745 	fdt_for_each_subnode(node, blob, parent) {
746 		const char *pathp;
747 		int rc;
748 
749 		pathp = fdt_get_name(blob, node, NULL);
750 		if (*pathp == '/')
751 			pathp = kbasename(pathp);
752 		rc = it(node, pathp, data);
753 		if (rc)
754 			return rc;
755 	}
756 	return 0;
757 }
758 
759 /**
760  * of_get_flat_dt_subnode_by_name - get the subnode by given name
761  *
762  * @node: the parent node
763  * @uname: the name of subnode
764  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
765  */
766 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)767 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
768 {
769 	return fdt_subnode_offset(initial_boot_params, node, uname);
770 }
771 
772 /**
773  * of_get_flat_dt_root - find the root node in the flat blob
774  */
of_get_flat_dt_root(void)775 unsigned long __init of_get_flat_dt_root(void)
776 {
777 	return 0;
778 }
779 
780 /**
781  * of_get_flat_dt_size - Return the total size of the FDT
782  */
of_get_flat_dt_size(void)783 int __init of_get_flat_dt_size(void)
784 {
785 	return fdt_totalsize(initial_boot_params);
786 }
787 
788 /**
789  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
790  *
791  * This function can be used within scan_flattened_dt callback to get
792  * access to properties
793  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)794 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
795 				       int *size)
796 {
797 	return fdt_getprop(initial_boot_params, node, name, size);
798 }
799 
800 /**
801  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
802  * @node: node to test
803  * @compat: compatible string to compare with compatible list.
804  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)805 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
806 {
807 	return of_fdt_is_compatible(initial_boot_params, node, compat);
808 }
809 
810 /**
811  * of_flat_dt_match - Return true if node matches a list of compatible values
812  */
of_flat_dt_match(unsigned long node,const char * const * compat)813 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
814 {
815 	return of_fdt_match(initial_boot_params, node, compat);
816 }
817 
818 /**
819  * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
820  */
of_get_flat_dt_phandle(unsigned long node)821 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
822 {
823 	return fdt_get_phandle(initial_boot_params, node);
824 }
825 
826 struct fdt_scan_status {
827 	const char *name;
828 	int namelen;
829 	int depth;
830 	int found;
831 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
832 	void *data;
833 };
834 
of_flat_dt_get_machine_name(void)835 const char * __init of_flat_dt_get_machine_name(void)
836 {
837 	const char *name;
838 	unsigned long dt_root = of_get_flat_dt_root();
839 
840 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
841 	if (!name)
842 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
843 	return name;
844 }
845 
846 /**
847  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
848  *
849  * @default_match: A machine specific ptr to return in case of no match.
850  * @get_next_compat: callback function to return next compatible match table.
851  *
852  * Iterate through machine match tables to find the best match for the machine
853  * compatible string in the FDT.
854  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))855 const void * __init of_flat_dt_match_machine(const void *default_match,
856 		const void * (*get_next_compat)(const char * const**))
857 {
858 	const void *data = NULL;
859 	const void *best_data = default_match;
860 	const char *const *compat;
861 	unsigned long dt_root;
862 	unsigned int best_score = ~1, score = 0;
863 
864 	dt_root = of_get_flat_dt_root();
865 	while ((data = get_next_compat(&compat))) {
866 		score = of_flat_dt_match(dt_root, compat);
867 		if (score > 0 && score < best_score) {
868 			best_data = data;
869 			best_score = score;
870 		}
871 	}
872 	if (!best_data) {
873 		const char *prop;
874 		int size;
875 
876 		pr_err("\n unrecognized device tree list:\n[ ");
877 
878 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
879 		if (prop) {
880 			while (size > 0) {
881 				printk("'%s' ", prop);
882 				size -= strlen(prop) + 1;
883 				prop += strlen(prop) + 1;
884 			}
885 		}
886 		printk("]\n\n");
887 		return NULL;
888 	}
889 
890 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
891 
892 	return best_data;
893 }
894 
895 #ifdef CONFIG_BLK_DEV_INITRD
896 #ifndef __early_init_dt_declare_initrd
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)897 static void __early_init_dt_declare_initrd(unsigned long start,
898 					   unsigned long end)
899 {
900 	initrd_start = (unsigned long)__va(start);
901 	initrd_end = (unsigned long)__va(end);
902 	initrd_below_start_ok = 1;
903 }
904 #endif
905 
906 /**
907  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
908  * @node: reference to node containing initrd location ('chosen')
909  */
early_init_dt_check_for_initrd(unsigned long node)910 static void __init early_init_dt_check_for_initrd(unsigned long node)
911 {
912 	u64 start, end;
913 	int len;
914 	const __be32 *prop;
915 
916 	pr_debug("Looking for initrd properties... ");
917 
918 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
