1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
ext4_inode_is_fast_symlink(struct inode * inode)151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
ext4_evict_inode(struct inode * inode)195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	/*
200 	 * Credits for final inode cleanup and freeing:
201 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
203 	 */
204 	int extra_credits = 6;
205 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
206 	bool freeze_protected = false;
207 
208 	trace_ext4_evict_inode(inode);
209 
210 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
211 		ext4_evict_ea_inode(inode);
212 	if (inode->i_nlink) {
213 		/*
214 		 * When journalling data dirty buffers are tracked only in the
215 		 * journal. So although mm thinks everything is clean and
216 		 * ready for reaping the inode might still have some pages to
217 		 * write in the running transaction or waiting to be
218 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
219 		 * (via truncate_inode_pages()) to discard these buffers can
220 		 * cause data loss. Also even if we did not discard these
221 		 * buffers, we would have no way to find them after the inode
222 		 * is reaped and thus user could see stale data if he tries to
223 		 * read them before the transaction is checkpointed. So be
224 		 * careful and force everything to disk here... We use
225 		 * ei->i_datasync_tid to store the newest transaction
226 		 * containing inode's data.
227 		 *
228 		 * Note that directories do not have this problem because they
229 		 * don't use page cache.
230 		 */
231 		if (inode->i_ino != EXT4_JOURNAL_INO &&
232 		    ext4_should_journal_data(inode) &&
233 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
234 		    inode->i_data.nrpages) {
235 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
236 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
237 
238 			jbd2_complete_transaction(journal, commit_tid);
239 			filemap_write_and_wait(&inode->i_data);
240 		}
241 		truncate_inode_pages_final(&inode->i_data);
242 
243 		goto no_delete;
244 	}
245 
246 	if (is_bad_inode(inode))
247 		goto no_delete;
248 	dquot_initialize(inode);
249 
250 	if (ext4_should_order_data(inode))
251 		ext4_begin_ordered_truncate(inode, 0);
252 	truncate_inode_pages_final(&inode->i_data);
253 
254 	/*
255 	 * Protect us against freezing - iput() caller didn't have to have any
256 	 * protection against it. When we are in a running transaction though,
257 	 * we are already protected against freezing and we cannot grab further
258 	 * protection due to lock ordering constraints.
259 	 */
260 	if (!ext4_journal_current_handle()) {
261 		sb_start_intwrite(inode->i_sb);
262 		freeze_protected = true;
263 	}
264 
265 	if (!IS_NOQUOTA(inode))
266 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
267 
268 	/*
269 	 * Block bitmap, group descriptor, and inode are accounted in both
270 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
271 	 */
272 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
273 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
274 	if (IS_ERR(handle)) {
275 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
276 		/*
277 		 * If we're going to skip the normal cleanup, we still need to
278 		 * make sure that the in-core orphan linked list is properly
279 		 * cleaned up.
280 		 */
281 		ext4_orphan_del(NULL, inode);
282 		if (freeze_protected)
283 			sb_end_intwrite(inode->i_sb);
284 		goto no_delete;
285 	}
286 
287 	if (IS_SYNC(inode))
288 		ext4_handle_sync(handle);
289 
290 	/*
291 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
292 	 * special handling of symlinks here because i_size is used to
293 	 * determine whether ext4_inode_info->i_data contains symlink data or
294 	 * block mappings. Setting i_size to 0 will remove its fast symlink
295 	 * status. Erase i_data so that it becomes a valid empty block map.
296 	 */
297 	if (ext4_inode_is_fast_symlink(inode))
298 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
299 	inode->i_size = 0;
300 	err = ext4_mark_inode_dirty(handle, inode);
301 	if (err) {
302 		ext4_warning(inode->i_sb,
303 			     "couldn't mark inode dirty (err %d)", err);
304 		goto stop_handle;
305 	}
306 	if (inode->i_blocks) {
307 		err = ext4_truncate(inode);
308 		if (err) {
309 			ext4_error(inode->i_sb,
310 				   "couldn't truncate inode %lu (err %d)",
311 				   inode->i_ino, err);
312 			goto stop_handle;
313 		}
314 	}
315 
316 	/* Remove xattr references. */
317 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
318 				      extra_credits);
319 	if (err) {
320 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
321 stop_handle:
322 		ext4_journal_stop(handle);
323 		ext4_orphan_del(NULL, inode);
324 		if (freeze_protected)
325 			sb_end_intwrite(inode->i_sb);
326 		ext4_xattr_inode_array_free(ea_inode_array);
327 		goto no_delete;
328 	}
329 
330 	/*
331 	 * Kill off the orphan record which ext4_truncate created.
332 	 * AKPM: I think this can be inside the above `if'.
333 	 * Note that ext4_orphan_del() has to be able to cope with the
334 	 * deletion of a non-existent orphan - this is because we don't
335 	 * know if ext4_truncate() actually created an orphan record.
336 	 * (Well, we could do this if we need to, but heck - it works)
337 	 */
338 	ext4_orphan_del(handle, inode);
339 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
340 
341 	/*
342 	 * One subtle ordering requirement: if anything has gone wrong
343 	 * (transaction abort, IO errors, whatever), then we can still
344 	 * do these next steps (the fs will already have been marked as
345 	 * having errors), but we can't free the inode if the mark_dirty
346 	 * fails.
347 	 */
348 	if (ext4_mark_inode_dirty(handle, inode))
349 		/* If that failed, just do the required in-core inode clear. */
350 		ext4_clear_inode(inode);
351 	else
352 		ext4_free_inode(handle, inode);
353 	ext4_journal_stop(handle);
354 	if (freeze_protected)
355 		sb_end_intwrite(inode->i_sb);
356 	ext4_xattr_inode_array_free(ea_inode_array);
357 	return;
358 no_delete:
359 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
360 }
361 
362 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)363 qsize_t *ext4_get_reserved_space(struct inode *inode)
364 {
365 	return &EXT4_I(inode)->i_reserved_quota;
366 }
367 #endif
368 
369 /*
370  * Called with i_data_sem down, which is important since we can call
371  * ext4_discard_preallocations() from here.
372  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)373 void ext4_da_update_reserve_space(struct inode *inode,
374 					int used, int quota_claim)
375 {
376 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
377 	struct ext4_inode_info *ei = EXT4_I(inode);
378 
379 	spin_lock(&ei->i_block_reservation_lock);
380 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
381 	if (unlikely(used > ei->i_reserved_data_blocks)) {
382 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
383 			 "with only %d reserved data blocks",
384 			 __func__, inode->i_ino, used,
385 			 ei->i_reserved_data_blocks);
386 		WARN_ON(1);
387 		used = ei->i_reserved_data_blocks;
388 	}
389 
390 	/* Update per-inode reservations */
391 	ei->i_reserved_data_blocks -= used;
392 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
393 
394 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
395 
396 	/* Update quota subsystem for data blocks */
397 	if (quota_claim)
398 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
399 	else {
400 		/*
401 		 * We did fallocate with an offset that is already delayed
402 		 * allocated. So on delayed allocated writeback we should
403 		 * not re-claim the quota for fallocated blocks.
404 		 */
405 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
406 	}
407 
408 	/*
409 	 * If we have done all the pending block allocations and if
410 	 * there aren't any writers on the inode, we can discard the
411 	 * inode's preallocations.
412 	 */
413 	if ((ei->i_reserved_data_blocks == 0) &&
414 	    (atomic_read(&inode->i_writecount) == 0))
415 		ext4_discard_preallocations(inode);
416 }
417 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)418 static int __check_block_validity(struct inode *inode, const char *func,
419 				unsigned int line,
420 				struct ext4_map_blocks *map)
421 {
422 	if (ext4_has_feature_journal(inode->i_sb) &&
423 	    (inode->i_ino ==
424 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
425 		return 0;
426 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
427 		ext4_error_inode(inode, func, line, map->m_pblk,
428 				 "lblock %lu mapped to illegal pblock %llu "
429 				 "(length %d)", (unsigned long) map->m_lblk,
430 				 map->m_pblk, map->m_len);
431 		return -EFSCORRUPTED;
432 	}
433 	return 0;
434 }
435 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)436 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
437 		       ext4_lblk_t len)
438 {
439 	int ret;
440 
441 	if (ext4_encrypted_inode(inode))
442 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
443 
444 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
445 	if (ret > 0)
446 		ret = 0;
447 
448 	return ret;
449 }
450 
451 #define check_block_validity(inode, map)	\
452 	__check_block_validity((inode), __func__, __LINE__, (map))
453 
454 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)455 static void ext4_map_blocks_es_recheck(handle_t *handle,
456 				       struct inode *inode,
457 				       struct ext4_map_blocks *es_map,
458 				       struct ext4_map_blocks *map,
459 				       int flags)
460 {
461 	int retval;
462 
463 	map->m_flags = 0;
464 	/*
465 	 * There is a race window that the result is not the same.
466 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
467 	 * is that we lookup a block mapping in extent status tree with
468 	 * out taking i_data_sem.  So at the time the unwritten extent
469 	 * could be converted.
470 	 */
471 	down_read(&EXT4_I(inode)->i_data_sem);
472 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
473 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
474 					     EXT4_GET_BLOCKS_KEEP_SIZE);
475 	} else {
476 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
477 					     EXT4_GET_BLOCKS_KEEP_SIZE);
478 	}
479 	up_read((&EXT4_I(inode)->i_data_sem));
480 
481 	/*
482 	 * We don't check m_len because extent will be collpased in status
483 	 * tree.  So the m_len might not equal.
484 	 */
485 	if (es_map->m_lblk != map->m_lblk ||
486 	    es_map->m_flags != map->m_flags ||
487 	    es_map->m_pblk != map->m_pblk) {
488 		printk("ES cache assertion failed for inode: %lu "
489 		       "es_cached ex [%d/%d/%llu/%x] != "
490 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
491 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
492 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
493 		       map->m_len, map->m_pblk, map->m_flags,
494 		       retval, flags);
495 	}
496 }
497 #endif /* ES_AGGRESSIVE_TEST */
498 
499 /*
500  * The ext4_map_blocks() function tries to look up the requested blocks,
501  * and returns if the blocks are already mapped.
502  *
503  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
504  * and store the allocated blocks in the result buffer head and mark it
505  * mapped.
506  *
507  * If file type is extents based, it will call ext4_ext_map_blocks(),
508  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
509  * based files
510  *
511  * On success, it returns the number of blocks being mapped or allocated.  if
512  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
513  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
514  *
515  * It returns 0 if plain look up failed (blocks have not been allocated), in
516  * that case, @map is returned as unmapped but we still do fill map->m_len to
517  * indicate the length of a hole starting at map->m_lblk.
518  *
519  * It returns the error in case of allocation failure.
520  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)521 int ext4_map_blocks(handle_t *handle, struct inode *inode,
522 		    struct ext4_map_blocks *map, int flags)
523 {
524 	struct extent_status es;
525 	int retval;
526 	int ret = 0;
527 #ifdef ES_AGGRESSIVE_TEST
528 	struct ext4_map_blocks orig_map;
529 
530 	memcpy(&orig_map, map, sizeof(*map));
531 #endif
532 
533 	map->m_flags = 0;
534 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
535 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
536 		  (unsigned long) map->m_lblk);
537 
538 	/*
539 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
540 	 */
541 	if (unlikely(map->m_len > INT_MAX))
542 		map->m_len = INT_MAX;
543 
544 	/* We can handle the block number less than EXT_MAX_BLOCKS */
545 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
546 		return -EFSCORRUPTED;
547 
548 	/* Lookup extent status tree firstly */
549 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
550 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
551 			map->m_pblk = ext4_es_pblock(&es) +
552 					map->m_lblk - es.es_lblk;
553 			map->m_flags |= ext4_es_is_written(&es) ?
554 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
555 			retval = es.es_len - (map->m_lblk - es.es_lblk);
556 			if (retval > map->m_len)
557 				retval = map->m_len;
558 			map->m_len = retval;
559 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
560 			map->m_pblk = 0;
561 			retval = es.es_len - (map->m_lblk - es.es_lblk);
562 			if (retval > map->m_len)
563 				retval = map->m_len;
564 			map->m_len = retval;
565 			retval = 0;
566 		} else {
567 			BUG_ON(1);
568 		}
569 #ifdef ES_AGGRESSIVE_TEST
570 		ext4_map_blocks_es_recheck(handle, inode, map,
571 					   &orig_map, flags);
572 #endif
573 		goto found;
574 	}
575 
576 	/*
577 	 * Try to see if we can get the block without requesting a new
578 	 * file system block.
579 	 */
580 	down_read(&EXT4_I(inode)->i_data_sem);
581 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
582 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
583 					     EXT4_GET_BLOCKS_KEEP_SIZE);
584 	} else {
585 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
586 					     EXT4_GET_BLOCKS_KEEP_SIZE);
587 	}
588 	if (retval > 0) {
589 		unsigned int status;
590 
591 		if (unlikely(retval != map->m_len)) {
592 			ext4_warning(inode->i_sb,
593 				     "ES len assertion failed for inode "
594 				     "%lu: retval %d != map->m_len %d",
595 				     inode->i_ino, retval, map->m_len);
596 			WARN_ON(1);
597 		}
598 
599 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
600 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
601 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
602 		    !(status & EXTENT_STATUS_WRITTEN) &&
603 		    ext4_find_delalloc_range(inode, map->m_lblk,
604 					     map->m_lblk + map->m_len - 1))
605 			status |= EXTENT_STATUS_DELAYED;
606 		ret = ext4_es_insert_extent(inode, map->m_lblk,
607 					    map->m_len, map->m_pblk, status);
608 		if (ret < 0)
609 			retval = ret;
610 	}
611 	up_read((&EXT4_I(inode)->i_data_sem));
612 
613 found:
614 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
615 		ret = check_block_validity(inode, map);
616 		if (ret != 0)
617 			return ret;
618 	}
619 
620 	/* If it is only a block(s) look up */
621 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
622 		return retval;
623 
624 	/*
625 	 * Returns if the blocks have already allocated
626 	 *
627 	 * Note that if blocks have been preallocated
628 	 * ext4_ext_get_block() returns the create = 0
629 	 * with buffer head unmapped.
630 	 */
631 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
632 		/*
633 		 * If we need to convert extent to unwritten
634 		 * we continue and do the actual work in
635 		 * ext4_ext_map_blocks()
636 		 */
637 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
638 			return retval;
639 
640 	/*
641 	 * Here we clear m_flags because after allocating an new extent,
642 	 * it will be set again.
643 	 */
644 	map->m_flags &= ~EXT4_MAP_FLAGS;
645 
646 	/*
647 	 * New blocks allocate and/or writing to unwritten extent
648 	 * will possibly result in updating i_data, so we take
649 	 * the write lock of i_data_sem, and call get_block()
650 	 * with create == 1 flag.
651 	 */
652 	down_write(&EXT4_I(inode)->i_data_sem);
653 
654 	/*
655 	 * We need to check for EXT4 here because migrate
656 	 * could have changed the inode type in between
657 	 */
658 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
659 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
660 	} else {
661 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
662 
663 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
664 			/*
665 			 * We allocated new blocks which will result in
666 			 * i_data's format changing.  Force the migrate
667 			 * to fail by clearing migrate flags
668 			 */
669 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
670 		}
671 	}
672 
673 	if (retval > 0) {
674 		unsigned int status;
675 
676 		if (unlikely(retval != map->m_len)) {
677 			ext4_warning(inode->i_sb,
678 				     "ES len assertion failed for inode "
679 				     "%lu: retval %d != map->m_len %d",
680 				     inode->i_ino, retval, map->m_len);
681 			WARN_ON(1);
682 		}
683 
684 		/*
685 		 * We have to zeroout blocks before inserting them into extent
686 		 * status tree. Otherwise someone could look them up there and
687 		 * use them before they are really zeroed. We also have to
688 		 * unmap metadata before zeroing as otherwise writeback can
689 		 * overwrite zeros with stale data from block device.
690 		 */
691 		if (flags & EXT4_GET_BLOCKS_ZERO &&
692 		    map->m_flags & EXT4_MAP_MAPPED &&
693 		    map->m_flags & EXT4_MAP_NEW) {
694 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
695 					   map->m_len);
696 			ret = ext4_issue_zeroout(inode, map->m_lblk,
697 						 map->m_pblk, map->m_len);
698 			if (ret) {
699 				retval = ret;
700 				goto out_sem;
701 			}
702 		}
703 
704 		/*
705 		 * If the extent has been zeroed out, we don't need to update
706 		 * extent status tree.
707 		 */
708 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
710 			if (ext4_es_is_written(&es))
711 				goto out_sem;
712 		}
713 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 		    !(status & EXTENT_STATUS_WRITTEN) &&
717 		    ext4_find_delalloc_range(inode, map->m_lblk,
718 					     map->m_lblk + map->m_len - 1))
719 			status |= EXTENT_STATUS_DELAYED;
720 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 					    map->m_pblk, status);
722 		if (ret < 0) {
723 			retval = ret;
724 			goto out_sem;
725 		}
726 	}
727 
728 out_sem:
729 	up_write((&EXT4_I(inode)->i_data_sem));
730 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 		ret = check_block_validity(inode, map);
732 		if (ret != 0)
733 			return ret;
734 
735 		/*
736 		 * Inodes with freshly allocated blocks where contents will be
737 		 * visible after transaction commit must be on transaction's
738 		 * ordered data list.
739 		 */
740 		if (map->m_flags & EXT4_MAP_NEW &&
741 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 		    !ext4_is_quota_file(inode) &&
744 		    ext4_should_order_data(inode)) {
745 			loff_t start_byte =
746 				(loff_t)map->m_lblk << inode->i_blkbits;
747 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748 
749 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 				ret = ext4_jbd2_inode_add_wait(handle, inode,
751 						start_byte, length);
752 			else
753 				ret = ext4_jbd2_inode_add_write(handle, inode,
754 						start_byte, length);
755 			if (ret)
756 				return ret;
757 		}
758 	}
759 	return retval;
760 }
761 
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768 	unsigned long old_state;
769 	unsigned long new_state;
770 
771 	flags &= EXT4_MAP_FLAGS;
772 
773 	/* Dummy buffer_head? Set non-atomically. */
774 	if (!bh->b_page) {
775 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776 		return;
777 	}
778 	/*
779 	 * Someone else may be modifying b_state. Be careful! This is ugly but
780 	 * once we get rid of using bh as a container for mapping information
781 	 * to pass to / from get_block functions, this can go away.
782 	 */
783 	do {
784 		old_state = READ_ONCE(bh->b_state);
785 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786 	} while (unlikely(
787 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791 			   struct buffer_head *bh, int flags)
792 {
793 	struct ext4_map_blocks map;
794 	int ret = 0;
795 
796 	if (ext4_has_inline_data(inode))
797 		return -ERANGE;
798 
799 	map.m_lblk = iblock;
800 	map.m_len = bh->b_size >> inode->i_blkbits;
801 
802 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 			      flags);
804 	if (ret > 0) {
805 		map_bh(bh, inode->i_sb, map.m_pblk);
806 		ext4_update_bh_state(bh, map.m_flags);
807 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 		ret = 0;
809 	} else if (ret == 0) {
810 		/* hole case, need to fill in bh->b_size */
811 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 	}
813 	return ret;
814 }
815 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)816 int ext4_get_block(struct inode *inode, sector_t iblock,
817 		   struct buffer_head *bh, int create)
818 {
819 	return _ext4_get_block(inode, iblock, bh,
820 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822 
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829 			     struct buffer_head *bh_result, int create)
830 {
831 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832 		   inode->i_ino, create);
833 	return _ext4_get_block(inode, iblock, bh_result,
834 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
835 }
836 
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839 
840 /*
841  * Get blocks function for the cases that need to start a transaction -
842  * generally difference cases of direct IO and DAX IO. It also handles retries
843  * in case of ENOSPC.
