1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext2/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Goal-directed block allocation by Stephen Tweedie
17  * 	(sct@dcs.ed.ac.uk), 1993, 1998
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
21  * 	(jj@sunsite.ms.mff.cuni.cz)
22  *
23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24  */
25 
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include "ext2.h"
40 #include "acl.h"
41 #include "xattr.h"
42 
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44 
45 /*
46  * Test whether an inode is a fast symlink.
47  */
ext2_inode_is_fast_symlink(struct inode * inode)48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 		(inode->i_sb->s_blocksize >> 9) : 0;
52 
53 	return (S_ISLNK(inode->i_mode) &&
54 		inode->i_blocks - ea_blocks == 0);
55 }
56 
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58 
ext2_write_failed(struct address_space * mapping,loff_t to)59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61 	struct inode *inode = mapping->host;
62 
63 	if (to > inode->i_size) {
64 		truncate_pagecache(inode, inode->i_size);
65 		ext2_truncate_blocks(inode, inode->i_size);
66 	}
67 }
68 
69 /*
70  * Called at the last iput() if i_nlink is zero.
71  */
ext2_evict_inode(struct inode * inode)72 void ext2_evict_inode(struct inode * inode)
73 {
74 	struct ext2_block_alloc_info *rsv;
75 	int want_delete = 0;
76 
77 	if (!inode->i_nlink && !is_bad_inode(inode)) {
78 		want_delete = 1;
79 		dquot_initialize(inode);
80 	} else {
81 		dquot_drop(inode);
82 	}
83 
84 	truncate_inode_pages_final(&inode->i_data);
85 
86 	if (want_delete) {
87 		sb_start_intwrite(inode->i_sb);
88 		/* set dtime */
89 		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
90 		mark_inode_dirty(inode);
91 		__ext2_write_inode(inode, inode_needs_sync(inode));
92 		/* truncate to 0 */
93 		inode->i_size = 0;
94 		if (inode->i_blocks)
95 			ext2_truncate_blocks(inode, 0);
96 		ext2_xattr_delete_inode(inode);
97 	}
98 
99 	invalidate_inode_buffers(inode);
100 	clear_inode(inode);
101 
102 	ext2_discard_reservation(inode);
103 	rsv = EXT2_I(inode)->i_block_alloc_info;
104 	EXT2_I(inode)->i_block_alloc_info = NULL;
105 	if (unlikely(rsv))
106 		kfree(rsv);
107 
108 	if (want_delete) {
109 		ext2_free_inode(inode);
110 		sb_end_intwrite(inode->i_sb);
111 	}
112 }
113 
114 typedef struct {
115 	__le32	*p;
116 	__le32	key;
117 	struct buffer_head *bh;
118 } Indirect;
119 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121 {
122 	p->key = *(p->p = v);
123 	p->bh = bh;
124 }
125 
verify_chain(Indirect * from,Indirect * to)126 static inline int verify_chain(Indirect *from, Indirect *to)
127 {
128 	while (from <= to && from->key == *from->p)
129 		from++;
130 	return (from > to);
131 }
132 
133 /**
134  *	ext2_block_to_path - parse the block number into array of offsets
135  *	@inode: inode in question (we are only interested in its superblock)
136  *	@i_block: block number to be parsed
137  *	@offsets: array to store the offsets in
138  *      @boundary: set this non-zero if the referred-to block is likely to be
139  *             followed (on disk) by an indirect block.
140  *	To store the locations of file's data ext2 uses a data structure common
141  *	for UNIX filesystems - tree of pointers anchored in the inode, with
142  *	data blocks at leaves and indirect blocks in intermediate nodes.
143  *	This function translates the block number into path in that tree -
144  *	return value is the path length and @offsets[n] is the offset of
145  *	pointer to (n+1)th node in the nth one. If @block is out of range
146  *	(negative or too large) warning is printed and zero returned.
147  *
148  *	Note: function doesn't find node addresses, so no IO is needed. All
149  *	we need to know is the capacity of indirect blocks (taken from the
150  *	inode->i_sb).
151  */
152 
153 /*
154  * Portability note: the last comparison (check that we fit into triple
155  * indirect block) is spelled differently, because otherwise on an
156  * architecture with 32-bit longs and 8Kb pages we might get into trouble
157  * if our filesystem had 8Kb blocks. We might use long long, but that would
158  * kill us on x86. Oh, well, at least the sign propagation does not matter -
159  * i_block would have to be negative in the very beginning, so we would not
160  * get there at all.
161  */
162 
ext2_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)163 static int ext2_block_to_path(struct inode *inode,
164 			long i_block, int offsets[4], int *boundary)
165 {
166 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168 	const long direct_blocks = EXT2_NDIR_BLOCKS,
169 		indirect_blocks = ptrs,
170 		double_blocks = (1 << (ptrs_bits * 2));
171 	int n = 0;
172 	int final = 0;
173 
174 	if (i_block < 0) {
175 		ext2_msg(inode->i_sb, KERN_WARNING,
176 			"warning: %s: block < 0", __func__);
177 	} else if (i_block < direct_blocks) {
178 		offsets[n++] = i_block;
179 		final = direct_blocks;
180 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
181 		offsets[n++] = EXT2_IND_BLOCK;
182 		offsets[n++] = i_block;
183 		final = ptrs;
184 	} else if ((i_block -= indirect_blocks) < double_blocks) {
185 		offsets[n++] = EXT2_DIND_BLOCK;
186 		offsets[n++] = i_block >> ptrs_bits;
187 		offsets[n++] = i_block & (ptrs - 1);
188 		final = ptrs;
189 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190 		offsets[n++] = EXT2_TIND_BLOCK;
191 		offsets[n++] = i_block >> (ptrs_bits * 2);
192 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193 		offsets[n++] = i_block & (ptrs - 1);
194 		final = ptrs;
195 	} else {
196 		ext2_msg(inode->i_sb, KERN_WARNING,
197 			"warning: %s: block is too big", __func__);
198 	}
199 	if (boundary)
200 		*boundary = final - 1 - (i_block & (ptrs - 1));
201 
202 	return n;
203 }
204 
205 /**
206  *	ext2_get_branch - read the chain of indirect blocks leading to data
207  *	@inode: inode in question
208  *	@depth: depth of the chain (1 - direct pointer, etc.)
209  *	@offsets: offsets of pointers in inode/indirect blocks
210  *	@chain: place to store the result
211  *	@err: here we store the error value
212  *
213  *	Function fills the array of triples <key, p, bh> and returns %NULL
214  *	if everything went OK or the pointer to the last filled triple
215  *	(incomplete one) otherwise. Upon the return chain[i].key contains
216  *	the number of (i+1)-th block in the chain (as it is stored in memory,
217  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
218  *	number (it points into struct inode for i==0 and into the bh->b_data
219  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220  *	block for i>0 and NULL for i==0. In other words, it holds the block
221  *	numbers of the chain, addresses they were taken from (and where we can
222  *	verify that chain did not change) and buffer_heads hosting these
223  *	numbers.
