1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/dir.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/dir.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * ext4 directory handling functions
17 *
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 *
21 * Hash Tree Directory indexing (c) 2001 Daniel Phillips
22 *
23 */
24
25 #include <linux/fs.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include <linux/iversion.h>
29 #include "ext4.h"
30 #include "xattr.h"
31
32 static int ext4_dx_readdir(struct file *, struct dir_context *);
33
34 /**
35 * Check if the given dir-inode refers to an htree-indexed directory
36 * (or a directory which could potentially get converted to use htree
37 * indexing).
38 *
39 * Return 1 if it is a dx dir, 0 if not
40 */
is_dx_dir(struct inode * inode)41 static int is_dx_dir(struct inode *inode)
42 {
43 struct super_block *sb = inode->i_sb;
44
45 if (ext4_has_feature_dir_index(inode->i_sb) &&
46 ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
47 ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
48 ext4_has_inline_data(inode)))
49 return 1;
50
51 return 0;
52 }
53
54 /*
55 * Return 0 if the directory entry is OK, and 1 if there is a problem
56 *
57 * Note: this is the opposite of what ext2 and ext3 historically returned...
58 *
59 * bh passed here can be an inode block or a dir data block, depending
60 * on the inode inline data flag.
61 */
__ext4_check_dir_entry(const char * function,unsigned int line,struct inode * dir,struct file * filp,struct ext4_dir_entry_2 * de,struct buffer_head * bh,char * buf,int size,unsigned int offset)62 int __ext4_check_dir_entry(const char *function, unsigned int line,
63 struct inode *dir, struct file *filp,
64 struct ext4_dir_entry_2 *de,
65 struct buffer_head *bh, char *buf, int size,
66 unsigned int offset)
67 {
68 const char *error_msg = NULL;
69 const int rlen = ext4_rec_len_from_disk(de->rec_len,
70 dir->i_sb->s_blocksize);
71
72 if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
73 error_msg = "rec_len is smaller than minimal";
74 else if (unlikely(rlen % 4 != 0))
75 error_msg = "rec_len % 4 != 0";
76 else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
77 error_msg = "rec_len is too small for name_len";
78 else if (unlikely(((char *) de - buf) + rlen > size))
79 error_msg = "directory entry overrun";
80 else if (unlikely(((char *) de - buf) + rlen >
81 size - EXT4_DIR_REC_LEN(1) &&
82 ((char *) de - buf) + rlen != size)) {
83 error_msg = "directory entry too close to block end";
84 }
85 else if (unlikely(le32_to_cpu(de->inode) >
86 le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
87 error_msg = "inode out of bounds";
88 else
89 return 0;
90
91 if (filp)
92 ext4_error_file(filp, function, line, bh->b_blocknr,
93 "bad entry in directory: %s - offset=%u, "
94 "inode=%u, rec_len=%d, name_len=%d, size=%d",
95 error_msg, offset, le32_to_cpu(de->inode),
96 rlen, de->name_len, size);
97 else
98 ext4_error_inode(dir, function, line, bh->b_blocknr,
99 "bad entry in directory: %s - offset=%u, "
100 "inode=%u, rec_len=%d, name_len=%d, size=%d",
101 error_msg, offset, le32_to_cpu(de->inode),
102 rlen, de->name_len, size);
103
104 return 1;
105 }
106
ext4_readdir(struct file * file,struct dir_context * ctx)107 static int ext4_readdir(struct file *file, struct dir_context *ctx)
108 {
109 unsigned int offset;
110 int i;
111 struct ext4_dir_entry_2 *de;
112 int err;
113 struct inode *inode = file_inode(file);
114 struct super_block *sb = inode->i_sb;
115 struct buffer_head *bh = NULL;
116 struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
117
118 if (ext4_encrypted_inode(inode)) {
119 err = fscrypt_get_encryption_info(inode);
120 if (err && err != -ENOKEY)
121 return err;
122 }
123
124 if (is_dx_dir(inode)) {
125 err = ext4_dx_readdir(file, ctx);
126 if (err != ERR_BAD_DX_DIR) {
127 return err;
128 }
129 /* Can we just clear INDEX flag to ignore htree information? */
130 if (!ext4_has_metadata_csum(sb)) {
131 /*
132 * We don't set the inode dirty flag since it's not
133 * critical that it gets flushed back to the disk.
