1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
41 
42 #define DECRYPT		0
43 #define ENCRYPT		1
44 
45 /**
46  * ecryptfs_from_hex
47  * @dst: Buffer to take the bytes from src hex; must be at least of
48  *       size (src_size / 2)
49  * @src: Buffer to be converted from a hex string representation to raw value
50  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)52 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53 {
54 	int x;
55 	char tmp[3] = { 0, };
56 
57 	for (x = 0; x < dst_size; x++) {
58 		tmp[0] = src[x * 2];
59 		tmp[1] = src[x * 2 + 1];
60 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61 	}
62 }
63 
ecryptfs_hash_digest(struct crypto_shash * tfm,char * src,int len,char * dst)64 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65 				char *src, int len, char *dst)
66 {
67 	SHASH_DESC_ON_STACK(desc, tfm);
68 	int err;
69 
70 	desc->tfm = tfm;
71 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
72 	err = crypto_shash_digest(desc, src, len, dst);
73 	shash_desc_zero(desc);
74 	return err;
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct crypto_shash *tfm;
92 	int rc = 0;
93 
94 	tfm = crypt_stat->hash_tfm;
95 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
96 	if (rc) {
97 		printk(KERN_ERR
98 		       "%s: Error computing crypto hash; rc = [%d]\n",
99 		       __func__, rc);
100 		goto out;
101 	}
102 out:
103 	return rc;
104 }
105 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
107 						  char *cipher_name,
108 						  char *chaining_modifier)
109 {
110 	int cipher_name_len = strlen(cipher_name);
111 	int chaining_modifier_len = strlen(chaining_modifier);
112 	int algified_name_len;
113 	int rc;
114 
115 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
116 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
117 	if (!(*algified_name)) {
118 		rc = -ENOMEM;
119 		goto out;
120 	}
121 	snprintf((*algified_name), algified_name_len, "%s(%s)",
122 		 chaining_modifier, cipher_name);
123 	rc = 0;
124 out:
125 	return rc;
126 }
127 
128 /**
129  * ecryptfs_derive_iv
130  * @iv: destination for the derived iv vale
131  * @crypt_stat: Pointer to crypt_stat struct for the current inode
132  * @offset: Offset of the extent whose IV we are to derive
133  *
134  * Generate the initialization vector from the given root IV and page
135  * offset.
136  *
137  * Returns zero on success; non-zero on error.
138  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
140 		       loff_t offset)
141 {
142 	int rc = 0;
143 	char dst[MD5_DIGEST_SIZE];
144 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
145 
146 	if (unlikely(ecryptfs_verbosity > 0)) {
147 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
148 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
149 	}
150 	/* TODO: It is probably secure to just cast the least
151 	 * significant bits of the root IV into an unsigned long and
152 	 * add the offset to that rather than go through all this
153 	 * hashing business. -Halcrow */
154 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
155 	memset((src + crypt_stat->iv_bytes), 0, 16);
156 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
157 	if (unlikely(ecryptfs_verbosity > 0)) {
158 		ecryptfs_printk(KERN_DEBUG, "source:\n");
159 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
160 	}
161 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
162 				    (crypt_stat->iv_bytes + 16));
163 	if (rc) {
164 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
165 				"MD5 while generating IV for a page\n");
166 		goto out;
167 	}
168 	memcpy(iv, dst, crypt_stat->iv_bytes);
169 	if (unlikely(ecryptfs_verbosity > 0)) {
170 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
171 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
172 	}
173 out:
174 	return rc;
175 }
176 
177 /**
178  * ecryptfs_init_crypt_stat
179  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
180  *
181  * Initialize the crypt_stat structure.
182  */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
184 {
185 	struct crypto_shash *tfm;
186 	int rc;
187 
188 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
189 	if (IS_ERR(tfm)) {
190 		rc = PTR_ERR(tfm);
191 		ecryptfs_printk(KERN_ERR, "Error attempting to "
192 				"allocate crypto context; rc = [%d]\n",
193 				rc);
194 		return rc;
195 	}
196 
197 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
198 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
199 	mutex_init(&crypt_stat->keysig_list_mutex);
200 	mutex_init(&crypt_stat->cs_mutex);
201 	mutex_init(&crypt_stat->cs_tfm_mutex);
202 	crypt_stat->hash_tfm = tfm;
203 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
204 
205 	return 0;
206 }
207 
208 /**
209  * ecryptfs_destroy_crypt_stat
210  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
211  *
212  * Releases all memory associated with a crypt_stat struct.
213  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
215 {
216 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
217 
218 	crypto_free_skcipher(crypt_stat->tfm);
219 	crypto_free_shash(crypt_stat->hash_tfm);
220 	list_for_each_entry_safe(key_sig, key_sig_tmp,
221 				 &crypt_stat->keysig_list, crypt_stat_list) {
222 		list_del(&key_sig->crypt_stat_list);
223 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
224 	}
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)228 void ecryptfs_destroy_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
232 
233 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
234 		return;
235 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
236 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
237 				 &mount_crypt_stat->global_auth_tok_list,
238 				 mount_crypt_stat_list) {
239 		list_del(&auth_tok->mount_crypt_stat_list);
240 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
241 			key_put(auth_tok->global_auth_tok_key);
242 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
243 	}
244 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
245 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
246 }
247 
248 /**
249  * virt_to_scatterlist
250  * @addr: Virtual address
251  * @size: Size of data; should be an even multiple of the block size
252  * @sg: Pointer to scatterlist array; set to NULL to obtain only
253  *      the number of scatterlist structs required in array
254  * @sg_size: Max array size
255  *
256  * Fills in a scatterlist array with page references for a passed
257  * virtual address.