224  *
225  *	Function stops when it stumbles upon zero pointer (absent block)
226  *		(pointer to last triple returned, *@err == 0)
227  *	or when it gets an IO error reading an indirect block
228  *		(ditto, *@err == -EIO)
229  *	or when it notices that chain had been changed while it was reading
230  *		(ditto, *@err == -EAGAIN)
231  *	or when it reads all @depth-1 indirect blocks successfully and finds
232  *	the whole chain, all way to the data (returns %NULL, *err == 0).
233  */
ext2_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)234 static Indirect *ext2_get_branch(struct inode *inode,
235 				 int depth,
236 				 int *offsets,
237 				 Indirect chain[4],
238 				 int *err)
239 {
240 	struct super_block *sb = inode->i_sb;
241 	Indirect *p = chain;
242 	struct buffer_head *bh;
243 
244 	*err = 0;
245 	/* i_data is not going away, no lock needed */
246 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247 	if (!p->key)
248 		goto no_block;
249 	while (--depth) {
250 		bh = sb_bread(sb, le32_to_cpu(p->key));
251 		if (!bh)
252 			goto failure;
253 		read_lock(&EXT2_I(inode)->i_meta_lock);
254 		if (!verify_chain(chain, p))
255 			goto changed;
256 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257 		read_unlock(&EXT2_I(inode)->i_meta_lock);
258 		if (!p->key)
259 			goto no_block;
260 	}
261 	return NULL;
262 
263 changed:
264 	read_unlock(&EXT2_I(inode)->i_meta_lock);
265 	brelse(bh);
266 	*err = -EAGAIN;
267 	goto no_block;
268 failure:
269 	*err = -EIO;
270 no_block:
271 	return p;
272 }
273 
274 /**
275  *	ext2_find_near - find a place for allocation with sufficient locality
276  *	@inode: owner
277  *	@ind: descriptor of indirect block.
278  *
279  *	This function returns the preferred place for block allocation.
280  *	It is used when heuristic for sequential allocation fails.
281  *	Rules are:
282  *	  + if there is a block to the left of our position - allocate near it.
283  *	  + if pointer will live in indirect block - allocate near that block.
284  *	  + if pointer will live in inode - allocate in the same cylinder group.
285  *
286  * In the latter case we colour the starting block by the callers PID to
287  * prevent it from clashing with concurrent allocations for a different inode
288  * in the same block group.   The PID is used here so that functionally related
289  * files will be close-by on-disk.
290  *
291  *	Caller must make sure that @ind is valid and will stay that way.
292  */
293 
ext2_find_near(struct inode * inode,Indirect * ind)294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295 {
296 	struct ext2_inode_info *ei = EXT2_I(inode);
297 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298 	__le32 *p;
299 	ext2_fsblk_t bg_start;
300 	ext2_fsblk_t colour;
301 
302 	/* Try to find previous block */
303 	for (p = ind->p - 1; p >= start; p--)
304 		if (*p)
305 			return le32_to_cpu(*p);
306 
307 	/* No such thing, so let's try location of indirect block */
308 	if (ind->bh)
309 		return ind->bh->b_blocknr;
310 
311 	/*
312 	 * It is going to be referred from inode itself? OK, just put it into
313 	 * the same cylinder group then.
314 	 */
315 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316 	colour = (current->pid % 16) *
317 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318 	return bg_start + colour;
319 }
320 
321 /**
322  *	ext2_find_goal - find a preferred place for allocation.
323  *	@inode: owner
324  *	@block:  block we want
325  *	@partial: pointer to the last triple within a chain
326  *
327  *	Returns preferred place for a block (the goal).
328  */
329 
ext2_find_goal(struct inode * inode,long block,Indirect * partial)330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331 					  Indirect *partial)
332 {
333 	struct ext2_block_alloc_info *block_i;
334 
335 	block_i = EXT2_I(inode)->i_block_alloc_info;
336 
337 	/*
338 	 * try the heuristic for sequential allocation,
339 	 * failing that at least try to get decent locality.
340 	 */
341 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
342 		&& (block_i->last_alloc_physical_block != 0)) {
343 		return block_i->last_alloc_physical_block + 1;
344 	}
345 
346 	return ext2_find_near(inode, partial);
347 }
348 
349 /**
350  *	ext2_blks_to_allocate: Look up the block map and count the number
351  *	of direct blocks need to be allocated for the given branch.
352  *
353  * 	@branch: chain of indirect blocks
354  *	@k: number of blocks need for indirect blocks
355  *	@blks: number of data blocks to be mapped.
356  *	@blocks_to_boundary:  the offset in the indirect block
357  *
358  *	return the total number of blocks to be allocate, including the
359  *	direct and indirect blocks.
360  */
361 static int
ext2_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 		int blocks_to_boundary)
364 {
365 	unsigned long count = 0;
366 
367 	/*
368 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 	 * then it's clear blocks on that path have not allocated
370 	 */
371 	if (k > 0) {
372 		/* right now don't hanel cross boundary allocation */
373 		if (blks < blocks_to_boundary + 1)
374 			count += blks;
375 		else
376 			count += blocks_to_boundary + 1;
377 		return count;
378 	}
379 
380 	count++;
381 	while (count < blks && count <= blocks_to_boundary
382 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
383 		count++;
384 	}
385 	return count;
386 }
387 
388 /**
389  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
390  *	@indirect_blks: the number of blocks need to allocate for indirect
391  *			blocks
392  *
393  *	@new_blocks: on return it will store the new block numbers for
394  *	the indirect blocks(if needed) and the first direct block,
395  *	@blks:	on return it will store the total number of allocated
396  *		direct blocks
397  */
ext2_alloc_blocks(struct inode * inode,ext2_fsblk_t goal,int indirect_blks,int blks,ext2_fsblk_t new_blocks[4],int * err)398 static int ext2_alloc_blocks(struct inode *inode,
399 			ext2_fsblk_t goal, int indirect_blks, int blks,
400 			ext2_fsblk_t new_blocks[4], int *err)
401 {
402 	int target, i;
403 	unsigned long count = 0;
404 	int index = 0;
405 	ext2_fsblk_t current_block = 0;
406 	int ret = 0;
407 
408 	/*
409 	 * Here we try to allocate the requested multiple blocks at once,
410 	 * on a best-effort basis.
411 	 * To build a branch, we should allocate blocks for
412 	 * the indirect blocks(if not allocated yet), and at least
413 	 * the first direct block of this branch.  That's the
414 	 * minimum number of blocks need to allocate(required)
415 	 */
416 	target = blks + indirect_blks;
417 
418 	while (1) {
419 		count = target;
420 		/* allocating blocks for indirect blocks and direct blocks */
421 		current_block = ext2_new_blocks(inode,goal,&count,err);
422 		if (*err)
423 			goto failed_out;
424 
425 		target -= count;
426 		/* allocate blocks for indirect blocks */
427 		while (index < indirect_blks && count) {
428 			new_blocks[index++] = current_block++;
429 			count--;
430 		}
431 
432 		if (count > 0)
433 			break;
434 	}
435 
436 	/* save the new block number for the first direct block */
437 	new_blocks[index] = current_block;
438 
439 	/* total number of blocks allocated for direct blocks */
440 	ret = count;
441 	*err = 0;
442 	return ret;
443 failed_out:
444 	for (i = 0; i <index; i++)
445 		ext2_free_blocks(inode, new_blocks[i], 1);
446 	if (index)
447 		mark_inode_dirty(inode);
448 	return ret;
449 }
450 
451 /**
452  *	ext2_alloc_branch - allocate and set up a chain of blocks.