134 */
135 ext4_clear_inode_flag(inode, EXT4_INODE_INDEX);
136 }
137 }
138
139 if (ext4_has_inline_data(inode)) {
140 int has_inline_data = 1;
141 err = ext4_read_inline_dir(file, ctx,
142 &has_inline_data);
143 if (has_inline_data)
144 return err;
145 }
146
147 if (ext4_encrypted_inode(inode)) {
148 err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
149 if (err < 0)
150 return err;
151 }
152
153 while (ctx->pos < inode->i_size) {
154 struct ext4_map_blocks map;
155
156 if (fatal_signal_pending(current)) {
157 err = -ERESTARTSYS;
158 goto errout;
159 }
160 cond_resched();
161 offset = ctx->pos & (sb->s_blocksize - 1);
162 map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
163 map.m_len = 1;
164 err = ext4_map_blocks(NULL, inode, &map, 0);
165 if (err == 0) {
166 /* m_len should never be zero but let's avoid
167 * an infinite loop if it somehow is */
168 if (map.m_len == 0)
169 map.m_len = 1;
170 ctx->pos += map.m_len * sb->s_blocksize;
171 continue;
172 }
173 if (err > 0) {
174 pgoff_t index = map.m_pblk >>
175 (PAGE_SHIFT - inode->i_blkbits);
176 if (!ra_has_index(&file->f_ra, index))
177 page_cache_sync_readahead(
178 sb->s_bdev->bd_inode->i_mapping,
179 &file->f_ra, file,
180 index, 1);
181 file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
182 bh = ext4_bread(NULL, inode, map.m_lblk, 0);
183 if (IS_ERR(bh)) {
184 err = PTR_ERR(bh);
185 bh = NULL;
186 goto errout;
187 }
188 }
189
190 if (!bh) {
191 /* corrupt size? Maybe no more blocks to read */
192 if (ctx->pos > inode->i_blocks << 9)
193 break;
194 ctx->pos += sb->s_blocksize - offset;
195 continue;
196 }
197
198 /* Check the checksum */
199 if (!buffer_verified(bh) &&
200 !ext4_dirent_csum_verify(inode,
201 (struct ext4_dir_entry *)bh->b_data)) {
202 EXT4_ERROR_FILE(file, 0, "directory fails checksum "
203 "at offset %llu",
204 (unsigned long long)ctx->pos);
205 ctx->pos += sb->s_blocksize - offset;
206 brelse(bh);
207 bh = NULL;
208 continue;
209 }
210 set_buffer_verified(bh);
211
212 /* If the dir block has changed since the last call to
213 * readdir(2), then we might be pointing to an invalid
214 * dirent right now. Scan from the start of the block
215 * to make sure. */
216 if (!inode_eq_iversion(inode, file->f_version)) {
217 for (i = 0; i < sb->s_blocksize && i < offset; ) {
218 de = (struct ext4_dir_entry_2 *)
219 (bh->b_data + i);
220 /* It's too expensive to do a full
221 * dirent test each time round this
222 * loop, but we do have to test at
223 * least that it is non-zero. A
224 * failure will be detected in the
225 * dirent test below. */
226 if (ext4_rec_len_from_disk(de->rec_len,
227 sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
228 break;
229 i += ext4_rec_len_from_disk(de->rec_len,
230 sb->s_blocksize);
231 }
232 offset = i;
233 ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
234 | offset;
235 file->f_version = inode_query_iversion(inode);
236 }
237
238 while (ctx->pos < inode->i_size
239 && offset < sb->s_blocksize) {
240 de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
241 if (ext4_check_dir_entry(inode, file, de, bh,
242 bh->b_data, bh->b_size,
243 offset)) {
244 /*
245 * On error, skip to the next block
246 */
247 ctx->pos = (ctx->pos |
248 (sb->s_blocksize - 1)) + 1;
249 break;
250 }
251 offset += ext4_rec_len_from_disk(de->rec_len,
252 sb->s_blocksize);
253 if (le32_to_cpu(de->inode)) {
254 if (!ext4_encrypted_inode(inode)) {
255 if (!dir_emit(ctx, de->name,
256 de->name_len,
257 le32_to_cpu(de->inode),
258 get_dtype(sb, de->file_type)))
259 goto done;
260 } else {
261 int save_len = fstr.len;
262 struct fscrypt_str de_name =
263 FSTR_INIT(de->name,
264 de->name_len);
265
266 /* Directory is encrypted */
267 err = fscrypt_fname_disk_to_usr(inode,
268 0, 0, &de_name, &fstr);
269 de_name = fstr;