844  */
ext4_get_block_trans(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int flags)845 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
846 				struct buffer_head *bh_result, int flags)
847 {
848 	int dio_credits;
849 	handle_t *handle;
850 	int retries = 0;
851 	int ret;
852 
853 	/* Trim mapping request to maximum we can map at once for DIO */
854 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
855 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
856 	dio_credits = ext4_chunk_trans_blocks(inode,
857 				      bh_result->b_size >> inode->i_blkbits);
858 retry:
859 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
860 	if (IS_ERR(handle))
861 		return PTR_ERR(handle);
862 
863 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
864 	ext4_journal_stop(handle);
865 
866 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
867 		goto retry;
868 	return ret;
869 }
870 
871 /* Get block function for DIO reads and writes to inodes without extents */
ext4_dio_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)872 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
873 		       struct buffer_head *bh, int create)
874 {
875 	/* We don't expect handle for direct IO */
876 	WARN_ON_ONCE(ext4_journal_current_handle());
877 
878 	if (!create)
879 		return _ext4_get_block(inode, iblock, bh, 0);
880 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
881 }
882 
883 /*
884  * Get block function for AIO DIO writes when we create unwritten extent if
885  * blocks are not allocated yet. The extent will be converted to written
886  * after IO is complete.
887  */
ext4_dio_get_block_unwritten_async(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)888 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
889 		sector_t iblock, struct buffer_head *bh_result,	int create)
890 {
891 	int ret;
892 
893 	/* We don't expect handle for direct IO */
894 	WARN_ON_ONCE(ext4_journal_current_handle());
895 
896 	ret = ext4_get_block_trans(inode, iblock, bh_result,
897 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
898 
899 	/*
900 	 * When doing DIO using unwritten extents, we need io_end to convert
901 	 * unwritten extents to written on IO completion. We allocate io_end
902 	 * once we spot unwritten extent and store it in b_private. Generic
903 	 * DIO code keeps b_private set and furthermore passes the value to
904 	 * our completion callback in 'private' argument.
905 	 */
906 	if (!ret && buffer_unwritten(bh_result)) {
907 		if (!bh_result->b_private) {
908 			ext4_io_end_t *io_end;
909 
910 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
911 			if (!io_end)
912 				return -ENOMEM;
913 			bh_result->b_private = io_end;
914 			ext4_set_io_unwritten_flag(inode, io_end);
915 		}
916 		set_buffer_defer_completion(bh_result);
917 	}
918 
919 	return ret;
920 }
921 
922 /*
923  * Get block function for non-AIO DIO writes when we create unwritten extent if
924  * blocks are not allocated yet. The extent will be converted to written
925  * after IO is complete by ext4_direct_IO_write().
926  */
ext4_dio_get_block_unwritten_sync(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)927 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
928 		sector_t iblock, struct buffer_head *bh_result,	int create)
929 {
930 	int ret;
931 
932 	/* We don't expect handle for direct IO */
933 	WARN_ON_ONCE(ext4_journal_current_handle());
934 
935 	ret = ext4_get_block_trans(inode, iblock, bh_result,
936 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
937 
938 	/*
939 	 * Mark inode as having pending DIO writes to unwritten extents.
940 	 * ext4_direct_IO_write() checks this flag and converts extents to
941 	 * written.
942 	 */
943 	if (!ret && buffer_unwritten(bh_result))
944 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
945 
946 	return ret;
947 }
948 
ext4_dio_get_block_overwrite(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)949 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
950 		   struct buffer_head *bh_result, int create)
951 {
952 	int ret;
953 
954 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
955 		   inode->i_ino, create);
956 	/* We don't expect handle for direct IO */
957 	WARN_ON_ONCE(ext4_journal_current_handle());
958 
959 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
960 	/*
961 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
962 	 * that.
963 	 */
964 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
965 
966 	return ret;
967 }
968 
969 
970 /*
971  * `handle' can be NULL if create is zero
972  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)973 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
974 				ext4_lblk_t block, int map_flags)
975 {
976 	struct ext4_map_blocks map;
977 	struct buffer_head *bh;
978 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
979 	int err;
980 
981 	J_ASSERT(handle != NULL || create == 0);
982 
983 	map.m_lblk = block;
984 	map.m_len = 1;
985 	err = ext4_map_blocks(handle, inode, &map, map_flags);
986 
987 	if (err == 0)
988 		return create ? ERR_PTR(-ENOSPC) : NULL;
989 	if (err < 0)
990 		return ERR_PTR(err);
991 
992 	bh = sb_getblk(inode->i_sb, map.m_pblk);
993 	if (unlikely(!bh))
994 		return ERR_PTR(-ENOMEM);
995 	if (map.m_flags & EXT4_MAP_NEW) {
996 		J_ASSERT(create != 0);
997 		J_ASSERT(handle != NULL);
998 
999 		/*
1000 		 * Now that we do not always journal data, we should
1001 		 * keep in mind whether this should always journal the
1002 		 * new buffer as metadata.  For now, regular file
1003 		 * writes use ext4_get_block instead, so it's not a
1004 		 * problem.
1005 		 */
1006 		lock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call get_create_access");
1008 		err = ext4_journal_get_create_access(handle, bh);
1009 		if (unlikely(err)) {
1010 			unlock_buffer(bh);
1011 			goto errout;
1012 		}
1013 		if (!buffer_uptodate(bh)) {
1014 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1015 			set_buffer_uptodate(bh);
1016 		}
1017 		unlock_buffer(bh);
1018 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1019 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1020 		if (unlikely(err))
1021 			goto errout;
1022 	} else
1023 		BUFFER_TRACE(bh, "not a new buffer");
1024 	return bh;
1025 errout:
1026 	brelse(bh);
1027 	return ERR_PTR(err);
1028 }
1029 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1030 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1031 			       ext4_lblk_t block, int map_flags)
1032 {
1033 	struct buffer_head *bh;
1034 
1035 	bh = ext4_getblk(handle, inode, block, map_flags);
1036 	if (IS_ERR(bh))
1037 		return bh;
1038 	if (!bh || buffer_uptodate(bh))
1039 		return bh;
1040 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1041 	wait_on_buffer(bh);
1042 	if (buffer_uptodate(bh))
1043 		return bh;
1044 	put_bh(bh);
1045 	return ERR_PTR(-EIO);
1046 }
1047 
1048 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1049 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1050 		     bool wait, struct buffer_head **bhs)
1051 {
1052 	int i, err;
1053 
1054 	for (i = 0; i < bh_count; i++) {
1055 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1056 		if (IS_ERR(bhs[i])) {
1057 			err = PTR_ERR(bhs[i]);
1058 			bh_count = i;
1059 			goto out_brelse;
1060 		}
1061 	}
1062 
1063 	for (i = 0; i < bh_count; i++)
1064 		/* Note that NULL bhs[i] is valid because of holes. */
1065 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1066 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1067 				    &bhs[i]);
1068 
1069 	if (!wait)
1070 		return 0;
1071 
1072 	for (i = 0; i < bh_count; i++)
1073 		if (bhs[i])
1074 			wait_on_buffer(bhs[i]);
1075 
1076 	for (i = 0; i < bh_count; i++) {
1077 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1078 			err = -EIO;
1079 			goto out_brelse;
1080 		}
1081 	}
1082 	return 0;
1083 
1084 out_brelse:
1085 	for (i = 0; i < bh_count; i++) {
1086 		brelse(bhs[i]);
1087 		bhs[i] = NULL;
1088 	}
1089 	return err;
1090 }
1091 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1092 int ext4_walk_page_buffers(handle_t *handle,
1093 			   struct buffer_head *head,
1094 			   unsigned from,
1095 			   unsigned to,
1096 			   int *partial,
1097 			   int (*fn)(handle_t *handle,
1098 				     struct buffer_head *bh))
1099 {
1100 	struct buffer_head *bh;
1101 	unsigned block_start, block_end;
1102 	unsigned blocksize = head->b_size;
1103 	int err, ret = 0;
1104 	struct buffer_head *next;
1105 
1106 	for (bh = head, block_start = 0;
1107 	     ret == 0 && (bh != head || !block_start);
1108 	     block_start = block_end, bh = next) {
1109 		next = bh->b_this_page;
1110 		block_end = block_start + blocksize;
1111 		if (block_end <= from || block_start >= to) {
1112 			if (partial && !buffer_uptodate(bh))
1113 				*partial = 1;
1114 			continue;
1115 		}
1116 		err = (*fn)(handle, bh);
1117 		if (!ret)
1118 			ret = err;
1119 	}
1120 	return ret;
1121 }
1122 
1123 /*
1124  * To preserve ordering, it is essential that the hole instantiation and
1125  * the data write be encapsulated in a single transaction.  We cannot
1126  * close off a transaction and start a new one between the ext4_get_block()
1127  * and the commit_write().  So doing the jbd2_journal_start at the start of
1128  * prepare_write() is the right place.
1129  *
1130  * Also, this function can nest inside ext4_writepage().  In that case, we
1131  * *know* that ext4_writepage() has generated enough buffer credits to do the
1132  * whole page.  So we won't block on the journal in that case, which is good,
1133  * because the caller may be PF_MEMALLOC.
1134  *
1135  * By accident, ext4 can be reentered when a transaction is open via
1136  * quota file writes.  If we were to commit the transaction while thus
1137  * reentered, there can be a deadlock - we would be holding a quota
1138  * lock, and the commit would never complete if another thread had a
1139  * transaction open and was blocking on the quota lock - a ranking
1140  * violation.
1141  *
1142  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1143  * will _not_ run commit under these circumstances because handle->h_ref
1144  * is elevated.  We'll still have enough credits for the tiny quotafile
1145  * write.
1146  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1147 int do_journal_get_write_access(handle_t *handle,
1148 				struct buffer_head *bh)
1149 {
1150 	int dirty = buffer_dirty(bh);
1151 	int ret;
1152 
1153 	if (!buffer_mapped(bh) || buffer_freed(bh))
1154 		return 0;
1155 	/*
1156 	 * __block_write_begin() could have dirtied some buffers. Clean
1157 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1158 	 * otherwise about fs integrity issues. Setting of the dirty bit
1159 	 * by __block_write_begin() isn't a real problem here as we clear
1160 	 * the bit before releasing a page lock and thus writeback cannot
1161 	 * ever write the buffer.
1162 	 */
1163 	if (dirty)
1164 		clear_buffer_dirty(bh);
1165 	BUFFER_TRACE(bh, "get write access");
1166 	ret = ext4_journal_get_write_access(handle, bh);
1167 	if (!ret && dirty)
1168 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1169 	return ret;
1170 }
1171 
1172 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1173 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1174 				  get_block_t *get_block)
1175 {
1176 	unsigned from = pos & (PAGE_SIZE - 1);
1177 	unsigned to = from + len;
1178 	struct inode *inode = page->mapping->host;
1179 	unsigned block_start, block_end;
1180 	sector_t block;
1181 	int err = 0;
1182 	unsigned blocksize = inode->i_sb->s_blocksize;
1183 	unsigned bbits;
1184 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1185 	bool decrypt = false;
1186 
1187 	BUG_ON(!PageLocked(page));
1188 	BUG_ON(from > PAGE_SIZE);
1189 	BUG_ON(to > PAGE_SIZE);
1190 	BUG_ON(from > to);
1191 
1192 	if (!page_has_buffers(page))
1193 		create_empty_buffers(page, blocksize, 0);
1194 	head = page_buffers(page);
1195 	bbits = ilog2(blocksize);
1196 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1197 
1198 	for (bh = head, block_start = 0; bh != head || !block_start;
1199 	    block++, block_start = block_end, bh = bh->b_this_page) {
1200 		block_end = block_start + blocksize;
1201 		if (block_end <= from || block_start >= to) {
1202 			if (PageUptodate(page)) {
1203 				if (!buffer_uptodate(bh))
1204 					set_buffer_uptodate(bh);
1205 			}
1206 			continue;
1207 		}
1208 		if (buffer_new(bh))
1209 			clear_buffer_new(bh);
1210 		if (!buffer_mapped(bh)) {
1211 			WARN_ON(bh->b_size != blocksize);
1212 			err = get_block(inode, block, bh, 1);
1213 			if (err)
1214 				break;
1215 			if (buffer_new(bh)) {
1216 				clean_bdev_bh_alias(bh);
1217 				if (PageUptodate(page)) {
1218 					clear_buffer_new(bh);
1219 					set_buffer_uptodate(bh);
1220 					mark_buffer_dirty(bh);
1221 					continue;
1222 				}
1223 				if (block_end > to || block_start < from)
1224 					zero_user_segments(page, to, block_end,
1225 							   block_start, from);
1226 				continue;
1227 			}
1228 		}
1229 		if (PageUptodate(page)) {
1230 			if (!buffer_uptodate(bh))
1231 				set_buffer_uptodate(bh);
1232 			continue;
1233 		}
1234 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1235 		    !buffer_unwritten(bh) &&
1236 		    (block_start < from || block_end > to)) {
1237 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1238 			*wait_bh++ = bh;
1239 			decrypt = ext4_encrypted_inode(inode) &&
1240 				S_ISREG(inode->i_mode);
1241 		}
1242 	}
1243 	/*
1244 	 * If we issued read requests, let them complete.
1245 	 */
1246 	while (wait_bh > wait) {
1247 		wait_on_buffer(*--wait_bh);
1248 		if (!buffer_uptodate(*wait_bh))
1249 			err = -EIO;
1250 	}
1251 	if (unlikely(err))
1252 		page_zero_new_buffers(page, from, to);
1253 	else if (decrypt)
1254 		err = fscrypt_decrypt_page(page->mapping->host, page,
1255 				PAGE_SIZE, 0, page->index);
1256 	return err;
1257 }
1258 #endif
1259 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1260 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1261 			    loff_t pos, unsigned len, unsigned flags,
1262 			    struct page **pagep, void **fsdata)
1263 {
1264 	struct inode *inode = mapping->host;
1265 	int ret, needed_blocks;
1266 	handle_t *handle;
1267 	int retries = 0;
1268 	struct page *page;
1269 	pgoff_t index;
1270 	unsigned from, to;
1271 
1272 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1273 		return -EIO;
1274 
1275 	trace_ext4_write_begin(inode, pos, len, flags);
1276 	/*
1277 	 * Reserve one block more for addition to orphan list in case
1278 	 * we allocate blocks but write fails for some reason
1279 	 */
1280 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1281 	index = pos >> PAGE_SHIFT;
1282 	from = pos & (PAGE_SIZE - 1);
1283 	to = from + len;
1284 
1285 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1286 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1287 						    flags, pagep);
1288 		if (ret < 0)
1289 			return ret;
1290 		if (ret == 1)
1291 			return 0;
1292 	}
1293 
1294 	/*
1295 	 * grab_cache_page_write_begin() can take a long time if the
1296 	 * system is thrashing due to memory pressure, or if the page
1297 	 * is being written back.  So grab it first before we start
1298 	 * the transaction handle.  This also allows us to allocate
1299 	 * the page (if needed) without using GFP_NOFS.
1300 	 */
1301 retry_grab:
1302 	page = grab_cache_page_write_begin(mapping, index, flags);
1303 	if (!page)
1304 		return -ENOMEM;
1305 	/*
1306 	 * The same as page allocation, we prealloc buffer heads before
1307 	 * starting the handle.
1308 	 */
1309 	if (!page_has_buffers(page))
1310 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1311 
1312 	unlock_page(page);
1313 
1314 retry_journal:
1315 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1316 	if (IS_ERR(handle)) {
1317 		put_page(page);
1318 		return PTR_ERR(handle);
1319 	}
1320 
1321 	lock_page(page);
1322 	if (page->mapping != mapping) {
1323 		/* The page got truncated from under us */
1324 		unlock_page(page);
1325 		put_page(page);
1326 		ext4_journal_stop(handle);
1327 		goto retry_grab;
1328 	}
1329 	/* In case writeback began while the page was unlocked */
1330 	wait_for_stable_page(page);
1331 
1332 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1333 	if (ext4_should_dioread_nolock(inode))
1334 		ret = ext4_block_write_begin(page, pos, len,
1335 					     ext4_get_block_unwritten);
1336 	else
1337 		ret = ext4_block_write_begin(page, pos, len,
1338 					     ext4_get_block);
1339 #else
1340 	if (ext4_should_dioread_nolock(inode))
1341 		ret = __block_write_begin(page, pos, len,
1342 					  ext4_get_block_unwritten);
1343 	else
1344 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1345 #endif
1346 	if (!ret && ext4_should_journal_data(inode)) {
1347 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1348 					     from, to, NULL,
1349 					     do_journal_get_write_access);
1350 	}
1351 
1352 	if (ret) {
1353 		unlock_page(page);
1354 		/*
1355 		 * __block_write_begin may have instantiated a few blocks
1356 		 * outside i_size.  Trim these off again. Don't need
1357 		 * i_size_read because we hold i_mutex.
1358 		 *
1359 		 * Add inode to orphan list in case we crash before
1360 		 * truncate finishes
1361 		 */
1362 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1363 			ext4_orphan_add(handle, inode);
1364 
1365 		ext4_journal_stop(handle);
1366 		if (pos + len > inode->i_size) {
1367 			ext4_truncate_failed_write(inode);
1368 			/*
1369 			 * If truncate failed early the inode might
1370 			 * still be on the orphan list; we need to
1371 			 * make sure the inode is removed from the
1372 			 * orphan list in that case.
1373 			 */
1374 			if (inode->i_nlink)
1375 				ext4_orphan_del(NULL, inode);
1376 		}
1377 
1378 		if (ret == -ENOSPC &&
1379 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1380 			goto retry_journal;
1381 		put_page(page);
1382 		return ret;
1383 	}
1384 	*pagep = page;
1385 	return ret;
1386 }
1387 
1388 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1389 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1390 {
1391 	int ret;
1392 	if (!buffer_mapped(bh) || buffer_freed(bh))
1393 		return 0;
1394 	set_buffer_uptodate(bh);
1395 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1396 	clear_buffer_meta(bh);
1397 	clear_buffer_prio(bh);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1406  * buffers are managed internally.
1407  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1408 static int ext4_write_end(struct file *file,
1409 			  struct address_space *mapping,
1410 			  loff_t pos, unsigned len, unsigned copied,
1411 			  struct page *page, void *fsdata)
1412 {
1413 	handle_t *handle = ext4_journal_current_handle();
1414 	struct inode *inode = mapping->host;
1415 	loff_t old_size = inode->i_size;
1416 	int ret = 0, ret2;
1417 	int i_size_changed = 0;
1418 	int inline_data = ext4_has_inline_data(inode);
1419 
1420 	trace_ext4_write_end(inode, pos, len, copied);
1421 	if (inline_data &&
1422 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1423 		ret = ext4_write_inline_data_end(inode, pos, len,
1424 						 copied, page);
1425 		if (ret < 0) {
1426 			unlock_page(page);
1427 			put_page(page);
1428 			goto errout;
1429 		}
1430 		copied = ret;
1431 	} else
1432 		copied = block_write_end(file, mapping, pos,
1433 					 len, copied, page, fsdata);
1434 	/*
1435 	 * it's important to update i_size while still holding page lock:
1436 	 * page writeout could otherwise come in and zero beyond i_size.
1437 	 */
1438 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1439 	unlock_page(page);
1440 	put_page(page);
1441 
1442 	if (old_size < pos)
1443 		pagecache_isize_extended(inode, old_size, pos);
1444 	/*
1445 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1446 	 * makes the holding time of page lock longer. Second, it forces lock
1447 	 * ordering of page lock and transaction start for journaling
1448 	 * filesystems.
1449 	 */
1450 	if (i_size_changed || inline_data)
1451 		ext4_mark_inode_dirty(handle, inode);
1452 
1453 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1454 		/* if we have allocated more blocks and copied
1455 		 * less. We will have blocks allocated outside
1456 		 * inode->i_size. So truncate them
1457 		 */
1458 		ext4_orphan_add(handle, inode);
1459 errout:
1460 	ret2 = ext4_journal_stop(handle);
1461 	if (!ret)
1462 		ret = ret2;
1463 
1464 	if (pos + len > inode->i_size) {
1465 		ext4_truncate_failed_write(inode);
1466 		/*
1467 		 * If truncate failed early the inode might still be
1468 		 * on the orphan list; we need to make sure the inode
1469 		 * is removed from the orphan list in that case.
