1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
ext4_init_pageio(void)35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
ext4_exit_pageio(void)43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * Print an buffer I/O error compatible with the fs/buffer.c.  This
50  * provides compatibility with dmesg scrapers that look for a specific
51  * buffer I/O error message.  We really need a unified error reporting
52  * structure to userspace ala Digital Unix's uerf system, but it's
53  * probably not going to happen in my lifetime, due to LKML politics...
54  */
buffer_io_error(struct buffer_head * bh)55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 		       bh->b_bdev,
59 			(unsigned long long)bh->b_blocknr);
60 }
61 
ext4_finish_bio(struct bio * bio)62 static void ext4_finish_bio(struct bio *bio)
63 {
64 	int i;
65 	struct bio_vec *bvec;
66 
67 	bio_for_each_segment_all(bvec, bio, i) {
68 		struct page *page = bvec->bv_page;
69 #ifdef CONFIG_EXT4_FS_ENCRYPTION
70 		struct page *data_page = NULL;
71 #endif
72 		struct buffer_head *bh, *head;
73 		unsigned bio_start = bvec->bv_offset;
74 		unsigned bio_end = bio_start + bvec->bv_len;
75 		unsigned under_io = 0;
76 		unsigned long flags;
77 
78 		if (!page)
79 			continue;
80 
81 #ifdef CONFIG_EXT4_FS_ENCRYPTION
82 		if (!page->mapping) {
83 			/* The bounce data pages are unmapped. */
84 			data_page = page;
85 			fscrypt_pullback_bio_page(&page, false);
86 		}
87 #endif
88 
89 		if (bio->bi_status) {
90 			SetPageError(page);
91 			mapping_set_error(page->mapping, -EIO);
92 		}
93 		bh = head = page_buffers(page);
94 		/*
95 		 * We check all buffers in the page under BH_Uptodate_Lock
96 		 * to avoid races with other end io clearing async_write flags
97 		 */
98 		local_irq_save(flags);
99 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100 		do {
101 			if (bh_offset(bh) < bio_start ||
102 			    bh_offset(bh) + bh->b_size > bio_end) {
103 				if (buffer_async_write(bh))
104 					under_io++;
105 				continue;
106 			}
107 			clear_buffer_async_write(bh);
108 			if (bio->bi_status) {
109 				set_buffer_write_io_error(bh);
110 				buffer_io_error(bh);
111 			}
112 		} while ((bh = bh->b_this_page) != head);
113 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
114 		local_irq_restore(flags);
115 		if (!under_io) {
116 #ifdef CONFIG_EXT4_FS_ENCRYPTION
117 			if (data_page)
118 				fscrypt_restore_control_page(data_page);
119 #endif
120 			end_page_writeback(page);
121 		}
122 	}
123 }
124 
ext4_release_io_end(ext4_io_end_t * io_end)125 static void ext4_release_io_end(ext4_io_end_t *io_end)
126 {
127 	struct bio *bio, *next_bio;
128 
129 	BUG_ON(!list_empty(&io_end->list));
130 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
131 	WARN_ON(io_end->handle);
132 
133 	for (bio = io_end->bio; bio; bio = next_bio) {
134 		next_bio = bio->bi_private;
135 		ext4_finish_bio(bio);
136 		bio_put(bio);
137 	}
138 	kmem_cache_free(io_end_cachep, io_end);
139 }
140 
141 /*
142  * Check a range of space and convert unwritten extents to written. Note that
143  * we are protected from truncate touching same part of extent tree by the
144  * fact that truncate code waits for all DIO to finish (thus exclusion from
145  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
146  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
147  * completed (happens from ext4_free_ioend()).