258  *
259  * Returns the number of scatterlist structs in array used
260  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
262 			int sg_size)
263 {
264 	int i = 0;
265 	struct page *pg;
266 	int offset;
267 	int remainder_of_page;
268 
269 	sg_init_table(sg, sg_size);
270 
271 	while (size > 0 && i < sg_size) {
272 		pg = virt_to_page(addr);
273 		offset = offset_in_page(addr);
274 		sg_set_page(&sg[i], pg, 0, offset);
275 		remainder_of_page = PAGE_SIZE - offset;
276 		if (size >= remainder_of_page) {
277 			sg[i].length = remainder_of_page;
278 			addr += remainder_of_page;
279 			size -= remainder_of_page;
280 		} else {
281 			sg[i].length = size;
282 			addr += size;
283 			size = 0;
284 		}
285 		i++;
286 	}
287 	if (size > 0)
288 		return -ENOMEM;
289 	return i;
290 }
291 
292 struct extent_crypt_result {
293 	struct completion completion;
294 	int rc;
295 };
296 
extent_crypt_complete(struct crypto_async_request * req,int rc)297 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
298 {
299 	struct extent_crypt_result *ecr = req->data;
300 
301 	if (rc == -EINPROGRESS)
302 		return;
303 
304 	ecr->rc = rc;
305 	complete(&ecr->completion);
306 }
307 
308 /**
309  * crypt_scatterlist
310  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311  * @dst_sg: Destination of the data after performing the crypto operation
312  * @src_sg: Data to be encrypted or decrypted
313  * @size: Length of data
314  * @iv: IV to use
315  * @op: ENCRYPT or DECRYPT to indicate the desired operation
316  *
317  * Returns the number of bytes encrypted or decrypted; negative value on error
318  */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
320 			     struct scatterlist *dst_sg,
321 			     struct scatterlist *src_sg, int size,
322 			     unsigned char *iv, int op)
323 {
324 	struct skcipher_request *req = NULL;
325 	struct extent_crypt_result ecr;
326 	int rc = 0;
327 
328 	BUG_ON(!crypt_stat || !crypt_stat->tfm
329 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
330 	if (unlikely(ecryptfs_verbosity > 0)) {
331 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
332 				crypt_stat->key_size);
333 		ecryptfs_dump_hex(crypt_stat->key,
334 				  crypt_stat->key_size);
335 	}
336 
337 	init_completion(&ecr.completion);
338 
339 	mutex_lock(&crypt_stat->cs_tfm_mutex);
340 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
341 	if (!req) {
342 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
343 		rc = -ENOMEM;
344 		goto out;
345 	}
346 
347 	skcipher_request_set_callback(req,
348 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
349 			extent_crypt_complete, &ecr);
350 	/* Consider doing this once, when the file is opened */
351 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
352 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
353 					    crypt_stat->key_size);
354 		if (rc) {
355 			ecryptfs_printk(KERN_ERR,
356 					"Error setting key; rc = [%d]\n",
357 					rc);
358 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
359 			rc = -EINVAL;
360 			goto out;
361 		}
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
365 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
366 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
367 			     crypto_skcipher_decrypt(req);
368 	if (rc == -EINPROGRESS || rc == -EBUSY) {
369 		struct extent_crypt_result *ecr = req->base.data;
370 
371 		wait_for_completion(&ecr->completion);
372 		rc = ecr->rc;
373 		reinit_completion(&ecr->completion);
374 	}
375 out:
376 	skcipher_request_free(req);
377 	return rc;
378 }
379 
380 /**
381  * lower_offset_for_page
382  *
383  * Convert an eCryptfs page index into a lower byte offset
384  */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)385 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
386 				    struct page *page)
387 {
388 	return ecryptfs_lower_header_size(crypt_stat) +
389 	       ((loff_t)page->index << PAGE_SHIFT);
390 }
391 
392 /**
393  * crypt_extent
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @dst_page: The page to write the result into
397  * @src_page: The page to read from
398  * @extent_offset: Page extent offset for use in generating IV
399  * @op: ENCRYPT or DECRYPT to indicate the desired operation
400  *
401  * Encrypts or decrypts one extent of data.
402  *
403  * Return zero on success; non-zero otherwise
404  */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)405 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
406 			struct page *dst_page,
407 			struct page *src_page,
408 			unsigned long extent_offset, int op)
409 {
410 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
411 	loff_t extent_base;
412 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
413 	struct scatterlist src_sg, dst_sg;
414 	size_t extent_size = crypt_stat->extent_size;
415 	int rc;
416 
417 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
418 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
419 				(extent_base + extent_offset));
420 	if (rc) {
421 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
422 			"extent [0x%.16llx]; rc = [%d]\n",
423 			(unsigned long long)(extent_base + extent_offset), rc);
424 		goto out;
425 	}
426 
427 	sg_init_table(&src_sg, 1);
428 	sg_init_table(&dst_sg, 1);
429 
430 	sg_set_page(&src_sg, src_page, extent_size,
431 		    extent_offset * extent_size);
432 	sg_set_page(&dst_sg, dst_page, extent_size,
433 		    extent_offset * extent_size);
434 
435 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
436 			       extent_iv, op);
437 	if (rc < 0) {
438 		printk(KERN_ERR "%s: Error attempting to crypt page with "
439 		       "page_index = [%ld], extent_offset = [%ld]; "
440 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
441 		goto out;
442 	}
443 	rc = 0;
444 out:
445 	return rc;
446 }
447 
448 /**
449  * ecryptfs_encrypt_page
450  * @page: Page mapped from the eCryptfs inode for the file; contains
451  *        decrypted content that needs to be encrypted (to a temporary
452  *        page; not in place) and written out to the lower file
453  *
454  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
455  * that eCryptfs pages may straddle the lower pages -- for instance,
456  * if the file was created on a machine with an 8K page size
457  * (resulting in an 8K header), and then the file is copied onto a
458  * host with a 32K page size, then when reading page 0 of the eCryptfs
459  * file, 24K of page 0 of the lower file will be read and decrypted,
460  * and then 8K of page 1 of the lower file will be read and decrypted.
461  *
462  * Returns zero on success; negative on error
463  */
ecryptfs_encrypt_page(struct page * page)464 int ecryptfs_encrypt_page(struct page *page)
465 {
466 	struct inode *ecryptfs_inode;
467 	struct ecryptfs_crypt_stat *crypt_stat;
468 	char *enc_extent_virt;
469 	struct page *enc_extent_page = NULL;
470 	loff_t extent_offset;
471 	loff_t lower_offset;
472 	int rc = 0;
473 
474 	ecryptfs_inode = page->mapping->host;
475 	crypt_stat =
476 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
477 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
478 	enc_extent_page = alloc_page(GFP_USER);
479 	if (!enc_extent_page) {
480 		rc = -ENOMEM;
481 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
482 				"encrypted extent\n");
483 		goto out;
484 	}
485 
486 	for (extent_offset = 0;
487 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
488 	     extent_offset++) {
489 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
490 				  extent_offset, ENCRYPT);
491 		if (rc) {
492 			printk(KERN_ERR "%s: Error encrypting extent; "
493 			       "rc = [%d]\n", __func__, rc);
494 			goto out;
495 		}
496 	}
497 
498 	lower_offset = lower_offset_for_page(crypt_stat, page);
499 	enc_extent_virt = kmap(enc_extent_page);
500 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
501 				  PAGE_SIZE);
502 	kunmap(enc_extent_page);
503 	if (rc < 0) {
504 		ecryptfs_printk(KERN_ERR,
505 			"Error attempting to write lower page; rc = [%d]\n",
506 			rc);
507 		goto out;
508 	}
509 	rc = 0;
510 out:
511 	if (enc_extent_page) {
512 		__free_page(enc_extent_page);
513 	}
514 	return rc;
515 }
516 
517 /**
518  * ecryptfs_decrypt_page
519  * @page: Page mapped from the eCryptfs inode for the file; data read
520  *        and decrypted from the lower file will be written into this
521  *        page
522  *
523  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
524  * that eCryptfs pages may straddle the lower pages -- for instance,
525  * if the file was created on a machine with an 8K page size
526  * (resulting in an 8K header), and then the file is copied onto a
527  * host with a 32K page size, then when reading page 0 of the eCryptfs
528  * file, 24K of page 0 of the lower file will be read and decrypted,
529  * and then 8K of page 1 of the lower file will be read and decrypted.
530  *
531  * Returns zero on success; negative on error
532  */
ecryptfs_decrypt_page(struct page * page)533 int ecryptfs_decrypt_page(struct page *page)
534 {
535 	struct inode *ecryptfs_inode;
536 	struct ecryptfs_crypt_stat *crypt_stat;
537 	char *page_virt;
538 	unsigned long extent_offset;
539 	loff_t lower_offset;
540 	int rc = 0;
541 
542 	ecryptfs_inode = page->mapping->host;
543 	crypt_stat =
544 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
545 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
546 
547 	lower_offset = lower_offset_for_page(crypt_stat, page);
548 	page_virt = kmap(page);
549 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
550 				 ecryptfs_inode);
551 	kunmap(page);
552 	if (rc < 0) {
553 		ecryptfs_printk(KERN_ERR,
554 			"Error attempting to read lower page; rc = [%d]\n",
555 			rc);
556 		goto out;
557 	}
558 
559 	for (extent_offset = 0;
560 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
561 	     extent_offset++) {
562 		rc = crypt_extent(crypt_stat, page, page,
563 				  extent_offset, DECRYPT);
564 		if (rc) {
565 			printk(KERN_ERR "%s: Error encrypting extent; "
566 			       "rc = [%d]\n", __func__, rc);
567 			goto out;
568 		}
569 	}
570 out:
571 	return rc;
572 }
573 
574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
575 
576 /**
577  * ecryptfs_init_crypt_ctx
578  * @crypt_stat: Uninitialized crypt stats structure
579  *
580  * Initialize the crypto context.