453  *	@inode: owner
454  *	@num: depth of the chain (number of blocks to allocate)
455  *	@offsets: offsets (in the blocks) to store the pointers to next.
456  *	@branch: place to store the chain in.
457  *
458  *	This function allocates @num blocks, zeroes out all but the last one,
459  *	links them into chain and (if we are synchronous) writes them to disk.
460  *	In other words, it prepares a branch that can be spliced onto the
461  *	inode. It stores the information about that chain in the branch[], in
462  *	the same format as ext2_get_branch() would do. We are calling it after
463  *	we had read the existing part of chain and partial points to the last
464  *	triple of that (one with zero ->key). Upon the exit we have the same
465  *	picture as after the successful ext2_get_block(), except that in one
466  *	place chain is disconnected - *branch->p is still zero (we did not
467  *	set the last link), but branch->key contains the number that should
468  *	be placed into *branch->p to fill that gap.
469  *
470  *	If allocation fails we free all blocks we've allocated (and forget
471  *	their buffer_heads) and return the error value the from failed
472  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473  *	as described above and return 0.
474  */
475 
ext2_alloc_branch(struct inode * inode,int indirect_blks,int * blks,ext2_fsblk_t goal,int * offsets,Indirect * branch)476 static int ext2_alloc_branch(struct inode *inode,
477 			int indirect_blks, int *blks, ext2_fsblk_t goal,
478 			int *offsets, Indirect *branch)
479 {
480 	int blocksize = inode->i_sb->s_blocksize;
481 	int i, n = 0;
482 	int err = 0;
483 	struct buffer_head *bh;
484 	int num;
485 	ext2_fsblk_t new_blocks[4];
486 	ext2_fsblk_t current_block;
487 
488 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 				*blks, new_blocks, &err);
490 	if (err)
491 		return err;
492 
493 	branch[0].key = cpu_to_le32(new_blocks[0]);
494 	/*
495 	 * metadata blocks and data blocks are allocated.
496 	 */
497 	for (n = 1; n <= indirect_blks;  n++) {
498 		/*
499 		 * Get buffer_head for parent block, zero it out
500 		 * and set the pointer to new one, then send
501 		 * parent to disk.
502 		 */
503 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504 		if (unlikely(!bh)) {
505 			err = -ENOMEM;
506 			goto failed;
507 		}
508 		branch[n].bh = bh;
509 		lock_buffer(bh);
510 		memset(bh->b_data, 0, blocksize);
511 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 		branch[n].key = cpu_to_le32(new_blocks[n]);
513 		*branch[n].p = branch[n].key;
514 		if ( n == indirect_blks) {
515 			current_block = new_blocks[n];
516 			/*
517 			 * End of chain, update the last new metablock of
518 			 * the chain to point to the new allocated
519 			 * data blocks numbers
520 			 */
521 			for (i=1; i < num; i++)
522 				*(branch[n].p + i) = cpu_to_le32(++current_block);
523 		}
524 		set_buffer_uptodate(bh);
525 		unlock_buffer(bh);
526 		mark_buffer_dirty_inode(bh, inode);
527 		/* We used to sync bh here if IS_SYNC(inode).
528 		 * But we now rely upon generic_write_sync()
529 		 * and b_inode_buffers.  But not for directories.
530 		 */
531 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 			sync_dirty_buffer(bh);
533 	}
534 	*blks = num;
535 	return err;
536 
537 failed:
538 	for (i = 1; i < n; i++)
539 		bforget(branch[i].bh);
540 	for (i = 0; i < indirect_blks; i++)
541 		ext2_free_blocks(inode, new_blocks[i], 1);
542 	ext2_free_blocks(inode, new_blocks[i], num);
543 	return err;
544 }
545 
546 /**
547  * ext2_splice_branch - splice the allocated branch onto inode.
548  * @inode: owner
549  * @block: (logical) number of block we are adding
550  * @where: location of missing link
551  * @num:   number of indirect blocks we are adding
552  * @blks:  number of direct blocks we are adding
553  *
554  * This function fills the missing link and does all housekeeping needed in
555  * inode (->i_blocks, etc.). In case of success we end up with the full
556  * chain to new block and return 0.
557  */
ext2_splice_branch(struct inode * inode,long block,Indirect * where,int num,int blks)558 static void ext2_splice_branch(struct inode *inode,
559 			long block, Indirect *where, int num, int blks)
560 {
561 	int i;
562 	struct ext2_block_alloc_info *block_i;
563 	ext2_fsblk_t current_block;
564 
565 	block_i = EXT2_I(inode)->i_block_alloc_info;
566 
567 	/* XXX LOCKING probably should have i_meta_lock ?*/
568 	/* That's it */
569 
570 	*where->p = where->key;
571 
572 	/*
573 	 * Update the host buffer_head or inode to point to more just allocated
574 	 * direct blocks blocks
575 	 */
576 	if (num == 0 && blks > 1) {
577 		current_block = le32_to_cpu(where->key) + 1;
578 		for (i = 1; i < blks; i++)
579 			*(where->p + i ) = cpu_to_le32(current_block++);
580 	}
581 
582 	/*
583 	 * update the most recently allocated logical & physical block
584 	 * in i_block_alloc_info, to assist find the proper goal block for next
585 	 * allocation
586 	 */
587 	if (block_i) {
588 		block_i->last_alloc_logical_block = block + blks - 1;
589 		block_i->last_alloc_physical_block =
590 				le32_to_cpu(where[num].key) + blks - 1;
591 	}
592 
593 	/* We are done with atomic stuff, now do the rest of housekeeping */
594 
595 	/* had we spliced it onto indirect block? */
596 	if (where->bh)
597 		mark_buffer_dirty_inode(where->bh, inode);
598 
599 	inode->i_ctime = current_time(inode);
600 	mark_inode_dirty(inode);
601 }
602 
603 /*
604  * Allocation strategy is simple: if we have to allocate something, we will
605  * have to go the whole way to leaf. So let's do it before attaching anything
606  * to tree, set linkage between the newborn blocks, write them if sync is
607  * required, recheck the path, free and repeat if check fails, otherwise
608  * set the last missing link (that will protect us from any truncate-generated
609  * removals - all blocks on the path are immune now) and possibly force the
610  * write on the parent block.
611  * That has a nice additional property: no special recovery from the failed
612  * allocations is needed - we simply release blocks and do not touch anything
613  * reachable from inode.
614  *
615  * `handle' can be NULL if create == 0.
616  *
617  * return > 0, # of blocks mapped or allocated.
618  * return = 0, if plain lookup failed.
619  * return < 0, error case.