919 	if (!prop)
920 		return;
921 	start = of_read_number(prop, len/4);
922 
923 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
924 	if (!prop)
925 		return;
926 	end = of_read_number(prop, len/4);
927 
928 	__early_init_dt_declare_initrd(start, end);
929 
930 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
931 		 (unsigned long long)start, (unsigned long long)end);
932 }
933 #else
early_init_dt_check_for_initrd(unsigned long node)934 static inline void early_init_dt_check_for_initrd(unsigned long node)
935 {
936 }
937 #endif /* CONFIG_BLK_DEV_INITRD */
938 
939 #ifdef CONFIG_SERIAL_EARLYCON
940 
early_init_dt_scan_chosen_stdout(void)941 int __init early_init_dt_scan_chosen_stdout(void)
942 {
943 	int offset;
944 	const char *p, *q, *options = NULL;
945 	int l;
946 	const struct earlycon_id **p_match;
947 	const void *fdt = initial_boot_params;
948 
949 	offset = fdt_path_offset(fdt, "/chosen");
950 	if (offset < 0)
951 		offset = fdt_path_offset(fdt, "/chosen@0");
952 	if (offset < 0)
953 		return -ENOENT;
954 
955 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
956 	if (!p)
957 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
958 	if (!p || !l)
959 		return -ENOENT;
960 
961 	q = strchrnul(p, ':');
962 	if (*q != '\0')
963 		options = q + 1;
964 	l = q - p;
965 
966 	/* Get the node specified by stdout-path */
967 	offset = fdt_path_offset_namelen(fdt, p, l);
968 	if (offset < 0) {
969 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
970 		return 0;
971 	}
972 
973 	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
974 	     p_match++) {
975 		const struct earlycon_id *match = *p_match;
976 
977 		if (!match->compatible[0])
978 			continue;
979 
980 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
981 			continue;
982 
983 		of_setup_earlycon(match, offset, options);
984 		return 0;
985 	}
986 	return -ENODEV;
987 }
988 #endif
989 
990 /**
991  * early_init_dt_scan_root - fetch the top level address and size cells
992  */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)993 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
994 				   int depth, void *data)
995 {
996 	const __be32 *prop;
997 
998 	if (depth != 0)
999 		return 0;
1000 
1001 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1002 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1003 
1004 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1005 	if (prop)
1006 		dt_root_size_cells = be32_to_cpup(prop);
1007 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1008 
1009 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1010 	if (prop)
1011 		dt_root_addr_cells = be32_to_cpup(prop);
1012 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1013 
1014 	/* break now */
1015 	return 1;
1016 }
1017 
dt_mem_next_cell(int s,const __be32 ** cellp)1018 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1019 {
1020 	const __be32 *p = *cellp;
1021 
1022 	*cellp = p + s;
1023 	return of_read_number(p, s);
1024 }
1025 
1026 /**
1027  * early_init_dt_scan_memory - Look for and parse memory nodes
1028  */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)1029 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1030 				     int depth, void *data)
1031 {
1032 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1033 	const __be32 *reg, *endp;
1034 	int l;
1035 	bool hotpluggable;
1036 
1037 	/* We are scanning "memory" nodes only */
1038 	if (type == NULL || strcmp(type, "memory") != 0)
1039 		return 0;
1040 
1041 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1042 	if (reg == NULL)
1043 		reg = of_get_flat_dt_prop(node, "reg", &l);
1044 	if (reg == NULL)
1045 		return 0;
1046 
1047 	endp = reg + (l / sizeof(__be32));
1048 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1049 
1050 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1051 
1052 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1053 		u64 base, size;
1054 
1055 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1056 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1057 
1058 		if (size == 0)
1059 			continue;
1060 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1061 		    (unsigned long long)size);
1062 
1063 		early_init_dt_add_memory_arch(base, size);
1064 
1065 		if (!hotpluggable)
1066 			continue;
1067 
1068 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1069 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1070 				base, base + size);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1076 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1077 				     int depth, void *data)
1078 {
1079 	int l;
1080 	const char *p;
1081 	const void *rng_seed;
1082 
1083 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1084 
1085 	if (depth != 1 || !data ||
1086 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1087 		return 0;
1088 
1089 	early_init_dt_check_for_initrd(node);
1090 
1091 	/* Retrieve command line */
1092 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1093 	if (p != NULL && l > 0)
1094 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1095 
1096 	/*
1097 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1098 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1099 	 * is set in which case we override whatever was found earlier.
