1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
22 *
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include "ext2.h"
40 #include "acl.h"
41 #include "xattr.h"
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46 * Test whether an inode is a fast symlink.
47 */
ext2_inode_is_fast_symlink(struct inode * inode)48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55 }
56
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
ext2_write_failed(struct address_space * mapping,loff_t to)59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67 }
68
69 /*
70 * Called at the last iput() if i_nlink is zero.
71 */
ext2_evict_inode(struct inode * inode)72 void ext2_evict_inode(struct inode * inode)
73 {
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages_final(&inode->i_data);
85
86 if (want_delete) {
87 sb_start_intwrite(inode->i_sb);
88 /* set dtime */
89 EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
90 mark_inode_dirty(inode);
91 __ext2_write_inode(inode, inode_needs_sync(inode));
92 /* truncate to 0 */
93 inode->i_size = 0;
94 if (inode->i_blocks)
95 ext2_truncate_blocks(inode, 0);
96 ext2_xattr_delete_inode(inode);
97 }
98
99 invalidate_inode_buffers(inode);
100 clear_inode(inode);
101
102 ext2_discard_reservation(inode);
103 rsv = EXT2_I(inode)->i_block_alloc_info;
104 EXT2_I(inode)->i_block_alloc_info = NULL;
105 if (unlikely(rsv))
106 kfree(rsv);
107
108 if (want_delete) {
109 ext2_free_inode(inode);
110 sb_end_intwrite(inode->i_sb);
111 }
112 }
113
114 typedef struct {
115 __le32 *p;
116 __le32 key;
117 struct buffer_head *bh;
118 } Indirect;
119
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121 {
122 p->key = *(p->p = v);
123 p->bh = bh;
124 }
125
verify_chain(Indirect * from,Indirect * to)126 static inline int verify_chain(Indirect *from, Indirect *to)
127 {
128 while (from <= to && from->key == *from->p)
129 from++;
130 return (from > to);
131 }
132
133 /**
134 * ext2_block_to_path - parse the block number into array of offsets
135 * @inode: inode in question (we are only interested in its superblock)
136 * @i_block: block number to be parsed
137 * @offsets: array to store the offsets in
138 * @boundary: set this non-zero if the referred-to block is likely to be
139 * followed (on disk) by an indirect block.
140 * To store the locations of file's data ext2 uses a data structure common
141 * for UNIX filesystems - tree of pointers anchored in the inode, with
142 * data blocks at leaves and indirect blocks in intermediate nodes.
143 * This function translates the block number into path in that tree -
144 * return value is the path length and @offsets[n] is the offset of
145 * pointer to (n+1)th node in the nth one. If @block is out of range
146 * (negative or too large) warning is printed and zero returned.
147 *
148 * Note: function doesn't find node addresses, so no IO is needed. All
149 * we need to know is the capacity of indirect blocks (taken from the
150 * inode->i_sb).
151 */
152
153 /*
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
160 * get there at all.
161 */
162
ext2_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)163 static int ext2_block_to_path(struct inode *inode,
164 long i_block, int offsets[4], int *boundary)
165 {
166 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168 const long direct_blocks = EXT2_NDIR_BLOCKS,
169 indirect_blocks = ptrs,
170 double_blocks = (1 << (ptrs_bits * 2));
171 int n = 0;
172 int final = 0;
173
174 if (i_block < 0) {
175 ext2_msg(inode->i_sb, KERN_WARNING,
176 "warning: %s: block < 0", __func__);
177 } else if (i_block < direct_blocks) {
178 offsets[n++] = i_block;
179 final = direct_blocks;
180 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181 offsets[n++] = EXT2_IND_BLOCK;
182 offsets[n++] = i_block;
183 final = ptrs;
184 } else if ((i_block -= indirect_blocks) < double_blocks) {
185 offsets[n++] = EXT2_DIND_BLOCK;
186 offsets[n++] = i_block >> ptrs_bits;
187 offsets[n++] = i_block & (ptrs - 1);
188 final = ptrs;
189 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190 offsets[n++] = EXT2_TIND_BLOCK;
191 offsets[n++] = i_block >> (ptrs_bits * 2);
192 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193 offsets[n++] = i_block & (ptrs - 1);
194 final = ptrs;
195 } else {
196 ext2_msg(inode->i_sb, KERN_WARNING,
197 "warning: %s: block is too big", __func__);
198 }
199 if (boundary)
200 *boundary = final - 1 - (i_block & (ptrs - 1));
201
202 return n;
203 }
204
205 /**
206 * ext2_get_branch - read the chain of indirect blocks leading to data
207 * @inode: inode in question
208 * @depth: depth of the chain (1 - direct pointer, etc.)
209 * @offsets: offsets of pointers in inode/indirect blocks
210 * @chain: place to store the result
211 * @err: here we store the error value
212 *
213 * Function fills the array of triples <key, p, bh> and returns %NULL
214 * if everything went OK or the pointer to the last filled triple
215 * (incomplete one) otherwise. Upon the return chain[i].key contains
216 * the number of (i+1)-th block in the chain (as it is stored in memory,
217 * i.e. little-endian 32-bit), chain[i].p contains the address of that
218 * number (it points into struct inode for i==0 and into the bh->b_data
219 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 * block for i>0 and NULL for i==0. In other words, it holds the block
221 * numbers of the chain, addresses they were taken from (and where we can
222 * verify that chain did not change) and buffer_heads hosting these
223 * numbers.
224 *
225 * Function stops when it stumbles upon zero pointer (absent block)
226 * (pointer to last triple returned, *@err == 0)
227 * or when it gets an IO error reading an indirect block
228 * (ditto, *@err == -EIO)
229 * or when it notices that chain had been changed while it was reading
230 * (ditto, *@err == -EAGAIN)
231 * or when it reads all @depth-1 indirect blocks successfully and finds
232 * the whole chain, all way to the data (returns %NULL, *err == 0).
233 */
ext2_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)234 static Indirect *ext2_get_branch(struct inode *inode,
235 int depth,
236 int *offsets,
237 Indirect chain[4],
238 int *err)
239 {
240 struct super_block *sb = inode->i_sb;
241 Indirect *p = chain;
242 struct buffer_head *bh;
243
244 *err = 0;
245 /* i_data is not going away, no lock needed */
246 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247 if (!p->key)
248 goto no_block;
249 while (--depth) {
250 bh = sb_bread(sb, le32_to_cpu(p->key));
251 if (!bh)
252 goto failure;
253 read_lock(&EXT2_I(inode)->i_meta_lock);
254 if (!verify_chain(chain, p))
255 goto changed;
256 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257 read_unlock(&EXT2_I(inode)->i_meta_lock);
258 if (!p->key)
259 goto no_block;
260 }
261 return NULL;
262
263 changed:
264 read_unlock(&EXT2_I(inode)->i_meta_lock);
265 brelse(bh);
266 *err = -EAGAIN;
267 goto no_block;
268 failure:
269 *err = -EIO;
270 no_block:
271 return p;
272 }
273
274 /**
275 * ext2_find_near - find a place for allocation with sufficient locality
276 * @inode: owner
277 * @ind: descriptor of indirect block.