1470 		 */
1471 		if (inode->i_nlink)
1472 			ext4_orphan_del(NULL, inode);
1473 	}
1474 
1475 	return ret ? ret : copied;
1476 }
1477 
1478 /*
1479  * This is a private version of page_zero_new_buffers() which doesn't
1480  * set the buffer to be dirty, since in data=journalled mode we need
1481  * to call ext4_handle_dirty_metadata() instead.
1482  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1483 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1484 					    struct page *page,
1485 					    unsigned from, unsigned to)
1486 {
1487 	unsigned int block_start = 0, block_end;
1488 	struct buffer_head *head, *bh;
1489 
1490 	bh = head = page_buffers(page);
1491 	do {
1492 		block_end = block_start + bh->b_size;
1493 		if (buffer_new(bh)) {
1494 			if (block_end > from && block_start < to) {
1495 				if (!PageUptodate(page)) {
1496 					unsigned start, size;
1497 
1498 					start = max(from, block_start);
1499 					size = min(to, block_end) - start;
1500 
1501 					zero_user(page, start, size);
1502 					write_end_fn(handle, bh);
1503 				}
1504 				clear_buffer_new(bh);
1505 			}
1506 		}
1507 		block_start = block_end;
1508 		bh = bh->b_this_page;
1509 	} while (bh != head);
1510 }
1511 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1512 static int ext4_journalled_write_end(struct file *file,
1513 				     struct address_space *mapping,
1514 				     loff_t pos, unsigned len, unsigned copied,
1515 				     struct page *page, void *fsdata)
1516 {
1517 	handle_t *handle = ext4_journal_current_handle();
1518 	struct inode *inode = mapping->host;
1519 	loff_t old_size = inode->i_size;
1520 	int ret = 0, ret2;
1521 	int partial = 0;
1522 	unsigned from, to;
1523 	int size_changed = 0;
1524 	int inline_data = ext4_has_inline_data(inode);
1525 
1526 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1527 	from = pos & (PAGE_SIZE - 1);
1528 	to = from + len;
1529 
1530 	BUG_ON(!ext4_handle_valid(handle));
1531 
1532 	if (inline_data) {
1533 		ret = ext4_write_inline_data_end(inode, pos, len,
1534 						 copied, page);
1535 		if (ret < 0) {
1536 			unlock_page(page);
1537 			put_page(page);
1538 			goto errout;
1539 		}
1540 		copied = ret;
1541 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1542 		copied = 0;
1543 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1544 	} else {
1545 		if (unlikely(copied < len))
1546 			ext4_journalled_zero_new_buffers(handle, page,
1547 							 from + copied, to);
1548 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1549 					     from + copied, &partial,
1550 					     write_end_fn);
1551 		if (!partial)
1552 			SetPageUptodate(page);
1553 	}
1554 	size_changed = ext4_update_inode_size(inode, pos + copied);
1555 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1556 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1557 	unlock_page(page);
1558 	put_page(page);
1559 
1560 	if (old_size < pos)
1561 		pagecache_isize_extended(inode, old_size, pos);
1562 
1563 	if (size_changed || inline_data) {
1564 		ret2 = ext4_mark_inode_dirty(handle, inode);
1565 		if (!ret)
1566 			ret = ret2;
1567 	}
1568 
1569 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1570 		/* if we have allocated more blocks and copied
1571 		 * less. We will have blocks allocated outside
1572 		 * inode->i_size. So truncate them
1573 		 */
1574 		ext4_orphan_add(handle, inode);
1575 
1576 errout:
1577 	ret2 = ext4_journal_stop(handle);
1578 	if (!ret)
1579 		ret = ret2;
1580 	if (pos + len > inode->i_size) {
1581 		ext4_truncate_failed_write(inode);
1582 		/*
1583 		 * If truncate failed early the inode might still be
1584 		 * on the orphan list; we need to make sure the inode
1585 		 * is removed from the orphan list in that case.
1586 		 */
1587 		if (inode->i_nlink)
1588 			ext4_orphan_del(NULL, inode);
1589 	}
1590 
1591 	return ret ? ret : copied;
1592 }
1593 
1594 /*
1595  * Reserve space for a single cluster
1596  */
ext4_da_reserve_space(struct inode * inode)1597 static int ext4_da_reserve_space(struct inode *inode)
1598 {
1599 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1600 	struct ext4_inode_info *ei = EXT4_I(inode);
1601 	int ret;
1602 
1603 	/*
1604 	 * We will charge metadata quota at writeout time; this saves
1605 	 * us from metadata over-estimation, though we may go over by
1606 	 * a small amount in the end.  Here we just reserve for data.
1607 	 */
1608 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1609 	if (ret)
1610 		return ret;
1611 
1612 	spin_lock(&ei->i_block_reservation_lock);
1613 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1614 		spin_unlock(&ei->i_block_reservation_lock);
1615 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1616 		return -ENOSPC;
1617 	}
1618 	ei->i_reserved_data_blocks++;
1619 	trace_ext4_da_reserve_space(inode);
1620 	spin_unlock(&ei->i_block_reservation_lock);
1621 
1622 	return 0;       /* success */
1623 }
1624 
ext4_da_release_space(struct inode * inode,int to_free)1625 static void ext4_da_release_space(struct inode *inode, int to_free)
1626 {
1627 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1628 	struct ext4_inode_info *ei = EXT4_I(inode);
1629 
1630 	if (!to_free)
1631 		return;		/* Nothing to release, exit */
1632 
1633 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1634 
1635 	trace_ext4_da_release_space(inode, to_free);
1636 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1637 		/*
1638 		 * if there aren't enough reserved blocks, then the
1639 		 * counter is messed up somewhere.  Since this
1640 		 * function is called from invalidate page, it's
1641 		 * harmless to return without any action.
1642 		 */
1643 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1644 			 "ino %lu, to_free %d with only %d reserved "
1645 			 "data blocks", inode->i_ino, to_free,
1646 			 ei->i_reserved_data_blocks);
1647 		WARN_ON(1);
1648 		to_free = ei->i_reserved_data_blocks;
1649 	}
1650 	ei->i_reserved_data_blocks -= to_free;
1651 
1652 	/* update fs dirty data blocks counter */
1653 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1654 
1655 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1656 
1657 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1658 }
1659 
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1660 static void ext4_da_page_release_reservation(struct page *page,
1661 					     unsigned int offset,
1662 					     unsigned int length)
1663 {
1664 	int to_release = 0, contiguous_blks = 0;
1665 	struct buffer_head *head, *bh;
1666 	unsigned int curr_off = 0;
1667 	struct inode *inode = page->mapping->host;
1668 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1669 	unsigned int stop = offset + length;
1670 	int num_clusters;
1671 	ext4_fsblk_t lblk;
1672 
1673 	BUG_ON(stop > PAGE_SIZE || stop < length);
1674 
1675 	head = page_buffers(page);
1676 	bh = head;
1677 	do {
1678 		unsigned int next_off = curr_off + bh->b_size;
1679 
1680 		if (next_off > stop)
1681 			break;
1682 
1683 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1684 			to_release++;
1685 			contiguous_blks++;
1686 			clear_buffer_delay(bh);
1687 		} else if (contiguous_blks) {
1688 			lblk = page->index <<
1689 			       (PAGE_SHIFT - inode->i_blkbits);
1690 			lblk += (curr_off >> inode->i_blkbits) -
1691 				contiguous_blks;
1692 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1693 			contiguous_blks = 0;
1694 		}
1695 		curr_off = next_off;
1696 	} while ((bh = bh->b_this_page) != head);
1697 
1698 	if (contiguous_blks) {
1699 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1700 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1701 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1702 	}
1703 
1704 	/* If we have released all the blocks belonging to a cluster, then we
1705 	 * need to release the reserved space for that cluster. */
1706 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1707 	while (num_clusters > 0) {
1708 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1709 			((num_clusters - 1) << sbi->s_cluster_bits);
1710 		if (sbi->s_cluster_ratio == 1 ||
1711 		    !ext4_find_delalloc_cluster(inode, lblk))
1712 			ext4_da_release_space(inode, 1);
1713 
1714 		num_clusters--;
1715 	}
1716 }
1717 
1718 /*
1719  * Delayed allocation stuff
1720  */
1721 
1722 struct mpage_da_data {
1723 	struct inode *inode;
1724 	struct writeback_control *wbc;
1725 
1726 	pgoff_t first_page;	/* The first page to write */
1727 	pgoff_t next_page;	/* Current page to examine */
1728 	pgoff_t last_page;	/* Last page to examine */
1729 	/*
1730 	 * Extent to map - this can be after first_page because that can be
1731 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1732 	 * is delalloc or unwritten.
1733 	 */
1734 	struct ext4_map_blocks map;
1735 	struct ext4_io_submit io_submit;	/* IO submission data */
1736 	unsigned int do_map:1;
1737 };
1738 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1739 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1740 				       bool invalidate)
1741 {
1742 	int nr_pages, i;
1743 	pgoff_t index, end;
1744 	struct pagevec pvec;
1745 	struct inode *inode = mpd->inode;
1746 	struct address_space *mapping = inode->i_mapping;
1747 
1748 	/* This is necessary when next_page == 0. */
1749 	if (mpd->first_page >= mpd->next_page)
1750 		return;
1751 
1752 	index = mpd->first_page;
1753 	end   = mpd->next_page - 1;
1754 	if (invalidate) {
1755 		ext4_lblk_t start, last;
1756 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1757 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1758 
1759 		/*
1760 		 * avoid racing with extent status tree scans made by
1761 		 * ext4_insert_delayed_block()
1762 		 */
1763 		down_write(&EXT4_I(inode)->i_data_sem);
1764 		ext4_es_remove_extent(inode, start, last - start + 1);
1765 		up_write(&EXT4_I(inode)->i_data_sem);
1766 	}
1767 
1768 	pagevec_init(&pvec);
1769 	while (index <= end) {
1770 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1771 		if (nr_pages == 0)
1772 			break;
1773 		for (i = 0; i < nr_pages; i++) {
1774 			struct page *page = pvec.pages[i];
1775 
1776 			BUG_ON(!PageLocked(page));
1777 			BUG_ON(PageWriteback(page));
1778 			if (invalidate) {
1779 				if (page_mapped(page))
1780 					clear_page_dirty_for_io(page);
1781 				block_invalidatepage(page, 0, PAGE_SIZE);
1782 				ClearPageUptodate(page);
1783 			}
1784 			unlock_page(page);
1785 		}
1786 		pagevec_release(&pvec);
1787 	}
1788 }
1789 
ext4_print_free_blocks(struct inode * inode)1790 static void ext4_print_free_blocks(struct inode *inode)
1791 {
1792 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1793 	struct super_block *sb = inode->i_sb;
1794 	struct ext4_inode_info *ei = EXT4_I(inode);
1795 
1796 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1797 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1798 			ext4_count_free_clusters(sb)));
1799 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1800 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1801 	       (long long) EXT4_C2B(EXT4_SB(sb),
1802 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1803 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1804 	       (long long) EXT4_C2B(EXT4_SB(sb),
1805 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1806 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1807 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1808 		 ei->i_reserved_data_blocks);
1809 	return;
1810 }
1811 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1812 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1813 {
1814 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1815 }
1816 
1817 /*
1818  * This function is grabs code from the very beginning of
1819  * ext4_map_blocks, but assumes that the caller is from delayed write
1820  * time. This function looks up the requested blocks and sets the
1821  * buffer delay bit under the protection of i_data_sem.
1822  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1823 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1824 			      struct ext4_map_blocks *map,
1825 			      struct buffer_head *bh)
1826 {
1827 	struct extent_status es;
1828 	int retval;
1829 	sector_t invalid_block = ~((sector_t) 0xffff);
1830 #ifdef ES_AGGRESSIVE_TEST
1831 	struct ext4_map_blocks orig_map;
1832 
1833 	memcpy(&orig_map, map, sizeof(*map));
1834 #endif
1835 
1836 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1837 		invalid_block = ~0;
1838 
1839 	map->m_flags = 0;
1840 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1841 		  "logical block %lu\n", inode->i_ino, map->m_len,
1842 		  (unsigned long) map->m_lblk);
1843 
1844 	/* Lookup extent status tree firstly */
1845 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1846 		if (ext4_es_is_hole(&es)) {
1847 			retval = 0;
1848 			down_read(&EXT4_I(inode)->i_data_sem);
1849 			goto add_delayed;
1850 		}
1851 
1852 		/*
1853 		 * Delayed extent could be allocated by fallocate.
1854 		 * So we need to check it.
1855 		 */
1856 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1857 			map_bh(bh, inode->i_sb, invalid_block);
1858 			set_buffer_new(bh);
1859 			set_buffer_delay(bh);
1860 			return 0;
1861 		}
1862 
1863 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1864 		retval = es.es_len - (iblock - es.es_lblk);
1865 		if (retval > map->m_len)
1866 			retval = map->m_len;
1867 		map->m_len = retval;
1868 		if (ext4_es_is_written(&es))
1869 			map->m_flags |= EXT4_MAP_MAPPED;
1870 		else if (ext4_es_is_unwritten(&es))
1871 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1872 		else
1873 			BUG_ON(1);
1874 
1875 #ifdef ES_AGGRESSIVE_TEST
1876 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1877 #endif
1878 		return retval;
1879 	}
1880 
1881 	/*
1882 	 * Try to see if we can get the block without requesting a new
1883 	 * file system block.
1884 	 */
1885 	down_read(&EXT4_I(inode)->i_data_sem);
1886 	if (ext4_has_inline_data(inode))
1887 		retval = 0;
1888 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1889 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1890 	else
1891 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1892 
1893 add_delayed:
1894 	if (retval == 0) {
1895 		int ret;
1896 		/*
1897 		 * XXX: __block_prepare_write() unmaps passed block,
1898 		 * is it OK?
1899 		 */
1900 		/*
1901 		 * If the block was allocated from previously allocated cluster,
1902 		 * then we don't need to reserve it again. However we still need
1903 		 * to reserve metadata for every block we're going to write.
1904 		 */
1905 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1906 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1907 			ret = ext4_da_reserve_space(inode);
1908 			if (ret) {
1909 				/* not enough space to reserve */
1910 				retval = ret;
1911 				goto out_unlock;
1912 			}
1913 		}
1914 
1915 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1916 					    ~0, EXTENT_STATUS_DELAYED);
1917 		if (ret) {
1918 			retval = ret;
1919 			goto out_unlock;
1920 		}
1921 
1922 		map_bh(bh, inode->i_sb, invalid_block);
1923 		set_buffer_new(bh);
1924 		set_buffer_delay(bh);
1925 	} else if (retval > 0) {
1926 		int ret;
1927 		unsigned int status;
1928 
1929 		if (unlikely(retval != map->m_len)) {
1930 			ext4_warning(inode->i_sb,
1931 				     "ES len assertion failed for inode "
1932 				     "%lu: retval %d != map->m_len %d",
1933 				     inode->i_ino, retval, map->m_len);
1934 			WARN_ON(1);
1935 		}
1936 
1937 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1938 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1939 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1940 					    map->m_pblk, status);
1941 		if (ret != 0)
1942 			retval = ret;
1943 	}
1944 
1945 out_unlock:
1946 	up_read((&EXT4_I(inode)->i_data_sem));
1947 
1948 	return retval;
1949 }
1950 
1951 /*
1952  * This is a special get_block_t callback which is used by
1953  * ext4_da_write_begin().  It will either return mapped block or
1954  * reserve space for a single block.
1955  *
1956  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1957  * We also have b_blocknr = -1 and b_bdev initialized properly
1958  *
1959  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1960  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1961  * initialized properly.
1962  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1963 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1964 			   struct buffer_head *bh, int create)
1965 {
1966 	struct ext4_map_blocks map;
1967 	int ret = 0;
1968 
1969 	BUG_ON(create == 0);
1970 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1971 
1972 	map.m_lblk = iblock;
1973 	map.m_len = 1;
1974 
1975 	/*
1976 	 * first, we need to know whether the block is allocated already
1977 	 * preallocated blocks are unmapped but should treated
1978 	 * the same as allocated blocks.
1979 	 */
1980 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1981 	if (ret <= 0)
1982 		return ret;
1983 
1984 	map_bh(bh, inode->i_sb, map.m_pblk);
1985 	ext4_update_bh_state(bh, map.m_flags);
1986 
1987 	if (buffer_unwritten(bh)) {
1988 		/* A delayed write to unwritten bh should be marked
1989 		 * new and mapped.  Mapped ensures that we don't do
1990 		 * get_block multiple times when we write to the same
1991 		 * offset and new ensures that we do proper zero out
1992 		 * for partial write.
1993 		 */
1994 		set_buffer_new(bh);
1995 		set_buffer_mapped(bh);
1996 	}
1997 	return 0;
1998 }
1999 
bget_one(handle_t * handle,struct buffer_head * bh)2000 static int bget_one(handle_t *handle, struct buffer_head *bh)
2001 {
2002 	get_bh(bh);
2003 	return 0;
2004 }
2005 
bput_one(handle_t * handle,struct buffer_head * bh)2006 static int bput_one(handle_t *handle, struct buffer_head *bh)
2007 {
2008 	put_bh(bh);
2009 	return 0;
2010 }
2011 
__ext4_journalled_writepage(struct page * page,unsigned int len)2012 static int __ext4_journalled_writepage(struct page *page,
2013 				       unsigned int len)
2014 {
2015 	struct address_space *mapping = page->mapping;
2016 	struct inode *inode = mapping->host;
2017 	struct buffer_head *page_bufs = NULL;
2018 	handle_t *handle = NULL;
2019 	int ret = 0, err = 0;
2020 	int inline_data = ext4_has_inline_data(inode);
2021 	struct buffer_head *inode_bh = NULL;
2022 
2023 	ClearPageChecked(page);
2024 
2025 	if (inline_data) {
2026 		BUG_ON(page->index != 0);
2027 		BUG_ON(len > ext4_get_max_inline_size(inode));
2028 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2029 		if (inode_bh == NULL)
2030 			goto out;
2031 	} else {
2032 		page_bufs = page_buffers(page);
2033 		if (!page_bufs) {
2034 			BUG();
2035 			goto out;
2036 		}
2037 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2038 				       NULL, bget_one);
2039 	}
2040 	/*
2041 	 * We need to release the page lock before we start the
2042 	 * journal, so grab a reference so the page won't disappear
2043 	 * out from under us.
2044 	 */
2045 	get_page(page);
2046 	unlock_page(page);
2047 
2048 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2049 				    ext4_writepage_trans_blocks(inode));
2050 	if (IS_ERR(handle)) {
2051 		ret = PTR_ERR(handle);
2052 		put_page(page);
2053 		goto out_no_pagelock;
2054 	}
2055 	BUG_ON(!ext4_handle_valid(handle));
2056 
2057 	lock_page(page);
2058 	put_page(page);
2059 	if (page->mapping != mapping) {
2060 		/* The page got truncated from under us */
2061 		ext4_journal_stop(handle);
2062 		ret = 0;
2063 		goto out;
2064 	}
2065 
2066 	if (inline_data) {
2067 		ret = ext4_mark_inode_dirty(handle, inode);
2068 	} else {
2069 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2070 					     do_journal_get_write_access);
2071 
2072 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2073 					     write_end_fn);
2074 	}
2075 	if (ret == 0)
2076 		ret = err;
2077 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2078 	err = ext4_journal_stop(handle);
2079 	if (!ret)
2080 		ret = err;
2081 
2082 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2083 out:
2084 	unlock_page(page);
2085 out_no_pagelock:
2086 	if (!inline_data && page_bufs)
2087 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2088 				       NULL, bput_one);
2089 	brelse(inode_bh);
2090 	return ret;
2091 }
2092 
2093 /*
2094  * Note that we don't need to start a transaction unless we're journaling data
2095  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2096  * need to file the inode to the transaction's list in ordered mode because if
2097  * we are writing back data added by write(), the inode is already there and if
2098  * we are writing back data modified via mmap(), no one guarantees in which
2099  * transaction the data will hit the disk. In case we are journaling data, we
2100  * cannot start transaction directly because transaction start ranks above page
2101  * lock so we have to do some magic.