581  *
582  * TODO: Performance: Keep a cache of initialized cipher contexts;
583  * only init if needed
584  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
586 {
587 	char *full_alg_name;
588 	int rc = -EINVAL;
589 
590 	ecryptfs_printk(KERN_DEBUG,
591 			"Initializing cipher [%s]; strlen = [%d]; "
592 			"key_size_bits = [%zd]\n",
593 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
594 			crypt_stat->key_size << 3);
595 	mutex_lock(&crypt_stat->cs_tfm_mutex);
596 	if (crypt_stat->tfm) {
597 		rc = 0;
598 		goto out_unlock;
599 	}
600 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
601 						    crypt_stat->cipher, "cbc");
602 	if (rc)
603 		goto out_unlock;
604 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
605 	if (IS_ERR(crypt_stat->tfm)) {
606 		rc = PTR_ERR(crypt_stat->tfm);
607 		crypt_stat->tfm = NULL;
608 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
609 				"Error initializing cipher [%s]\n",
610 				full_alg_name);
611 		goto out_free;
612 	}
613 	crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
614 	rc = 0;
615 out_free:
616 	kfree(full_alg_name);
617 out_unlock:
618 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
619 	return rc;
620 }
621 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
623 {
624 	int extent_size_tmp;
625 
626 	crypt_stat->extent_mask = 0xFFFFFFFF;
627 	crypt_stat->extent_shift = 0;
628 	if (crypt_stat->extent_size == 0)
629 		return;
630 	extent_size_tmp = crypt_stat->extent_size;
631 	while ((extent_size_tmp & 0x01) == 0) {
632 		extent_size_tmp >>= 1;
633 		crypt_stat->extent_mask <<= 1;
634 		crypt_stat->extent_shift++;
635 	}
636 }
637 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
639 {
640 	/* Default values; may be overwritten as we are parsing the
641 	 * packets. */
642 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
643 	set_extent_mask_and_shift(crypt_stat);
644 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
645 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
646 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
647 	else {
648 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
649 			crypt_stat->metadata_size =
650 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
651 		else
652 			crypt_stat->metadata_size = PAGE_SIZE;
653 	}
654 }
655 
656 /**
657  * ecryptfs_compute_root_iv
658  * @crypt_stats
659  *
660  * On error, sets the root IV to all 0's.
661  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
663 {
664 	int rc = 0;
665 	char dst[MD5_DIGEST_SIZE];
666 
667 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
668 	BUG_ON(crypt_stat->iv_bytes <= 0);
669 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
670 		rc = -EINVAL;
671 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
672 				"cannot generate root IV\n");
673 		goto out;
674 	}
675 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
676 				    crypt_stat->key_size);
677 	if (rc) {
678 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
679 				"MD5 while generating root IV\n");
680 		goto out;
681 	}
682 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
683 out:
684 	if (rc) {
685 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
686 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
687 	}
688 	return rc;
689 }
690 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
692 {
693 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
694 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
695 	ecryptfs_compute_root_iv(crypt_stat);
696 	if (unlikely(ecryptfs_verbosity > 0)) {
697 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
698 		ecryptfs_dump_hex(crypt_stat->key,
699 				  crypt_stat->key_size);
700 	}
701 }
702 
703 /**
704  * ecryptfs_copy_mount_wide_flags_to_inode_flags
705  * @crypt_stat: The inode's cryptographic context
706  * @mount_crypt_stat: The mount point's cryptographic context
707  *
708  * This function propagates the mount-wide flags to individual inode
709  * flags.
710  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712 	struct ecryptfs_crypt_stat *crypt_stat,
713 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
714 {
715 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
716 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
717 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
718 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
719 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
720 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
721 		if (mount_crypt_stat->flags
722 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
723 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
724 		else if (mount_crypt_stat->flags
725 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
726 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
727 	}
728 }
729 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731 	struct ecryptfs_crypt_stat *crypt_stat,
732 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
733 {
734 	struct ecryptfs_global_auth_tok *global_auth_tok;
735 	int rc = 0;
736 
737 	mutex_lock(&crypt_stat->keysig_list_mutex);
738 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
739 
740 	list_for_each_entry(global_auth_tok,
741 			    &mount_crypt_stat->global_auth_tok_list,
742 			    mount_crypt_stat_list) {
743 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
744 			continue;
745 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
746 		if (rc) {
747 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
748 			goto out;
749 		}
750 	}
751 
752 out:
753 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
754 	mutex_unlock(&crypt_stat->keysig_list_mutex);
755 	return rc;
756 }
757 
758 /**
759  * ecryptfs_set_default_crypt_stat_vals
760  * @crypt_stat: The inode's cryptographic context
761  * @mount_crypt_stat: The mount point's cryptographic context
762  *
763  * Default values in the event that policy does not override them.
764  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)765 static void ecryptfs_set_default_crypt_stat_vals(
766 	struct ecryptfs_crypt_stat *crypt_stat,
767 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
768 {
769 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
770 						      mount_crypt_stat);
771 	ecryptfs_set_default_sizes(crypt_stat);
772 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
773 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
774 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
775 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
776 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
777 }
778 
779 /**
780  * ecryptfs_new_file_context
781  * @ecryptfs_inode: The eCryptfs inode
782  *
783  * If the crypto context for the file has not yet been established,
784  * this is where we do that.  Establishing a new crypto context
785  * involves the following decisions:
786  *  - What cipher to use?
787  *  - What set of authentication tokens to use?
788  * Here we just worry about getting enough information into the
789  * authentication tokens so that we know that they are available.
790  * We associate the available authentication tokens with the new file
791  * via the set of signatures in the crypt_stat struct.  Later, when
792  * the headers are actually written out, we may again defer to
793  * userspace to perform the encryption of the session key; for the
794  * foreseeable future, this will be the case with public key packets.