278 *
279 * This function returns the preferred place for block allocation.
280 * It is used when heuristic for sequential allocation fails.
281 * Rules are:
282 * + if there is a block to the left of our position - allocate near it.
283 * + if pointer will live in indirect block - allocate near that block.
284 * + if pointer will live in inode - allocate in the same cylinder group.
285 *
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group. The PID is used here so that functionally related
289 * files will be close-by on-disk.
290 *
291 * Caller must make sure that @ind is valid and will stay that way.
292 */
293
ext2_find_near(struct inode * inode,Indirect * ind)294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295 {
296 struct ext2_inode_info *ei = EXT2_I(inode);
297 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298 __le32 *p;
299 ext2_fsblk_t bg_start;
300 ext2_fsblk_t colour;
301
302 /* Try to find previous block */
303 for (p = ind->p - 1; p >= start; p--)
304 if (*p)
305 return le32_to_cpu(*p);
306
307 /* No such thing, so let's try location of indirect block */
308 if (ind->bh)
309 return ind->bh->b_blocknr;
310
311 /*
312 * It is going to be referred from inode itself? OK, just put it into
313 * the same cylinder group then.
314 */
315 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316 colour = (current->pid % 16) *
317 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318 return bg_start + colour;
319 }
320
321 /**
322 * ext2_find_goal - find a preferred place for allocation.
323 * @inode: owner
324 * @block: block we want
325 * @partial: pointer to the last triple within a chain
326 *
327 * Returns preferred place for a block (the goal).
328 */
329
ext2_find_goal(struct inode * inode,long block,Indirect * partial)330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331 Indirect *partial)
332 {
333 struct ext2_block_alloc_info *block_i;
334
335 block_i = EXT2_I(inode)->i_block_alloc_info;
336
337 /*
338 * try the heuristic for sequential allocation,
339 * failing that at least try to get decent locality.
340 */
341 if (block_i && (block == block_i->last_alloc_logical_block + 1)
342 && (block_i->last_alloc_physical_block != 0)) {
343 return block_i->last_alloc_physical_block + 1;
344 }
345
346 return ext2_find_near(inode, partial);
347 }
348
349 /**
350 * ext2_blks_to_allocate: Look up the block map and count the number
351 * of direct blocks need to be allocated for the given branch.
352 *
353 * @branch: chain of indirect blocks
354 * @k: number of blocks need for indirect blocks
355 * @blks: number of data blocks to be mapped.
356 * @blocks_to_boundary: the offset in the indirect block
357 *
358 * return the total number of blocks to be allocate, including the
359 * direct and indirect blocks.
360 */
361 static int
ext2_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 int blocks_to_boundary)
364 {
365 unsigned long count = 0;
366
367 /*
368 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 * then it's clear blocks on that path have not allocated
370 */
371 if (k > 0) {
372 /* right now don't hanel cross boundary allocation */
373 if (blks < blocks_to_boundary + 1)
374 count += blks;
375 else
376 count += blocks_to_boundary + 1;
377 return count;
378 }
379
380 count++;
381 while (count < blks && count <= blocks_to_boundary
382 && le32_to_cpu(*(branch[0].p + count)) == 0) {
383 count++;
384 }
385 return count;
386 }
387
388 /**
389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
390 * @indirect_blks: the number of blocks need to allocate for indirect
391 * blocks
392 *
393 * @new_blocks: on return it will store the new block numbers for
394 * the indirect blocks(if needed) and the first direct block,
395 * @blks: on return it will store the total number of allocated
396 * direct blocks
397 */
ext2_alloc_blocks(struct inode * inode,ext2_fsblk_t goal,int indirect_blks,int blks,ext2_fsblk_t new_blocks[4],int * err)398 static int ext2_alloc_blocks(struct inode *inode,
399 ext2_fsblk_t goal, int indirect_blks, int blks,
400 ext2_fsblk_t new_blocks[4], int *err)
401 {
402 int target, i;
403 unsigned long count = 0;
404 int index = 0;
405 ext2_fsblk_t current_block = 0;
406 int ret = 0;
407
408 /*
409 * Here we try to allocate the requested multiple blocks at once,
410 * on a best-effort basis.
411 * To build a branch, we should allocate blocks for
412 * the indirect blocks(if not allocated yet), and at least
413 * the first direct block of this branch. That's the
414 * minimum number of blocks need to allocate(required)
415 */
416 target = blks + indirect_blks;
417
418 while (1) {
419 count = target;
420 /* allocating blocks for indirect blocks and direct blocks */
421 current_block = ext2_new_blocks(inode,goal,&count,err);
422 if (*err)
423 goto failed_out;
424
425 target -= count;
426 /* allocate blocks for indirect blocks */
427 while (index < indirect_blks && count) {
428 new_blocks[index++] = current_block++;
429 count--;
430 }
431
432 if (count > 0)
433 break;
434 }
435
436 /* save the new block number for the first direct block */
437 new_blocks[index] = current_block;
438
439 /* total number of blocks allocated for direct blocks */
440 ret = count;
441 *err = 0;
442 return ret;
443 failed_out:
444 for (i = 0; i <index; i++)
445 ext2_free_blocks(inode, new_blocks[i], 1);
446 if (index)
447 mark_inode_dirty(inode);
448 return ret;
449 }
450
451 /**
452 * ext2_alloc_branch - allocate and set up a chain of blocks.
453 * @inode: owner
454 * @num: depth of the chain (number of blocks to allocate)
455 * @offsets: offsets (in the blocks) to store the pointers to next.
456 * @branch: place to store the chain in.
457 *
458 * This function allocates @num blocks, zeroes out all but the last one,
459 * links them into chain and (if we are synchronous) writes them to disk.
460 * In other words, it prepares a branch that can be spliced onto the
461 * inode. It stores the information about that chain in the branch[], in
462 * the same format as ext2_get_branch() would do. We are calling it after
463 * we had read the existing part of chain and partial points to the last
464 * triple of that (one with zero ->key). Upon the exit we have the same
465 * picture as after the successful ext2_get_block(), except that in one
466 * place chain is disconnected - *branch->p is still zero (we did not
467 * set the last link), but branch->key contains the number that should
468 * be placed into *branch->p to fill that gap.