148  */
ext4_end_io(ext4_io_end_t * io)149 static int ext4_end_io(ext4_io_end_t *io)
150 {
151 	struct inode *inode = io->inode;
152 	loff_t offset = io->offset;
153 	ssize_t size = io->size;
154 	handle_t *handle = io->handle;
155 	int ret = 0;
156 
157 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
158 		   "list->prev 0x%p\n",
159 		   io, inode->i_ino, io->list.next, io->list.prev);
160 
161 	io->handle = NULL;	/* Following call will use up the handle */
162 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
163 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
164 		ext4_msg(inode->i_sb, KERN_EMERG,
165 			 "failed to convert unwritten extents to written "
166 			 "extents -- potential data loss!  "
167 			 "(inode %lu, offset %llu, size %zd, error %d)",
168 			 inode->i_ino, offset, size, ret);
169 	}
170 	ext4_clear_io_unwritten_flag(io);
171 	ext4_release_io_end(io);
172 	return ret;
173 }
174 
dump_completed_IO(struct inode * inode,struct list_head * head)175 static void dump_completed_IO(struct inode *inode, struct list_head *head)
176 {
177 #ifdef	EXT4FS_DEBUG
178 	struct list_head *cur, *before, *after;
179 	ext4_io_end_t *io, *io0, *io1;
180 
181 	if (list_empty(head))
182 		return;
183 
184 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
185 	list_for_each_entry(io, head, list) {
186 		cur = &io->list;
187 		before = cur->prev;
188 		io0 = container_of(before, ext4_io_end_t, list);
189 		after = cur->next;
190 		io1 = container_of(after, ext4_io_end_t, list);
191 
192 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
193 			    io, inode->i_ino, io0, io1);
194 	}
195 #endif
196 }
197 
198 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)199 static void ext4_add_complete_io(ext4_io_end_t *io_end)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
202 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
203 	struct workqueue_struct *wq;
204 	unsigned long flags;
205 
206 	/* Only reserved conversions from writeback should enter here */
207 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
208 	WARN_ON(!io_end->handle && sbi->s_journal);
209 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
210 	wq = sbi->rsv_conversion_wq;
211 	if (list_empty(&ei->i_rsv_conversion_list))
212 		queue_work(wq, &ei->i_rsv_conversion_work);
213 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
214 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
215 }
216 
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)217 static int ext4_do_flush_completed_IO(struct inode *inode,
218 				      struct list_head *head)
219 {
220 	ext4_io_end_t *io;
221 	struct list_head unwritten;
222 	unsigned long flags;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 	int err, ret = 0;
225 
226 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
227 	dump_completed_IO(inode, head);
228 	list_replace_init(head, &unwritten);
229 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
230 
231 	while (!list_empty(&unwritten)) {
232 		io = list_entry(unwritten.next, ext4_io_end_t, list);
233 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
234 		list_del_init(&io->list);
235 
236 		err = ext4_end_io(io);
237 		if (unlikely(!ret && err))
238 			ret = err;
239 	}
240 	return ret;
241 }
242 
243 /*
244  * work on completed IO, to convert unwritten extents to extents
245  */
ext4_end_io_rsv_work(struct work_struct * work)246 void ext4_end_io_rsv_work(struct work_struct *work)
247 {
248 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
249 						  i_rsv_conversion_work);
250 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
251 }
252 
ext4_init_io_end(struct inode * inode,gfp_t flags)253 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
254 {
255 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
256 	if (io) {
257 		io->inode = inode;
258 		INIT_LIST_HEAD(&io->list);
259 		atomic_set(&io->count, 1);
260 	}
261 	return io;
262 }
263 
ext4_put_io_end_defer(ext4_io_end_t * io_end)264 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
265 {
266 	if (atomic_dec_and_test(&io_end->count)) {
267 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
268 			ext4_release_io_end(io_end);
269 			return;
270 		}
271 		ext4_add_complete_io(io_end);
272 	}
273 }
274 
ext4_put_io_end(ext4_io_end_t * io_end)275 int ext4_put_io_end(ext4_io_end_t *io_end)
276 {
277 	int err = 0;
278 
279 	if (atomic_dec_and_test(&io_end->count)) {
280 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
281 			err = ext4_convert_unwritten_extents(io_end->handle,
282 						io_end->inode, io_end->offset,
283 						io_end->size);
284 			io_end->handle = NULL;
285 			ext4_clear_io_unwritten_flag(io_end);
286 		}
287 		ext4_release_io_end(io_end);
288 	}
289 	return err;
290 }
291 
ext4_get_io_end(ext4_io_end_t * io_end)292 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
293 {
294 	atomic_inc(&io_end->count);
295 	return io_end;
296 }
297 
298 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)299 static void ext4_end_bio(struct bio *bio)
300 {
301 	ext4_io_end_t *io_end = bio->bi_private;
302 	sector_t bi_sector = bio->bi_iter.bi_sector;
303 	char b[BDEVNAME_SIZE];
304 
305 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
306 		      bio_devname(bio, b),
307 		      (long long) bio->bi_iter.bi_sector,
308 		      (unsigned) bio_sectors(bio),
309 		      bio->bi_status)) {
310 		ext4_finish_bio(bio);
311 		bio_put(bio);
312 		return;
313 	}
314 	bio->bi_end_io = NULL;
315 
316 	if (bio->bi_status) {
317 		struct inode *inode = io_end->inode;
318 
319 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
320 			     "(offset %llu size %ld starting block %llu)",
321 			     bio->bi_status, inode->i_ino,
322 			     (unsigned long long) io_end->offset,
323 			     (long) io_end->size,
324 			     (unsigned long long)
325 			     bi_sector >> (inode->i_blkbits - 9));
326 		mapping_set_error(inode->i_mapping,
327 				blk_status_to_errno(bio->bi_status));
328 	}
329 
330 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
331 		/*
332 		 * Link bio into list hanging from io_end. We have to do it
333 		 * atomically as bio completions can be racing against each
334 		 * other.