795  *
796  * Returns zero on success; non-zero otherwise
797  */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)798 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
799 {
800 	struct ecryptfs_crypt_stat *crypt_stat =
801 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
802 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
803 	    &ecryptfs_superblock_to_private(
804 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
805 	int cipher_name_len;
806 	int rc = 0;
807 
808 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
809 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
810 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
811 						      mount_crypt_stat);
812 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
813 							 mount_crypt_stat);
814 	if (rc) {
815 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
816 		       "to the inode key sigs; rc = [%d]\n", rc);
817 		goto out;
818 	}
819 	cipher_name_len =
820 		strlen(mount_crypt_stat->global_default_cipher_name);
821 	memcpy(crypt_stat->cipher,
822 	       mount_crypt_stat->global_default_cipher_name,
823 	       cipher_name_len);
824 	crypt_stat->cipher[cipher_name_len] = '\0';
825 	crypt_stat->key_size =
826 		mount_crypt_stat->global_default_cipher_key_size;
827 	ecryptfs_generate_new_key(crypt_stat);
828 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
829 	if (rc)
830 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
831 				"context for cipher [%s]: rc = [%d]\n",
832 				crypt_stat->cipher, rc);
833 out:
834 	return rc;
835 }
836 
837 /**
838  * ecryptfs_validate_marker - check for the ecryptfs marker
839  * @data: The data block in which to check
840  *
841  * Returns zero if marker found; -EINVAL if not found
842  */
ecryptfs_validate_marker(char * data)843 static int ecryptfs_validate_marker(char *data)
844 {
845 	u32 m_1, m_2;
846 
847 	m_1 = get_unaligned_be32(data);
848 	m_2 = get_unaligned_be32(data + 4);
849 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
850 		return 0;
851 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
853 			MAGIC_ECRYPTFS_MARKER);
854 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
856 	return -EINVAL;
857 }
858 
859 struct ecryptfs_flag_map_elem {
860 	u32 file_flag;
861 	u32 local_flag;
862 };
863 
864 /* Add support for additional flags by adding elements here. */
865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
866 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
867 	{0x00000002, ECRYPTFS_ENCRYPTED},
868 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
869 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
870 };
871 
872 /**
873  * ecryptfs_process_flags
874  * @crypt_stat: The cryptographic context
875  * @page_virt: Source data to be parsed
876  * @bytes_read: Updated with the number of bytes read
877  *
878  * Returns zero on success; non-zero if the flag set is invalid
879  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
881 				  char *page_virt, int *bytes_read)
882 {
883 	int rc = 0;
884 	int i;
885 	u32 flags;
886 
887 	flags = get_unaligned_be32(page_virt);
888 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
889 		if (flags & ecryptfs_flag_map[i].file_flag) {
890 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
891 		} else
892 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
893 	/* Version is in top 8 bits of the 32-bit flag vector */
894 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
895 	(*bytes_read) = 4;
896 	return rc;
897 }
898 
899 /**
900  * write_ecryptfs_marker
901  * @page_virt: The pointer to in a page to begin writing the marker
902  * @written: Number of bytes written
903  *
904  * Marker = 0x3c81b7f5
905  */
write_ecryptfs_marker(char * page_virt,size_t * written)906 static void write_ecryptfs_marker(char *page_virt, size_t *written)
907 {
908 	u32 m_1, m_2;
909 
910 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
912 	put_unaligned_be32(m_1, page_virt);
913 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914 	put_unaligned_be32(m_2, page_virt);
915 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916 }
917 
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)918 void ecryptfs_write_crypt_stat_flags(char *page_virt,
919 				     struct ecryptfs_crypt_stat *crypt_stat,
920 				     size_t *written)
921 {
922 	u32 flags = 0;
923 	int i;
924 
925 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
926 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
927 			flags |= ecryptfs_flag_map[i].file_flag;
928 	/* Version is in top 8 bits of the 32-bit flag vector */
929 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
930 	put_unaligned_be32(flags, page_virt);
931 	(*written) = 4;
932 }
933 
934 struct ecryptfs_cipher_code_str_map_elem {
935 	char cipher_str[16];
936 	u8 cipher_code;
937 };
938 
939 /* Add support for additional ciphers by adding elements here. The
940  * cipher_code is whatever OpenPGP applications use to identify the
941  * ciphers. List in order of probability. */
942 static struct ecryptfs_cipher_code_str_map_elem
943 ecryptfs_cipher_code_str_map[] = {
944 	{"aes",RFC2440_CIPHER_AES_128 },
945 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
946 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
947 	{"cast5", RFC2440_CIPHER_CAST_5},
948 	{"twofish", RFC2440_CIPHER_TWOFISH},
949 	{"cast6", RFC2440_CIPHER_CAST_6},
950 	{"aes", RFC2440_CIPHER_AES_192},
951 	{"aes", RFC2440_CIPHER_AES_256}
952 };
953 
954 /**
955  * ecryptfs_code_for_cipher_string
956  * @cipher_name: The string alias for the cipher
957  * @key_bytes: Length of key in bytes; used for AES code selection
958  *
959  * Returns zero on no match, or the cipher code on match
960  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)961 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
962 {
963 	int i;
964 	u8 code = 0;
965 	struct ecryptfs_cipher_code_str_map_elem *map =
966 		ecryptfs_cipher_code_str_map;
967 
968 	if (strcmp(cipher_name, "aes") == 0) {
969 		switch (key_bytes) {
970 		case 16:
971 			code = RFC2440_CIPHER_AES_128;
972 			break;
973 		case 24:
974 			code = RFC2440_CIPHER_AES_192;
975 			break;
976 		case 32:
977 			code = RFC2440_CIPHER_AES_256;
978 		}
979 	} else {
980 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
981 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
982 				code = map[i].cipher_code;
983 				break;
984 			}
985 	}
986 	return code;
987 }
988 
989 /**
990  * ecryptfs_cipher_code_to_string
991  * @str: Destination to write out the cipher name
992  * @cipher_code: The code to convert to cipher name string
993  *
994  * Returns zero on success
995  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)996 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
997 {
998 	int rc = 0;
999 	int i;
1000 
1001 	str[0] = '\0';
1002 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005 	if (str[0] == '\0') {
1006 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007 				"[%d]\n", cipher_code);
1008 		rc = -EINVAL;
1009 	}
1010 	return rc;
1011 }
1012 
ecryptfs_read_and_validate_header_region(struct inode * inode)1013 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1014 {
1015 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1017 	int rc;
1018 
1019 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020 				 inode);
1021 	if (rc < 0)
1022 		return rc;
1023 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1024 		return -EINVAL;
1025 	rc = ecryptfs_validate_marker(marker);
1026 	if (!rc)
1027 		ecryptfs_i_size_init(file_size, inode);
1028 	return rc;
1029 }
1030 
1031 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1032 ecryptfs_write_header_metadata(char *virt,
1033 			       struct ecryptfs_crypt_stat *crypt_stat,
1034 			       size_t *written)
1035 {
1036 	u32 header_extent_size;
1037 	u16 num_header_extents_at_front;
1038 
1039 	header_extent_size = (u32)crypt_stat->extent_size;
1040 	num_header_extents_at_front =
1041 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1042 	put_unaligned_be32(header_extent_size, virt);
1043 	virt += 4;
1044 	put_unaligned_be16(num_header_extents_at_front, virt);
1045 	(*written) = 6;
1046 }
1047 
1048 struct kmem_cache *ecryptfs_header_cache;
1049 
1050 /**
1051  * ecryptfs_write_headers_virt
1052  * @page_virt: The virtual address to write the headers to
1053  * @max: The size of memory allocated at page_virt
1054  * @size: Set to the number of bytes written by this function
1055  * @crypt_stat: The cryptographic context
1056  * @ecryptfs_dentry: The eCryptfs dentry
1057  *
1058  * Format version: 1
1059  *
1060  *   Header Extent:
1061  *     Octets 0-7:        Unencrypted file size (big-endian)
1062  *     Octets 8-15:       eCryptfs special marker
1063  *     Octets 16-19:      Flags
1064  *      Octet 16:         File format version number (between 0 and 255)
1065  *      Octets 17-18:     Reserved
1066  *      Octet 19:         Bit 1 (lsb): Reserved
1067  *                        Bit 2: Encrypted?
1068  *                        Bits 3-8: Reserved
1069  *     Octets 20-23:      Header extent size (big-endian)
1070  *     Octets 24-25:      Number of header extents at front of file
1071  *                        (big-endian)
1072  *     Octet  26:         Begin RFC 2440 authentication token packet set
1073  *   Data Extent 0:
1074  *     Lower data (CBC encrypted)
1075  *   Data Extent 1:
1076  *     Lower data (CBC encrypted)
1077  *   ...