620  */
ext2_get_blocks(struct inode * inode,sector_t iblock,unsigned long maxblocks,u32 * bno,bool * new,bool * boundary,int create)621 static int ext2_get_blocks(struct inode *inode,
622 			   sector_t iblock, unsigned long maxblocks,
623 			   u32 *bno, bool *new, bool *boundary,
624 			   int create)
625 {
626 	int err;
627 	int offsets[4];
628 	Indirect chain[4];
629 	Indirect *partial;
630 	ext2_fsblk_t goal;
631 	int indirect_blks;
632 	int blocks_to_boundary = 0;
633 	int depth;
634 	struct ext2_inode_info *ei = EXT2_I(inode);
635 	int count = 0;
636 	ext2_fsblk_t first_block = 0;
637 
638 	BUG_ON(maxblocks == 0);
639 
640 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641 
642 	if (depth == 0)
643 		return -EIO;
644 
645 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 	/* Simplest case - block found, no allocation needed */
647 	if (!partial) {
648 		first_block = le32_to_cpu(chain[depth - 1].key);
649 		count++;
650 		/*map more blocks*/
651 		while (count < maxblocks && count <= blocks_to_boundary) {
652 			ext2_fsblk_t blk;
653 
654 			if (!verify_chain(chain, chain + depth - 1)) {
655 				/*
656 				 * Indirect block might be removed by
657 				 * truncate while we were reading it.
658 				 * Handling of that case: forget what we've
659 				 * got now, go to reread.
660 				 */
661 				err = -EAGAIN;
662 				count = 0;
663 				partial = chain + depth - 1;
664 				break;
665 			}
666 			blk = le32_to_cpu(*(chain[depth-1].p + count));
667 			if (blk == first_block + count)
668 				count++;
669 			else
670 				break;
671 		}
672 		if (err != -EAGAIN)
673 			goto got_it;
674 	}
675 
676 	/* Next simple case - plain lookup or failed read of indirect block */
677 	if (!create || err == -EIO)
678 		goto cleanup;
679 
680 	mutex_lock(&ei->truncate_mutex);
681 	/*
682 	 * If the indirect block is missing while we are reading
683 	 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 	 * if the chain has been changed after we grab the semaphore,
685 	 * (either because another process truncated this branch, or
686 	 * another get_block allocated this branch) re-grab the chain to see if
687 	 * the request block has been allocated or not.
688 	 *
689 	 * Since we already block the truncate/other get_block
690 	 * at this point, we will have the current copy of the chain when we
691 	 * splice the branch into the tree.
692 	 */
693 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 		while (partial > chain) {
695 			brelse(partial->bh);
696 			partial--;
697 		}
698 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699 		if (!partial) {
700 			count++;
701 			mutex_unlock(&ei->truncate_mutex);
702 			goto got_it;
703 		}
704 
705 		if (err) {
706 			mutex_unlock(&ei->truncate_mutex);
707 			goto cleanup;
708 		}
709 	}
710 
711 	/*
712 	 * Okay, we need to do block allocation.  Lazily initialize the block
713 	 * allocation info here if necessary
714 	*/
715 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716 		ext2_init_block_alloc_info(inode);
717 
718 	goal = ext2_find_goal(inode, iblock, partial);
719 
720 	/* the number of blocks need to allocate for [d,t]indirect blocks */
721 	indirect_blks = (chain + depth) - partial - 1;
722 	/*
723 	 * Next look up the indirect map to count the totoal number of
724 	 * direct blocks to allocate for this branch.
725 	 */
726 	count = ext2_blks_to_allocate(partial, indirect_blks,
727 					maxblocks, blocks_to_boundary);
728 	/*
729 	 * XXX ???? Block out ext2_truncate while we alter the tree
730 	 */
731 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732 				offsets + (partial - chain), partial);
733 
734 	if (err) {
735 		mutex_unlock(&ei->truncate_mutex);
736 		goto cleanup;
737 	}
738 
739 	if (IS_DAX(inode)) {
740 		/*
741 		 * We must unmap blocks before zeroing so that writeback cannot
742 		 * overwrite zeros with stale data from block device page cache.
743 		 */
744 		clean_bdev_aliases(inode->i_sb->s_bdev,
745 				   le32_to_cpu(chain[depth-1].key),
746 				   count);
747 		/*
748 		 * block must be initialised before we put it in the tree
749 		 * so that it's not found by another thread before it's
750 		 * initialised
751 		 */
752 		err = sb_issue_zeroout(inode->i_sb,
753 				le32_to_cpu(chain[depth-1].key), count,
754 				GFP_NOFS);
755 		if (err) {
756 			mutex_unlock(&ei->truncate_mutex);
757 			goto cleanup;
758 		}
759 	}
760 	*new = true;
761 
762 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763 	mutex_unlock(&ei->truncate_mutex);
764 got_it:
765 	if (count > blocks_to_boundary)
766 		*boundary = true;
767 	err = count;
768 	/* Clean up and exit */
769 	partial = chain + depth - 1;	/* the whole chain */
770 cleanup:
771 	while (partial > chain) {
772 		brelse(partial->bh);
773 		partial--;
774 	}
775 	if (err > 0)
776 		*bno = le32_to_cpu(chain[depth-1].key);
777 	return err;
778 }
779 
ext2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)780 int ext2_get_block(struct inode *inode, sector_t iblock,
781 		struct buffer_head *bh_result, int create)
782 {
783 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784 	bool new = false, boundary = false;
785 	u32 bno;
786 	int ret;
787 
788 	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
789 			create);
790 	if (ret <= 0)
791 		return ret;
792 
793 	map_bh(bh_result, inode->i_sb, bno);
794 	bh_result->b_size = (ret << inode->i_blkbits);
795 	if (new)
796 		set_buffer_new(bh_result);
797 	if (boundary)
798 		set_buffer_boundary(bh_result);
799 	return 0;
800 
801 }
802 
803 #ifdef CONFIG_FS_DAX
ext2_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)804 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
805 		unsigned flags, struct iomap *iomap)
806 {
807 	unsigned int blkbits = inode->i_blkbits;
808 	unsigned long first_block = offset >> blkbits;
809 	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
810 	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
811 	bool new = false, boundary = false;
812 	u32 bno;
813 	int ret;
814 
815 	ret = ext2_get_blocks(inode, first_block, max_blocks,
816 			&bno, &new, &boundary, flags & IOMAP_WRITE);
817 	if (ret < 0)
818 		return ret;
819 
820 	iomap->flags = 0;
821 	iomap->bdev = inode->i_sb->s_bdev;
822 	iomap->offset = (u64)first_block << blkbits;
823 	iomap->dax_dev = sbi->s_daxdev;
824 
825 	if (ret == 0) {
826 		iomap->type = IOMAP_HOLE;
827 		iomap->addr = IOMAP_NULL_ADDR;
828 		iomap->length = 1 << blkbits;
829 	} else {
830 		iomap->type = IOMAP_MAPPED;
831 		iomap->addr = (u64)bno << blkbits;
832 		iomap->length = (u64)ret << blkbits;
833 		iomap->flags |= IOMAP_F_MERGED;
834 	}
835 
836 	if (new)
837 		iomap->flags |= IOMAP_F_NEW;
838 	return 0;
839 }
840 
841 static int
ext2_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)842 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
843 		ssize_t written, unsigned flags, struct iomap *iomap)
844 {
845 	if (iomap->type == IOMAP_MAPPED &&
846 	    written < length &&
847 	    (flags & IOMAP_WRITE))
848 		ext2_write_failed(inode->i_mapping, offset + length);
849 	return 0;
850 }
851 
852 const struct iomap_ops ext2_iomap_ops = {
853 	.iomap_begin		= ext2_iomap_begin,
854 	.iomap_end		= ext2_iomap_end,