1100 	 */
1101 #ifdef CONFIG_CMDLINE
1102 #if defined(CONFIG_CMDLINE_EXTEND)
1103 	strlcat(data, " ", COMMAND_LINE_SIZE);
1104 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1105 #elif defined(CONFIG_CMDLINE_FORCE)
1106 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1107 #else
1108 	/* No arguments from boot loader, use kernel's  cmdl*/
1109 	if (!((char *)data)[0])
1110 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1111 #endif
1112 #endif /* CONFIG_CMDLINE */
1113 
1114 	pr_debug("Command line is: %s\n", (char*)data);
1115 
1116 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1117 	if (rng_seed && l > 0) {
1118 		add_bootloader_randomness(rng_seed, l);
1119 
1120 		/* try to clear seed so it won't be found. */
1121 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1122 
1123 		/* update CRC check value */
1124 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1125 				fdt_totalsize(initial_boot_params));
1126 	}
1127 
1128 	/* break now */
1129 	return 1;
1130 }
1131 
1132 #ifdef CONFIG_HAVE_MEMBLOCK
1133 #ifndef MIN_MEMBLOCK_ADDR
1134 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1135 #endif
1136 #ifndef MAX_MEMBLOCK_ADDR
1137 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1138 #endif
1139 
early_init_dt_add_memory_arch(u64 base,u64 size)1140 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1141 {
1142 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1143 
1144 	if (!PAGE_ALIGNED(base)) {
1145 		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1146 			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1147 				base, base + size);
1148 			return;
1149 		}
1150 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1151 		base = PAGE_ALIGN(base);
1152 	}
1153 	size &= PAGE_MASK;
1154 
1155 	if (base > MAX_MEMBLOCK_ADDR) {
1156 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1157 				base, base + size);
1158 		return;
1159 	}
1160 
1161 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1162 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1163 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1164 		size = MAX_MEMBLOCK_ADDR - base + 1;
1165 	}
1166 
1167 	if (base + size < phys_offset) {
1168 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1169 			   base, base + size);
1170 		return;
1171 	}
1172 	if (base < phys_offset) {
1173 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1174 			   base, phys_offset);
1175 		size -= phys_offset - base;
1176 		base = phys_offset;
1177 	}
1178 	memblock_add(base, size);
1179 }
1180 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1181 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1182 {
1183 	return memblock_mark_hotplug(base, size);
1184 }
1185 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1186 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1187 					phys_addr_t size, bool nomap)
1188 {
1189 	if (nomap)
1190 		return memblock_remove(base, size);
1191 	return memblock_reserve(base, size);
1192 }
1193 
1194 #else
early_init_dt_add_memory_arch(u64 base,u64 size)1195 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1196 {
1197 	WARN_ON(1);
1198 }
1199 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1200 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1201 {
1202 	return -ENOSYS;
1203 }
1204 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1205 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1206 					phys_addr_t size, bool nomap)
1207 {
1208 	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1209 		  &base, &size, nomap ? " (nomap)" : "");
1210 	return -ENOSYS;
1211 }
1212 #endif
1213 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1214 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1215 {
1216 	return memblock_virt_alloc(size, align);
1217 }
1218 
early_init_dt_verify(void * params)1219 bool __init early_init_dt_verify(void *params)
1220 {
1221 	if (!params)