270 fstr.len = save_len;
271 if (err)
272 goto errout;
273 if (!dir_emit(ctx,
274 de_name.name, de_name.len,
275 le32_to_cpu(de->inode),
276 get_dtype(sb, de->file_type)))
277 goto done;
278 }
279 }
280 ctx->pos += ext4_rec_len_from_disk(de->rec_len,
281 sb->s_blocksize);
282 }
283 if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
284 goto done;
285 brelse(bh);
286 bh = NULL;
287 offset = 0;
288 }
289 done:
290 err = 0;
291 errout:
292 #ifdef CONFIG_EXT4_FS_ENCRYPTION
293 fscrypt_fname_free_buffer(&fstr);
294 #endif
295 brelse(bh);
296 return err;
297 }
298
is_32bit_api(void)299 static inline int is_32bit_api(void)
300 {
301 #ifdef CONFIG_COMPAT
302 return in_compat_syscall();
303 #else
304 return (BITS_PER_LONG == 32);
305 #endif
306 }
307
308 /*
309 * These functions convert from the major/minor hash to an f_pos
310 * value for dx directories
311 *
312 * Upper layer (for example NFS) should specify FMODE_32BITHASH or
313 * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
314 * directly on both 32-bit and 64-bit nodes, under such case, neither
315 * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
316 */
hash2pos(struct file * filp,__u32 major,__u32 minor)317 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
318 {
319 if ((filp->f_mode & FMODE_32BITHASH) ||
320 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
321 return major >> 1;
322 else
323 return ((__u64)(major >> 1) << 32) | (__u64)minor;
324 }
325
pos2maj_hash(struct file * filp,loff_t pos)326 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
327 {
328 if ((filp->f_mode & FMODE_32BITHASH) ||
329 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
330 return (pos << 1) & 0xffffffff;
331 else
332 return ((pos >> 32) << 1) & 0xffffffff;
333 }
334
pos2min_hash(struct file * filp,loff_t pos)335 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
336 {
337 if ((filp->f_mode & FMODE_32BITHASH) ||
338 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
339 return 0;
340 else
341 return pos & 0xffffffff;
342 }
343
344 /*
345 * Return 32- or 64-bit end-of-file for dx directories
346 */
ext4_get_htree_eof(struct file * filp)347 static inline loff_t ext4_get_htree_eof(struct file *filp)
348 {
349 if ((filp->f_mode & FMODE_32BITHASH) ||
350 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
351 return EXT4_HTREE_EOF_32BIT;
352 else
353 return EXT4_HTREE_EOF_64BIT;
354 }
355
356
357 /*
358 * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
359 * directories, where the "offset" is in terms of the filename hash
360 * value instead of the byte offset.
361 *
362 * Because we may return a 64-bit hash that is well beyond offset limits,
363 * we need to pass the max hash as the maximum allowable offset in
364 * the htree directory case.
365 *
366 * For non-htree, ext4_llseek already chooses the proper max offset.
367 */
ext4_dir_llseek(struct file * file,loff_t offset,int whence)368 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
369 {
370 struct inode *inode = file->f_mapping->host;
371 int dx_dir = is_dx_dir(inode);
372 loff_t ret, htree_max = ext4_get_htree_eof(file);
373
374 if (likely(dx_dir))
375 ret = generic_file_llseek_size(file, offset, whence,
376 htree_max, htree_max);
377 else
378 ret = ext4_llseek(file, offset, whence);
379 file->f_version = inode_peek_iversion(inode) - 1;
380 return ret;
381 }
382
383 /*
384 * This structure holds the nodes of the red-black tree used to store
385 * the directory entry in hash order.
386 */
387 struct fname {
388 __u32 hash;
389 __u32 minor_hash;
390 struct rb_node rb_hash;
391 struct fname *next;
392 __u32 inode;
393 __u8 name_len;
394 __u8 file_type;
395 char name[0];
396 };
397
398 /*
399 * This functoin implements a non-recursive way of freeing all of the
400 * nodes in the red-black tree.