1078  *
1079  * Returns zero on success
1080  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1081 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1082 				       size_t *size,
1083 				       struct ecryptfs_crypt_stat *crypt_stat,
1084 				       struct dentry *ecryptfs_dentry)
1085 {
1086 	int rc;
1087 	size_t written;
1088 	size_t offset;
1089 
1090 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1091 	write_ecryptfs_marker((page_virt + offset), &written);
1092 	offset += written;
1093 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1094 					&written);
1095 	offset += written;
1096 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1097 				       &written);
1098 	offset += written;
1099 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1100 					      ecryptfs_dentry, &written,
1101 					      max - offset);
1102 	if (rc)
1103 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1104 				"set; rc = [%d]\n", rc);
1105 	if (size) {
1106 		offset += written;
1107 		*size = offset;
1108 	}
1109 	return rc;
1110 }
1111 
1112 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1113 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1114 				    char *virt, size_t virt_len)
1115 {
1116 	int rc;
1117 
1118 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1119 				  0, virt_len);
1120 	if (rc < 0)
1121 		printk(KERN_ERR "%s: Error attempting to write header "
1122 		       "information to lower file; rc = [%d]\n", __func__, rc);
1123 	else
1124 		rc = 0;
1125 	return rc;
1126 }
1127 
1128 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1129 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1130 				 struct inode *ecryptfs_inode,
1131 				 char *page_virt, size_t size)
1132 {
1133 	int rc;
1134 
1135 	rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1136 			       ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1137 	return rc;
1138 }
1139 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1140 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1141 					       unsigned int order)
1142 {
1143 	struct page *page;
1144 
1145 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1146 	if (page)
1147 		return (unsigned long) page_address(page);
1148 	return 0;
1149 }
1150 
1151 /**
1152  * ecryptfs_write_metadata
1153  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1154  * @ecryptfs_inode: The newly created eCryptfs inode
1155  *
1156  * Write the file headers out.  This will likely involve a userspace
1157  * callout, in which the session key is encrypted with one or more
1158  * public keys and/or the passphrase necessary to do the encryption is
1159  * retrieved via a prompt.  Exactly what happens at this point should
1160  * be policy-dependent.
1161  *
1162  * Returns zero on success; non-zero on error
1163  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1164 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1165 			    struct inode *ecryptfs_inode)
1166 {
1167 	struct ecryptfs_crypt_stat *crypt_stat =
1168 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1169 	unsigned int order;
1170 	char *virt;
1171 	size_t virt_len;
1172 	size_t size = 0;
1173 	int rc = 0;
1174 
1175 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1176 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1177 			printk(KERN_ERR "Key is invalid; bailing out\n");
1178 			rc = -EINVAL;
1179 			goto out;
1180 		}
1181 	} else {
1182 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1183 		       __func__);
1184 		rc = -EINVAL;
1185 		goto out;
1186 	}
1187 	virt_len = crypt_stat->metadata_size;
1188 	order = get_order(virt_len);
1189 	/* Released in this function */
1190 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1191 	if (!virt) {
1192 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1193 		rc = -ENOMEM;
1194 		goto out;
1195 	}
1196 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1197 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1198 					 ecryptfs_dentry);
1199 	if (unlikely(rc)) {
1200 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1201 		       __func__, rc);
1202 		goto out_free;
1203 	}
1204 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1205 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1206 						      virt, size);
1207 	else
1208 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1209 							 virt_len);
1210 	if (rc) {
1211 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1212 		       "rc = [%d]\n", __func__, rc);
1213 		goto out_free;
1214 	}
1215 out_free:
1216 	free_pages((unsigned long)virt, order);
1217 out:
1218 	return rc;
1219 }
1220 
1221 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1222 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1223 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1224 				 char *virt, int *bytes_read,
1225 				 int validate_header_size)
1226 {
1227 	int rc = 0;
1228 	u32 header_extent_size;
1229 	u16 num_header_extents_at_front;
1230 
1231 	header_extent_size = get_unaligned_be32(virt);
1232 	virt += sizeof(__be32);
1233 	num_header_extents_at_front = get_unaligned_be16(virt);
1234 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1235 				     * (size_t)header_extent_size));
1236 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1237 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1238 	    && (crypt_stat->metadata_size
1239 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1240 		rc = -EINVAL;
1241 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1242 		       crypt_stat->metadata_size);
1243 	}
1244 	return rc;
1245 }
1246 
1247 /**
1248  * set_default_header_data
1249  * @crypt_stat: The cryptographic context
1250  *
1251  * For version 0 file format; this function is only for backwards
1252  * compatibility for files created with the prior versions of
1253  * eCryptfs.
1254  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1255 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1256 {
1257 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1258 }
1259 
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1260 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1261 {
1262 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1263 	struct ecryptfs_crypt_stat *crypt_stat;
1264 	u64 file_size;
1265 
1266 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1267 	mount_crypt_stat =
1268 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1269 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1270 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1271 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1272 			file_size += crypt_stat->metadata_size;
1273 	} else
1274 		file_size = get_unaligned_be64(page_virt);
1275 	i_size_write(inode, (loff_t)file_size);
1276 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1277 }
1278 
1279 /**
1280  * ecryptfs_read_headers_virt
1281  * @page_virt: The virtual address into which to read the headers
1282  * @crypt_stat: The cryptographic context
1283  * @ecryptfs_dentry: The eCryptfs dentry
1284  * @validate_header_size: Whether to validate the header size while reading
1285  *
1286  * Read/parse the header data. The header format is detailed in the
1287  * comment block for the ecryptfs_write_headers_virt() function.
1288  *
1289  * Returns zero on success
1290  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1291 static int ecryptfs_read_headers_virt(char *page_virt,
1292 				      struct ecryptfs_crypt_stat *crypt_stat,
1293 				      struct dentry *ecryptfs_dentry,
1294 				      int validate_header_size)
1295 {
1296 	int rc = 0;
1297 	int offset;
1298 	int bytes_read;
1299 
1300 	ecryptfs_set_default_sizes(crypt_stat);
1301 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1302 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1303 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1304 	rc = ecryptfs_validate_marker(page_virt + offset);
1305 	if (rc)
1306 		goto out;
1307 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1308 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1309 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1310 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1311 				    &bytes_read);
1312 	if (rc) {
1313 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1314 		goto out;
1315 	}
1316 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1317 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1318 				"file version [%d] is supported by this "
1319 				"version of eCryptfs\n",
1320 				crypt_stat->file_version,
1321 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1322 		rc = -EINVAL;
1323 		goto out;
1324 	}
1325 	offset += bytes_read;
1326 	if (crypt_stat->file_version >= 1) {
1327 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1328 					   &bytes_read, validate_header_size);
1329 		if (rc) {
1330 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1331 					"metadata; rc = [%d]\n", rc);
1332 		}
1333 		offset += bytes_read;
1334 	} else
1335 		set_default_header_data(crypt_stat);
1336 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1337 				       ecryptfs_dentry);
1338 out:
1339 	return rc;
1340 }
1341 
1342 /**
1343  * ecryptfs_read_xattr_region
1344  * @page_virt: The vitual address into which to read the xattr data
1345  * @ecryptfs_inode: The eCryptfs inode
1346  *
1347  * Attempts to read the crypto metadata from the extended attribute
1348  * region of the lower file.
1349  *
1350  * Returns zero on success; non-zero on error
1351  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1352 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1353 {
1354 	struct dentry *lower_dentry =
1355 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1356 	ssize_t size;
1357 	int rc = 0;
1358 
1359 	size = ecryptfs_getxattr_lower(lower_dentry,
1360 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1361 				       ECRYPTFS_XATTR_NAME,
1362 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1363 	if (size < 0) {
1364 		if (unlikely(ecryptfs_verbosity > 0))
1365 			printk(KERN_INFO "Error attempting to read the [%s] "
1366 			       "xattr from the lower file; return value = "
1367 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1368 		rc = -EINVAL;
1369 		goto out;
1370 	}
1371 out:
1372 	return rc;
1373 }
1374 
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1375 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1376 					    struct inode *inode)
1377 {
1378 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1379 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1380 	int rc;
1381 
1382 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1383 				     ecryptfs_inode_to_lower(inode),
1384 				     ECRYPTFS_XATTR_NAME, file_size,
1385 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1386 	if (rc < 0)
1387 		return rc;
1388 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1389 		return -EINVAL;
1390 	rc = ecryptfs_validate_marker(marker);
1391 	if (!rc)
1392 		ecryptfs_i_size_init(file_size, inode);
1393 	return rc;
1394 }
1395 
1396 /**
1397  * ecryptfs_read_metadata
1398  *
1399  * Common entry point for reading file metadata. From here, we could
1400  * retrieve the header information from the header region of the file,
1401  * the xattr region of the file, or some other repository that is
1402  * stored separately from the file itself. The current implementation
1403  * supports retrieving the metadata information from the file contents
1404  * and from the xattr region.