1222 		return false;
1223 
1224 	/* check device tree validity */
1225 	if (fdt_check_header(params))
1226 		return false;
1227 
1228 	/* Setup flat device-tree pointer */
1229 	initial_boot_params = params;
1230 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1231 				fdt_totalsize(initial_boot_params));
1232 	return true;
1233 }
1234 
1235 
early_init_dt_scan_nodes(void)1236 void __init early_init_dt_scan_nodes(void)
1237 {
1238 	/* Retrieve various information from the /chosen node */
1239 	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1240 
1241 	/* Initialize {size,address}-cells info */
1242 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1243 
1244 	/* Setup memory, calling early_init_dt_add_memory_arch */
1245 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1246 }
1247 
early_init_dt_scan(void * params)1248 bool __init early_init_dt_scan(void *params)
1249 {
1250 	bool status;
1251 
1252 	status = early_init_dt_verify(params);
1253 	if (!status)
1254 		return false;
1255 
1256 	early_init_dt_scan_nodes();
1257 	return true;
1258 }
1259 
1260 /**
1261  * unflatten_device_tree - create tree of device_nodes from flat blob
1262  *
1263  * unflattens the device-tree passed by the firmware, creating the
1264  * tree of struct device_node. It also fills the "name" and "type"
1265  * pointers of the nodes so the normal device-tree walking functions
1266  * can be used.
1267  */
unflatten_device_tree(void)1268 void __init unflatten_device_tree(void)
1269 {
1270 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1271 				early_init_dt_alloc_memory_arch, false);
1272 
1273 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1274 	of_alias_scan(early_init_dt_alloc_memory_arch);
1275 
1276 	unittest_unflatten_overlay_base();
1277 }
1278 
1279 /**
1280  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1281  *
1282  * Copies and unflattens the device-tree passed by the firmware, creating the
1283  * tree of struct device_node. It also fills the "name" and "type"
1284  * pointers of the nodes so the normal device-tree walking functions
1285  * can be used. This should only be used when the FDT memory has not been
1286  * reserved such is the case when the FDT is built-in to the kernel init
1287  * section. If the FDT memory is reserved already then unflatten_device_tree
1288  * should be used instead.
1289  */
unflatten_and_copy_device_tree(void)1290 void __init unflatten_and_copy_device_tree(void)
1291 {
1292 	int size;
1293 	void *dt;
1294 
1295 	if (!initial_boot_params) {
1296 		pr_warn("No valid device tree found, continuing without\n");
1297 		return;
1298 	}
1299 
1300 	size = fdt_totalsize(initial_boot_params);
1301 	dt = early_init_dt_alloc_memory_arch(size,
1302 					     roundup_pow_of_two(FDT_V17_SIZE));
1303 
1304 	if (dt) {
1305 		memcpy(dt, initial_boot_params, size);
1306 		initial_boot_params = dt;
1307 	}
1308 	unflatten_device_tree();
1309 }
1310 
1311 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1312 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1313 			       struct bin_attribute *bin_attr,
1314 			       char *buf, loff_t off, size_t count)
1315 {
1316 	memcpy(buf, initial_boot_params + off, count);
1317 	return count;
1318 }
1319 
of_fdt_raw_init(void)1320 static int __init of_fdt_raw_init(void)
1321 {
1322 	static struct bin_attribute of_fdt_raw_attr =
1323 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1324 
1325 	if (!initial_boot_params)
1326 		return 0;
1327 
1328 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1329 				     fdt_totalsize(initial_boot_params))) {
1330 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1331 		return 0;
1332 	}
1333 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1334 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1335 }
1336 late_initcall(of_fdt_raw_init);
1337 #endif
1338 
1339 #endif /* CONFIG_OF_EARLY_FLATTREE */
1340