335 		 */
336 		bio->bi_private = xchg(&io_end->bio, bio);
337 		ext4_put_io_end_defer(io_end);
338 	} else {
339 		/*
340 		 * Drop io_end reference early. Inode can get freed once
341 		 * we finish the bio.
342 		 */
343 		ext4_put_io_end_defer(io_end);
344 		ext4_finish_bio(bio);
345 		bio_put(bio);
346 	}
347 }
348 
ext4_io_submit(struct ext4_io_submit * io)349 void ext4_io_submit(struct ext4_io_submit *io)
350 {
351 	struct bio *bio = io->io_bio;
352 
353 	if (bio) {
354 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
355 				  REQ_SYNC : 0;
356 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
357 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
358 		submit_bio(io->io_bio);
359 	}
360 	io->io_bio = NULL;
361 }
362 
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)363 void ext4_io_submit_init(struct ext4_io_submit *io,
364 			 struct writeback_control *wbc)
365 {
366 	io->io_wbc = wbc;
367 	io->io_bio = NULL;
368 	io->io_end = NULL;
369 }
370 
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)371 static int io_submit_init_bio(struct ext4_io_submit *io,
372 			      struct buffer_head *bh)
373 {
374 	struct bio *bio;
375 
376 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
377 	if (!bio)
378 		return -ENOMEM;
379 	wbc_init_bio(io->io_wbc, bio);
380 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
381 	bio_set_dev(bio, bh->b_bdev);
382 	bio->bi_end_io = ext4_end_bio;
383 	bio->bi_private = ext4_get_io_end(io->io_end);
384 	io->io_bio = bio;
385 	io->io_next_block = bh->b_blocknr;
386 	return 0;
387 }
388 
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct page * pagecache_page,struct page * bounce_page,struct buffer_head * bh)389 static int io_submit_add_bh(struct ext4_io_submit *io,
390 			    struct inode *inode,
391 			    struct page *pagecache_page,
392 			    struct page *bounce_page,
393 			    struct buffer_head *bh)
394 {
395 	int ret;
396 
397 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
398 submit_and_retry:
399 		ext4_io_submit(io);
400 	}
401 	if (io->io_bio == NULL) {
402 		ret = io_submit_init_bio(io, bh);
403 		if (ret)
404 			return ret;
405 		io->io_bio->bi_write_hint = inode->i_write_hint;
406 	}
407 	ret = bio_add_page(io->io_bio, bounce_page ?: pagecache_page,
408 			   bh->b_size, bh_offset(bh));
409 	if (ret != bh->b_size)
410 		goto submit_and_retry;
411 	wbc_account_io(io->io_wbc, pagecache_page, bh->b_size);
412 	io->io_next_block++;
413 	return 0;
414 }
415 
ext4_bio_write_page(struct ext4_io_submit * io,struct page * page,int len,struct writeback_control * wbc,bool keep_towrite)416 int ext4_bio_write_page(struct ext4_io_submit *io,
417 			struct page *page,
418 			int len,
419 			struct writeback_control *wbc,
420 			bool keep_towrite)
421 {
422 	struct page *data_page = NULL;
423 	struct inode *inode = page->mapping->host;
424 	unsigned block_start;
425 	struct buffer_head *bh, *head;
426 	int ret = 0;
427 	int nr_submitted = 0;
428 	int nr_to_submit = 0;
429 
430 	BUG_ON(!PageLocked(page));
431 	BUG_ON(PageWriteback(page));
432 
433 	if (keep_towrite)
434 		set_page_writeback_keepwrite(page);
435 	else
436 		set_page_writeback(page);
437 	ClearPageError(page);
438 
439 	/*
440 	 * Comments copied from block_write_full_page:
441 	 *
442 	 * The page straddles i_size.  It must be zeroed out on each and every
443 	 * writepage invocation because it may be mmapped.  "A file is mapped
444 	 * in multiples of the page size.  For a file that is not a multiple of
445 	 * the page size, the remaining memory is zeroed when mapped, and
446 	 * writes to that region are not written out to the file."