2102  *
2103  * This function can get called via...
2104  *   - ext4_writepages after taking page lock (have journal handle)
2105  *   - journal_submit_inode_data_buffers (no journal handle)
2106  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2107  *   - grab_page_cache when doing write_begin (have journal handle)
2108  *
2109  * We don't do any block allocation in this function. If we have page with
2110  * multiple blocks we need to write those buffer_heads that are mapped. This
2111  * is important for mmaped based write. So if we do with blocksize 1K
2112  * truncate(f, 1024);
2113  * a = mmap(f, 0, 4096);
2114  * a[0] = 'a';
2115  * truncate(f, 4096);
2116  * we have in the page first buffer_head mapped via page_mkwrite call back
2117  * but other buffer_heads would be unmapped but dirty (dirty done via the
2118  * do_wp_page). So writepage should write the first block. If we modify
2119  * the mmap area beyond 1024 we will again get a page_fault and the
2120  * page_mkwrite callback will do the block allocation and mark the
2121  * buffer_heads mapped.
2122  *
2123  * We redirty the page if we have any buffer_heads that is either delay or
2124  * unwritten in the page.
2125  *
2126  * We can get recursively called as show below.
2127  *
2128  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2129  *		ext4_writepage()
2130  *
2131  * But since we don't do any block allocation we should not deadlock.
2132  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2133  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2134 static int ext4_writepage(struct page *page,
2135 			  struct writeback_control *wbc)
2136 {
2137 	int ret = 0;
2138 	loff_t size;
2139 	unsigned int len;
2140 	struct buffer_head *page_bufs = NULL;
2141 	struct inode *inode = page->mapping->host;
2142 	struct ext4_io_submit io_submit;
2143 	bool keep_towrite = false;
2144 
2145 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2146 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2147 		unlock_page(page);
2148 		return -EIO;
2149 	}
2150 
2151 	trace_ext4_writepage(page);
2152 	size = i_size_read(inode);
2153 	if (page->index == size >> PAGE_SHIFT)
2154 		len = size & ~PAGE_MASK;
2155 	else
2156 		len = PAGE_SIZE;
2157 
2158 	/* Should never happen but for bugs in other kernel subsystems */
2159 	if (!page_has_buffers(page)) {
2160 		ext4_warning_inode(inode,
2161 		   "page %lu does not have buffers attached", page->index);
2162 		ClearPageDirty(page);
2163 		unlock_page(page);
2164 		return 0;
2165 	}
2166 
2167 	page_bufs = page_buffers(page);
2168 	/*
2169 	 * We cannot do block allocation or other extent handling in this
2170 	 * function. If there are buffers needing that, we have to redirty
2171 	 * the page. But we may reach here when we do a journal commit via
2172 	 * journal_submit_inode_data_buffers() and in that case we must write
2173 	 * allocated buffers to achieve data=ordered mode guarantees.
2174 	 *
2175 	 * Also, if there is only one buffer per page (the fs block
2176 	 * size == the page size), if one buffer needs block
2177 	 * allocation or needs to modify the extent tree to clear the
2178 	 * unwritten flag, we know that the page can't be written at
2179 	 * all, so we might as well refuse the write immediately.
2180 	 * Unfortunately if the block size != page size, we can't as
2181 	 * easily detect this case using ext4_walk_page_buffers(), but
2182 	 * for the extremely common case, this is an optimization that
2183 	 * skips a useless round trip through ext4_bio_write_page().
2184 	 */
2185 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2186 				   ext4_bh_delay_or_unwritten)) {
2187 		redirty_page_for_writepage(wbc, page);
2188 		if ((current->flags & PF_MEMALLOC) ||
2189 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2190 			/*
2191 			 * For memory cleaning there's no point in writing only
2192 			 * some buffers. So just bail out. Warn if we came here
2193 			 * from direct reclaim.
2194 			 */
2195 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2196 							== PF_MEMALLOC);
2197 			unlock_page(page);
2198 			return 0;
2199 		}
2200 		keep_towrite = true;
2201 	}
2202 
2203 	if (PageChecked(page) && ext4_should_journal_data(inode))
2204 		/*
2205 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2206 		 * doesn't seem much point in redirtying the page here.
2207 		 */
2208 		return __ext4_journalled_writepage(page, len);
2209 
2210 	ext4_io_submit_init(&io_submit, wbc);
2211 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2212 	if (!io_submit.io_end) {
2213 		redirty_page_for_writepage(wbc, page);
2214 		unlock_page(page);
2215 		return -ENOMEM;
2216 	}
2217 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2218 	ext4_io_submit(&io_submit);
2219 	/* Drop io_end reference we got from init */
2220 	ext4_put_io_end_defer(io_submit.io_end);
2221 	return ret;
2222 }
2223 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2224 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2225 {
2226 	int len;
2227 	loff_t size;
2228 	int err;
2229 
2230 	BUG_ON(page->index != mpd->first_page);
2231 	clear_page_dirty_for_io(page);
2232 	/*
2233 	 * We have to be very careful here!  Nothing protects writeback path
2234 	 * against i_size changes and the page can be writeably mapped into
2235 	 * page tables. So an application can be growing i_size and writing
2236 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2237 	 * write-protects our page in page tables and the page cannot get
2238 	 * written to again until we release page lock. So only after
2239 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2240 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2241 	 * on the barrier provided by TestClearPageDirty in
2242 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2243 	 * after page tables are updated.
2244 	 */
2245 	size = i_size_read(mpd->inode);
2246 	if (page->index == size >> PAGE_SHIFT)
2247 		len = size & ~PAGE_MASK;
2248 	else
2249 		len = PAGE_SIZE;
2250 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2251 	if (!err)
2252 		mpd->wbc->nr_to_write--;
2253 	mpd->first_page++;
2254 
2255 	return err;
2256 }
2257 
2258 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2259 
2260 /*
2261  * mballoc gives us at most this number of blocks...
2262  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2263  * The rest of mballoc seems to handle chunks up to full group size.
2264  */
2265 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2266 
2267 /*
2268  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2269  *
2270  * @mpd - extent of blocks
2271  * @lblk - logical number of the block in the file
2272  * @bh - buffer head we want to add to the extent
2273  *
2274  * The function is used to collect contig. blocks in the same state. If the
2275  * buffer doesn't require mapping for writeback and we haven't started the
2276  * extent of buffers to map yet, the function returns 'true' immediately - the
2277  * caller can write the buffer right away. Otherwise the function returns true
2278  * if the block has been added to the extent, false if the block couldn't be
2279  * added.
2280  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2281 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2282 				   struct buffer_head *bh)
2283 {
2284 	struct ext4_map_blocks *map = &mpd->map;
2285 
2286 	/* Buffer that doesn't need mapping for writeback? */
2287 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2288 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2289 		/* So far no extent to map => we write the buffer right away */
2290 		if (map->m_len == 0)
2291 			return true;
2292 		return false;
2293 	}
2294 
2295 	/* First block in the extent? */
2296 	if (map->m_len == 0) {
2297 		/* We cannot map unless handle is started... */
2298 		if (!mpd->do_map)
2299 			return false;
2300 		map->m_lblk = lblk;
2301 		map->m_len = 1;
2302 		map->m_flags = bh->b_state & BH_FLAGS;
2303 		return true;
2304 	}
2305 
2306 	/* Don't go larger than mballoc is willing to allocate */
2307 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2308 		return false;
2309 
2310 	/* Can we merge the block to our big extent? */
2311 	if (lblk == map->m_lblk + map->m_len &&
2312 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2313 		map->m_len++;
2314 		return true;
2315 	}
2316 	return false;
2317 }
2318 
2319 /*
2320  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2321  *
2322  * @mpd - extent of blocks for mapping
2323  * @head - the first buffer in the page
2324  * @bh - buffer we should start processing from
2325  * @lblk - logical number of the block in the file corresponding to @bh
2326  *
2327  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2328  * the page for IO if all buffers in this page were mapped and there's no
2329  * accumulated extent of buffers to map or add buffers in the page to the
2330  * extent of buffers to map. The function returns 1 if the caller can continue
2331  * by processing the next page, 0 if it should stop adding buffers to the
2332  * extent to map because we cannot extend it anymore. It can also return value
2333  * < 0 in case of error during IO submission.
2334  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2335 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2336 				   struct buffer_head *head,
2337 				   struct buffer_head *bh,
2338 				   ext4_lblk_t lblk)
2339 {
2340 	struct inode *inode = mpd->inode;
2341 	int err;
2342 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2343 							>> inode->i_blkbits;
2344 
2345 	do {
2346 		BUG_ON(buffer_locked(bh));
2347 
2348 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2349 			/* Found extent to map? */
2350 			if (mpd->map.m_len)
2351 				return 0;
2352 			/* Buffer needs mapping and handle is not started? */
2353 			if (!mpd->do_map)
2354 				return 0;
2355 			/* Everything mapped so far and we hit EOF */
2356 			break;
2357 		}
2358 	} while (lblk++, (bh = bh->b_this_page) != head);
2359 	/* So far everything mapped? Submit the page for IO. */
2360 	if (mpd->map.m_len == 0) {
2361 		err = mpage_submit_page(mpd, head->b_page);
2362 		if (err < 0)
2363 			return err;
2364 	}
2365 	return lblk < blocks;
2366 }
2367 
2368 /*
2369  * mpage_map_buffers - update buffers corresponding to changed extent and
2370  *		       submit fully mapped pages for IO
2371  *
2372  * @mpd - description of extent to map, on return next extent to map
2373  *
2374  * Scan buffers corresponding to changed extent (we expect corresponding pages
2375  * to be already locked) and update buffer state according to new extent state.
2376  * We map delalloc buffers to their physical location, clear unwritten bits,
2377  * and mark buffers as uninit when we perform writes to unwritten extents
2378  * and do extent conversion after IO is finished. If the last page is not fully
2379  * mapped, we update @map to the next extent in the last page that needs
2380  * mapping. Otherwise we submit the page for IO.
2381  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2382 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2383 {
2384 	struct pagevec pvec;
2385 	int nr_pages, i;
2386 	struct inode *inode = mpd->inode;
2387 	struct buffer_head *head, *bh;
2388 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2389 	pgoff_t start, end;
2390 	ext4_lblk_t lblk;
2391 	sector_t pblock;
2392 	int err;
2393 
2394 	start = mpd->map.m_lblk >> bpp_bits;
2395 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2396 	lblk = start << bpp_bits;
2397 	pblock = mpd->map.m_pblk;
2398 
2399 	pagevec_init(&pvec);
2400 	while (start <= end) {
2401 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2402 						&start, end);
2403 		if (nr_pages == 0)
2404 			break;
2405 		for (i = 0; i < nr_pages; i++) {
2406 			struct page *page = pvec.pages[i];
2407 
2408 			bh = head = page_buffers(page);
2409 			do {
2410 				if (lblk < mpd->map.m_lblk)
2411 					continue;
2412 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2413 					/*
2414 					 * Buffer after end of mapped extent.
2415 					 * Find next buffer in the page to map.
2416 					 */
2417 					mpd->map.m_len = 0;
2418 					mpd->map.m_flags = 0;
2419 					/*
2420 					 * FIXME: If dioread_nolock supports
2421 					 * blocksize < pagesize, we need to make
2422 					 * sure we add size mapped so far to
2423 					 * io_end->size as the following call
2424 					 * can submit the page for IO.
2425 					 */
2426 					err = mpage_process_page_bufs(mpd, head,
2427 								      bh, lblk);
2428 					pagevec_release(&pvec);
2429 					if (err > 0)
2430 						err = 0;
2431 					return err;
2432 				}
2433 				if (buffer_delay(bh)) {
2434 					clear_buffer_delay(bh);
2435 					bh->b_blocknr = pblock++;
2436 				}
2437 				clear_buffer_unwritten(bh);
2438 			} while (lblk++, (bh = bh->b_this_page) != head);
2439 
2440 			/*
2441 			 * FIXME: This is going to break if dioread_nolock
2442 			 * supports blocksize < pagesize as we will try to
2443 			 * convert potentially unmapped parts of inode.
2444 			 */
2445 			mpd->io_submit.io_end->size += PAGE_SIZE;
2446 			/* Page fully mapped - let IO run! */
2447 			err = mpage_submit_page(mpd, page);
2448 			if (err < 0) {
2449 				pagevec_release(&pvec);
2450 				return err;
2451 			}
2452 		}
2453 		pagevec_release(&pvec);
2454 	}
2455 	/* Extent fully mapped and matches with page boundary. We are done. */
2456 	mpd->map.m_len = 0;
2457 	mpd->map.m_flags = 0;
2458 	return 0;
2459 }
2460 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2461 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2462 {
2463 	struct inode *inode = mpd->inode;
2464 	struct ext4_map_blocks *map = &mpd->map;
2465 	int get_blocks_flags;
2466 	int err, dioread_nolock;
2467 
2468 	trace_ext4_da_write_pages_extent(inode, map);
2469 	/*
2470 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2471 	 * to convert an unwritten extent to be initialized (in the case
2472 	 * where we have written into one or more preallocated blocks).  It is
2473 	 * possible that we're going to need more metadata blocks than
2474 	 * previously reserved. However we must not fail because we're in
2475 	 * writeback and there is nothing we can do about it so it might result
2476 	 * in data loss.  So use reserved blocks to allocate metadata if
2477 	 * possible.
2478 	 *
2479 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2480 	 * the blocks in question are delalloc blocks.  This indicates
2481 	 * that the blocks and quotas has already been checked when
2482 	 * the data was copied into the page cache.
2483 	 */
2484 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2485 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2486 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2487 	dioread_nolock = ext4_should_dioread_nolock(inode);
2488 	if (dioread_nolock)
2489 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2490 	if (map->m_flags & (1 << BH_Delay))
2491 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2492 
2493 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2494 	if (err < 0)
2495 		return err;
2496 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2497 		if (!mpd->io_submit.io_end->handle &&
2498 		    ext4_handle_valid(handle)) {
2499 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2500 			handle->h_rsv_handle = NULL;
2501 		}
2502 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2503 	}
2504 
2505 	BUG_ON(map->m_len == 0);
2506 	if (map->m_flags & EXT4_MAP_NEW) {
2507 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2508 				   map->m_len);
2509 	}
2510 	return 0;
2511 }
2512 
2513 /*
2514  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2515  *				 mpd->len and submit pages underlying it for IO
2516  *
2517  * @handle - handle for journal operations
2518  * @mpd - extent to map
2519  * @give_up_on_write - we set this to true iff there is a fatal error and there
2520  *                     is no hope of writing the data. The caller should discard
2521  *                     dirty pages to avoid infinite loops.
2522  *
2523  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2524  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2525  * them to initialized or split the described range from larger unwritten
2526  * extent. Note that we need not map all the described range since allocation
2527  * can return less blocks or the range is covered by more unwritten extents. We
2528  * cannot map more because we are limited by reserved transaction credits. On
2529  * the other hand we always make sure that the last touched page is fully
2530  * mapped so that it can be written out (and thus forward progress is
2531  * guaranteed). After mapping we submit all mapped pages for IO.
2532  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2533 static int mpage_map_and_submit_extent(handle_t *handle,
2534 				       struct mpage_da_data *mpd,
2535 				       bool *give_up_on_write)
2536 {
2537 	struct inode *inode = mpd->inode;
2538 	struct ext4_map_blocks *map = &mpd->map;
2539 	int err;
2540 	loff_t disksize;
2541 	int progress = 0;
2542 
2543 	mpd->io_submit.io_end->offset =
2544 				((loff_t)map->m_lblk) << inode->i_blkbits;
2545 	do {
2546 		err = mpage_map_one_extent(handle, mpd);
2547 		if (err < 0) {
2548 			struct super_block *sb = inode->i_sb;
2549 
2550 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2551 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2552 				goto invalidate_dirty_pages;
2553 			/*
2554 			 * Let the uper layers retry transient errors.
2555 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2556 			 * is non-zero, a commit should free up blocks.
2557 			 */
2558 			if ((err == -ENOMEM) ||
2559 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2560 				if (progress)
2561 					goto update_disksize;
2562 				return err;
2563 			}
2564 			ext4_msg(sb, KERN_CRIT,
2565 				 "Delayed block allocation failed for "
2566 				 "inode %lu at logical offset %llu with"
2567 				 " max blocks %u with error %d",
2568 				 inode->i_ino,
2569 				 (unsigned long long)map->m_lblk,
2570 				 (unsigned)map->m_len, -err);
2571 			ext4_msg(sb, KERN_CRIT,
2572 				 "This should not happen!! Data will "
2573 				 "be lost\n");
2574 			if (err == -ENOSPC)
2575 				ext4_print_free_blocks(inode);
2576 		invalidate_dirty_pages:
2577 			*give_up_on_write = true;
2578 			return err;
2579 		}
2580 		progress = 1;
2581 		/*
2582 		 * Update buffer state, submit mapped pages, and get us new
2583 		 * extent to map
2584 		 */
2585 		err = mpage_map_and_submit_buffers(mpd);
2586 		if (err < 0)
2587 			goto update_disksize;
2588 	} while (map->m_len);
2589 
2590 update_disksize:
2591 	/*
2592 	 * Update on-disk size after IO is submitted.  Races with
2593 	 * truncate are avoided by checking i_size under i_data_sem.
2594 	 */
2595 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2596 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2597 		int err2;
2598 		loff_t i_size;
2599 
2600 		down_write(&EXT4_I(inode)->i_data_sem);
2601 		i_size = i_size_read(inode);
2602 		if (disksize > i_size)
2603 			disksize = i_size;
2604 		if (disksize > EXT4_I(inode)->i_disksize)
2605 			EXT4_I(inode)->i_disksize = disksize;
2606 		up_write(&EXT4_I(inode)->i_data_sem);
2607 		err2 = ext4_mark_inode_dirty(handle, inode);
2608 		if (err2)
2609 			ext4_error(inode->i_sb,
2610 				   "Failed to mark inode %lu dirty",
2611 				   inode->i_ino);
2612 		if (!err)
2613 			err = err2;
2614 	}
2615 	return err;
2616 }
2617 
2618 /*
2619  * Calculate the total number of credits to reserve for one writepages
2620  * iteration. This is called from ext4_writepages(). We map an extent of
2621  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2622  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2623  * bpp - 1 blocks in bpp different extents.
2624  */
ext4_da_writepages_trans_blocks(struct inode * inode)2625 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2626 {
2627 	int bpp = ext4_journal_blocks_per_page(inode);
2628 
2629 	return ext4_meta_trans_blocks(inode,
2630 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2631 }
2632 
2633 /*
2634  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2635  * 				 and underlying extent to map
2636  *
2637  * @mpd - where to look for pages
2638  *
2639  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2640  * IO immediately. When we find a page which isn't mapped we start accumulating
2641  * extent of buffers underlying these pages that needs mapping (formed by
2642  * either delayed or unwritten buffers). We also lock the pages containing
2643  * these buffers. The extent found is returned in @mpd structure (starting at
2644  * mpd->lblk with length mpd->len blocks).
2645  *
2646  * Note that this function can attach bios to one io_end structure which are
2647  * neither logically nor physically contiguous. Although it may seem as an
2648  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2649  * case as we need to track IO to all buffers underlying a page in one io_end.