469 *
470 * If allocation fails we free all blocks we've allocated (and forget
471 * their buffer_heads) and return the error value the from failed
472 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473 * as described above and return 0.
474 */
475
ext2_alloc_branch(struct inode * inode,int indirect_blks,int * blks,ext2_fsblk_t goal,int * offsets,Indirect * branch)476 static int ext2_alloc_branch(struct inode *inode,
477 int indirect_blks, int *blks, ext2_fsblk_t goal,
478 int *offsets, Indirect *branch)
479 {
480 int blocksize = inode->i_sb->s_blocksize;
481 int i, n = 0;
482 int err = 0;
483 struct buffer_head *bh;
484 int num;
485 ext2_fsblk_t new_blocks[4];
486 ext2_fsblk_t current_block;
487
488 num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 *blks, new_blocks, &err);
490 if (err)
491 return err;
492
493 branch[0].key = cpu_to_le32(new_blocks[0]);
494 /*
495 * metadata blocks and data blocks are allocated.
496 */
497 for (n = 1; n <= indirect_blks; n++) {
498 /*
499 * Get buffer_head for parent block, zero it out
500 * and set the pointer to new one, then send
501 * parent to disk.
502 */
503 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504 if (unlikely(!bh)) {
505 err = -ENOMEM;
506 goto failed;
507 }
508 branch[n].bh = bh;
509 lock_buffer(bh);
510 memset(bh->b_data, 0, blocksize);
511 branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 branch[n].key = cpu_to_le32(new_blocks[n]);
513 *branch[n].p = branch[n].key;
514 if ( n == indirect_blks) {
515 current_block = new_blocks[n];
516 /*
517 * End of chain, update the last new metablock of
518 * the chain to point to the new allocated
519 * data blocks numbers
520 */
521 for (i=1; i < num; i++)
522 *(branch[n].p + i) = cpu_to_le32(++current_block);
523 }
524 set_buffer_uptodate(bh);
525 unlock_buffer(bh);
526 mark_buffer_dirty_inode(bh, inode);
527 /* We used to sync bh here if IS_SYNC(inode).
528 * But we now rely upon generic_write_sync()
529 * and b_inode_buffers. But not for directories.
530 */
531 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 sync_dirty_buffer(bh);
533 }
534 *blks = num;
535 return err;
536
537 failed:
538 for (i = 1; i < n; i++)
539 bforget(branch[i].bh);
540 for (i = 0; i < indirect_blks; i++)
541 ext2_free_blocks(inode, new_blocks[i], 1);
542 ext2_free_blocks(inode, new_blocks[i], num);
543 return err;
544 }
545
546 /**
547 * ext2_splice_branch - splice the allocated branch onto inode.
548 * @inode: owner
549 * @block: (logical) number of block we are adding
550 * @where: location of missing link
551 * @num: number of indirect blocks we are adding
552 * @blks: number of direct blocks we are adding
553 *
554 * This function fills the missing link and does all housekeeping needed in
555 * inode (->i_blocks, etc.). In case of success we end up with the full
556 * chain to new block and return 0.
557 */
ext2_splice_branch(struct inode * inode,long block,Indirect * where,int num,int blks)558 static void ext2_splice_branch(struct inode *inode,
559 long block, Indirect *where, int num, int blks)
560 {
561 int i;
562 struct ext2_block_alloc_info *block_i;
563 ext2_fsblk_t current_block;
564
565 block_i = EXT2_I(inode)->i_block_alloc_info;
566
567 /* XXX LOCKING probably should have i_meta_lock ?*/
568 /* That's it */
569
570 *where->p = where->key;
571
572 /*
573 * Update the host buffer_head or inode to point to more just allocated
574 * direct blocks blocks
575 */
576 if (num == 0 && blks > 1) {
577 current_block = le32_to_cpu(where->key) + 1;
578 for (i = 1; i < blks; i++)
579 *(where->p + i ) = cpu_to_le32(current_block++);
580 }
581
582 /*
583 * update the most recently allocated logical & physical block
584 * in i_block_alloc_info, to assist find the proper goal block for next
585 * allocation
586 */
587 if (block_i) {
588 block_i->last_alloc_logical_block = block + blks - 1;
589 block_i->last_alloc_physical_block =
590 le32_to_cpu(where[num].key) + blks - 1;
591 }
592
593 /* We are done with atomic stuff, now do the rest of housekeeping */
594
595 /* had we spliced it onto indirect block? */
596 if (where->bh)
597 mark_buffer_dirty_inode(where->bh, inode);
598
599 inode->i_ctime = current_time(inode);
600 mark_inode_dirty(inode);
601 }
602
603 /*
604 * Allocation strategy is simple: if we have to allocate something, we will
605 * have to go the whole way to leaf. So let's do it before attaching anything
606 * to tree, set linkage between the newborn blocks, write them if sync is
607 * required, recheck the path, free and repeat if check fails, otherwise
608 * set the last missing link (that will protect us from any truncate-generated
609 * removals - all blocks on the path are immune now) and possibly force the
610 * write on the parent block.
611 * That has a nice additional property: no special recovery from the failed
612 * allocations is needed - we simply release blocks and do not touch anything
613 * reachable from inode.
614 *
615 * `handle' can be NULL if create == 0.
616 *
617 * return > 0, # of blocks mapped or allocated.
618 * return = 0, if plain lookup failed.
619 * return < 0, error case.
620 */
ext2_get_blocks(struct inode * inode,sector_t iblock,unsigned long maxblocks,u32 * bno,bool * new,bool * boundary,int create)621 static int ext2_get_blocks(struct inode *inode,
622 sector_t iblock, unsigned long maxblocks,
623 u32 *bno, bool *new, bool *boundary,
624 int create)
625 {
626 int err;
627 int offsets[4];
628 Indirect chain[4];
629 Indirect *partial;
630 ext2_fsblk_t goal;
631 int indirect_blks;
632 int blocks_to_boundary = 0;
633 int depth;
634 struct ext2_inode_info *ei = EXT2_I(inode);
635 int count = 0;
636 ext2_fsblk_t first_block = 0;
637
638 BUG_ON(maxblocks == 0);
639
640 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641
642 if (depth == 0)
643 return -EIO;
644
645 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 /* Simplest case - block found, no allocation needed */
647 if (!partial) {
648 first_block = le32_to_cpu(chain[depth - 1].key);
649 count++;
650 /*map more blocks*/
651 while (count < maxblocks && count <= blocks_to_boundary) {
652 ext2_fsblk_t blk;
653
654 if (!verify_chain(chain, chain + depth - 1)) {
655 /*
656 * Indirect block might be removed by
657 * truncate while we were reading it.