855 };
856 #else
857 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
858 const struct iomap_ops ext2_iomap_ops;
859 #endif /* CONFIG_FS_DAX */
860 
ext2_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)861 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
862 		u64 start, u64 len)
863 {
864 	return generic_block_fiemap(inode, fieinfo, start, len,
865 				    ext2_get_block);
866 }
867 
ext2_writepage(struct page * page,struct writeback_control * wbc)868 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
869 {
870 	return block_write_full_page(page, ext2_get_block, wbc);
871 }
872 
ext2_readpage(struct file * file,struct page * page)873 static int ext2_readpage(struct file *file, struct page *page)
874 {
875 	return mpage_readpage(page, ext2_get_block);
876 }
877 
878 static int
ext2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)879 ext2_readpages(struct file *file, struct address_space *mapping,
880 		struct list_head *pages, unsigned nr_pages)
881 {
882 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
883 }
884 
885 static int
ext2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)886 ext2_write_begin(struct file *file, struct address_space *mapping,
887 		loff_t pos, unsigned len, unsigned flags,
888 		struct page **pagep, void **fsdata)
889 {
890 	int ret;
891 
892 	ret = block_write_begin(mapping, pos, len, flags, pagep,
893 				ext2_get_block);
894 	if (ret < 0)
895 		ext2_write_failed(mapping, pos + len);
896 	return ret;
897 }
898 
ext2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)899 static int ext2_write_end(struct file *file, struct address_space *mapping,
900 			loff_t pos, unsigned len, unsigned copied,
901 			struct page *page, void *fsdata)
902 {
903 	int ret;
904 
905 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
906 	if (ret < len)
907 		ext2_write_failed(mapping, pos + len);
908 	return ret;
909 }
910 
911 static int
ext2_nobh_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)912 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
913 		loff_t pos, unsigned len, unsigned flags,
914 		struct page **pagep, void **fsdata)
915 {
916 	int ret;
917 
918 	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
919 			       ext2_get_block);
920 	if (ret < 0)
921 		ext2_write_failed(mapping, pos + len);
922 	return ret;
923 }
924 
ext2_nobh_writepage(struct page * page,struct writeback_control * wbc)925 static int ext2_nobh_writepage(struct page *page,
926 			struct writeback_control *wbc)
927 {
928 	return nobh_writepage(page, ext2_get_block, wbc);
929 }
930 
ext2_bmap(struct address_space * mapping,sector_t block)931 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
932 {
933 	return generic_block_bmap(mapping,block,ext2_get_block);
934 }
935 
936 static ssize_t
ext2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)937 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
938 {
939 	struct file *file = iocb->ki_filp;
940 	struct address_space *mapping = file->f_mapping;
941 	struct inode *inode = mapping->host;
942 	size_t count = iov_iter_count(iter);
943 	loff_t offset = iocb->ki_pos;
944 	ssize_t ret;
945 
946 	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
947 	if (ret < 0 && iov_iter_rw(iter) == WRITE)
948 		ext2_write_failed(mapping, offset + count);
949 	return ret;
950 }
951 
952 static int
ext2_writepages(struct address_space * mapping,struct writeback_control * wbc)953 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
954 {
955 	return mpage_writepages(mapping, wbc, ext2_get_block);
956 }
957 
958 static int
ext2_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)959 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
960 {
961 	return dax_writeback_mapping_range(mapping,
962 			mapping->host->i_sb->s_bdev, wbc);
963 }
964 
965 const struct address_space_operations ext2_aops = {
966 	.readpage		= ext2_readpage,
967 	.readpages		= ext2_readpages,
968 	.writepage		= ext2_writepage,
969 	.write_begin		= ext2_write_begin,
970 	.write_end		= ext2_write_end,
971 	.bmap			= ext2_bmap,
972 	.direct_IO		= ext2_direct_IO,
973 	.writepages		= ext2_writepages,
974 	.migratepage		= buffer_migrate_page,
975 	.is_partially_uptodate	= block_is_partially_uptodate,
976 	.error_remove_page	= generic_error_remove_page,
977 };
978 
979 const struct address_space_operations ext2_nobh_aops = {
980 	.readpage		= ext2_readpage,
981 	.readpages		= ext2_readpages,
982 	.writepage		= ext2_nobh_writepage,
983 	.write_begin		= ext2_nobh_write_begin,
984 	.write_end		= nobh_write_end,
985 	.bmap			= ext2_bmap,
986 	.direct_IO		= ext2_direct_IO,
987 	.writepages		= ext2_writepages,
988 	.migratepage		= buffer_migrate_page,
989 	.error_remove_page	= generic_error_remove_page,
990 };
991 
992 static const struct address_space_operations ext2_dax_aops = {
993 	.writepages		= ext2_dax_writepages,
994 	.direct_IO		= noop_direct_IO,
995 	.set_page_dirty		= noop_set_page_dirty,
996 	.invalidatepage		= noop_invalidatepage,
997 };
998 
999 /*
1000  * Probably it should be a library function... search for first non-zero word
1001  * or memcmp with zero_page, whatever is better for particular architecture.
1002  * Linus?
1003  */
all_zeroes(__le32 * p,__le32 * q)1004 static inline int all_zeroes(__le32 *p, __le32 *q)
1005 {
1006 	while (p < q)
1007 		if (*p++)
1008 			return 0;
1009 	return 1;
1010 }
1011 
1012 /**
1013  *	ext2_find_shared - find the indirect blocks for partial truncation.
1014  *	@inode:	  inode in question
1015  *	@depth:	  depth of the affected branch
1016  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
1017  *	@chain:	  place to store the pointers to partial indirect blocks
1018  *	@top:	  place to the (detached) top of branch
1019  *
1020  *	This is a helper function used by ext2_truncate().
1021  *
1022  *	When we do truncate() we may have to clean the ends of several indirect
1023  *	blocks but leave the blocks themselves alive. Block is partially
1024  *	truncated if some data below the new i_size is referred from it (and
1025  *	it is on the path to the first completely truncated data block, indeed).
1026  *	We have to free the top of that path along with everything to the right
1027  *	of the path. Since no allocation past the truncation point is possible
1028  *	until ext2_truncate() finishes, we may safely do the latter, but top
1029  *	of branch may require special attention - pageout below the truncation
1030  *	point might try to populate it.
1031  *
1032  *	We atomically detach the top of branch from the tree, store the block
1033  *	number of its root in *@top, pointers to buffer_heads of partially
1034  *	truncated blocks - in @chain[].bh and pointers to their last elements
1035  *	that should not be removed - in @chain[].p. Return value is the pointer
1036  *	to last filled element of @chain.
1037  *
1038  *	The work left to caller to do the actual freeing of subtrees:
1039  *		a) free the subtree starting from *@top
1040  *		b) free the subtrees whose roots are stored in
1041  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1042  *		c) free the subtrees growing from the inode past the @chain[0].p
1043  *			(no partially truncated stuff there).