2650  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2651 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2652 {
2653 	struct address_space *mapping = mpd->inode->i_mapping;
2654 	struct pagevec pvec;
2655 	unsigned int nr_pages;
2656 	long left = mpd->wbc->nr_to_write;
2657 	pgoff_t index = mpd->first_page;
2658 	pgoff_t end = mpd->last_page;
2659 	int tag;
2660 	int i, err = 0;
2661 	int blkbits = mpd->inode->i_blkbits;
2662 	ext4_lblk_t lblk;
2663 	struct buffer_head *head;
2664 
2665 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2666 		tag = PAGECACHE_TAG_TOWRITE;
2667 	else
2668 		tag = PAGECACHE_TAG_DIRTY;
2669 
2670 	pagevec_init(&pvec);
2671 	mpd->map.m_len = 0;
2672 	mpd->next_page = index;
2673 	while (index <= end) {
2674 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2675 				tag);
2676 		if (nr_pages == 0)
2677 			goto out;
2678 
2679 		for (i = 0; i < nr_pages; i++) {
2680 			struct page *page = pvec.pages[i];
2681 
2682 			/*
2683 			 * Accumulated enough dirty pages? This doesn't apply
2684 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2685 			 * keep going because someone may be concurrently
2686 			 * dirtying pages, and we might have synced a lot of
2687 			 * newly appeared dirty pages, but have not synced all
2688 			 * of the old dirty pages.
2689 			 */
2690 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2691 				goto out;
2692 
2693 			/* If we can't merge this page, we are done. */
2694 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2695 				goto out;
2696 
2697 			lock_page(page);
2698 			/*
2699 			 * If the page is no longer dirty, or its mapping no
2700 			 * longer corresponds to inode we are writing (which
2701 			 * means it has been truncated or invalidated), or the
2702 			 * page is already under writeback and we are not doing
2703 			 * a data integrity writeback, skip the page
2704 			 */
2705 			if (!PageDirty(page) ||
2706 			    (PageWriteback(page) &&
2707 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2708 			    unlikely(page->mapping != mapping)) {
2709 				unlock_page(page);
2710 				continue;
2711 			}
2712 
2713 			wait_on_page_writeback(page);
2714 			BUG_ON(PageWriteback(page));
2715 
2716 			/*
2717 			 * Should never happen but for buggy code in
2718 			 * other subsystems that call
2719 			 * set_page_dirty() without properly warning
2720 			 * the file system first.  See [1] for more
2721 			 * information.
2722 			 *
2723 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2724 			 */
2725 			if (!page_has_buffers(page)) {
2726 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2727 				ClearPageDirty(page);
2728 				unlock_page(page);
2729 				continue;
2730 			}
2731 
2732 			if (mpd->map.m_len == 0)
2733 				mpd->first_page = page->index;
2734 			mpd->next_page = page->index + 1;
2735 			/* Add all dirty buffers to mpd */
2736 			lblk = ((ext4_lblk_t)page->index) <<
2737 				(PAGE_SHIFT - blkbits);
2738 			head = page_buffers(page);
2739 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2740 			if (err <= 0)
2741 				goto out;
2742 			err = 0;
2743 			left--;
2744 		}
2745 		pagevec_release(&pvec);
2746 		cond_resched();
2747 	}
2748 	return 0;
2749 out:
2750 	pagevec_release(&pvec);
2751 	return err;
2752 }
2753 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2754 static int ext4_writepages(struct address_space *mapping,
2755 			   struct writeback_control *wbc)
2756 {
2757 	pgoff_t	writeback_index = 0;
2758 	long nr_to_write = wbc->nr_to_write;
2759 	int range_whole = 0;
2760 	int cycled = 1;
2761 	handle_t *handle = NULL;
2762 	struct mpage_da_data mpd;
2763 	struct inode *inode = mapping->host;
2764 	int needed_blocks, rsv_blocks = 0, ret = 0;
2765 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2766 	bool done;
2767 	struct blk_plug plug;
2768 	bool give_up_on_write = false;
2769 
2770 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2771 		return -EIO;
2772 
2773 	percpu_down_read(&sbi->s_writepages_rwsem);
2774 	trace_ext4_writepages(inode, wbc);
2775 
2776 	/*
2777 	 * No pages to write? This is mainly a kludge to avoid starting
2778 	 * a transaction for special inodes like journal inode on last iput()
2779 	 * because that could violate lock ordering on umount
2780 	 */
2781 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2782 		goto out_writepages;
2783 
2784 	if (ext4_should_journal_data(inode)) {
2785 		ret = generic_writepages(mapping, wbc);
2786 		goto out_writepages;
2787 	}
2788 
2789 	/*
2790 	 * If the filesystem has aborted, it is read-only, so return
2791 	 * right away instead of dumping stack traces later on that
2792 	 * will obscure the real source of the problem.  We test
2793 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2794 	 * the latter could be true if the filesystem is mounted
2795 	 * read-only, and in that case, ext4_writepages should
2796 	 * *never* be called, so if that ever happens, we would want
2797 	 * the stack trace.
2798 	 */
2799 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2800 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2801 		ret = -EROFS;
2802 		goto out_writepages;
2803 	}
2804 
2805 	if (ext4_should_dioread_nolock(inode)) {
2806 		/*
2807 		 * We may need to convert up to one extent per block in
2808 		 * the page and we may dirty the inode.
2809 		 */
2810 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2811 						PAGE_SIZE >> inode->i_blkbits);
2812 	}
2813 
2814 	/*
2815 	 * If we have inline data and arrive here, it means that
2816 	 * we will soon create the block for the 1st page, so
2817 	 * we'd better clear the inline data here.
2818 	 */
2819 	if (ext4_has_inline_data(inode)) {
2820 		/* Just inode will be modified... */
2821 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2822 		if (IS_ERR(handle)) {
2823 			ret = PTR_ERR(handle);
2824 			goto out_writepages;
2825 		}
2826 		BUG_ON(ext4_test_inode_state(inode,
2827 				EXT4_STATE_MAY_INLINE_DATA));
2828 		ext4_destroy_inline_data(handle, inode);
2829 		ext4_journal_stop(handle);
2830 	}
2831 
2832 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2833 		range_whole = 1;
2834 
2835 	if (wbc->range_cyclic) {
2836 		writeback_index = mapping->writeback_index;
2837 		if (writeback_index)
2838 			cycled = 0;
2839 		mpd.first_page = writeback_index;
2840 		mpd.last_page = -1;
2841 	} else {
2842 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2843 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2844 	}
2845 
2846 	mpd.inode = inode;
2847 	mpd.wbc = wbc;
2848 	ext4_io_submit_init(&mpd.io_submit, wbc);
2849 retry:
2850 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2851 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2852 	done = false;
2853 	blk_start_plug(&plug);
2854 
2855 	/*
2856 	 * First writeback pages that don't need mapping - we can avoid
2857 	 * starting a transaction unnecessarily and also avoid being blocked
2858 	 * in the block layer on device congestion while having transaction
2859 	 * started.
2860 	 */
2861 	mpd.do_map = 0;
2862 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2863 	if (!mpd.io_submit.io_end) {
2864 		ret = -ENOMEM;
2865 		goto unplug;
2866 	}
2867 	ret = mpage_prepare_extent_to_map(&mpd);
2868 	/* Submit prepared bio */
2869 	ext4_io_submit(&mpd.io_submit);
2870 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2871 	mpd.io_submit.io_end = NULL;
2872 	/* Unlock pages we didn't use */
2873 	mpage_release_unused_pages(&mpd, false);
2874 	if (ret < 0)
2875 		goto unplug;
2876 
2877 	while (!done && mpd.first_page <= mpd.last_page) {
2878 		/* For each extent of pages we use new io_end */
2879 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2880 		if (!mpd.io_submit.io_end) {
2881 			ret = -ENOMEM;
2882 			break;
2883 		}
2884 
2885 		/*
2886 		 * We have two constraints: We find one extent to map and we
2887 		 * must always write out whole page (makes a difference when
2888 		 * blocksize < pagesize) so that we don't block on IO when we
2889 		 * try to write out the rest of the page. Journalled mode is
2890 		 * not supported by delalloc.
2891 		 */
2892 		BUG_ON(ext4_should_journal_data(inode));
2893 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2894 
2895 		/* start a new transaction */
2896 		handle = ext4_journal_start_with_reserve(inode,
2897 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2898 		if (IS_ERR(handle)) {
2899 			ret = PTR_ERR(handle);
2900 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2901 			       "%ld pages, ino %lu; err %d", __func__,
2902 				wbc->nr_to_write, inode->i_ino, ret);
2903 			/* Release allocated io_end */
2904 			ext4_put_io_end(mpd.io_submit.io_end);
2905 			mpd.io_submit.io_end = NULL;
2906 			break;
2907 		}
2908 		mpd.do_map = 1;
2909 
2910 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2911 		ret = mpage_prepare_extent_to_map(&mpd);
2912 		if (!ret) {
2913 			if (mpd.map.m_len)
2914 				ret = mpage_map_and_submit_extent(handle, &mpd,
2915 					&give_up_on_write);
2916 			else {
2917 				/*
2918 				 * We scanned the whole range (or exhausted
2919 				 * nr_to_write), submitted what was mapped and
2920 				 * didn't find anything needing mapping. We are
2921 				 * done.
2922 				 */
2923 				done = true;
2924 			}
2925 		}
2926 		/*
2927 		 * Caution: If the handle is synchronous,
2928 		 * ext4_journal_stop() can wait for transaction commit
2929 		 * to finish which may depend on writeback of pages to
2930 		 * complete or on page lock to be released.  In that
2931 		 * case, we have to wait until after after we have
2932 		 * submitted all the IO, released page locks we hold,
2933 		 * and dropped io_end reference (for extent conversion
2934 		 * to be able to complete) before stopping the handle.
2935 		 */
2936 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2937 			ext4_journal_stop(handle);
2938 			handle = NULL;
2939 			mpd.do_map = 0;
2940 		}
2941 		/* Submit prepared bio */
2942 		ext4_io_submit(&mpd.io_submit);
2943 		/* Unlock pages we didn't use */
2944 		mpage_release_unused_pages(&mpd, give_up_on_write);
2945 		/*
2946 		 * Drop our io_end reference we got from init. We have
2947 		 * to be careful and use deferred io_end finishing if
2948 		 * we are still holding the transaction as we can
2949 		 * release the last reference to io_end which may end
2950 		 * up doing unwritten extent conversion.
2951 		 */
2952 		if (handle) {
2953 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2954 			ext4_journal_stop(handle);
2955 		} else
2956 			ext4_put_io_end(mpd.io_submit.io_end);
2957 		mpd.io_submit.io_end = NULL;
2958 
2959 		if (ret == -ENOSPC && sbi->s_journal) {
2960 			/*
2961 			 * Commit the transaction which would
2962 			 * free blocks released in the transaction
2963 			 * and try again
2964 			 */
2965 			jbd2_journal_force_commit_nested(sbi->s_journal);
2966 			ret = 0;
2967 			continue;
2968 		}
2969 		/* Fatal error - ENOMEM, EIO... */
2970 		if (ret)
2971 			break;
2972 	}
2973 unplug:
2974 	blk_finish_plug(&plug);
2975 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2976 		cycled = 1;
2977 		mpd.last_page = writeback_index - 1;
2978 		mpd.first_page = 0;
2979 		goto retry;
2980 	}
2981 
2982 	/* Update index */
2983 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2984 		/*
2985 		 * Set the writeback_index so that range_cyclic
2986 		 * mode will write it back later
2987 		 */
2988 		mapping->writeback_index = mpd.first_page;
2989 
2990 out_writepages:
2991 	trace_ext4_writepages_result(inode, wbc, ret,
2992 				     nr_to_write - wbc->nr_to_write);
2993 	percpu_up_read(&sbi->s_writepages_rwsem);
2994 	return ret;
2995 }
2996 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2997 static int ext4_dax_writepages(struct address_space *mapping,
2998 			       struct writeback_control *wbc)
2999 {
3000 	int ret;
3001 	long nr_to_write = wbc->nr_to_write;
3002 	struct inode *inode = mapping->host;
3003 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3004 
3005 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3006 		return -EIO;
3007 
3008 	percpu_down_read(&sbi->s_writepages_rwsem);
3009 	trace_ext4_writepages(inode, wbc);
3010 
3011 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3012 	trace_ext4_writepages_result(inode, wbc, ret,
3013 				     nr_to_write - wbc->nr_to_write);
3014 	percpu_up_read(&sbi->s_writepages_rwsem);
3015 	return ret;
3016 }
3017 
ext4_nonda_switch(struct super_block * sb)3018 static int ext4_nonda_switch(struct super_block *sb)
3019 {
3020 	s64 free_clusters, dirty_clusters;
3021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3022 
3023 	/*
3024 	 * switch to non delalloc mode if we are running low
3025 	 * on free block. The free block accounting via percpu
3026 	 * counters can get slightly wrong with percpu_counter_batch getting
3027 	 * accumulated on each CPU without updating global counters
3028 	 * Delalloc need an accurate free block accounting. So switch
3029 	 * to non delalloc when we are near to error range.
3030 	 */
3031 	free_clusters =
3032 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3033 	dirty_clusters =
3034 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3035 	/*
3036 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3037 	 */
3038 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3039 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3040 
3041 	if (2 * free_clusters < 3 * dirty_clusters ||
3042 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3043 		/*
3044 		 * free block count is less than 150% of dirty blocks
3045 		 * or free blocks is less than watermark
3046 		 */
3047 		return 1;
3048 	}
3049 	return 0;
3050 }
3051 
3052 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)3053 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3054 {
3055 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3056 		return 1;
3057 
3058 	if (pos + len <= 0x7fffffffULL)
3059 		return 1;
3060 
3061 	/* We might need to update the superblock to set LARGE_FILE */
3062 	return 2;
3063 }
3064 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3065 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3066 			       loff_t pos, unsigned len, unsigned flags,
3067 			       struct page **pagep, void **fsdata)
3068 {
3069 	int ret, retries = 0;
3070 	struct page *page;
3071 	pgoff_t index;
3072 	struct inode *inode = mapping->host;
3073 	handle_t *handle;
3074 
3075 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3076 		return -EIO;
3077 
3078 	index = pos >> PAGE_SHIFT;
3079 
3080 	if (ext4_nonda_switch(inode->i_sb) ||
3081 	    S_ISLNK(inode->i_mode)) {
3082 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3083 		return ext4_write_begin(file, mapping, pos,
3084 					len, flags, pagep, fsdata);
3085 	}
3086 	*fsdata = (void *)0;
3087 	trace_ext4_da_write_begin(inode, pos, len, flags);
3088 
3089 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3090 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3091 						      pos, len, flags,
3092 						      pagep, fsdata);
3093 		if (ret < 0)
3094 			return ret;
3095 		if (ret == 1)
3096 			return 0;
3097 	}
3098 
3099 	/*
3100 	 * grab_cache_page_write_begin() can take a long time if the
3101 	 * system is thrashing due to memory pressure, or if the page
3102 	 * is being written back.  So grab it first before we start
3103 	 * the transaction handle.  This also allows us to allocate
3104 	 * the page (if needed) without using GFP_NOFS.
3105 	 */
3106 retry_grab:
3107 	page = grab_cache_page_write_begin(mapping, index, flags);
3108 	if (!page)
3109 		return -ENOMEM;
3110 	unlock_page(page);
3111 
3112 	/*
3113 	 * With delayed allocation, we don't log the i_disksize update
3114 	 * if there is delayed block allocation. But we still need
3115 	 * to journalling the i_disksize update if writes to the end
3116 	 * of file which has an already mapped buffer.
3117 	 */
3118 retry_journal:
3119 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3120 				ext4_da_write_credits(inode, pos, len));
3121 	if (IS_ERR(handle)) {
3122 		put_page(page);
3123 		return PTR_ERR(handle);
3124 	}
3125 
3126 	lock_page(page);
3127 	if (page->mapping != mapping) {
3128 		/* The page got truncated from under us */
3129 		unlock_page(page);
3130 		put_page(page);
3131 		ext4_journal_stop(handle);
3132 		goto retry_grab;
3133 	}
3134 	/* In case writeback began while the page was unlocked */
3135 	wait_for_stable_page(page);
3136 
3137 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3138 	ret = ext4_block_write_begin(page, pos, len,
3139 				     ext4_da_get_block_prep);
3140 #else
3141 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3142 #endif
3143 	if (ret < 0) {
3144 		unlock_page(page);
3145 		ext4_journal_stop(handle);
3146 		/*
3147 		 * block_write_begin may have instantiated a few blocks
3148 		 * outside i_size.  Trim these off again. Don't need
3149 		 * i_size_read because we hold i_mutex.
3150 		 */
3151 		if (pos + len > inode->i_size)
3152 			ext4_truncate_failed_write(inode);
3153 
3154 		if (ret == -ENOSPC &&
3155 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3156 			goto retry_journal;
3157 
3158 		put_page(page);
3159 		return ret;
3160 	}
3161 
3162 	*pagep = page;
3163 	return ret;
3164 }
3165 
3166 /*
3167  * Check if we should update i_disksize
3168  * when write to the end of file but not require block allocation
3169  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3170 static int ext4_da_should_update_i_disksize(struct page *page,
3171 					    unsigned long offset)
3172 {
3173 	struct buffer_head *bh;
3174 	struct inode *inode = page->mapping->host;
3175 	unsigned int idx;
3176 	int i;
3177 
3178 	bh = page_buffers(page);
3179 	idx = offset >> inode->i_blkbits;
3180 
3181 	for (i = 0; i < idx; i++)
3182 		bh = bh->b_this_page;
3183 
3184 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3185 		return 0;
3186 	return 1;
3187 }
3188 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3189 static int ext4_da_write_end(struct file *file,
3190 			     struct address_space *mapping,
3191 			     loff_t pos, unsigned len, unsigned copied,
3192 			     struct page *page, void *fsdata)
3193 {
3194 	struct inode *inode = mapping->host;
3195 	int ret = 0, ret2;
3196 	handle_t *handle = ext4_journal_current_handle();
3197 	loff_t new_i_size;
3198 	unsigned long start, end;
3199 	int write_mode = (int)(unsigned long)fsdata;
3200 
3201 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3202 		return ext4_write_end(file, mapping, pos,
3203 				      len, copied, page, fsdata);
3204 
3205 	trace_ext4_da_write_end(inode, pos, len, copied);
3206 	start = pos & (PAGE_SIZE - 1);
3207 	end = start + copied - 1;
3208 
3209 	/*
3210 	 * generic_write_end() will run mark_inode_dirty() if i_size
3211 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3212 	 * into that.
3213 	 */
3214 	new_i_size = pos + copied;
3215 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3216 		if (ext4_has_inline_data(inode) ||
3217 		    ext4_da_should_update_i_disksize(page, end)) {
3218 			ext4_update_i_disksize(inode, new_i_size);
3219 			/* We need to mark inode dirty even if
3220 			 * new_i_size is less that inode->i_size
3221 			 * bu greater than i_disksize.(hint delalloc)
3222 			 */
3223 			ext4_mark_inode_dirty(handle, inode);
3224 		}
3225 	}
3226 
3227 	if (write_mode != CONVERT_INLINE_DATA &&
3228 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3229 	    ext4_has_inline_data(inode))
3230 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3231 						     page);
3232 	else
3233 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3234 							page, fsdata);
3235 
3236 	copied = ret2;
3237 	if (ret2 < 0)
3238 		ret = ret2;
3239 	ret2 = ext4_journal_stop(handle);
3240 	if (!ret)
3241 		ret = ret2;
3242 
3243 	return ret ? ret : copied;
3244 }
3245 
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3246 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3247 				   unsigned int length)
3248 {
3249 	/*
3250 	 * Drop reserved blocks
3251 	 */
3252 	BUG_ON(!PageLocked(page));
3253 	if (!page_has_buffers(page))
3254 		goto out;
3255 
3256 	ext4_da_page_release_reservation(page, offset, length);
3257 
3258 out:
3259 	ext4_invalidatepage(page, offset, length);
3260 
3261 	return;
3262 }
3263 
3264 /*
3265  * Force all delayed allocation blocks to be allocated for a given inode.