658 * Handling of that case: forget what we've
659 * got now, go to reread.
660 */
661 err = -EAGAIN;
662 count = 0;
663 partial = chain + depth - 1;
664 break;
665 }
666 blk = le32_to_cpu(*(chain[depth-1].p + count));
667 if (blk == first_block + count)
668 count++;
669 else
670 break;
671 }
672 if (err != -EAGAIN)
673 goto got_it;
674 }
675
676 /* Next simple case - plain lookup or failed read of indirect block */
677 if (!create || err == -EIO)
678 goto cleanup;
679
680 mutex_lock(&ei->truncate_mutex);
681 /*
682 * If the indirect block is missing while we are reading
683 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 * if the chain has been changed after we grab the semaphore,
685 * (either because another process truncated this branch, or
686 * another get_block allocated this branch) re-grab the chain to see if
687 * the request block has been allocated or not.
688 *
689 * Since we already block the truncate/other get_block
690 * at this point, we will have the current copy of the chain when we
691 * splice the branch into the tree.
692 */
693 if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 while (partial > chain) {
695 brelse(partial->bh);
696 partial--;
697 }
698 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699 if (!partial) {
700 count++;
701 mutex_unlock(&ei->truncate_mutex);
702 goto got_it;
703 }
704
705 if (err) {
706 mutex_unlock(&ei->truncate_mutex);
707 goto cleanup;
708 }
709 }
710
711 /*
712 * Okay, we need to do block allocation. Lazily initialize the block
713 * allocation info here if necessary
714 */
715 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716 ext2_init_block_alloc_info(inode);
717
718 goal = ext2_find_goal(inode, iblock, partial);
719
720 /* the number of blocks need to allocate for [d,t]indirect blocks */
721 indirect_blks = (chain + depth) - partial - 1;
722 /*
723 * Next look up the indirect map to count the totoal number of
724 * direct blocks to allocate for this branch.
725 */
726 count = ext2_blks_to_allocate(partial, indirect_blks,
727 maxblocks, blocks_to_boundary);
728 /*
729 * XXX ???? Block out ext2_truncate while we alter the tree
730 */
731 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732 offsets + (partial - chain), partial);
733
734 if (err) {
735 mutex_unlock(&ei->truncate_mutex);
736 goto cleanup;
737 }
738
739 if (IS_DAX(inode)) {
740 /*
741 * We must unmap blocks before zeroing so that writeback cannot
742 * overwrite zeros with stale data from block device page cache.
743 */
744 clean_bdev_aliases(inode->i_sb->s_bdev,
745 le32_to_cpu(chain[depth-1].key),
746 count);
747 /*
748 * block must be initialised before we put it in the tree
749 * so that it's not found by another thread before it's
750 * initialised
751 */
752 err = sb_issue_zeroout(inode->i_sb,
753 le32_to_cpu(chain[depth-1].key), count,
754 GFP_NOFS);
755 if (err) {
756 mutex_unlock(&ei->truncate_mutex);
757 goto cleanup;
758 }
759 }
760 *new = true;
761
762 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763 mutex_unlock(&ei->truncate_mutex);
764 got_it:
765 if (count > blocks_to_boundary)
766 *boundary = true;
767 err = count;
768 /* Clean up and exit */
769 partial = chain + depth - 1; /* the whole chain */
770 cleanup:
771 while (partial > chain) {
772 brelse(partial->bh);
773 partial--;
774 }
775 if (err > 0)
776 *bno = le32_to_cpu(chain[depth-1].key);
777 return err;
778 }
779
ext2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)780 int ext2_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh_result, int create)
782 {
783 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784 bool new = false, boundary = false;
785 u32 bno;
786 int ret;
787
788 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
789 create);
790 if (ret <= 0)
791 return ret;
792
793 map_bh(bh_result, inode->i_sb, bno);
794 bh_result->b_size = (ret << inode->i_blkbits);
795 if (new)
796 set_buffer_new(bh_result);
797 if (boundary)
798 set_buffer_boundary(bh_result);
799 return 0;
800
801 }
802
803 #ifdef CONFIG_FS_DAX
ext2_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)804 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
805 unsigned flags, struct iomap *iomap)
806 {
807 unsigned int blkbits = inode->i_blkbits;
808 unsigned long first_block = offset >> blkbits;
809 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
810 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
811 bool new = false, boundary = false;
812 u32 bno;
813 int ret;
814
815 ret = ext2_get_blocks(inode, first_block, max_blocks,
816 &bno, &new, &boundary, flags & IOMAP_WRITE);
817 if (ret < 0)
818 return ret;
819
820 iomap->flags = 0;
821 iomap->bdev = inode->i_sb->s_bdev;
822 iomap->offset = (u64)first_block << blkbits;
823 iomap->dax_dev = sbi->s_daxdev;
824
825 if (ret == 0) {
826 iomap->type = IOMAP_HOLE;
827 iomap->addr = IOMAP_NULL_ADDR;
828 iomap->length = 1 << blkbits;
829 } else {
830 iomap->type = IOMAP_MAPPED;
831 iomap->addr = (u64)bno << blkbits;
832 iomap->length = (u64)ret << blkbits;
833 iomap->flags |= IOMAP_F_MERGED;
834 }
835
836 if (new)
837 iomap->flags |= IOMAP_F_NEW;
838 return 0;
839 }
840
841 static int
ext2_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)842 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
843 ssize_t written, unsigned flags, struct iomap *iomap)
844 {
845 if (iomap->type == IOMAP_MAPPED &&
846 written < length &&
847 (flags & IOMAP_WRITE))
848 ext2_write_failed(inode->i_mapping, offset + length);
849 return 0;
850 }
851
852 const struct iomap_ops ext2_iomap_ops = {
853 .iomap_begin = ext2_iomap_begin,
854 .iomap_end = ext2_iomap_end,
855 };
856 #else
857 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
858 const struct iomap_ops ext2_iomap_ops;
859 #endif /* CONFIG_FS_DAX */
860
ext2_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)861 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
862 u64 start, u64 len)
863 {
864 return generic_block_fiemap(inode, fieinfo, start, len,
865 ext2_get_block);
866 }
867
ext2_writepage(struct page * page,struct writeback_control * wbc)868 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
869 {
870 return block_write_full_page(page, ext2_get_block, wbc);
871 }
872
ext2_readpage(struct file * file,struct page * page)873 static int ext2_readpage(struct file *file, struct page *page)
874 {
875 return mpage_readpage(page, ext2_get_block);
876 }
877
878 static int
ext2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)879 ext2_readpages(struct file *file, struct address_space *mapping,
880 struct list_head *pages, unsigned nr_pages)
881 {
882 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
883 }
884
885 static int
ext2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)886 ext2_write_begin(struct file *file, struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned flags,