1405  *
1406  * Returns zero if valid headers found and parsed; non-zero otherwise
1407  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1408 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1409 {
1410 	int rc;
1411 	char *page_virt;
1412 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1413 	struct ecryptfs_crypt_stat *crypt_stat =
1414 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1415 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1416 		&ecryptfs_superblock_to_private(
1417 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1418 
1419 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1420 						      mount_crypt_stat);
1421 	/* Read the first page from the underlying file */
1422 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1423 	if (!page_virt) {
1424 		rc = -ENOMEM;
1425 		goto out;
1426 	}
1427 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1428 				 ecryptfs_inode);
1429 	if (rc >= 0)
1430 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1431 						ecryptfs_dentry,
1432 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1433 	if (rc) {
1434 		/* metadata is not in the file header, so try xattrs */
1435 		memset(page_virt, 0, PAGE_SIZE);
1436 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1437 		if (rc) {
1438 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439 			       "file header region or xattr region, inode %lu\n",
1440 				ecryptfs_inode->i_ino);
1441 			rc = -EINVAL;
1442 			goto out;
1443 		}
1444 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1445 						ecryptfs_dentry,
1446 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1447 		if (rc) {
1448 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1449 			       "file xattr region either, inode %lu\n",
1450 				ecryptfs_inode->i_ino);
1451 			rc = -EINVAL;
1452 		}
1453 		if (crypt_stat->mount_crypt_stat->flags
1454 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1455 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1456 		} else {
1457 			printk(KERN_WARNING "Attempt to access file with "
1458 			       "crypto metadata only in the extended attribute "
1459 			       "region, but eCryptfs was mounted without "
1460 			       "xattr support enabled. eCryptfs will not treat "
1461 			       "this like an encrypted file, inode %lu\n",
1462 				ecryptfs_inode->i_ino);
1463 			rc = -EINVAL;
1464 		}
1465 	}
1466 out:
1467 	if (page_virt) {
1468 		memset(page_virt, 0, PAGE_SIZE);
1469 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1470 	}
1471 	return rc;
1472 }
1473 
1474 /**
1475  * ecryptfs_encrypt_filename - encrypt filename
1476  *
1477  * CBC-encrypts the filename. We do not want to encrypt the same
1478  * filename with the same key and IV, which may happen with hard
1479  * links, so we prepend random bits to each filename.
1480  *
1481  * Returns zero on success; non-zero otherwise
1482  */
1483 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1484 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1485 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1486 {
1487 	int rc = 0;
1488 
1489 	filename->encrypted_filename = NULL;
1490 	filename->encrypted_filename_size = 0;
1491 	if (mount_crypt_stat && (mount_crypt_stat->flags
1492 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1493 		size_t packet_size;
1494 		size_t remaining_bytes;
1495 
1496 		rc = ecryptfs_write_tag_70_packet(
1497 			NULL, NULL,
1498 			&filename->encrypted_filename_size,
1499 			mount_crypt_stat, NULL,
1500 			filename->filename_size);
1501 		if (rc) {
1502 			printk(KERN_ERR "%s: Error attempting to get packet "
1503 			       "size for tag 72; rc = [%d]\n", __func__,
1504 			       rc);
1505 			filename->encrypted_filename_size = 0;
1506 			goto out;
1507 		}
1508 		filename->encrypted_filename =
1509 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1510 		if (!filename->encrypted_filename) {
1511 			rc = -ENOMEM;
1512 			goto out;
1513 		}
1514 		remaining_bytes = filename->encrypted_filename_size;
1515 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1516 						  &remaining_bytes,
1517 						  &packet_size,
1518 						  mount_crypt_stat,
1519 						  filename->filename,
1520 						  filename->filename_size);
1521 		if (rc) {
1522 			printk(KERN_ERR "%s: Error attempting to generate "
1523 			       "tag 70 packet; rc = [%d]\n", __func__,
1524 			       rc);
1525 			kfree(filename->encrypted_filename);
1526 			filename->encrypted_filename = NULL;
1527 			filename->encrypted_filename_size = 0;
1528 			goto out;
1529 		}
1530 		filename->encrypted_filename_size = packet_size;
1531 	} else {
1532 		printk(KERN_ERR "%s: No support for requested filename "
1533 		       "encryption method in this release\n", __func__);
1534 		rc = -EOPNOTSUPP;
1535 		goto out;
1536 	}
1537 out:
1538 	return rc;
1539 }
1540 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1541 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1542 				  const char *name, size_t name_size)
1543 {
1544 	int rc = 0;
1545 
1546 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1547 	if (!(*copied_name)) {
1548 		rc = -ENOMEM;
1549 		goto out;
1550 	}
1551 	memcpy((void *)(*copied_name), (void *)name, name_size);
1552 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1553 						 * in printing out the
1554 						 * string in debug
1555 						 * messages */
1556 	(*copied_name_size) = name_size;
1557 out:
1558 	return rc;
1559 }
1560 
1561 /**
1562  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1563  * @key_tfm: Crypto context for key material, set by this function
1564  * @cipher_name: Name of the cipher
1565  * @key_size: Size of the key in bytes
1566  *
1567  * Returns zero on success. Any crypto_tfm structs allocated here
1568  * should be released by other functions, such as on a superblock put
1569  * event, regardless of whether this function succeeds for fails.