1044  */
1045 
ext2_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)1046 static Indirect *ext2_find_shared(struct inode *inode,
1047 				int depth,
1048 				int offsets[4],
1049 				Indirect chain[4],
1050 				__le32 *top)
1051 {
1052 	Indirect *partial, *p;
1053 	int k, err;
1054 
1055 	*top = 0;
1056 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1057 		;
1058 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1059 	if (!partial)
1060 		partial = chain + k-1;
1061 	/*
1062 	 * If the branch acquired continuation since we've looked at it -
1063 	 * fine, it should all survive and (new) top doesn't belong to us.
1064 	 */
1065 	write_lock(&EXT2_I(inode)->i_meta_lock);
1066 	if (!partial->key && *partial->p) {
1067 		write_unlock(&EXT2_I(inode)->i_meta_lock);
1068 		goto no_top;
1069 	}
1070 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1071 		;
1072 	/*
1073 	 * OK, we've found the last block that must survive. The rest of our
1074 	 * branch should be detached before unlocking. However, if that rest
1075 	 * of branch is all ours and does not grow immediately from the inode
1076 	 * it's easier to cheat and just decrement partial->p.
1077 	 */
1078 	if (p == chain + k - 1 && p > chain) {
1079 		p->p--;
1080 	} else {
1081 		*top = *p->p;
1082 		*p->p = 0;
1083 	}
1084 	write_unlock(&EXT2_I(inode)->i_meta_lock);
1085 
1086 	while(partial > p)
1087 	{
1088 		brelse(partial->bh);
1089 		partial--;
1090 	}
1091 no_top:
1092 	return partial;
1093 }
1094 
1095 /**
1096  *	ext2_free_data - free a list of data blocks
1097  *	@inode:	inode we are dealing with
1098  *	@p:	array of block numbers
1099  *	@q:	points immediately past the end of array
1100  *
1101  *	We are freeing all blocks referred from that array (numbers are
1102  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1103  *	appropriately.
1104  */
ext2_free_data(struct inode * inode,__le32 * p,__le32 * q)1105 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1106 {
1107 	unsigned long block_to_free = 0, count = 0;
1108 	unsigned long nr;
1109 
1110 	for ( ; p < q ; p++) {
1111 		nr = le32_to_cpu(*p);
1112 		if (nr) {
1113 			*p = 0;
1114 			/* accumulate blocks to free if they're contiguous */
1115 			if (count == 0)
1116 				goto free_this;
1117 			else if (block_to_free == nr - count)
1118 				count++;
1119 			else {
1120 				ext2_free_blocks (inode, block_to_free, count);
1121 				mark_inode_dirty(inode);
1122 			free_this:
1123 				block_to_free = nr;
1124 				count = 1;
1125 			}
1126 		}
1127 	}
1128 	if (count > 0) {
1129 		ext2_free_blocks (inode, block_to_free, count);
1130 		mark_inode_dirty(inode);
1131 	}
1132 }
1133 
1134 /**
1135  *	ext2_free_branches - free an array of branches
1136  *	@inode:	inode we are dealing with
1137  *	@p:	array of block numbers
1138  *	@q:	pointer immediately past the end of array
1139  *	@depth:	depth of the branches to free
1140  *
1141  *	We are freeing all blocks referred from these branches (numbers are
1142  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1143  *	appropriately.
1144  */
ext2_free_branches(struct inode * inode,__le32 * p,__le32 * q,int depth)1145 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1146 {
1147 	struct buffer_head * bh;
1148 	unsigned long nr;
1149 
1150 	if (depth--) {
1151 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1152 		for ( ; p < q ; p++) {
1153 			nr = le32_to_cpu(*p);
1154 			if (!nr)
1155 				continue;
1156 			*p = 0;
1157 			bh = sb_bread(inode->i_sb, nr);
1158 			/*
1159 			 * A read failure? Report error and clear slot
1160 			 * (should be rare).
1161 			 */
1162 			if (!bh) {
1163 				ext2_error(inode->i_sb, "ext2_free_branches",
1164 					"Read failure, inode=%ld, block=%ld",
1165 					inode->i_ino, nr);
1166 				continue;
1167 			}
1168 			ext2_free_branches(inode,
1169 					   (__le32*)bh->b_data,
1170 					   (__le32*)bh->b_data + addr_per_block,
1171 					   depth);
1172 			bforget(bh);
1173 			ext2_free_blocks(inode, nr, 1);
1174 			mark_inode_dirty(inode);
1175 		}
1176 	} else
1177 		ext2_free_data(inode, p, q);
1178 }
1179 
1180 /* dax_sem must be held when calling this function */
__ext2_truncate_blocks(struct inode * inode,loff_t offset)1181 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1182 {
1183 	__le32 *i_data = EXT2_I(inode)->i_data;
1184 	struct ext2_inode_info *ei = EXT2_I(inode);
1185 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1186 	int offsets[4];
1187 	Indirect chain[4];
1188 	Indirect *partial;
1189 	__le32 nr = 0;
1190 	int n;
1191 	long iblock;
1192 	unsigned blocksize;
1193 	blocksize = inode->i_sb->s_blocksize;
1194 	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1195 
1196 #ifdef CONFIG_FS_DAX
1197 	WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1198 #endif
1199 
1200 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1201 	if (n == 0)
1202 		return;
1203 
1204 	/*
1205 	 * From here we block out all ext2_get_block() callers who want to
1206 	 * modify the block allocation tree.