888 struct page **pagep, void **fsdata)
889 {
890 int ret;
891
892 ret = block_write_begin(mapping, pos, len, flags, pagep,
893 ext2_get_block);
894 if (ret < 0)
895 ext2_write_failed(mapping, pos + len);
896 return ret;
897 }
898
ext2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)899 static int ext2_write_end(struct file *file, struct address_space *mapping,
900 loff_t pos, unsigned len, unsigned copied,
901 struct page *page, void *fsdata)
902 {
903 int ret;
904
905 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
906 if (ret < len)
907 ext2_write_failed(mapping, pos + len);
908 return ret;
909 }
910
911 static int
ext2_nobh_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)912 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
913 loff_t pos, unsigned len, unsigned flags,
914 struct page **pagep, void **fsdata)
915 {
916 int ret;
917
918 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
919 ext2_get_block);
920 if (ret < 0)
921 ext2_write_failed(mapping, pos + len);
922 return ret;
923 }
924
ext2_nobh_writepage(struct page * page,struct writeback_control * wbc)925 static int ext2_nobh_writepage(struct page *page,
926 struct writeback_control *wbc)
927 {
928 return nobh_writepage(page, ext2_get_block, wbc);
929 }
930
ext2_bmap(struct address_space * mapping,sector_t block)931 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
932 {
933 return generic_block_bmap(mapping,block,ext2_get_block);
934 }
935
936 static ssize_t
ext2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)937 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
938 {
939 struct file *file = iocb->ki_filp;
940 struct address_space *mapping = file->f_mapping;
941 struct inode *inode = mapping->host;
942 size_t count = iov_iter_count(iter);
943 loff_t offset = iocb->ki_pos;
944 ssize_t ret;
945
946 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
947 if (ret < 0 && iov_iter_rw(iter) == WRITE)
948 ext2_write_failed(mapping, offset + count);
949 return ret;
950 }
951
952 static int
ext2_writepages(struct address_space * mapping,struct writeback_control * wbc)953 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
954 {
955 return mpage_writepages(mapping, wbc, ext2_get_block);
956 }
957
958 static int
ext2_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)959 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
960 {
961 return dax_writeback_mapping_range(mapping,
962 mapping->host->i_sb->s_bdev, wbc);
963 }
964
965 const struct address_space_operations ext2_aops = {
966 .readpage = ext2_readpage,
967 .readpages = ext2_readpages,
968 .writepage = ext2_writepage,
969 .write_begin = ext2_write_begin,
970 .write_end = ext2_write_end,
971 .bmap = ext2_bmap,
972 .direct_IO = ext2_direct_IO,
973 .writepages = ext2_writepages,
974 .migratepage = buffer_migrate_page,
975 .is_partially_uptodate = block_is_partially_uptodate,
976 .error_remove_page = generic_error_remove_page,
977 };
978
979 const struct address_space_operations ext2_nobh_aops = {
980 .readpage = ext2_readpage,
981 .readpages = ext2_readpages,
982 .writepage = ext2_nobh_writepage,
983 .write_begin = ext2_nobh_write_begin,
984 .write_end = nobh_write_end,
985 .bmap = ext2_bmap,
986 .direct_IO = ext2_direct_IO,
987 .writepages = ext2_writepages,
988 .migratepage = buffer_migrate_page,
989 .error_remove_page = generic_error_remove_page,
990 };
991
992 static const struct address_space_operations ext2_dax_aops = {
993 .writepages = ext2_dax_writepages,
994 .direct_IO = noop_direct_IO,
995 .set_page_dirty = noop_set_page_dirty,
996 .invalidatepage = noop_invalidatepage,
997 };
998
999 /*
1000 * Probably it should be a library function... search for first non-zero word
1001 * or memcmp with zero_page, whatever is better for particular architecture.
1002 * Linus?
1003 */
all_zeroes(__le32 * p,__le32 * q)1004 static inline int all_zeroes(__le32 *p, __le32 *q)
1005 {
1006 while (p < q)
1007 if (*p++)
1008 return 0;
1009 return 1;
1010 }
1011
1012 /**
1013 * ext2_find_shared - find the indirect blocks for partial truncation.
1014 * @inode: inode in question
1015 * @depth: depth of the affected branch
1016 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1017 * @chain: place to store the pointers to partial indirect blocks
1018 * @top: place to the (detached) top of branch
1019 *
1020 * This is a helper function used by ext2_truncate().
1021 *
1022 * When we do truncate() we may have to clean the ends of several indirect
1023 * blocks but leave the blocks themselves alive. Block is partially
1024 * truncated if some data below the new i_size is referred from it (and
1025 * it is on the path to the first completely truncated data block, indeed).
1026 * We have to free the top of that path along with everything to the right
1027 * of the path. Since no allocation past the truncation point is possible
1028 * until ext2_truncate() finishes, we may safely do the latter, but top
1029 * of branch may require special attention - pageout below the truncation
1030 * point might try to populate it.
1031 *
1032 * We atomically detach the top of branch from the tree, store the block
1033 * number of its root in *@top, pointers to buffer_heads of partially
1034 * truncated blocks - in @chain[].bh and pointers to their last elements
1035 * that should not be removed - in @chain[].p. Return value is the pointer
1036 * to last filled element of @chain.
1037 *
1038 * The work left to caller to do the actual freeing of subtrees:
1039 * a) free the subtree starting from *@top
1040 * b) free the subtrees whose roots are stored in
1041 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1042 * c) free the subtrees growing from the inode past the @chain[0].p
1043 * (no partially truncated stuff there).
1044 */
1045
ext2_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)1046 static Indirect *ext2_find_shared(struct inode *inode,
1047 int depth,
1048 int offsets[4],
1049 Indirect chain[4],
1050 __le32 *top)
1051 {
1052 Indirect *partial, *p;
1053 int k, err;
1054
1055 *top = 0;
1056 for (k = depth; k > 1 && !offsets[k-1]; k--)
1057 ;
1058 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1059 if (!partial)
1060 partial = chain + k-1;
1061 /*
1062 * If the branch acquired continuation since we've looked at it -
1063 * fine, it should all survive and (new) top doesn't belong to us.
1064 */
1065 write_lock(&EXT2_I(inode)->i_meta_lock);
1066 if (!partial->key && *partial->p) {
1067 write_unlock(&EXT2_I(inode)->i_meta_lock);
1068 goto no_top;
1069 }
1070 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1071 ;
1072 /*
1073 * OK, we've found the last block that must survive. The rest of our
1074 * branch should be detached before unlocking. However, if that rest
1075 * of branch is all ours and does not grow immediately from the inode
1076 * it's easier to cheat and just decrement partial->p.