1570  */
1571 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1572 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1573 			    char *cipher_name, size_t *key_size)
1574 {
1575 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1576 	char *full_alg_name = NULL;
1577 	int rc;
1578 
1579 	*key_tfm = NULL;
1580 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1581 		rc = -EINVAL;
1582 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1583 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1584 		goto out;
1585 	}
1586 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1587 						    "ecb");
1588 	if (rc)
1589 		goto out;
1590 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1591 	if (IS_ERR(*key_tfm)) {
1592 		rc = PTR_ERR(*key_tfm);
1593 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1594 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1595 		goto out;
1596 	}
1597 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1598 	if (*key_size == 0)
1599 		*key_size = crypto_skcipher_default_keysize(*key_tfm);
1600 	get_random_bytes(dummy_key, *key_size);
1601 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1602 	if (rc) {
1603 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1604 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1605 		       rc);
1606 		rc = -EINVAL;
1607 		goto out;
1608 	}
1609 out:
1610 	kfree(full_alg_name);
1611 	return rc;
1612 }
1613 
1614 struct kmem_cache *ecryptfs_key_tfm_cache;
1615 static struct list_head key_tfm_list;
1616 struct mutex key_tfm_list_mutex;
1617 
ecryptfs_init_crypto(void)1618 int __init ecryptfs_init_crypto(void)
1619 {
1620 	mutex_init(&key_tfm_list_mutex);
1621 	INIT_LIST_HEAD(&key_tfm_list);
1622 	return 0;
1623 }
1624 
1625 /**
1626  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1627  *
1628  * Called only at module unload time
1629  */
ecryptfs_destroy_crypto(void)1630 int ecryptfs_destroy_crypto(void)
1631 {
1632 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1633 
1634 	mutex_lock(&key_tfm_list_mutex);
1635 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1636 				 key_tfm_list) {
1637 		list_del(&key_tfm->key_tfm_list);
1638 		crypto_free_skcipher(key_tfm->key_tfm);
1639 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1640 	}
1641 	mutex_unlock(&key_tfm_list_mutex);
1642 	return 0;
1643 }
1644 
1645 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1646 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1647 			 size_t key_size)
1648 {
1649 	struct ecryptfs_key_tfm *tmp_tfm;
1650 	int rc = 0;
1651 
1652 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1653 
1654 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1655 	if (key_tfm)
1656 		(*key_tfm) = tmp_tfm;
1657 	if (!tmp_tfm) {
1658 		rc = -ENOMEM;
1659 		goto out;
1660 	}
1661 	mutex_init(&tmp_tfm->key_tfm_mutex);
1662 	strncpy(tmp_tfm->cipher_name, cipher_name,
1663 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1664 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1665 	tmp_tfm->key_size = key_size;
1666 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1667 					 tmp_tfm->cipher_name,
1668 					 &tmp_tfm->key_size);
1669 	if (rc) {
1670 		printk(KERN_ERR "Error attempting to initialize key TFM "
1671 		       "cipher with name = [%s]; rc = [%d]\n",
1672 		       tmp_tfm->cipher_name, rc);
1673 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1674 		if (key_tfm)
1675 			(*key_tfm) = NULL;
1676 		goto out;
1677 	}
1678 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1679 out:
1680 	return rc;
1681 }
1682 
1683 /**
1684  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1685  * @cipher_name: the name of the cipher to search for
1686  * @key_tfm: set to corresponding tfm if found
1687  *
1688  * Searches for cached key_tfm matching @cipher_name
1689  * Must be called with &key_tfm_list_mutex held
1690  * Returns 1 if found, with @key_tfm set
1691  * Returns 0 if not found, with @key_tfm set to NULL
1692  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1693 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1694 {
1695 	struct ecryptfs_key_tfm *tmp_key_tfm;
1696 
1697 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1698 
1699 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1700 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1701 			if (key_tfm)
1702 				(*key_tfm) = tmp_key_tfm;
1703 			return 1;
1704 		}
1705 	}
1706 	if (key_tfm)
1707 		(*key_tfm) = NULL;
1708 	return 0;
1709 }
1710 
1711 /**
1712  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1713  *
1714  * @tfm: set to cached tfm found, or new tfm created
1715  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1716  * @cipher_name: the name of the cipher to search for and/or add
1717  *
1718  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1719  * Searches for cached item first, and creates new if not found.
1720  * Returns 0 on success, non-zero if adding new cipher failed
1721  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1722 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1723 					       struct mutex **tfm_mutex,
1724 					       char *cipher_name)
1725 {
1726 	struct ecryptfs_key_tfm *key_tfm;
1727 	int rc = 0;
1728 
1729 	(*tfm) = NULL;
1730 	(*tfm_mutex) = NULL;
1731 
1732 	mutex_lock(&key_tfm_list_mutex);
1733 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1734 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1735 		if (rc) {
1736 			printk(KERN_ERR "Error adding new key_tfm to list; "
1737 					"rc = [%d]\n", rc);
1738 			goto out;
1739 		}
1740 	}
1741 	(*tfm) = key_tfm->key_tfm;
1742 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1743 out:
1744 	mutex_unlock(&key_tfm_list_mutex);
1745 	return rc;
1746 }
1747 
1748 /* 64 characters forming a 6-bit target field */
1749 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1750 						 "EFGHIJKLMNOPQRST"
1751 						 "UVWXYZabcdefghij"
1752 						 "klmnopqrstuvwxyz");
1753 
1754 /* We could either offset on every reverse map or just pad some 0x00's
1755  * at the front here */
1756 static const unsigned char filename_rev_map[256] = {
1757 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1758 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1759 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1760 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1761 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1762 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1763 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1764 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1765 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1766 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1767 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1768 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1769 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1770 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1771 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1772 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1773 };
1774 
1775 /**
1776  * ecryptfs_encode_for_filename
1777  * @dst: Destination location for encoded filename
1778  * @dst_size: Size of the encoded filename in bytes
1779  * @src: Source location for the filename to encode
1780  * @src_size: Size of the source in bytes
1781  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1782 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1783 				  unsigned char *src, size_t src_size)
1784 {
1785 	size_t num_blocks;
1786 	size_t block_num = 0;
1787 	size_t dst_offset = 0;
1788 	unsigned char last_block[3];
1789 
1790 	if (src_size == 0) {
1791 		(*dst_size) = 0;
1792 		goto out;
1793 	}
1794 	num_blocks = (src_size / 3);
1795 	if ((src_size % 3) == 0) {
1796 		memcpy(last_block, (&src[src_size - 3]), 3);
1797 	} else {
1798 		num_blocks++;
1799 		last_block[2] = 0x00;
1800 		switch (src_size % 3) {
1801 		case 1:
1802 			last_block[0] = src[src_size - 1];
1803 			last_block[1] = 0x00;
1804 			break;
1805 		case 2:
1806 			last_block[0] = src[src_size - 2];
1807 			last_block[1] = src[src_size - 1];
1808 		}
1809 	}
1810 	(*dst_size) = (num_blocks * 4);
1811 	if (!dst)
1812 		goto out;
1813 	while (block_num < num_blocks) {
1814 		unsigned char *src_block;
1815 		unsigned char dst_block[4];
1816 
1817 		if (block_num == (num_blocks - 1))
1818 			src_block = last_block;
1819 		else
1820 			src_block = &src[block_num * 3];
1821 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1822 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1823 				| ((src_block[1] >> 4) & 0x0F));
1824 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1825 				| ((src_block[2] >> 6) & 0x03));
1826 		dst_block[3] = (src_block[2] & 0x3F);
1827 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1828 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1829 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1830 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1831 		block_num++;
1832 	}
1833 out:
1834 	return;
1835 }
1836 
ecryptfs_max_decoded_size(size_t encoded_size)1837 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1838 {
1839 	/* Not exact; conservatively long. Every block of 4
1840 	 * encoded characters decodes into a block of 3
1841 	 * decoded characters. This segment of code provides
1842 	 * the caller with the maximum amount of allocated
1843 	 * space that @dst will need to point to in a
1844 	 * subsequent call. */
1845 	return ((encoded_size + 1) * 3) / 4;
1846 }
1847 
1848 /**
1849  * ecryptfs_decode_from_filename
1850  * @dst: If NULL, this function only sets @dst_size and returns. If
1851  *       non-NULL, this function decodes the encoded octets in @src
1852  *       into the memory that @dst points to.
1853  * @dst_size: Set to the size of the decoded string.
1854  * @src: The encoded set of octets to decode.
1855  * @src_size: The size of the encoded set of octets to decode.