447 	 */
448 	if (len < PAGE_SIZE)
449 		zero_user_segment(page, len, PAGE_SIZE);
450 	/*
451 	 * In the first loop we prepare and mark buffers to submit. We have to
452 	 * mark all buffers in the page before submitting so that
453 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
454 	 * on the first buffer finishes and we are still working on submitting
455 	 * the second buffer.
456 	 */
457 	bh = head = page_buffers(page);
458 	do {
459 		block_start = bh_offset(bh);
460 		if (block_start >= len) {
461 			clear_buffer_dirty(bh);
462 			set_buffer_uptodate(bh);
463 			continue;
464 		}
465 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
466 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
467 			/* A hole? We can safely clear the dirty bit */
468 			if (!buffer_mapped(bh))
469 				clear_buffer_dirty(bh);
470 			if (io->io_bio)
471 				ext4_io_submit(io);
472 			continue;
473 		}
474 		if (buffer_new(bh)) {
475 			clear_buffer_new(bh);
476 			clean_bdev_bh_alias(bh);
477 		}
478 		set_buffer_async_write(bh);
479 		nr_to_submit++;
480 	} while ((bh = bh->b_this_page) != head);
481 
482 	bh = head = page_buffers(page);
483 
484 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
485 	    nr_to_submit) {
486 		gfp_t gfp_flags = GFP_NOFS;
487 
488 		/*
489 		 * Since bounce page allocation uses a mempool, we can only use
490 		 * a waiting mask (i.e. request guaranteed allocation) on the
491 		 * first page of the bio.  Otherwise it can deadlock.
492 		 */
493 		if (io->io_bio)
494 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
495 	retry_encrypt:
496 		data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
497 						page->index, gfp_flags);
498 		if (IS_ERR(data_page)) {
499 			ret = PTR_ERR(data_page);
500 			if (ret == -ENOMEM &&
501 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
502 				gfp_flags = GFP_NOFS;
503 				if (io->io_bio)
504 					ext4_io_submit(io);
505 				else
506 					gfp_flags |= __GFP_NOFAIL;
507 				congestion_wait(BLK_RW_ASYNC, HZ/50);
508 				goto retry_encrypt;
509 			}
510 			data_page = NULL;
511 			goto out;
512 		}
513 	}
514 
515 	/* Now submit buffers to write */
516 	do {
517 		if (!buffer_async_write(bh))
518 			continue;
519 		ret = io_submit_add_bh(io, inode, page, data_page, bh);
520 		if (ret) {
521 			/*
522 			 * We only get here on ENOMEM.  Not much else
523 			 * we can do but mark the page as dirty, and
524 			 * better luck next time.
525 			 */
526 			break;
527 		}
528 		nr_submitted++;
529 		clear_buffer_dirty(bh);
530 	} while ((bh = bh->b_this_page) != head);
531 
532 	/* Error stopped previous loop? Clean up buffers... */
533 	if (ret) {
534 	out:
535 		if (data_page)
536 			fscrypt_restore_control_page(data_page);
537 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
538 		redirty_page_for_writepage(wbc, page);
539 		do {
540 			clear_buffer_async_write(bh);
541 			bh = bh->b_this_page;
542 		} while (bh != head);
543 	}
544 	unlock_page(page);
545 	/* Nothing submitted - we have to end page writeback */
546 	if (!nr_submitted)
547 		end_page_writeback(page);
548 	return ret;
549 }
550