1077 */
1078 if (p == chain + k - 1 && p > chain) {
1079 p->p--;
1080 } else {
1081 *top = *p->p;
1082 *p->p = 0;
1083 }
1084 write_unlock(&EXT2_I(inode)->i_meta_lock);
1085
1086 while(partial > p)
1087 {
1088 brelse(partial->bh);
1089 partial--;
1090 }
1091 no_top:
1092 return partial;
1093 }
1094
1095 /**
1096 * ext2_free_data - free a list of data blocks
1097 * @inode: inode we are dealing with
1098 * @p: array of block numbers
1099 * @q: points immediately past the end of array
1100 *
1101 * We are freeing all blocks referred from that array (numbers are
1102 * stored as little-endian 32-bit) and updating @inode->i_blocks
1103 * appropriately.
1104 */
ext2_free_data(struct inode * inode,__le32 * p,__le32 * q)1105 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1106 {
1107 unsigned long block_to_free = 0, count = 0;
1108 unsigned long nr;
1109
1110 for ( ; p < q ; p++) {
1111 nr = le32_to_cpu(*p);
1112 if (nr) {
1113 *p = 0;
1114 /* accumulate blocks to free if they're contiguous */
1115 if (count == 0)
1116 goto free_this;
1117 else if (block_to_free == nr - count)
1118 count++;
1119 else {
1120 ext2_free_blocks (inode, block_to_free, count);
1121 mark_inode_dirty(inode);
1122 free_this:
1123 block_to_free = nr;
1124 count = 1;
1125 }
1126 }
1127 }
1128 if (count > 0) {
1129 ext2_free_blocks (inode, block_to_free, count);
1130 mark_inode_dirty(inode);
1131 }
1132 }
1133
1134 /**
1135 * ext2_free_branches - free an array of branches
1136 * @inode: inode we are dealing with
1137 * @p: array of block numbers
1138 * @q: pointer immediately past the end of array
1139 * @depth: depth of the branches to free
1140 *
1141 * We are freeing all blocks referred from these branches (numbers are
1142 * stored as little-endian 32-bit) and updating @inode->i_blocks
1143 * appropriately.
1144 */
ext2_free_branches(struct inode * inode,__le32 * p,__le32 * q,int depth)1145 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1146 {
1147 struct buffer_head * bh;
1148 unsigned long nr;
1149
1150 if (depth--) {
1151 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1152 for ( ; p < q ; p++) {
1153 nr = le32_to_cpu(*p);
1154 if (!nr)
1155 continue;
1156 *p = 0;
1157 bh = sb_bread(inode->i_sb, nr);
1158 /*
1159 * A read failure? Report error and clear slot
1160 * (should be rare).
1161 */
1162 if (!bh) {
1163 ext2_error(inode->i_sb, "ext2_free_branches",
1164 "Read failure, inode=%ld, block=%ld",
1165 inode->i_ino, nr);
1166 continue;
1167 }
1168 ext2_free_branches(inode,
1169 (__le32*)bh->b_data,
1170 (__le32*)bh->b_data + addr_per_block,
1171 depth);
1172 bforget(bh);
1173 ext2_free_blocks(inode, nr, 1);
1174 mark_inode_dirty(inode);
1175 }
1176 } else
1177 ext2_free_data(inode, p, q);
1178 }
1179
1180 /* dax_sem must be held when calling this function */
__ext2_truncate_blocks(struct inode * inode,loff_t offset)1181 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1182 {
1183 __le32 *i_data = EXT2_I(inode)->i_data;
1184 struct ext2_inode_info *ei = EXT2_I(inode);
1185 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1186 int offsets[4];
1187 Indirect chain[4];
1188 Indirect *partial;
1189 __le32 nr = 0;
1190 int n;
1191 long iblock;
1192 unsigned blocksize;
1193 blocksize = inode->i_sb->s_blocksize;
1194 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1195
1196 #ifdef CONFIG_FS_DAX
1197 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1198 #endif
1199
1200 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1201 if (n == 0)
1202 return;
1203
1204 /*
1205 * From here we block out all ext2_get_block() callers who want to
1206 * modify the block allocation tree.
1207 */
1208 mutex_lock(&ei->truncate_mutex);
1209
1210 if (n == 1) {
1211 ext2_free_data(inode, i_data+offsets[0],
1212 i_data + EXT2_NDIR_BLOCKS);
1213 goto do_indirects;
1214 }
1215
1216 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1217 /* Kill the top of shared branch (already detached) */
1218 if (nr) {
1219 if (partial == chain)
1220 mark_inode_dirty(inode);
1221 else
1222 mark_buffer_dirty_inode(partial->bh, inode);
1223 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1224 }
1225 /* Clear the ends of indirect blocks on the shared branch */
1226 while (partial > chain) {
1227 ext2_free_branches(inode,
1228 partial->p + 1,
1229 (__le32*)partial->bh->b_data+addr_per_block,
1230 (chain+n-1) - partial);
1231 mark_buffer_dirty_inode(partial->bh, inode);
1232 brelse (partial->bh);
1233 partial--;
1234 }
1235 do_indirects:
1236 /* Kill the remaining (whole) subtrees */
1237 switch (offsets[0]) {
1238 default:
1239 nr = i_data[EXT2_IND_BLOCK];
1240 if (nr) {
1241 i_data[EXT2_IND_BLOCK] = 0;
1242 mark_inode_dirty(inode);
1243 ext2_free_branches(inode, &nr, &nr+1, 1);
1244 }
1245 case EXT2_IND_BLOCK:
1246 nr = i_data[EXT2_DIND_BLOCK];
1247 if (nr) {
1248 i_data[EXT2_DIND_BLOCK] = 0;
1249 mark_inode_dirty(inode);
1250 ext2_free_branches(inode, &nr, &nr+1, 2);
1251 }
1252 case EXT2_DIND_BLOCK:
1253 nr = i_data[EXT2_TIND_BLOCK];
1254 if (nr) {
1255 i_data[EXT2_TIND_BLOCK] = 0;
1256 mark_inode_dirty(inode);
1257 ext2_free_branches(inode, &nr, &nr+1, 3);
1258 }
1259 case EXT2_TIND_BLOCK:
1260 ;
1261 }
1262
1263 ext2_discard_reservation(inode);
1264
1265 mutex_unlock(&ei->truncate_mutex);
1266 }
1267
ext2_truncate_blocks(struct inode * inode,loff_t offset)1268 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1269 {
1270 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271 S_ISLNK(inode->i_mode)))
1272 return;
1273 if (ext2_inode_is_fast_symlink(inode))
1274 return;
1275
1276 dax_sem_down_write(EXT2_I(inode));
1277 __ext2_truncate_blocks(inode, offset);
1278 dax_sem_up_write(EXT2_I(inode));
1279 }
1280
ext2_setsize(struct inode * inode,loff_t newsize)1281 static int ext2_setsize(struct inode *inode, loff_t newsize)
1282 {
1283 int error;
1284
1285 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1286 S_ISLNK(inode->i_mode)))
1287 return -EINVAL;
1288 if (ext2_inode_is_fast_symlink(inode))
1289 return -EINVAL;
1290 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1291 return -EPERM;
1292
1293 inode_dio_wait(inode);
1294
1295 if (IS_DAX(inode)) {
1296 error = iomap_zero_range(inode, newsize,
1297 PAGE_ALIGN(newsize) - newsize, NULL,
1298 &ext2_iomap_ops);