1856  */
1857 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1858 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1859 			      const unsigned char *src, size_t src_size)
1860 {
1861 	u8 current_bit_offset = 0;
1862 	size_t src_byte_offset = 0;
1863 	size_t dst_byte_offset = 0;
1864 
1865 	if (!dst) {
1866 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1867 		goto out;
1868 	}
1869 	while (src_byte_offset < src_size) {
1870 		unsigned char src_byte =
1871 				filename_rev_map[(int)src[src_byte_offset]];
1872 
1873 		switch (current_bit_offset) {
1874 		case 0:
1875 			dst[dst_byte_offset] = (src_byte << 2);
1876 			current_bit_offset = 6;
1877 			break;
1878 		case 6:
1879 			dst[dst_byte_offset++] |= (src_byte >> 4);
1880 			dst[dst_byte_offset] = ((src_byte & 0xF)
1881 						 << 4);
1882 			current_bit_offset = 4;
1883 			break;
1884 		case 4:
1885 			dst[dst_byte_offset++] |= (src_byte >> 2);
1886 			dst[dst_byte_offset] = (src_byte << 6);
1887 			current_bit_offset = 2;
1888 			break;
1889 		case 2:
1890 			dst[dst_byte_offset++] |= (src_byte);
1891 			current_bit_offset = 0;
1892 			break;
1893 		}
1894 		src_byte_offset++;
1895 	}
1896 	(*dst_size) = dst_byte_offset;
1897 out:
1898 	return;
1899 }
1900 
1901 /**
1902  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1903  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1904  * @name: The plaintext name
1905  * @length: The length of the plaintext
1906  * @encoded_name: The encypted name
1907  *
1908  * Encrypts and encodes a filename into something that constitutes a
1909  * valid filename for a filesystem, with printable characters.
1910  *
1911  * We assume that we have a properly initialized crypto context,
1912  * pointed to by crypt_stat->tfm.
1913  *
1914  * Returns zero on success; non-zero on otherwise
1915  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1916 int ecryptfs_encrypt_and_encode_filename(
1917 	char **encoded_name,
1918 	size_t *encoded_name_size,
1919 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1920 	const char *name, size_t name_size)
1921 {
1922 	size_t encoded_name_no_prefix_size;
1923 	int rc = 0;
1924 
1925 	(*encoded_name) = NULL;
1926 	(*encoded_name_size) = 0;
1927 	if (mount_crypt_stat && (mount_crypt_stat->flags
1928 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1929 		struct ecryptfs_filename *filename;
1930 
1931 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1932 		if (!filename) {
1933 			rc = -ENOMEM;
1934 			goto out;
1935 		}
1936 		filename->filename = (char *)name;
1937 		filename->filename_size = name_size;
1938 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1939 		if (rc) {
1940 			printk(KERN_ERR "%s: Error attempting to encrypt "
1941 			       "filename; rc = [%d]\n", __func__, rc);
1942 			kfree(filename);
1943 			goto out;
1944 		}
1945 		ecryptfs_encode_for_filename(
1946 			NULL, &encoded_name_no_prefix_size,
1947 			filename->encrypted_filename,
1948 			filename->encrypted_filename_size);
1949 		if (mount_crypt_stat
1950 			&& (mount_crypt_stat->flags
1951 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1952 			(*encoded_name_size) =
1953 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954 				 + encoded_name_no_prefix_size);
1955 		else
1956 			(*encoded_name_size) =
1957 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1958 				 + encoded_name_no_prefix_size);
1959 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1960 		if (!(*encoded_name)) {
1961 			rc = -ENOMEM;
1962 			kfree(filename->encrypted_filename);
1963 			kfree(filename);
1964 			goto out;
1965 		}
1966 		if (mount_crypt_stat
1967 			&& (mount_crypt_stat->flags
1968 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1969 			memcpy((*encoded_name),
1970 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1971 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1972 			ecryptfs_encode_for_filename(
1973 			    ((*encoded_name)
1974 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1975 			    &encoded_name_no_prefix_size,
1976 			    filename->encrypted_filename,
1977 			    filename->encrypted_filename_size);
1978 			(*encoded_name_size) =
1979 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1980 				 + encoded_name_no_prefix_size);
1981 			(*encoded_name)[(*encoded_name_size)] = '\0';
1982 		} else {
1983 			rc = -EOPNOTSUPP;
1984 		}
1985 		if (rc) {
1986 			printk(KERN_ERR "%s: Error attempting to encode "
1987 			       "encrypted filename; rc = [%d]\n", __func__,
1988 			       rc);
1989 			kfree((*encoded_name));
1990 			(*encoded_name) = NULL;
1991 			(*encoded_name_size) = 0;
1992 		}
1993 		kfree(filename->encrypted_filename);
1994 		kfree(filename);
1995 	} else {
1996 		rc = ecryptfs_copy_filename(encoded_name,
1997 					    encoded_name_size,
1998 					    name, name_size);
1999 	}
2000 out:
2001 	return rc;
2002 }
2003 
is_dot_dotdot(const char * name,size_t name_size)2004 static bool is_dot_dotdot(const char *name, size_t name_size)
2005 {
2006 	if (name_size == 1 && name[0] == '.')
2007 		return true;
2008 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2009 		return true;
2010 
2011 	return false;
2012 }
2013 
2014 /**
2015  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2016  * @plaintext_name: The plaintext name
2017  * @plaintext_name_size: The plaintext name size
2018  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2019  * @name: The filename in cipher text
2020  * @name_size: The cipher text name size
2021  *
2022  * Decrypts and decodes the filename.
2023  *
2024  * Returns zero on error; non-zero otherwise
2025  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2026 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2027 					 size_t *plaintext_name_size,
2028 					 struct super_block *sb,
2029 					 const char *name, size_t name_size)
2030 {
2031 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2032 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2033 	char *decoded_name;
2034 	size_t decoded_name_size;
2035 	size_t packet_size;
2036 	int rc = 0;
2037 
2038 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2039 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2040 		if (is_dot_dotdot(name, name_size)) {
2041 			rc = ecryptfs_copy_filename(plaintext_name,
2042 						    plaintext_name_size,
2043 						    name, name_size);
2044 			goto out;
2045 		}
2046 
2047 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2048 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2049 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2050 			rc = -EINVAL;
2051 			goto out;
2052 		}
2053 
2054 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2055 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2056 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2057 					      name, name_size);
2058 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2059 		if (!decoded_name) {
2060 			rc = -ENOMEM;
2061 			goto out;
2062 		}
2063 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2064 					      name, name_size);
2065 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2066 						  plaintext_name_size,
2067 						  &packet_size,
2068 						  mount_crypt_stat,
2069 						  decoded_name,
2070 						  decoded_name_size);
2071 		if (rc) {
2072 			ecryptfs_printk(KERN_DEBUG,
2073 					"%s: Could not parse tag 70 packet from filename\n",
2074 					__func__);
2075 			goto out_free;
2076 		}
2077 	} else {
2078 		rc = ecryptfs_copy_filename(plaintext_name,
2079 					    plaintext_name_size,
2080 					    name, name_size);
2081 		goto out;
2082 	}
2083 out_free:
2084 	kfree(decoded_name);
2085 out:
2086 	return rc;
2087 }
2088 
2089 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2090 
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2091 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2092 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2093 {
2094 	struct crypto_skcipher *tfm;
2095 	struct mutex *tfm_mutex;
2096 	size_t cipher_blocksize;
2097 	int rc;
2098 
2099 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2100 		(*namelen) = lower_namelen;
2101 		return 0;
2102 	}
2103 
2104 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2105 			mount_crypt_stat->global_default_fn_cipher_name);
2106 	if (unlikely(rc)) {
2107 		(*namelen) = 0;
2108 		return rc;
2109 	}
2110 
2111 	mutex_lock(tfm_mutex);
2112 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2113 	mutex_unlock(tfm_mutex);
2114 
2115 	/* Return an exact amount for the common cases */
2116 	if (lower_namelen == NAME_MAX
2117 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2118 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2119 		return 0;
2120 	}
2121 
2122 	/* Return a safe estimate for the uncommon cases */
2123 	(*namelen) = lower_namelen;
2124 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2125 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2126 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2127 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2128 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2129 	/* Worst case is that the filename is padded nearly a full block size */
2130 	(*namelen) -= cipher_blocksize - 1;
2131 
2132 	if ((*namelen) < 0)
2133 		(*namelen) = 0;
2134 
2135 	return 0;
2136 }
2137