401 */
free_rb_tree_fname(struct rb_root * root)402 static void free_rb_tree_fname(struct rb_root *root)
403 {
404 struct fname *fname, *next;
405
406 rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
407 while (fname) {
408 struct fname *old = fname;
409 fname = fname->next;
410 kfree(old);
411 }
412
413 *root = RB_ROOT;
414 }
415
416
ext4_htree_create_dir_info(struct file * filp,loff_t pos)417 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
418 loff_t pos)
419 {
420 struct dir_private_info *p;
421
422 p = kzalloc(sizeof(*p), GFP_KERNEL);
423 if (!p)
424 return NULL;
425 p->curr_hash = pos2maj_hash(filp, pos);
426 p->curr_minor_hash = pos2min_hash(filp, pos);
427 return p;
428 }
429
ext4_htree_free_dir_info(struct dir_private_info * p)430 void ext4_htree_free_dir_info(struct dir_private_info *p)
431 {
432 free_rb_tree_fname(&p->root);
433 kfree(p);
434 }
435
436 /*
437 * Given a directory entry, enter it into the fname rb tree.
438 *
439 * When filename encryption is enabled, the dirent will hold the
440 * encrypted filename, while the htree will hold decrypted filename.
441 * The decrypted filename is passed in via ent_name. parameter.
442 */
ext4_htree_store_dirent(struct file * dir_file,__u32 hash,__u32 minor_hash,struct ext4_dir_entry_2 * dirent,struct fscrypt_str * ent_name)443 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
444 __u32 minor_hash,
445 struct ext4_dir_entry_2 *dirent,
446 struct fscrypt_str *ent_name)
447 {
448 struct rb_node **p, *parent = NULL;
449 struct fname *fname, *new_fn;
450 struct dir_private_info *info;
451 int len;
452
453 info = dir_file->private_data;
454 p = &info->root.rb_node;
455
456 /* Create and allocate the fname structure */
457 len = sizeof(struct fname) + ent_name->len + 1;
458 new_fn = kzalloc(len, GFP_KERNEL);
459 if (!new_fn)
460 return -ENOMEM;
461 new_fn->hash = hash;
462 new_fn->minor_hash = minor_hash;
463 new_fn->inode = le32_to_cpu(dirent->inode);
464 new_fn->name_len = ent_name->len;
465 new_fn->file_type = dirent->file_type;
466 memcpy(new_fn->name, ent_name->name, ent_name->len);
467 new_fn->name[ent_name->len] = 0;
468
469 while (*p) {
470 parent = *p;
471 fname = rb_entry(parent, struct fname, rb_hash);
472
473 /*
474 * If the hash and minor hash match up, then we put
475 * them on a linked list. This rarely happens...
476 */
477 if ((new_fn->hash == fname->hash) &&
478 (new_fn->minor_hash == fname->minor_hash)) {
479 new_fn->next = fname->next;
480 fname->next = new_fn;
481 return 0;
482 }
483
484 if (new_fn->hash < fname->hash)
485 p = &(*p)->rb_left;
486 else if (new_fn->hash > fname->hash)
487 p = &(*p)->rb_right;
488 else if (new_fn->minor_hash < fname->minor_hash)
489 p = &(*p)->rb_left;
490 else /* if (new_fn->minor_hash > fname->minor_hash) */
491 p = &(*p)->rb_right;
492 }
493
494 rb_link_node(&new_fn->rb_hash, parent, p);
495 rb_insert_color(&new_fn->rb_hash, &info->root);
496 return 0;
497 }
498
499
500
501 /*
502 * This is a helper function for ext4_dx_readdir. It calls filldir
503 * for all entres on the fname linked list. (Normally there is only
504 * one entry on the linked list, unless there are 62 bit hash collisions.)
505 */
call_filldir(struct file * file,struct dir_context * ctx,struct fname * fname)506 static int call_filldir(struct file *file, struct dir_context *ctx,
507 struct fname *fname)
508 {
509 struct dir_private_info *info = file->private_data;
510 struct inode *inode = file_inode(file);
511 struct super_block *sb = inode->i_sb;
512
513 if (!fname) {
514 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
515 "called with null fname?!?", __func__, __LINE__,
516 inode->i_ino, current->comm);
517 return 0;
518 }
519 ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
520 while (fname) {
521 if (!dir_emit(ctx, fname->name,
522 fname->name_len,
523 fname->inode,
524 get_dtype(sb, fname->file_type))) {
525 info->extra_fname = fname;
526 return 1;
527 }
528 fname = fname->next;
529 }
530 return 0;
531 }
532
ext4_dx_readdir(struct file * file,struct dir_context * ctx)533 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
534 {
535 struct dir_private_info *info = file->private_data;
536 struct inode *inode = file_inode(file);
537 struct fname *fname;
538 int ret = 0;
539
540 if (!info) {
541 info = ext4_htree_create_dir_info(file, ctx->pos);
542 if (!info)
543 return -ENOMEM;
544 file->private_data = info;
545 }
546
547 if (ctx->pos == ext4_get_htree_eof(file))
548 return 0; /* EOF */
549
550 /* Some one has messed with f_pos; reset the world */
551 if (info->last_pos != ctx->pos) {
552 free_rb_tree_fname(&info->root);
553 info->curr_node = NULL;
554 info->extra_fname = NULL;
555 info->curr_hash = pos2maj_hash(file, ctx->pos);
556 info->curr_minor_hash = pos2min_hash(file, ctx->pos);
557 }
558
559 /*
560 * If there are any leftover names on the hash collision
561 * chain, return them first.