3266  */
ext4_alloc_da_blocks(struct inode * inode)3267 int ext4_alloc_da_blocks(struct inode *inode)
3268 {
3269 	trace_ext4_alloc_da_blocks(inode);
3270 
3271 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3272 		return 0;
3273 
3274 	/*
3275 	 * We do something simple for now.  The filemap_flush() will
3276 	 * also start triggering a write of the data blocks, which is
3277 	 * not strictly speaking necessary (and for users of
3278 	 * laptop_mode, not even desirable).  However, to do otherwise
3279 	 * would require replicating code paths in:
3280 	 *
3281 	 * ext4_writepages() ->
3282 	 *    write_cache_pages() ---> (via passed in callback function)
3283 	 *        __mpage_da_writepage() -->
3284 	 *           mpage_add_bh_to_extent()
3285 	 *           mpage_da_map_blocks()
3286 	 *
3287 	 * The problem is that write_cache_pages(), located in
3288 	 * mm/page-writeback.c, marks pages clean in preparation for
3289 	 * doing I/O, which is not desirable if we're not planning on
3290 	 * doing I/O at all.
3291 	 *
3292 	 * We could call write_cache_pages(), and then redirty all of
3293 	 * the pages by calling redirty_page_for_writepage() but that
3294 	 * would be ugly in the extreme.  So instead we would need to
3295 	 * replicate parts of the code in the above functions,
3296 	 * simplifying them because we wouldn't actually intend to
3297 	 * write out the pages, but rather only collect contiguous
3298 	 * logical block extents, call the multi-block allocator, and
3299 	 * then update the buffer heads with the block allocations.
3300 	 *
3301 	 * For now, though, we'll cheat by calling filemap_flush(),
3302 	 * which will map the blocks, and start the I/O, but not
3303 	 * actually wait for the I/O to complete.
3304 	 */
3305 	return filemap_flush(inode->i_mapping);
3306 }
3307 
3308 /*
3309  * bmap() is special.  It gets used by applications such as lilo and by
3310  * the swapper to find the on-disk block of a specific piece of data.
3311  *
3312  * Naturally, this is dangerous if the block concerned is still in the
3313  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3314  * filesystem and enables swap, then they may get a nasty shock when the
3315  * data getting swapped to that swapfile suddenly gets overwritten by
3316  * the original zero's written out previously to the journal and
3317  * awaiting writeback in the kernel's buffer cache.
3318  *
3319  * So, if we see any bmap calls here on a modified, data-journaled file,
3320  * take extra steps to flush any blocks which might be in the cache.
3321  */
ext4_bmap(struct address_space * mapping,sector_t block)3322 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3323 {
3324 	struct inode *inode = mapping->host;
3325 	journal_t *journal;
3326 	int err;
3327 
3328 	/*
3329 	 * We can get here for an inline file via the FIBMAP ioctl
3330 	 */
3331 	if (ext4_has_inline_data(inode))
3332 		return 0;
3333 
3334 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3335 			test_opt(inode->i_sb, DELALLOC)) {
3336 		/*
3337 		 * With delalloc we want to sync the file
3338 		 * so that we can make sure we allocate
3339 		 * blocks for file
3340 		 */
3341 		filemap_write_and_wait(mapping);
3342 	}
3343 
3344 	if (EXT4_JOURNAL(inode) &&
3345 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3346 		/*
3347 		 * This is a REALLY heavyweight approach, but the use of
3348 		 * bmap on dirty files is expected to be extremely rare:
3349 		 * only if we run lilo or swapon on a freshly made file
3350 		 * do we expect this to happen.
3351 		 *
3352 		 * (bmap requires CAP_SYS_RAWIO so this does not
3353 		 * represent an unprivileged user DOS attack --- we'd be
3354 		 * in trouble if mortal users could trigger this path at
3355 		 * will.)
3356 		 *
3357 		 * NB. EXT4_STATE_JDATA is not set on files other than
3358 		 * regular files.  If somebody wants to bmap a directory
3359 		 * or symlink and gets confused because the buffer
3360 		 * hasn't yet been flushed to disk, they deserve
3361 		 * everything they get.
3362 		 */
3363 
3364 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3365 		journal = EXT4_JOURNAL(inode);
3366 		jbd2_journal_lock_updates(journal);
3367 		err = jbd2_journal_flush(journal);
3368 		jbd2_journal_unlock_updates(journal);
3369 
3370 		if (err)
3371 			return 0;
3372 	}
3373 
3374 	return generic_block_bmap(mapping, block, ext4_get_block);
3375 }
3376 
ext4_readpage(struct file * file,struct page * page)3377 static int ext4_readpage(struct file *file, struct page *page)
3378 {
3379 	int ret = -EAGAIN;
3380 	struct inode *inode = page->mapping->host;
3381 
3382 	trace_ext4_readpage(page);
3383 
3384 	if (ext4_has_inline_data(inode))
3385 		ret = ext4_readpage_inline(inode, page);
3386 
3387 	if (ret == -EAGAIN)
3388 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3389 						false);
3390 
3391 	return ret;
3392 }
3393 
3394 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3395 ext4_readpages(struct file *file, struct address_space *mapping,
3396 		struct list_head *pages, unsigned nr_pages)
3397 {
3398 	struct inode *inode = mapping->host;
3399 
3400 	/* If the file has inline data, no need to do readpages. */
3401 	if (ext4_has_inline_data(inode))
3402 		return 0;
3403 
3404 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3405 }
3406 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3407 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3408 				unsigned int length)
3409 {
3410 	trace_ext4_invalidatepage(page, offset, length);
3411 
3412 	/* No journalling happens on data buffers when this function is used */
3413 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3414 
3415 	block_invalidatepage(page, offset, length);
3416 }
3417 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3418 static int __ext4_journalled_invalidatepage(struct page *page,
3419 					    unsigned int offset,
3420 					    unsigned int length)
3421 {
3422 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3423 
3424 	trace_ext4_journalled_invalidatepage(page, offset, length);
3425 
3426 	/*
3427 	 * If it's a full truncate we just forget about the pending dirtying
3428 	 */
3429 	if (offset == 0 && length == PAGE_SIZE)
3430 		ClearPageChecked(page);
3431 
3432 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3433 }
3434 
3435 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3436 static void ext4_journalled_invalidatepage(struct page *page,
3437 					   unsigned int offset,
3438 					   unsigned int length)
3439 {
3440 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3441 }
3442 
ext4_releasepage(struct page * page,gfp_t wait)3443 static int ext4_releasepage(struct page *page, gfp_t wait)
3444 {
3445 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3446 
3447 	trace_ext4_releasepage(page);
3448 
3449 	/* Page has dirty journalled data -> cannot release */
3450 	if (PageChecked(page))
3451 		return 0;
3452 	if (journal)
3453 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3454 	else
3455 		return try_to_free_buffers(page);
3456 }
3457 
ext4_inode_datasync_dirty(struct inode * inode)3458 static bool ext4_inode_datasync_dirty(struct inode *inode)
3459 {
3460 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3461 
3462 	if (journal)
3463 		return !jbd2_transaction_committed(journal,
3464 					EXT4_I(inode)->i_datasync_tid);
3465 	/* Any metadata buffers to write? */
3466 	if (!list_empty(&inode->i_mapping->private_list))
3467 		return true;
3468 	return inode->i_state & I_DIRTY_DATASYNC;
3469 }
3470 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)3471 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3472 			    unsigned flags, struct iomap *iomap)
3473 {
3474 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3475 	unsigned int blkbits = inode->i_blkbits;
3476 	unsigned long first_block, last_block;
3477 	struct ext4_map_blocks map;
3478 	bool delalloc = false;
3479 	int ret;
3480 
3481 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482 		return -EINVAL;
3483 	first_block = offset >> blkbits;
3484 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3485 			   EXT4_MAX_LOGICAL_BLOCK);
3486 
3487 	if (flags & IOMAP_REPORT) {
3488 		if (ext4_has_inline_data(inode)) {
3489 			ret = ext4_inline_data_iomap(inode, iomap);
3490 			if (ret != -EAGAIN) {
3491 				if (ret == 0 && offset >= iomap->length)
3492 					ret = -ENOENT;
3493 				return ret;
3494 			}
3495 		}
3496 	} else {
3497 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3498 			return -ERANGE;
3499 	}
3500 
3501 	map.m_lblk = first_block;
3502 	map.m_len = last_block - first_block + 1;
3503 
3504 	if (flags & IOMAP_REPORT) {
3505 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3506 		if (ret < 0)
3507 			return ret;
3508 
3509 		if (ret == 0) {
3510 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3511 			struct extent_status es;
3512 
3513 			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3514 
3515 			if (!es.es_len || es.es_lblk > end) {
3516 				/* entire range is a hole */
3517 			} else if (es.es_lblk > map.m_lblk) {
3518 				/* range starts with a hole */
3519 				map.m_len = es.es_lblk - map.m_lblk;
3520 			} else {
3521 				ext4_lblk_t offs = 0;
3522 
3523 				if (es.es_lblk < map.m_lblk)
3524 					offs = map.m_lblk - es.es_lblk;
3525 				map.m_lblk = es.es_lblk + offs;
3526 				map.m_len = es.es_len - offs;
3527 				delalloc = true;
3528 			}
3529 		}
3530 	} else if (flags & IOMAP_WRITE) {
3531 		int dio_credits;
3532 		handle_t *handle;
3533 		int retries = 0;
3534 
3535 		/* Trim mapping request to maximum we can map at once for DIO */
3536 		if (map.m_len > DIO_MAX_BLOCKS)
3537 			map.m_len = DIO_MAX_BLOCKS;
3538 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3539 retry:
3540 		/*
3541 		 * Either we allocate blocks and then we don't get unwritten
3542 		 * extent so we have reserved enough credits, or the blocks
3543 		 * are already allocated and unwritten and in that case
3544 		 * extent conversion fits in the credits as well.
3545 		 */
3546 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3547 					    dio_credits);
3548 		if (IS_ERR(handle))
3549 			return PTR_ERR(handle);
3550 
3551 		ret = ext4_map_blocks(handle, inode, &map,
3552 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3553 		if (ret < 0) {
3554 			ext4_journal_stop(handle);
3555 			if (ret == -ENOSPC &&
3556 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3557 				goto retry;
3558 			return ret;
3559 		}
3560 
3561 		/*
3562 		 * If we added blocks beyond i_size, we need to make sure they
3563 		 * will get truncated if we crash before updating i_size in
3564 		 * ext4_iomap_end(). For faults we don't need to do that (and
3565 		 * even cannot because for orphan list operations inode_lock is
3566 		 * required) - if we happen to instantiate block beyond i_size,
3567 		 * it is because we race with truncate which has already added
3568 		 * the inode to the orphan list.
3569 		 */
3570 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3571 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3572 			int err;
3573 
3574 			err = ext4_orphan_add(handle, inode);
3575 			if (err < 0) {
3576 				ext4_journal_stop(handle);
3577 				return err;
3578 			}
3579 		}
3580 		ext4_journal_stop(handle);
3581 	} else {
3582 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3583 		if (ret < 0)
3584 			return ret;
3585 	}
3586 
3587 	/*
3588 	 * Writes that span EOF might trigger an I/O size update on completion,
3589 	 * so consider them to be dirty for the purposes of O_DSYNC, even if
3590 	 * there is no other metadata changes being made or are pending here.
3591 	 */
3592 	iomap->flags = 0;
3593 	if (ext4_inode_datasync_dirty(inode) ||
3594 	    offset + length > i_size_read(inode))
3595 		iomap->flags |= IOMAP_F_DIRTY;
3596 	iomap->bdev = inode->i_sb->s_bdev;
3597 	iomap->dax_dev = sbi->s_daxdev;
3598 	iomap->offset = (u64)first_block << blkbits;
3599 	iomap->length = (u64)map.m_len << blkbits;
3600 
3601 	if (ret == 0) {
3602 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3603 		iomap->addr = IOMAP_NULL_ADDR;
3604 	} else {
3605 		if (map.m_flags & EXT4_MAP_MAPPED) {
3606 			iomap->type = IOMAP_MAPPED;
3607 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3608 			iomap->type = IOMAP_UNWRITTEN;
3609 		} else {
3610 			WARN_ON_ONCE(1);
3611 			return -EIO;
3612 		}
3613 		iomap->addr = (u64)map.m_pblk << blkbits;
3614 	}
3615 
3616 	if (map.m_flags & EXT4_MAP_NEW)
3617 		iomap->flags |= IOMAP_F_NEW;
3618 
3619 	return 0;
3620 }
3621 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3622 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3623 			  ssize_t written, unsigned flags, struct iomap *iomap)
3624 {
3625 	int ret = 0;
3626 	handle_t *handle;
3627 	int blkbits = inode->i_blkbits;
3628 	bool truncate = false;
3629 
3630 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3631 		return 0;
3632 
3633 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3634 	if (IS_ERR(handle)) {
3635 		ret = PTR_ERR(handle);
3636 		goto orphan_del;
3637 	}
3638 	if (ext4_update_inode_size(inode, offset + written))
3639 		ext4_mark_inode_dirty(handle, inode);
3640 	/*
3641 	 * We may need to truncate allocated but not written blocks beyond EOF.
3642 	 */
3643 	if (iomap->offset + iomap->length >
3644 	    ALIGN(inode->i_size, 1 << blkbits)) {
3645 		ext4_lblk_t written_blk, end_blk;
3646 
3647 		written_blk = (offset + written) >> blkbits;
3648 		end_blk = (offset + length) >> blkbits;
3649 		if (written_blk < end_blk && ext4_can_truncate(inode))
3650 			truncate = true;
3651 	}
3652 	/*
3653 	 * Remove inode from orphan list if we were extending a inode and
3654 	 * everything went fine.
3655 	 */
3656 	if (!truncate && inode->i_nlink &&
3657 	    !list_empty(&EXT4_I(inode)->i_orphan))
3658 		ext4_orphan_del(handle, inode);
3659 	ext4_journal_stop(handle);
3660 	if (truncate) {
3661 		ext4_truncate_failed_write(inode);
3662 orphan_del:
3663 		/*
3664 		 * If truncate failed early the inode might still be on the
3665 		 * orphan list; we need to make sure the inode is removed from
3666 		 * the orphan list in that case.
3667 		 */
3668 		if (inode->i_nlink)
3669 			ext4_orphan_del(NULL, inode);
3670 	}
3671 	return ret;
3672 }
3673 
3674 const struct iomap_ops ext4_iomap_ops = {
3675 	.iomap_begin		= ext4_iomap_begin,
3676 	.iomap_end		= ext4_iomap_end,
3677 };
3678 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3679 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3680 			    ssize_t size, void *private)
3681 {
3682         ext4_io_end_t *io_end = private;
3683 
3684 	/* if not async direct IO just return */
3685 	if (!io_end)
3686 		return 0;
3687 
3688 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3689 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3690 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3691 
3692 	/*
3693 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3694 	 * data was not written. Just clear the unwritten flag and drop io_end.
3695 	 */
3696 	if (size <= 0) {
3697 		ext4_clear_io_unwritten_flag(io_end);
3698 		size = 0;
3699 	}
3700 	io_end->offset = offset;
3701 	io_end->size = size;
3702 	ext4_put_io_end(io_end);
3703 
3704 	return 0;
3705 }
3706 
3707 /*
3708  * Handling of direct IO writes.
3709  *
3710  * For ext4 extent files, ext4 will do direct-io write even to holes,
3711  * preallocated extents, and those write extend the file, no need to
3712  * fall back to buffered IO.
3713  *
3714  * For holes, we fallocate those blocks, mark them as unwritten
3715  * If those blocks were preallocated, we mark sure they are split, but
3716  * still keep the range to write as unwritten.
3717  *
3718  * The unwritten extents will be converted to written when DIO is completed.
3719  * For async direct IO, since the IO may still pending when return, we
3720  * set up an end_io call back function, which will do the conversion
3721  * when async direct IO completed.
3722  *
3723  * If the O_DIRECT write will extend the file then add this inode to the
3724  * orphan list.  So recovery will truncate it back to the original size
3725  * if the machine crashes during the write.
3726  *
3727  */
ext4_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter)3728 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3729 {
3730 	struct file *file = iocb->ki_filp;
3731 	struct inode *inode = file->f_mapping->host;
3732 	struct ext4_inode_info *ei = EXT4_I(inode);
3733 	ssize_t ret;
3734 	loff_t offset = iocb->ki_pos;
3735 	size_t count = iov_iter_count(iter);
3736 	int overwrite = 0;
3737 	get_block_t *get_block_func = NULL;
3738 	int dio_flags = 0;
3739 	loff_t final_size = offset + count;
3740 	int orphan = 0;
3741 	handle_t *handle;
3742 
3743 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3744 		/* Credits for sb + inode write */
3745 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3746 		if (IS_ERR(handle)) {
3747 			ret = PTR_ERR(handle);
3748 			goto out;
3749 		}
3750 		ret = ext4_orphan_add(handle, inode);
3751 		if (ret) {
3752 			ext4_journal_stop(handle);
3753 			goto out;
3754 		}
3755 		orphan = 1;
3756 		ext4_update_i_disksize(inode, inode->i_size);
3757 		ext4_journal_stop(handle);
3758 	}
3759 
3760 	BUG_ON(iocb->private == NULL);
3761 
3762 	/*
3763 	 * Make all waiters for direct IO properly wait also for extent
3764 	 * conversion. This also disallows race between truncate() and
3765 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3766 	 */
3767 	inode_dio_begin(inode);
3768 
3769 	/* If we do a overwrite dio, i_mutex locking can be released */
3770 	overwrite = *((int *)iocb->private);
3771 
3772 	if (overwrite)
3773 		inode_unlock(inode);
3774 
3775 	/*
3776 	 * For extent mapped files we could direct write to holes and fallocate.
3777 	 *
3778 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3779 	 * parallel buffered read to expose the stale data before DIO complete
3780 	 * the data IO.
3781 	 *
3782 	 * As to previously fallocated extents, ext4 get_block will just simply
3783 	 * mark the buffer mapped but still keep the extents unwritten.
3784 	 *
3785 	 * For non AIO case, we will convert those unwritten extents to written
3786 	 * after return back from blockdev_direct_IO. That way we save us from
3787 	 * allocating io_end structure and also the overhead of offloading
3788 	 * the extent convertion to a workqueue.
3789 	 *
3790 	 * For async DIO, the conversion needs to be deferred when the
3791 	 * IO is completed. The ext4 end_io callback function will be
3792 	 * called to take care of the conversion work.  Here for async
3793 	 * case, we allocate an io_end structure to hook to the iocb.
3794 	 */
3795 	iocb->private = NULL;
3796 	if (overwrite)
3797 		get_block_func = ext4_dio_get_block_overwrite;
3798 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3799 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3800 		get_block_func = ext4_dio_get_block;
3801 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3802 	} else if (is_sync_kiocb(iocb)) {
3803 		get_block_func = ext4_dio_get_block_unwritten_sync;
3804 		dio_flags = DIO_LOCKING;
3805 	} else {
3806 		get_block_func = ext4_dio_get_block_unwritten_async;
3807 		dio_flags = DIO_LOCKING;
3808 	}
3809 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3810 				   get_block_func, ext4_end_io_dio, NULL,
3811 				   dio_flags);
3812 
3813 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3814 						EXT4_STATE_DIO_UNWRITTEN)) {
3815 		int err;
3816 		/*
3817 		 * for non AIO case, since the IO is already
3818 		 * completed, we could do the conversion right here
3819 		 */
3820 		err = ext4_convert_unwritten_extents(NULL, inode,
3821 						     offset, ret);
3822 		if (err < 0)
3823 			ret = err;
3824 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3825 	}
3826 
3827 	inode_dio_end(inode);
3828 	/* take i_mutex locking again if we do a ovewrite dio */
3829 	if (overwrite)
3830 		inode_lock(inode);
3831 
3832 	if (ret < 0 && final_size > inode->i_size)
3833 		ext4_truncate_failed_write(inode);
3834 
3835 	/* Handle extending of i_size after direct IO write */
3836 	if (orphan) {
3837 		int err;
3838 
3839 		/* Credits for sb + inode write */
3840 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3841 		if (IS_ERR(handle)) {
3842 			/*
3843 			 * We wrote the data but cannot extend
3844 			 * i_size. Bail out. In async io case, we do
3845 			 * not return error here because we have
3846 			 * already submmitted the corresponding
3847 			 * bio. Returning error here makes the caller
3848 			 * think that this IO is done and failed
3849 			 * resulting in race with bio's completion
3850 			 * handler.