1299 } else if (test_opt(inode->i_sb, NOBH))
1300 error = nobh_truncate_page(inode->i_mapping,
1301 newsize, ext2_get_block);
1302 else
1303 error = block_truncate_page(inode->i_mapping,
1304 newsize, ext2_get_block);
1305 if (error)
1306 return error;
1307
1308 dax_sem_down_write(EXT2_I(inode));
1309 truncate_setsize(inode, newsize);
1310 __ext2_truncate_blocks(inode, newsize);
1311 dax_sem_up_write(EXT2_I(inode));
1312
1313 inode->i_mtime = inode->i_ctime = current_time(inode);
1314 if (inode_needs_sync(inode)) {
1315 sync_mapping_buffers(inode->i_mapping);
1316 sync_inode_metadata(inode, 1);
1317 } else {
1318 mark_inode_dirty(inode);
1319 }
1320
1321 return 0;
1322 }
1323
ext2_get_inode(struct super_block * sb,ino_t ino,struct buffer_head ** p)1324 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1325 struct buffer_head **p)
1326 {
1327 struct buffer_head * bh;
1328 unsigned long block_group;
1329 unsigned long block;
1330 unsigned long offset;
1331 struct ext2_group_desc * gdp;
1332
1333 *p = NULL;
1334 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1335 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1336 goto Einval;
1337
1338 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1339 gdp = ext2_get_group_desc(sb, block_group, NULL);
1340 if (!gdp)
1341 goto Egdp;
1342 /*
1343 * Figure out the offset within the block group inode table
1344 */
1345 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1346 block = le32_to_cpu(gdp->bg_inode_table) +
1347 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1348 if (!(bh = sb_bread(sb, block)))
1349 goto Eio;
1350
1351 *p = bh;
1352 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1353 return (struct ext2_inode *) (bh->b_data + offset);
1354
1355 Einval:
1356 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1357 (unsigned long) ino);
1358 return ERR_PTR(-EINVAL);
1359 Eio:
1360 ext2_error(sb, "ext2_get_inode",
1361 "unable to read inode block - inode=%lu, block=%lu",
1362 (unsigned long) ino, block);
1363 Egdp:
1364 return ERR_PTR(-EIO);
1365 }
1366
ext2_set_inode_flags(struct inode * inode)1367 void ext2_set_inode_flags(struct inode *inode)
1368 {
1369 unsigned int flags = EXT2_I(inode)->i_flags;
1370
1371 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1372 S_DIRSYNC | S_DAX);
1373 if (flags & EXT2_SYNC_FL)
1374 inode->i_flags |= S_SYNC;
1375 if (flags & EXT2_APPEND_FL)
1376 inode->i_flags |= S_APPEND;
1377 if (flags & EXT2_IMMUTABLE_FL)
1378 inode->i_flags |= S_IMMUTABLE;
1379 if (flags & EXT2_NOATIME_FL)
1380 inode->i_flags |= S_NOATIME;
1381 if (flags & EXT2_DIRSYNC_FL)
1382 inode->i_flags |= S_DIRSYNC;
1383 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1384 inode->i_flags |= S_DAX;
1385 }
1386
ext2_set_file_ops(struct inode * inode)1387 void ext2_set_file_ops(struct inode *inode)
1388 {
1389 inode->i_op = &ext2_file_inode_operations;
1390 inode->i_fop = &ext2_file_operations;
1391 if (IS_DAX(inode))
1392 inode->i_mapping->a_ops = &ext2_dax_aops;
1393 else if (test_opt(inode->i_sb, NOBH))
1394 inode->i_mapping->a_ops = &ext2_nobh_aops;
1395 else
1396 inode->i_mapping->a_ops = &ext2_aops;
1397 }
1398
ext2_iget(struct super_block * sb,unsigned long ino)1399 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1400 {
1401 struct ext2_inode_info *ei;
1402 struct buffer_head * bh;
1403 struct ext2_inode *raw_inode;
1404 struct inode *inode;
1405 long ret = -EIO;
1406 int n;
1407 uid_t i_uid;
1408 gid_t i_gid;
1409
1410 inode = iget_locked(sb, ino);
1411 if (!inode)
1412 return ERR_PTR(-ENOMEM);
1413 if (!(inode->i_state & I_NEW))
1414 return inode;
1415
1416 ei = EXT2_I(inode);
1417 ei->i_block_alloc_info = NULL;
1418
1419 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1420 if (IS_ERR(raw_inode)) {
1421 ret = PTR_ERR(raw_inode);
1422 goto bad_inode;
1423 }
1424
1425 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1426 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1427 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1428 if (!(test_opt (inode->i_sb, NO_UID32))) {
1429 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1430 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1431 }
1432 i_uid_write(inode, i_uid);
1433 i_gid_write(inode, i_gid);
1434 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1435 inode->i_size = le32_to_cpu(raw_inode->i_size);
1436 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1437 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1438 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1439 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1440 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1441 /* We now have enough fields to check if the inode was active or not.
1442 * This is needed because nfsd might try to access dead inodes
1443 * the test is that same one that e2fsck uses
1444 * NeilBrown 1999oct15
1445 */
1446 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1447 /* this inode is deleted */
1448 brelse (bh);
1449 ret = -ESTALE;
1450 goto bad_inode;
1451 }
1452 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1453 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1454 ext2_set_inode_flags(inode);
1455 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1456 ei->i_frag_no = raw_inode->i_frag;
1457 ei->i_frag_size = raw_inode->i_fsize;
1458 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1459 ei->i_dir_acl = 0;
1460
1461 if (ei->i_file_acl &&
1462 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1463 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1464 ei->i_file_acl);
1465 brelse(bh);
1466 ret = -EFSCORRUPTED;
1467 goto bad_inode;
1468 }
1469
1470 if (S_ISREG(inode->i_mode))
1471 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1472 else
1473 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1474 if (i_size_read(inode) < 0) {
1475 ret = -EFSCORRUPTED;
1476 goto bad_inode;
1477 }
1478 ei->i_dtime = 0;
1479 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1480 ei->i_state = 0;
1481 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1482 ei->i_dir_start_lookup = 0;
1483
1484 /*
1485 * NOTE! The in-memory inode i_data array is in little-endian order
1486 * even on big-endian machines: we do NOT byteswap the block numbers!