1207 	 */
1208 	mutex_lock(&ei->truncate_mutex);
1209 
1210 	if (n == 1) {
1211 		ext2_free_data(inode, i_data+offsets[0],
1212 					i_data + EXT2_NDIR_BLOCKS);
1213 		goto do_indirects;
1214 	}
1215 
1216 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1217 	/* Kill the top of shared branch (already detached) */
1218 	if (nr) {
1219 		if (partial == chain)
1220 			mark_inode_dirty(inode);
1221 		else
1222 			mark_buffer_dirty_inode(partial->bh, inode);
1223 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1224 	}
1225 	/* Clear the ends of indirect blocks on the shared branch */
1226 	while (partial > chain) {
1227 		ext2_free_branches(inode,
1228 				   partial->p + 1,
1229 				   (__le32*)partial->bh->b_data+addr_per_block,
1230 				   (chain+n-1) - partial);
1231 		mark_buffer_dirty_inode(partial->bh, inode);
1232 		brelse (partial->bh);
1233 		partial--;
1234 	}
1235 do_indirects:
1236 	/* Kill the remaining (whole) subtrees */
1237 	switch (offsets[0]) {
1238 		default:
1239 			nr = i_data[EXT2_IND_BLOCK];
1240 			if (nr) {
1241 				i_data[EXT2_IND_BLOCK] = 0;
1242 				mark_inode_dirty(inode);
1243 				ext2_free_branches(inode, &nr, &nr+1, 1);
1244 			}
1245 		case EXT2_IND_BLOCK:
1246 			nr = i_data[EXT2_DIND_BLOCK];
1247 			if (nr) {
1248 				i_data[EXT2_DIND_BLOCK] = 0;
1249 				mark_inode_dirty(inode);
1250 				ext2_free_branches(inode, &nr, &nr+1, 2);
1251 			}
1252 		case EXT2_DIND_BLOCK:
1253 			nr = i_data[EXT2_TIND_BLOCK];
1254 			if (nr) {
1255 				i_data[EXT2_TIND_BLOCK] = 0;
1256 				mark_inode_dirty(inode);
1257 				ext2_free_branches(inode, &nr, &nr+1, 3);
1258 			}
1259 		case EXT2_TIND_BLOCK:
1260 			;
1261 	}
1262 
1263 	ext2_discard_reservation(inode);
1264 
1265 	mutex_unlock(&ei->truncate_mutex);
1266 }
1267 
ext2_truncate_blocks(struct inode * inode,loff_t offset)1268 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1269 {
1270 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271 	    S_ISLNK(inode->i_mode)))
1272 		return;
1273 	if (ext2_inode_is_fast_symlink(inode))
1274 		return;
1275 
1276 	dax_sem_down_write(EXT2_I(inode));
1277 	__ext2_truncate_blocks(inode, offset);
1278 	dax_sem_up_write(EXT2_I(inode));
1279 }
1280 
ext2_setsize(struct inode * inode,loff_t newsize)1281 static int ext2_setsize(struct inode *inode, loff_t newsize)
1282 {
1283 	int error;
1284 
1285 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1286 	    S_ISLNK(inode->i_mode)))
1287 		return -EINVAL;
1288 	if (ext2_inode_is_fast_symlink(inode))
1289 		return -EINVAL;
1290 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1291 		return -EPERM;
1292 
1293 	inode_dio_wait(inode);
1294 
1295 	if (IS_DAX(inode)) {
1296 		error = iomap_zero_range(inode, newsize,
1297 					 PAGE_ALIGN(newsize) - newsize, NULL,
1298 					 &ext2_iomap_ops);
1299 	} else if (test_opt(inode->i_sb, NOBH))
1300 		error = nobh_truncate_page(inode->i_mapping,
1301 				newsize, ext2_get_block);
1302 	else
1303 		error = block_truncate_page(inode->i_mapping,
1304 				newsize, ext2_get_block);
1305 	if (error)
1306 		return error;
1307 
1308 	dax_sem_down_write(EXT2_I(inode));
1309 	truncate_setsize(inode, newsize);
1310 	__ext2_truncate_blocks(inode, newsize);
1311 	dax_sem_up_write(EXT2_I(inode));
1312 
1313 	inode->i_mtime = inode->i_ctime = current_time(inode);
1314 	if (inode_needs_sync(inode)) {
1315 		sync_mapping_buffers(inode->i_mapping);
1316 		sync_inode_metadata(inode, 1);
1317 	} else {
1318 		mark_inode_dirty(inode);
1319 	}
1320 
1321 	return 0;
1322 }
1323 
ext2_get_inode(struct super_block * sb,ino_t ino,struct buffer_head ** p)1324 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1325 					struct buffer_head **p)
1326 {
1327 	struct buffer_head * bh;
1328 	unsigned long block_group;
1329 	unsigned long block;
1330 	unsigned long offset;
1331 	struct ext2_group_desc * gdp;
1332 
1333 	*p = NULL;
1334 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1335 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1336 		goto Einval;
1337 
1338 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1339 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1340 	if (!gdp)
1341 		goto Egdp;
1342 	/*
1343 	 * Figure out the offset within the block group inode table
1344 	 */
1345 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1346 	block = le32_to_cpu(gdp->bg_inode_table) +
1347 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1348 	if (!(bh = sb_bread(sb, block)))
1349 		goto Eio;
1350 
1351 	*p = bh;
1352 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1353 	return (struct ext2_inode *) (bh->b_data + offset);
1354 
1355 Einval:
1356 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1357 		   (unsigned long) ino);
1358 	return ERR_PTR(-EINVAL);
1359 Eio:
1360 	ext2_error(sb, "ext2_get_inode",
1361 		   "unable to read inode block - inode=%lu, block=%lu",
1362 		   (unsigned long) ino, block);
1363 Egdp:
1364 	return ERR_PTR(-EIO);
1365 }
1366 
ext2_set_inode_flags(struct inode * inode)1367 void ext2_set_inode_flags(struct inode *inode)
1368 {
1369 	unsigned int flags = EXT2_I(inode)->i_flags;
1370 
1371 	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1372 				S_DIRSYNC | S_DAX);
1373 	if (flags & EXT2_SYNC_FL)
1374 		inode->i_flags |= S_SYNC;
1375 	if (flags & EXT2_APPEND_FL)
1376 		inode->i_flags |= S_APPEND;
1377 	if (flags & EXT2_IMMUTABLE_FL)
1378 		inode->i_flags |= S_IMMUTABLE;
1379 	if (flags & EXT2_NOATIME_FL)
1380 		inode->i_flags |= S_NOATIME;
1381 	if (flags & EXT2_DIRSYNC_FL)
1382 		inode->i_flags |= S_DIRSYNC;
1383 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1384 		inode->i_flags |= S_DAX;
1385 }
1386 
ext2_set_file_ops(struct inode * inode)1387 void ext2_set_file_ops(struct inode *inode)
1388 {
1389 	inode->i_op = &ext2_file_inode_operations;
1390 	inode->i_fop = &ext2_file_operations;
1391 	if (IS_DAX(inode))
1392 		inode->i_mapping->a_ops = &ext2_dax_aops;
1393 	else if (test_opt(inode->i_sb, NOBH))
1394 		inode->i_mapping->a_ops = &ext2_nobh_aops;
1395 	else
1396 		inode->i_mapping->a_ops = &ext2_aops;
1397 }
1398 
ext2_iget(struct super_block * sb,unsigned long ino)1399 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1400 {
1401 	struct ext2_inode_info *ei;
1402 	struct buffer_head * bh;
1403 	struct ext2_inode *raw_inode;
1404 	struct inode *inode;
1405 	long ret = -EIO;
1406 	int n;
1407 	uid_t i_uid;
1408 	gid_t i_gid;
1409 
1410 	inode = iget_locked(sb, ino);
1411 	if (!inode)
1412 		return ERR_PTR(-ENOMEM);
1413 	if (!(inode->i_state & I_NEW))
1414 		return inode;
1415 
1416 	ei = EXT2_I(inode);
1417 	ei->i_block_alloc_info = NULL;
1418 
1419 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1420 	if (IS_ERR(raw_inode)) {
1421 		ret = PTR_ERR(raw_inode);
1422  		goto bad_inode;
1423 	}
1424 
1425 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1426 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1427 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1428 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1429 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1430 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1431 	}
1432 	i_uid_write(inode, i_uid);
1433 	i_gid_write(inode, i_gid);
1434 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1435 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1436 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1437 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1438 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1439 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1440 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1441 	/* We now have enough fields to check if the inode was active or not.