3851 			 */
3852 			if (!ret)
3853 				ret = PTR_ERR(handle);
3854 			if (inode->i_nlink)
3855 				ext4_orphan_del(NULL, inode);
3856 
3857 			goto out;
3858 		}
3859 		if (inode->i_nlink)
3860 			ext4_orphan_del(handle, inode);
3861 		if (ret > 0) {
3862 			loff_t end = offset + ret;
3863 			if (end > inode->i_size || end > ei->i_disksize) {
3864 				ext4_update_i_disksize(inode, end);
3865 				if (end > inode->i_size)
3866 					i_size_write(inode, end);
3867 				/*
3868 				 * We're going to return a positive `ret'
3869 				 * here due to non-zero-length I/O, so there's
3870 				 * no way of reporting error returns from
3871 				 * ext4_mark_inode_dirty() to userspace.  So
3872 				 * ignore it.
3873 				 */
3874 				ext4_mark_inode_dirty(handle, inode);
3875 			}
3876 		}
3877 		err = ext4_journal_stop(handle);
3878 		if (ret == 0)
3879 			ret = err;
3880 	}
3881 out:
3882 	return ret;
3883 }
3884 
ext4_direct_IO_read(struct kiocb * iocb,struct iov_iter * iter)3885 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3886 {
3887 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3888 	struct inode *inode = mapping->host;
3889 	size_t count = iov_iter_count(iter);
3890 	ssize_t ret;
3891 	loff_t offset = iocb->ki_pos;
3892 	loff_t size = i_size_read(inode);
3893 
3894 	if (offset >= size)
3895 		return 0;
3896 
3897 	/*
3898 	 * Shared inode_lock is enough for us - it protects against concurrent
3899 	 * writes & truncates and since we take care of writing back page cache,
3900 	 * we are protected against page writeback as well.
3901 	 */
3902 	if (iocb->ki_flags & IOCB_NOWAIT) {
3903 		if (!inode_trylock_shared(inode))
3904 			return -EAGAIN;
3905 	} else {
3906 		inode_lock_shared(inode);
3907 	}
3908 
3909 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3910 					   iocb->ki_pos + count - 1);
3911 	if (ret)
3912 		goto out_unlock;
3913 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3914 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3915 out_unlock:
3916 	inode_unlock_shared(inode);
3917 	return ret;
3918 }
3919 
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3920 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3921 {
3922 	struct file *file = iocb->ki_filp;
3923 	struct inode *inode = file->f_mapping->host;
3924 	size_t count = iov_iter_count(iter);
3925 	loff_t offset = iocb->ki_pos;
3926 	ssize_t ret;
3927 
3928 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3929 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3930 		return 0;
3931 #endif
3932 
3933 	/*
3934 	 * If we are doing data journalling we don't support O_DIRECT
3935 	 */
3936 	if (ext4_should_journal_data(inode))
3937 		return 0;
3938 
3939 	/* Let buffer I/O handle the inline data case. */
3940 	if (ext4_has_inline_data(inode))
3941 		return 0;
3942 
3943 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3944 	if (iov_iter_rw(iter) == READ)
3945 		ret = ext4_direct_IO_read(iocb, iter);
3946 	else
3947 		ret = ext4_direct_IO_write(iocb, iter);
3948 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3949 	return ret;
3950 }
3951 
3952 /*
3953  * Pages can be marked dirty completely asynchronously from ext4's journalling
3954  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3955  * much here because ->set_page_dirty is called under VFS locks.  The page is
3956  * not necessarily locked.
3957  *
3958  * We cannot just dirty the page and leave attached buffers clean, because the
3959  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3960  * or jbddirty because all the journalling code will explode.
3961  *
3962  * So what we do is to mark the page "pending dirty" and next time writepage
3963  * is called, propagate that into the buffers appropriately.
3964  */
ext4_journalled_set_page_dirty(struct page * page)3965 static int ext4_journalled_set_page_dirty(struct page *page)
3966 {
3967 	SetPageChecked(page);
3968 	return __set_page_dirty_nobuffers(page);
3969 }
3970 
ext4_set_page_dirty(struct page * page)3971 static int ext4_set_page_dirty(struct page *page)
3972 {
3973 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3974 	WARN_ON_ONCE(!page_has_buffers(page));
3975 	return __set_page_dirty_buffers(page);
3976 }
3977 
3978 static const struct address_space_operations ext4_aops = {
3979 	.readpage		= ext4_readpage,
3980 	.readpages		= ext4_readpages,
3981 	.writepage		= ext4_writepage,
3982 	.writepages		= ext4_writepages,
3983 	.write_begin		= ext4_write_begin,
3984 	.write_end		= ext4_write_end,
3985 	.set_page_dirty		= ext4_set_page_dirty,
3986 	.bmap			= ext4_bmap,
3987 	.invalidatepage		= ext4_invalidatepage,
3988 	.releasepage		= ext4_releasepage,
3989 	.direct_IO		= ext4_direct_IO,
3990 	.migratepage		= buffer_migrate_page,
3991 	.is_partially_uptodate  = block_is_partially_uptodate,
3992 	.error_remove_page	= generic_error_remove_page,
3993 };
3994 
3995 static const struct address_space_operations ext4_journalled_aops = {
3996 	.readpage		= ext4_readpage,
3997 	.readpages		= ext4_readpages,
3998 	.writepage		= ext4_writepage,
3999 	.writepages		= ext4_writepages,
4000 	.write_begin		= ext4_write_begin,
4001 	.write_end		= ext4_journalled_write_end,
4002 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4003 	.bmap			= ext4_bmap,
4004 	.invalidatepage		= ext4_journalled_invalidatepage,
4005 	.releasepage		= ext4_releasepage,
4006 	.direct_IO		= ext4_direct_IO,
4007 	.is_partially_uptodate  = block_is_partially_uptodate,
4008 	.error_remove_page	= generic_error_remove_page,
4009 };
4010 
4011 static const struct address_space_operations ext4_da_aops = {
4012 	.readpage		= ext4_readpage,
4013 	.readpages		= ext4_readpages,
4014 	.writepage		= ext4_writepage,
4015 	.writepages		= ext4_writepages,
4016 	.write_begin		= ext4_da_write_begin,
4017 	.write_end		= ext4_da_write_end,
4018 	.set_page_dirty		= ext4_set_page_dirty,
4019 	.bmap			= ext4_bmap,
4020 	.invalidatepage		= ext4_da_invalidatepage,
4021 	.releasepage		= ext4_releasepage,
4022 	.direct_IO		= ext4_direct_IO,
4023 	.migratepage		= buffer_migrate_page,
4024 	.is_partially_uptodate  = block_is_partially_uptodate,
4025 	.error_remove_page	= generic_error_remove_page,
4026 };
4027 
4028 static const struct address_space_operations ext4_dax_aops = {
4029 	.writepages		= ext4_dax_writepages,
4030 	.direct_IO		= noop_direct_IO,
4031 	.set_page_dirty		= noop_set_page_dirty,
4032 	.bmap			= ext4_bmap,
4033 	.invalidatepage		= noop_invalidatepage,
4034 };
4035 
ext4_set_aops(struct inode * inode)4036 void ext4_set_aops(struct inode *inode)
4037 {
4038 	switch (ext4_inode_journal_mode(inode)) {
4039 	case EXT4_INODE_ORDERED_DATA_MODE:
4040 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4041 		break;
4042 	case EXT4_INODE_JOURNAL_DATA_MODE:
4043 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4044 		return;
4045 	default:
4046 		BUG();
4047 	}
4048 	if (IS_DAX(inode))
4049 		inode->i_mapping->a_ops = &ext4_dax_aops;
4050 	else if (test_opt(inode->i_sb, DELALLOC))
4051 		inode->i_mapping->a_ops = &ext4_da_aops;
4052 	else
4053 		inode->i_mapping->a_ops = &ext4_aops;
4054 }
4055 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4056 static int __ext4_block_zero_page_range(handle_t *handle,
4057 		struct address_space *mapping, loff_t from, loff_t length)
4058 {
4059 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4060 	unsigned offset = from & (PAGE_SIZE-1);
4061 	unsigned blocksize, pos;
4062 	ext4_lblk_t iblock;
4063 	struct inode *inode = mapping->host;
4064 	struct buffer_head *bh;
4065 	struct page *page;
4066 	int err = 0;
4067 
4068 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4069 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4070 	if (!page)
4071 		return -ENOMEM;
4072 
4073 	blocksize = inode->i_sb->s_blocksize;
4074 
4075 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4076 
4077 	if (!page_has_buffers(page))
4078 		create_empty_buffers(page, blocksize, 0);
4079 
4080 	/* Find the buffer that contains "offset" */
4081 	bh = page_buffers(page);
4082 	pos = blocksize;
4083 	while (offset >= pos) {
4084 		bh = bh->b_this_page;
4085 		iblock++;
4086 		pos += blocksize;
4087 	}
4088 	if (buffer_freed(bh)) {
4089 		BUFFER_TRACE(bh, "freed: skip");
4090 		goto unlock;
4091 	}
4092 	if (!buffer_mapped(bh)) {
4093 		BUFFER_TRACE(bh, "unmapped");
4094 		ext4_get_block(inode, iblock, bh, 0);
4095 		/* unmapped? It's a hole - nothing to do */
4096 		if (!buffer_mapped(bh)) {
4097 			BUFFER_TRACE(bh, "still unmapped");
4098 			goto unlock;
4099 		}
4100 	}
4101 
4102 	/* Ok, it's mapped. Make sure it's up-to-date */
4103 	if (PageUptodate(page))
4104 		set_buffer_uptodate(bh);
4105 
4106 	if (!buffer_uptodate(bh)) {
4107 		err = -EIO;
4108 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4109 		wait_on_buffer(bh);
4110 		/* Uhhuh. Read error. Complain and punt. */
4111 		if (!buffer_uptodate(bh))
4112 			goto unlock;
4113 		if (S_ISREG(inode->i_mode) &&
4114 		    ext4_encrypted_inode(inode)) {
4115 			/* We expect the key to be set. */
4116 			BUG_ON(!fscrypt_has_encryption_key(inode));
4117 			BUG_ON(blocksize != PAGE_SIZE);
4118 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4119 						page, PAGE_SIZE, 0, page->index));
4120 		}
4121 	}
4122 	if (ext4_should_journal_data(inode)) {
4123 		BUFFER_TRACE(bh, "get write access");
4124 		err = ext4_journal_get_write_access(handle, bh);
4125 		if (err)
4126 			goto unlock;
4127 	}
4128 	zero_user(page, offset, length);
4129 	BUFFER_TRACE(bh, "zeroed end of block");
4130 
4131 	if (ext4_should_journal_data(inode)) {
4132 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4133 	} else {
4134 		err = 0;
4135 		mark_buffer_dirty(bh);
4136 		if (ext4_should_order_data(inode))
4137 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4138 					length);
4139 	}
4140 
4141 unlock:
4142 	unlock_page(page);
4143 	put_page(page);
4144 	return err;
4145 }
4146 
4147 /*
4148  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4149  * starting from file offset 'from'.  The range to be zero'd must
4150  * be contained with in one block.  If the specified range exceeds
4151  * the end of the block it will be shortened to end of the block
4152  * that cooresponds to 'from'
4153  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4154 static int ext4_block_zero_page_range(handle_t *handle,
4155 		struct address_space *mapping, loff_t from, loff_t length)
4156 {
4157 	struct inode *inode = mapping->host;
4158 	unsigned offset = from & (PAGE_SIZE-1);
4159 	unsigned blocksize = inode->i_sb->s_blocksize;
4160 	unsigned max = blocksize - (offset & (blocksize - 1));
4161 
4162 	/*
4163 	 * correct length if it does not fall between
4164 	 * 'from' and the end of the block
4165 	 */
4166 	if (length > max || length < 0)
4167 		length = max;
4168 
4169 	if (IS_DAX(inode)) {
4170 		return iomap_zero_range(inode, from, length, NULL,
4171 					&ext4_iomap_ops);
4172 	}
4173 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4174 }
4175 
4176 /*
4177  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4178  * up to the end of the block which corresponds to `from'.
4179  * This required during truncate. We need to physically zero the tail end
4180  * of that block so it doesn't yield old data if the file is later grown.
4181  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4182 static int ext4_block_truncate_page(handle_t *handle,
4183 		struct address_space *mapping, loff_t from)
4184 {
4185 	unsigned offset = from & (PAGE_SIZE-1);
4186 	unsigned length;
4187 	unsigned blocksize;
4188 	struct inode *inode = mapping->host;
4189 
4190 	/* If we are processing an encrypted inode during orphan list handling */
4191 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4192 		return 0;
4193 
4194 	blocksize = inode->i_sb->s_blocksize;
4195 	length = blocksize - (offset & (blocksize - 1));
4196 
4197 	return ext4_block_zero_page_range(handle, mapping, from, length);
4198 }
4199 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4200 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4201 			     loff_t lstart, loff_t length)
4202 {
4203 	struct super_block *sb = inode->i_sb;
4204 	struct address_space *mapping = inode->i_mapping;
4205 	unsigned partial_start, partial_end;
4206 	ext4_fsblk_t start, end;
4207 	loff_t byte_end = (lstart + length - 1);
4208 	int err = 0;
4209 
4210 	partial_start = lstart & (sb->s_blocksize - 1);
4211 	partial_end = byte_end & (sb->s_blocksize - 1);
4212 
4213 	start = lstart >> sb->s_blocksize_bits;
4214 	end = byte_end >> sb->s_blocksize_bits;
4215 
4216 	/* Handle partial zero within the single block */
4217 	if (start == end &&
4218 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4219 		err = ext4_block_zero_page_range(handle, mapping,
4220 						 lstart, length);
4221 		return err;
4222 	}
4223 	/* Handle partial zero out on the start of the range */
4224 	if (partial_start) {
4225 		err = ext4_block_zero_page_range(handle, mapping,
4226 						 lstart, sb->s_blocksize);
4227 		if (err)
4228 			return err;
4229 	}
4230 	/* Handle partial zero out on the end of the range */
4231 	if (partial_end != sb->s_blocksize - 1)
4232 		err = ext4_block_zero_page_range(handle, mapping,
4233 						 byte_end - partial_end,
4234 						 partial_end + 1);
4235 	return err;
4236 }
4237 
ext4_can_truncate(struct inode * inode)4238 int ext4_can_truncate(struct inode *inode)
4239 {
4240 	if (S_ISREG(inode->i_mode))
4241 		return 1;
4242 	if (S_ISDIR(inode->i_mode))
4243 		return 1;
4244 	if (S_ISLNK(inode->i_mode))
4245 		return !ext4_inode_is_fast_symlink(inode);
4246 	return 0;
4247 }
4248 
4249 /*
4250  * We have to make sure i_disksize gets properly updated before we truncate
4251  * page cache due to hole punching or zero range. Otherwise i_disksize update
4252  * can get lost as it may have been postponed to submission of writeback but
4253  * that will never happen after we truncate page cache.
4254  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4255 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4256 				      loff_t len)
4257 {
4258 	handle_t *handle;
4259 	loff_t size = i_size_read(inode);
4260 
4261 	WARN_ON(!inode_is_locked(inode));
4262 	if (offset > size || offset + len < size)
4263 		return 0;
4264 
4265 	if (EXT4_I(inode)->i_disksize >= size)
4266 		return 0;
4267 
4268 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4269 	if (IS_ERR(handle))
4270 		return PTR_ERR(handle);
4271 	ext4_update_i_disksize(inode, size);
4272 	ext4_mark_inode_dirty(handle, inode);
4273 	ext4_journal_stop(handle);
4274 
4275 	return 0;
4276 }
4277 
ext4_wait_dax_page(struct ext4_inode_info * ei)4278 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4279 {
4280 	up_write(&ei->i_mmap_sem);
4281 	schedule();
4282 	down_write(&ei->i_mmap_sem);
4283 }
4284 
ext4_break_layouts(struct inode * inode)4285 int ext4_break_layouts(struct inode *inode)
4286 {
4287 	struct ext4_inode_info *ei = EXT4_I(inode);
4288 	struct page *page;
4289 	int error;
4290 
4291 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4292 		return -EINVAL;
4293 
4294 	do {
4295 		page = dax_layout_busy_page(inode->i_mapping);
4296 		if (!page)
4297 			return 0;
4298 
4299 		error = ___wait_var_event(&page->_refcount,
4300 				atomic_read(&page->_refcount) == 1,
4301 				TASK_INTERRUPTIBLE, 0, 0,
4302 				ext4_wait_dax_page(ei));
4303 	} while (error == 0);
4304 
4305 	return error;
4306 }
4307 
4308 /*
4309  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4310  * associated with the given offset and length
4311  *
4312  * @inode:  File inode
4313  * @offset: The offset where the hole will begin
4314  * @len:    The length of the hole
4315  *
4316  * Returns: 0 on success or negative on failure
4317  */
4318 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)4319 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4320 {
4321 	struct super_block *sb = inode->i_sb;
4322 	ext4_lblk_t first_block, stop_block;
4323 	struct address_space *mapping = inode->i_mapping;
4324 	loff_t first_block_offset, last_block_offset, max_length;
4325 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4326 	handle_t *handle;
4327 	unsigned int credits;
4328 	int ret = 0;
4329 
4330 	if (!S_ISREG(inode->i_mode))
4331 		return -EOPNOTSUPP;
4332 
4333 	trace_ext4_punch_hole(inode, offset, length, 0);
4334 
4335 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4336 	if (ext4_has_inline_data(inode)) {
4337 		down_write(&EXT4_I(inode)->i_mmap_sem);
4338 		ret = ext4_convert_inline_data(inode);
4339 		up_write(&EXT4_I(inode)->i_mmap_sem);
4340 		if (ret)
4341 			return ret;
4342 	}
4343 
4344 	/*
4345 	 * Write out all dirty pages to avoid race conditions
4346 	 * Then release them.
4347 	 */
4348 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4349 		ret = filemap_write_and_wait_range(mapping, offset,
4350 						   offset + length - 1);
4351 		if (ret)
4352 			return ret;
4353 	}
4354 
4355 	inode_lock(inode);
4356 
4357 	/* No need to punch hole beyond i_size */
4358 	if (offset >= inode->i_size)
4359 		goto out_mutex;
4360 
4361 	/*
4362 	 * If the hole extends beyond i_size, set the hole
4363 	 * to end after the page that contains i_size
4364 	 */
4365 	if (offset + length > inode->i_size) {
4366 		length = inode->i_size +
4367 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4368 		   offset;
4369 	}
4370 
4371 	/*
4372 	 * For punch hole the length + offset needs to be within one block
4373 	 * before last range. Adjust the length if it goes beyond that limit.
4374 	 */
4375 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4376 	if (offset + length > max_length)
4377 		length = max_length - offset;
4378 
4379 	if (offset & (sb->s_blocksize - 1) ||
4380 	    (offset + length) & (sb->s_blocksize - 1)) {
4381 		/*
4382 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4383 		 * partial block
4384 		 */
4385 		ret = ext4_inode_attach_jinode(inode);
4386 		if (ret < 0)
4387 			goto out_mutex;
4388 
4389 	}
4390 
4391 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4392 	inode_dio_wait(inode);
4393 
4394 	/*
4395 	 * Prevent page faults from reinstantiating pages we have released from
4396 	 * page cache.