562 */
563 if (info->extra_fname) {
564 if (call_filldir(file, ctx, info->extra_fname))
565 goto finished;
566 info->extra_fname = NULL;
567 goto next_node;
568 } else if (!info->curr_node)
569 info->curr_node = rb_first(&info->root);
570
571 while (1) {
572 /*
573 * Fill the rbtree if we have no more entries,
574 * or the inode has changed since we last read in the
575 * cached entries.
576 */
577 if ((!info->curr_node) ||
578 !inode_eq_iversion(inode, file->f_version)) {
579 info->curr_node = NULL;
580 free_rb_tree_fname(&info->root);
581 file->f_version = inode_query_iversion(inode);
582 ret = ext4_htree_fill_tree(file, info->curr_hash,
583 info->curr_minor_hash,
584 &info->next_hash);
585 if (ret < 0)
586 goto finished;
587 if (ret == 0) {
588 ctx->pos = ext4_get_htree_eof(file);
589 break;
590 }
591 info->curr_node = rb_first(&info->root);
592 }
593
594 fname = rb_entry(info->curr_node, struct fname, rb_hash);
595 info->curr_hash = fname->hash;
596 info->curr_minor_hash = fname->minor_hash;
597 if (call_filldir(file, ctx, fname))
598 break;
599 next_node:
600 info->curr_node = rb_next(info->curr_node);
601 if (info->curr_node) {
602 fname = rb_entry(info->curr_node, struct fname,
603 rb_hash);
604 info->curr_hash = fname->hash;
605 info->curr_minor_hash = fname->minor_hash;
606 } else {
607 if (info->next_hash == ~0) {
608 ctx->pos = ext4_get_htree_eof(file);
609 break;
610 }
611 info->curr_hash = info->next_hash;
612 info->curr_minor_hash = 0;
613 }
614 }
615 finished:
616 info->last_pos = ctx->pos;
617 return ret < 0 ? ret : 0;
618 }
619
ext4_dir_open(struct inode * inode,struct file * filp)620 static int ext4_dir_open(struct inode * inode, struct file * filp)
621 {
622 if (ext4_encrypted_inode(inode))
623 return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
624 return 0;
625 }
626
ext4_release_dir(struct inode * inode,struct file * filp)627 static int ext4_release_dir(struct inode *inode, struct file *filp)
628 {
629 if (filp->private_data)
630 ext4_htree_free_dir_info(filp->private_data);
631
632 return 0;
633 }
634
ext4_check_all_de(struct inode * dir,struct buffer_head * bh,void * buf,int buf_size)635 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
636 int buf_size)
637 {
638 struct ext4_dir_entry_2 *de;
639 int rlen;
640 unsigned int offset = 0;
641 char *top;
642
643 de = (struct ext4_dir_entry_2 *)buf;
644 top = buf + buf_size;
645 while ((char *) de < top) {
646 if (ext4_check_dir_entry(dir, NULL, de, bh,
647 buf, buf_size, offset))
648 return -EFSCORRUPTED;
649 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
650 de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
651 offset += rlen;
652 }
653 if ((char *) de > top)
654 return -EFSCORRUPTED;
655
656 return 0;
657 }
658
659 const struct file_operations ext4_dir_operations = {
660 .llseek = ext4_dir_llseek,
661 .read = generic_read_dir,
662 .iterate_shared = ext4_readdir,
663 .unlocked_ioctl = ext4_ioctl,
664 #ifdef CONFIG_COMPAT
665 .compat_ioctl = ext4_compat_ioctl,
666 #endif
667 .fsync = ext4_sync_file,
668 .open = ext4_dir_open,
669 .release = ext4_release_dir,
670 };
671