1487 */
1488 for (n = 0; n < EXT2_N_BLOCKS; n++)
1489 ei->i_data[n] = raw_inode->i_block[n];
1490
1491 if (S_ISREG(inode->i_mode)) {
1492 ext2_set_file_ops(inode);
1493 } else if (S_ISDIR(inode->i_mode)) {
1494 inode->i_op = &ext2_dir_inode_operations;
1495 inode->i_fop = &ext2_dir_operations;
1496 if (test_opt(inode->i_sb, NOBH))
1497 inode->i_mapping->a_ops = &ext2_nobh_aops;
1498 else
1499 inode->i_mapping->a_ops = &ext2_aops;
1500 } else if (S_ISLNK(inode->i_mode)) {
1501 if (ext2_inode_is_fast_symlink(inode)) {
1502 inode->i_link = (char *)ei->i_data;
1503 inode->i_op = &ext2_fast_symlink_inode_operations;
1504 nd_terminate_link(ei->i_data, inode->i_size,
1505 sizeof(ei->i_data) - 1);
1506 } else {
1507 inode->i_op = &ext2_symlink_inode_operations;
1508 inode_nohighmem(inode);
1509 if (test_opt(inode->i_sb, NOBH))
1510 inode->i_mapping->a_ops = &ext2_nobh_aops;
1511 else
1512 inode->i_mapping->a_ops = &ext2_aops;
1513 }
1514 } else {
1515 inode->i_op = &ext2_special_inode_operations;
1516 if (raw_inode->i_block[0])
1517 init_special_inode(inode, inode->i_mode,
1518 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1519 else
1520 init_special_inode(inode, inode->i_mode,
1521 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1522 }
1523 brelse (bh);
1524 unlock_new_inode(inode);
1525 return inode;
1526
1527 bad_inode:
1528 iget_failed(inode);
1529 return ERR_PTR(ret);
1530 }
1531
__ext2_write_inode(struct inode * inode,int do_sync)1532 static int __ext2_write_inode(struct inode *inode, int do_sync)
1533 {
1534 struct ext2_inode_info *ei = EXT2_I(inode);
1535 struct super_block *sb = inode->i_sb;
1536 ino_t ino = inode->i_ino;
1537 uid_t uid = i_uid_read(inode);
1538 gid_t gid = i_gid_read(inode);
1539 struct buffer_head * bh;
1540 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1541 int n;
1542 int err = 0;
1543
1544 if (IS_ERR(raw_inode))
1545 return -EIO;
1546
1547 /* For fields not not tracking in the in-memory inode,
1548 * initialise them to zero for new inodes. */
1549 if (ei->i_state & EXT2_STATE_NEW)
1550 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1551
1552 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1553 if (!(test_opt(sb, NO_UID32))) {
1554 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1555 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1556 /*
1557 * Fix up interoperability with old kernels. Otherwise, old inodes get
1558 * re-used with the upper 16 bits of the uid/gid intact
1559 */
1560 if (!ei->i_dtime) {
1561 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1562 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1563 } else {
1564 raw_inode->i_uid_high = 0;
1565 raw_inode->i_gid_high = 0;
1566 }
1567 } else {
1568 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1569 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1570 raw_inode->i_uid_high = 0;
1571 raw_inode->i_gid_high = 0;
1572 }
1573 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1574 raw_inode->i_size = cpu_to_le32(inode->i_size);
1575 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1576 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1577 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1578
1579 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1580 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1581 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1582 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1583 raw_inode->i_frag = ei->i_frag_no;
1584 raw_inode->i_fsize = ei->i_frag_size;
1585 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1586 if (!S_ISREG(inode->i_mode))
1587 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1588 else {
1589 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1590 if (inode->i_size > 0x7fffffffULL) {
1591 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1592 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1593 EXT2_SB(sb)->s_es->s_rev_level ==
1594 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1595 /* If this is the first large file
1596 * created, add a flag to the superblock.
1597 */
1598 spin_lock(&EXT2_SB(sb)->s_lock);
1599 ext2_update_dynamic_rev(sb);
1600 EXT2_SET_RO_COMPAT_FEATURE(sb,
1601 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1602 spin_unlock(&EXT2_SB(sb)->s_lock);
1603 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1604 }
1605 }
1606 }
1607
1608 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1609 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1610 if (old_valid_dev(inode->i_rdev)) {
1611 raw_inode->i_block[0] =
1612 cpu_to_le32(old_encode_dev(inode->i_rdev));
1613 raw_inode->i_block[1] = 0;
1614 } else {
1615 raw_inode->i_block[0] = 0;
1616 raw_inode->i_block[1] =
1617 cpu_to_le32(new_encode_dev(inode->i_rdev));
1618 raw_inode->i_block[2] = 0;
1619 }
1620 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1621 raw_inode->i_block[n] = ei->i_data[n];
1622 mark_buffer_dirty(bh);
1623 if (do_sync) {
1624 sync_dirty_buffer(bh);
1625 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1626 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1627 sb->s_id, (unsigned long) ino);
1628 err = -EIO;
1629 }
1630 }
1631 ei->i_state &= ~EXT2_STATE_NEW;
1632 brelse (bh);
1633 return err;
1634 }
1635
ext2_write_inode(struct inode * inode,struct writeback_control * wbc)1636 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1639 }
1640
ext2_setattr(struct dentry * dentry,struct iattr * iattr)1641 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1642 {
1643 struct inode *inode = d_inode(dentry);
1644 int error;
1645
1646 error = setattr_prepare(dentry, iattr);
1647 if (error)
1648 return error;
1649
1650 if (is_quota_modification(inode, iattr)) {
1651 error = dquot_initialize(inode);
1652 if (error)
1653 return error;
1654 }
1655 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1656 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1657 error = dquot_transfer(inode, iattr);
1658 if (error)
1659 return error;
1660 }
1661 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1662 error = ext2_setsize(inode, iattr->ia_size);
1663 if (error)
1664 return error;
1665 }
1666 setattr_copy(inode, iattr);
1667 if (iattr->ia_valid & ATTR_MODE)
1668 error = posix_acl_chmod(inode, inode->i_mode);
1669 mark_inode_dirty(inode);
1670
1671 return error;
1672 }
1673