1442 	 * This is needed because nfsd might try to access dead inodes
1443 	 * the test is that same one that e2fsck uses
1444 	 * NeilBrown 1999oct15
1445 	 */
1446 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1447 		/* this inode is deleted */
1448 		brelse (bh);
1449 		ret = -ESTALE;
1450 		goto bad_inode;
1451 	}
1452 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1453 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1454 	ext2_set_inode_flags(inode);
1455 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1456 	ei->i_frag_no = raw_inode->i_frag;
1457 	ei->i_frag_size = raw_inode->i_fsize;
1458 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1459 	ei->i_dir_acl = 0;
1460 
1461 	if (ei->i_file_acl &&
1462 	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1463 		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1464 			   ei->i_file_acl);
1465 		brelse(bh);
1466 		ret = -EFSCORRUPTED;
1467 		goto bad_inode;
1468 	}
1469 
1470 	if (S_ISREG(inode->i_mode))
1471 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1472 	else
1473 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1474 	if (i_size_read(inode) < 0) {
1475 		ret = -EFSCORRUPTED;
1476 		goto bad_inode;
1477 	}
1478 	ei->i_dtime = 0;
1479 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1480 	ei->i_state = 0;
1481 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1482 	ei->i_dir_start_lookup = 0;
1483 
1484 	/*
1485 	 * NOTE! The in-memory inode i_data array is in little-endian order
1486 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1487 	 */
1488 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1489 		ei->i_data[n] = raw_inode->i_block[n];
1490 
1491 	if (S_ISREG(inode->i_mode)) {
1492 		ext2_set_file_ops(inode);
1493 	} else if (S_ISDIR(inode->i_mode)) {
1494 		inode->i_op = &ext2_dir_inode_operations;
1495 		inode->i_fop = &ext2_dir_operations;
1496 		if (test_opt(inode->i_sb, NOBH))
1497 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1498 		else
1499 			inode->i_mapping->a_ops = &ext2_aops;
1500 	} else if (S_ISLNK(inode->i_mode)) {
1501 		if (ext2_inode_is_fast_symlink(inode)) {
1502 			inode->i_link = (char *)ei->i_data;
1503 			inode->i_op = &ext2_fast_symlink_inode_operations;
1504 			nd_terminate_link(ei->i_data, inode->i_size,
1505 				sizeof(ei->i_data) - 1);
1506 		} else {
1507 			inode->i_op = &ext2_symlink_inode_operations;
1508 			inode_nohighmem(inode);
1509 			if (test_opt(inode->i_sb, NOBH))
1510 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1511 			else
1512 				inode->i_mapping->a_ops = &ext2_aops;
1513 		}
1514 	} else {
1515 		inode->i_op = &ext2_special_inode_operations;
1516 		if (raw_inode->i_block[0])
1517 			init_special_inode(inode, inode->i_mode,
1518 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1519 		else
1520 			init_special_inode(inode, inode->i_mode,
1521 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1522 	}
1523 	brelse (bh);
1524 	unlock_new_inode(inode);
1525 	return inode;
1526 
1527 bad_inode:
1528 	iget_failed(inode);
1529 	return ERR_PTR(ret);
1530 }
1531 
__ext2_write_inode(struct inode * inode,int do_sync)1532 static int __ext2_write_inode(struct inode *inode, int do_sync)
1533 {
1534 	struct ext2_inode_info *ei = EXT2_I(inode);
1535 	struct super_block *sb = inode->i_sb;
1536 	ino_t ino = inode->i_ino;
1537 	uid_t uid = i_uid_read(inode);
1538 	gid_t gid = i_gid_read(inode);
1539 	struct buffer_head * bh;
1540 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1541 	int n;
1542 	int err = 0;
1543 
1544 	if (IS_ERR(raw_inode))
1545  		return -EIO;
1546 
1547 	/* For fields not not tracking in the in-memory inode,
1548 	 * initialise them to zero for new inodes. */
1549 	if (ei->i_state & EXT2_STATE_NEW)
1550 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1551 
1552 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1553 	if (!(test_opt(sb, NO_UID32))) {
1554 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1555 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1556 /*
1557  * Fix up interoperability with old kernels. Otherwise, old inodes get
1558  * re-used with the upper 16 bits of the uid/gid intact
1559  */
1560 		if (!ei->i_dtime) {
1561 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1562 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1563 		} else {
1564 			raw_inode->i_uid_high = 0;
1565 			raw_inode->i_gid_high = 0;
1566 		}
1567 	} else {
1568 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1569 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1570 		raw_inode->i_uid_high = 0;
1571 		raw_inode->i_gid_high = 0;
1572 	}
1573 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1574 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1575 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1576 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1577 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1578 
1579 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1580 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1581 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1582 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1583 	raw_inode->i_frag = ei->i_frag_no;
1584 	raw_inode->i_fsize = ei->i_frag_size;
1585 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1586 	if (!S_ISREG(inode->i_mode))
1587 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1588 	else {
1589 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1590 		if (inode->i_size > 0x7fffffffULL) {
1591 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1592 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1593 			    EXT2_SB(sb)->s_es->s_rev_level ==
1594 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1595 			       /* If this is the first large file
1596 				* created, add a flag to the superblock.
1597 				*/
1598 				spin_lock(&EXT2_SB(sb)->s_lock);
1599 				ext2_update_dynamic_rev(sb);
1600 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1601 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1602 				spin_unlock(&EXT2_SB(sb)->s_lock);
1603 				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1604 			}
1605 		}
1606 	}
1607 
1608 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1609 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1610 		if (old_valid_dev(inode->i_rdev)) {
1611 			raw_inode->i_block[0] =
1612 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1613 			raw_inode->i_block[1] = 0;
1614 		} else {
1615 			raw_inode->i_block[0] = 0;
1616 			raw_inode->i_block[1] =
1617 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1618 			raw_inode->i_block[2] = 0;
1619 		}
1620 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1621 		raw_inode->i_block[n] = ei->i_data[n];
1622 	mark_buffer_dirty(bh);
1623 	if (do_sync) {
1624 		sync_dirty_buffer(bh);
1625 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1626 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1627 				sb->s_id, (unsigned long) ino);
1628 			err = -EIO;
1629 		}
1630 	}
1631 	ei->i_state &= ~EXT2_STATE_NEW;
1632 	brelse (bh);
1633 	return err;
1634 }
1635 
ext2_write_inode(struct inode * inode,struct writeback_control * wbc)1636 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1639 }
1640 
ext2_setattr(struct dentry * dentry,struct iattr * iattr)1641 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1642 {
1643 	struct inode *inode = d_inode(dentry);
1644 	int error;
1645 
1646 	error = setattr_prepare(dentry, iattr);
1647 	if (error)
1648 		return error;
1649 
1650 	if (is_quota_modification(inode, iattr)) {
1651 		error = dquot_initialize(inode);
1652 		if (error)
1653 			return error;
1654 	}
1655 	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1656 	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1657 		error = dquot_transfer(inode, iattr);
1658 		if (error)
1659 			return error;
1660 	}
1661 	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1662 		error = ext2_setsize(inode, iattr->ia_size);
1663 		if (error)
1664 			return error;
1665 	}
1666 	setattr_copy(inode, iattr);
1667 	if (iattr->ia_valid & ATTR_MODE)
1668 		error = posix_acl_chmod(inode, inode->i_mode);
1669 	mark_inode_dirty(inode);
1670 
1671 	return error;
1672 }
1673