4397 	 */
4398 	down_write(&EXT4_I(inode)->i_mmap_sem);
4399 
4400 	ret = ext4_break_layouts(inode);
4401 	if (ret)
4402 		goto out_dio;
4403 
4404 	first_block_offset = round_up(offset, sb->s_blocksize);
4405 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4406 
4407 	/* Now release the pages and zero block aligned part of pages*/
4408 	if (last_block_offset > first_block_offset) {
4409 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4410 		if (ret)
4411 			goto out_dio;
4412 		truncate_pagecache_range(inode, first_block_offset,
4413 					 last_block_offset);
4414 	}
4415 
4416 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4417 		credits = ext4_writepage_trans_blocks(inode);
4418 	else
4419 		credits = ext4_blocks_for_truncate(inode);
4420 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4421 	if (IS_ERR(handle)) {
4422 		ret = PTR_ERR(handle);
4423 		ext4_std_error(sb, ret);
4424 		goto out_dio;
4425 	}
4426 
4427 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4428 				       length);
4429 	if (ret)
4430 		goto out_stop;
4431 
4432 	first_block = (offset + sb->s_blocksize - 1) >>
4433 		EXT4_BLOCK_SIZE_BITS(sb);
4434 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4435 
4436 	/* If there are blocks to remove, do it */
4437 	if (stop_block > first_block) {
4438 
4439 		down_write(&EXT4_I(inode)->i_data_sem);
4440 		ext4_discard_preallocations(inode);
4441 
4442 		ret = ext4_es_remove_extent(inode, first_block,
4443 					    stop_block - first_block);
4444 		if (ret) {
4445 			up_write(&EXT4_I(inode)->i_data_sem);
4446 			goto out_stop;
4447 		}
4448 
4449 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4450 			ret = ext4_ext_remove_space(inode, first_block,
4451 						    stop_block - 1);
4452 		else
4453 			ret = ext4_ind_remove_space(handle, inode, first_block,
4454 						    stop_block);
4455 
4456 		up_write(&EXT4_I(inode)->i_data_sem);
4457 	}
4458 	if (IS_SYNC(inode))
4459 		ext4_handle_sync(handle);
4460 
4461 	inode->i_mtime = inode->i_ctime = current_time(inode);
4462 	ext4_mark_inode_dirty(handle, inode);
4463 	if (ret >= 0)
4464 		ext4_update_inode_fsync_trans(handle, inode, 1);
4465 out_stop:
4466 	ext4_journal_stop(handle);
4467 out_dio:
4468 	up_write(&EXT4_I(inode)->i_mmap_sem);
4469 out_mutex:
4470 	inode_unlock(inode);
4471 	return ret;
4472 }
4473 
ext4_inode_attach_jinode(struct inode * inode)4474 int ext4_inode_attach_jinode(struct inode *inode)
4475 {
4476 	struct ext4_inode_info *ei = EXT4_I(inode);
4477 	struct jbd2_inode *jinode;
4478 
4479 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4480 		return 0;
4481 
4482 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4483 	spin_lock(&inode->i_lock);
4484 	if (!ei->jinode) {
4485 		if (!jinode) {
4486 			spin_unlock(&inode->i_lock);
4487 			return -ENOMEM;
4488 		}
4489 		ei->jinode = jinode;
4490 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4491 		jinode = NULL;
4492 	}
4493 	spin_unlock(&inode->i_lock);
4494 	if (unlikely(jinode != NULL))
4495 		jbd2_free_inode(jinode);
4496 	return 0;
4497 }
4498 
4499 /*
4500  * ext4_truncate()
4501  *
4502  * We block out ext4_get_block() block instantiations across the entire
4503  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4504  * simultaneously on behalf of the same inode.
4505  *
4506  * As we work through the truncate and commit bits of it to the journal there
4507  * is one core, guiding principle: the file's tree must always be consistent on
4508  * disk.  We must be able to restart the truncate after a crash.
4509  *
4510  * The file's tree may be transiently inconsistent in memory (although it
4511  * probably isn't), but whenever we close off and commit a journal transaction,
4512  * the contents of (the filesystem + the journal) must be consistent and
4513  * restartable.  It's pretty simple, really: bottom up, right to left (although
4514  * left-to-right works OK too).
4515  *
4516  * Note that at recovery time, journal replay occurs *before* the restart of
4517  * truncate against the orphan inode list.
4518  *
4519  * The committed inode has the new, desired i_size (which is the same as
4520  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4521  * that this inode's truncate did not complete and it will again call
4522  * ext4_truncate() to have another go.  So there will be instantiated blocks
4523  * to the right of the truncation point in a crashed ext4 filesystem.  But
4524  * that's fine - as long as they are linked from the inode, the post-crash
4525  * ext4_truncate() run will find them and release them.
4526  */
ext4_truncate(struct inode * inode)4527 int ext4_truncate(struct inode *inode)
4528 {
4529 	struct ext4_inode_info *ei = EXT4_I(inode);
4530 	unsigned int credits;
4531 	int err = 0;
4532 	handle_t *handle;
4533 	struct address_space *mapping = inode->i_mapping;
4534 
4535 	/*
4536 	 * There is a possibility that we're either freeing the inode
4537 	 * or it's a completely new inode. In those cases we might not
4538 	 * have i_mutex locked because it's not necessary.
4539 	 */
4540 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4541 		WARN_ON(!inode_is_locked(inode));
4542 	trace_ext4_truncate_enter(inode);
4543 
4544 	if (!ext4_can_truncate(inode))
4545 		goto out_trace;
4546 
4547 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4548 
4549 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4550 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4551 
4552 	if (ext4_has_inline_data(inode)) {
4553 		int has_inline = 1;
4554 
4555 		err = ext4_inline_data_truncate(inode, &has_inline);
4556 		if (err || has_inline)
4557 			goto out_trace;
4558 	}
4559 
4560 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4561 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4562 		err = ext4_inode_attach_jinode(inode);
4563 		if (err)
4564 			goto out_trace;
4565 	}
4566 
4567 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4568 		credits = ext4_writepage_trans_blocks(inode);
4569 	else
4570 		credits = ext4_blocks_for_truncate(inode);
4571 
4572 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4573 	if (IS_ERR(handle)) {
4574 		err = PTR_ERR(handle);
4575 		goto out_trace;
4576 	}
4577 
4578 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4579 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4580 
4581 	/*
4582 	 * We add the inode to the orphan list, so that if this
4583 	 * truncate spans multiple transactions, and we crash, we will
4584 	 * resume the truncate when the filesystem recovers.  It also
4585 	 * marks the inode dirty, to catch the new size.
4586 	 *
4587 	 * Implication: the file must always be in a sane, consistent
4588 	 * truncatable state while each transaction commits.
4589 	 */
4590 	err = ext4_orphan_add(handle, inode);
4591 	if (err)
4592 		goto out_stop;
4593 
4594 	down_write(&EXT4_I(inode)->i_data_sem);
4595 
4596 	ext4_discard_preallocations(inode);
4597 
4598 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4599 		err = ext4_ext_truncate(handle, inode);
4600 	else
4601 		ext4_ind_truncate(handle, inode);
4602 
4603 	up_write(&ei->i_data_sem);
4604 	if (err)
4605 		goto out_stop;
4606 
4607 	if (IS_SYNC(inode))
4608 		ext4_handle_sync(handle);
4609 
4610 out_stop:
4611 	/*
4612 	 * If this was a simple ftruncate() and the file will remain alive,
4613 	 * then we need to clear up the orphan record which we created above.
4614 	 * However, if this was a real unlink then we were called by
4615 	 * ext4_evict_inode(), and we allow that function to clean up the
4616 	 * orphan info for us.
4617 	 */
4618 	if (inode->i_nlink)
4619 		ext4_orphan_del(handle, inode);
4620 
4621 	inode->i_mtime = inode->i_ctime = current_time(inode);
4622 	ext4_mark_inode_dirty(handle, inode);
4623 	ext4_journal_stop(handle);
4624 
4625 out_trace:
4626 	trace_ext4_truncate_exit(inode);
4627 	return err;
4628 }
4629 
4630 /*
4631  * ext4_get_inode_loc returns with an extra refcount against the inode's
4632  * underlying buffer_head on success. If 'in_mem' is true, we have all
4633  * data in memory that is needed to recreate the on-disk version of this
4634  * inode.
4635  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4636 static int __ext4_get_inode_loc(struct inode *inode,
4637 				struct ext4_iloc *iloc, int in_mem)
4638 {
4639 	struct ext4_group_desc	*gdp;
4640 	struct buffer_head	*bh;
4641 	struct super_block	*sb = inode->i_sb;
4642 	ext4_fsblk_t		block;
4643 	int			inodes_per_block, inode_offset;
4644 
4645 	iloc->bh = NULL;
4646 	if (inode->i_ino < EXT4_ROOT_INO ||
4647 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4648 		return -EFSCORRUPTED;
4649 
4650 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4651 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4652 	if (!gdp)
4653 		return -EIO;
4654 
4655 	/*
4656 	 * Figure out the offset within the block group inode table
4657 	 */
4658 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4659 	inode_offset = ((inode->i_ino - 1) %
4660 			EXT4_INODES_PER_GROUP(sb));
4661 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4662 
4663 	block = ext4_inode_table(sb, gdp);
4664 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4665 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4666 		ext4_error(sb, "Invalid inode table block %llu in "
4667 			   "block_group %u", block, iloc->block_group);
4668 		return -EFSCORRUPTED;
4669 	}
4670 	block += (inode_offset / inodes_per_block);
4671 
4672 	bh = sb_getblk(sb, block);
4673 	if (unlikely(!bh))
4674 		return -ENOMEM;
4675 	if (!buffer_uptodate(bh)) {
4676 		lock_buffer(bh);
4677 
4678 		/*
4679 		 * If the buffer has the write error flag, we have failed
4680 		 * to write out another inode in the same block.  In this
4681 		 * case, we don't have to read the block because we may
4682 		 * read the old inode data successfully.
4683 		 */
4684 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4685 			set_buffer_uptodate(bh);
4686 
4687 		if (buffer_uptodate(bh)) {
4688 			/* someone brought it uptodate while we waited */
4689 			unlock_buffer(bh);
4690 			goto has_buffer;
4691 		}
4692 
4693 		/*
4694 		 * If we have all information of the inode in memory and this
4695 		 * is the only valid inode in the block, we need not read the
4696 		 * block.
4697 		 */
4698 		if (in_mem) {
4699 			struct buffer_head *bitmap_bh;
4700 			int i, start;
4701 
4702 			start = inode_offset & ~(inodes_per_block - 1);
4703 
4704 			/* Is the inode bitmap in cache? */
4705 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4706 			if (unlikely(!bitmap_bh))
4707 				goto make_io;
4708 
4709 			/*
4710 			 * If the inode bitmap isn't in cache then the
4711 			 * optimisation may end up performing two reads instead
4712 			 * of one, so skip it.
4713 			 */
4714 			if (!buffer_uptodate(bitmap_bh)) {
4715 				brelse(bitmap_bh);
4716 				goto make_io;
4717 			}
4718 			for (i = start; i < start + inodes_per_block; i++) {
4719 				if (i == inode_offset)
4720 					continue;
4721 				if (ext4_test_bit(i, bitmap_bh->b_data))
4722 					break;
4723 			}
4724 			brelse(bitmap_bh);
4725 			if (i == start + inodes_per_block) {
4726 				/* all other inodes are free, so skip I/O */
4727 				memset(bh->b_data, 0, bh->b_size);
4728 				set_buffer_uptodate(bh);
4729 				unlock_buffer(bh);
4730 				goto has_buffer;
4731 			}
4732 		}
4733 
4734 make_io:
4735 		/*
4736 		 * If we need to do any I/O, try to pre-readahead extra
4737 		 * blocks from the inode table.
4738 		 */
4739 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4740 			ext4_fsblk_t b, end, table;
4741 			unsigned num;
4742 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4743 
4744 			table = ext4_inode_table(sb, gdp);
4745 			/* s_inode_readahead_blks is always a power of 2 */
4746 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4747 			if (table > b)
4748 				b = table;
4749 			end = b + ra_blks;
4750 			num = EXT4_INODES_PER_GROUP(sb);
4751 			if (ext4_has_group_desc_csum(sb))
4752 				num -= ext4_itable_unused_count(sb, gdp);
4753 			table += num / inodes_per_block;
4754 			if (end > table)
4755 				end = table;
4756 			while (b <= end)
4757 				sb_breadahead_unmovable(sb, b++);
4758 		}
4759 
4760 		/*
4761 		 * There are other valid inodes in the buffer, this inode
4762 		 * has in-inode xattrs, or we don't have this inode in memory.
4763 		 * Read the block from disk.
4764 		 */
4765 		trace_ext4_load_inode(inode);
4766 		get_bh(bh);
4767 		bh->b_end_io = end_buffer_read_sync;
4768 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4769 		wait_on_buffer(bh);
4770 		if (!buffer_uptodate(bh)) {
4771 			EXT4_ERROR_INODE_BLOCK(inode, block,
4772 					       "unable to read itable block");
4773 			brelse(bh);
4774 			return -EIO;
4775 		}
4776 	}
4777 has_buffer:
4778 	iloc->bh = bh;
4779 	return 0;
4780 }
4781 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4782 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4783 {
4784 	/* We have all inode data except xattrs in memory here. */
4785 	return __ext4_get_inode_loc(inode, iloc,
4786 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4787 }
4788 
ext4_should_use_dax(struct inode * inode)4789 static bool ext4_should_use_dax(struct inode *inode)
4790 {
4791 	if (!test_opt(inode->i_sb, DAX))
4792 		return false;
4793 	if (!S_ISREG(inode->i_mode))
4794 		return false;
4795 	if (ext4_should_journal_data(inode))
4796 		return false;
4797 	if (ext4_has_inline_data(inode))
4798 		return false;
4799 	if (ext4_encrypted_inode(inode))
4800 		return false;
4801 	return true;
4802 }
4803 
ext4_set_inode_flags(struct inode * inode)4804 void ext4_set_inode_flags(struct inode *inode)
4805 {
4806 	unsigned int flags = EXT4_I(inode)->i_flags;
4807 	unsigned int new_fl = 0;
4808 
4809 	if (flags & EXT4_SYNC_FL)
4810 		new_fl |= S_SYNC;
4811 	if (flags & EXT4_APPEND_FL)
4812 		new_fl |= S_APPEND;
4813 	if (flags & EXT4_IMMUTABLE_FL)
4814 		new_fl |= S_IMMUTABLE;
4815 	if (flags & EXT4_NOATIME_FL)
4816 		new_fl |= S_NOATIME;
4817 	if (flags & EXT4_DIRSYNC_FL)
4818 		new_fl |= S_DIRSYNC;
4819 	if (ext4_should_use_dax(inode))
4820 		new_fl |= S_DAX;
4821 	if (flags & EXT4_ENCRYPT_FL)
4822 		new_fl |= S_ENCRYPTED;
4823 	inode_set_flags(inode, new_fl,
4824 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4825 			S_ENCRYPTED);
4826 }
4827 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4828 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4829 				  struct ext4_inode_info *ei)
4830 {
4831 	blkcnt_t i_blocks ;
4832 	struct inode *inode = &(ei->vfs_inode);
4833 	struct super_block *sb = inode->i_sb;
4834 
4835 	if (ext4_has_feature_huge_file(sb)) {
4836 		/* we are using combined 48 bit field */
4837 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4838 					le32_to_cpu(raw_inode->i_blocks_lo);
4839 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4840 			/* i_blocks represent file system block size */
4841 			return i_blocks  << (inode->i_blkbits - 9);
4842 		} else {
4843 			return i_blocks;
4844 		}
4845 	} else {
4846 		return le32_to_cpu(raw_inode->i_blocks_lo);
4847 	}
4848 }
4849 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4850 static inline int ext4_iget_extra_inode(struct inode *inode,
4851 					 struct ext4_inode *raw_inode,
4852 					 struct ext4_inode_info *ei)
4853 {
4854 	__le32 *magic = (void *)raw_inode +
4855 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4856 
4857 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4858 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4859 		int err;
4860 
4861 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4862 		err = ext4_find_inline_data_nolock(inode);
4863 		if (!err && ext4_has_inline_data(inode))
4864 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4865 		return err;
4866 	} else
4867 		EXT4_I(inode)->i_inline_off = 0;
4868 	return 0;
4869 }
4870 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4871 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4872 {
4873 	if (!ext4_has_feature_project(inode->i_sb))
4874 		return -EOPNOTSUPP;
4875 	*projid = EXT4_I(inode)->i_projid;
4876 	return 0;
4877 }
4878 
4879 /*
4880  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4881  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4882  * set.
4883  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4884 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4885 {
4886 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4887 		inode_set_iversion_raw(inode, val);
4888 	else
4889 		inode_set_iversion_queried(inode, val);
4890 }
ext4_inode_peek_iversion(const struct inode * inode)4891 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4892 {
4893 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4894 		return inode_peek_iversion_raw(inode);
4895 	else
4896 		return inode_peek_iversion(inode);
4897 }
4898 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4899 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4900 			  ext4_iget_flags flags, const char *function,
4901 			  unsigned int line)
4902 {
4903 	struct ext4_iloc iloc;
4904 	struct ext4_inode *raw_inode;
4905 	struct ext4_inode_info *ei;
4906 	struct inode *inode;
4907 	journal_t *journal = EXT4_SB(sb)->s_journal;
4908 	long ret;
4909 	loff_t size;
4910 	int block;
4911 	uid_t i_uid;
4912 	gid_t i_gid;
4913 	projid_t i_projid;
4914 
4915 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4916 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4917 	    (ino < EXT4_ROOT_INO) ||
4918 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4919 		if (flags & EXT4_IGET_HANDLE)
4920 			return ERR_PTR(-ESTALE);
4921 		__ext4_error(sb, function, line,
4922 			     "inode #%lu: comm %s: iget: illegal inode #",
4923 			     ino, current->comm);
4924 		return ERR_PTR(-EFSCORRUPTED);
4925 	}
4926 
4927 	inode = iget_locked(sb, ino);
4928 	if (!inode)
4929 		return ERR_PTR(-ENOMEM);
4930 	if (!(inode->i_state & I_NEW))
4931 		return inode;
4932 
4933 	ei = EXT4_I(inode);
4934 	iloc.bh = NULL;
4935 
4936 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4937 	if (ret < 0)
4938 		goto bad_inode;
4939 	raw_inode = ext4_raw_inode(&iloc);
4940 
4941 	if ((flags & EXT4_IGET_HANDLE) &&
4942 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4943 		ret = -ESTALE;
4944 		goto bad_inode;
4945 	}
4946 
4947 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4949 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4950 			EXT4_INODE_SIZE(inode->i_sb) ||
4951 		    (ei->i_extra_isize & 3)) {
4952 			ext4_error_inode(inode, function, line, 0,
4953 					 "iget: bad extra_isize %u "
4954 					 "(inode size %u)",
4955 					 ei->i_extra_isize,
4956 					 EXT4_INODE_SIZE(inode->i_sb));
4957 			ret = -EFSCORRUPTED;
4958 			goto bad_inode;
4959 		}
4960 	} else
4961 		ei->i_extra_isize = 0;
4962 
4963 	/* Precompute checksum seed for inode metadata */
4964 	if (ext4_has_metadata_csum(sb)) {
4965 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4966 		__u32 csum;
4967 		__le32 inum = cpu_to_le32(inode->i_ino);
4968 		__le32 gen = raw_inode->i_generation;
4969 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4970 				   sizeof(inum));
4971 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4972 					      sizeof(gen));
4973 	}
4974 
4975 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4976 		ext4_error_inode(inode, function, line, 0,
4977 				 "iget: checksum invalid");
4978 		ret = -EFSBADCRC;
4979 		goto bad_inode;
4980 	}
4981 
4982 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4983 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4984 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4985 	if (ext4_has_feature_project(sb) &&
4986 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4987 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4988 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4989 	else
4990 		i_projid = EXT4_DEF_PROJID;
4991 
4992 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4993 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4994 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4995 	}
4996 	i_uid_write(inode, i_uid);
4997 	i_gid_write(inode, i_gid);
4998 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4999 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5000 
5001 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
5002 	ei->i_inline_off = 0;
5003 	ei->i_dir_start_lookup = 0;
5004 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5005 	/* We now have enough fields to check if the inode was active or not.
5006 	 * This is needed because nfsd might try to access dead inodes
5007 	 * the test is that same one that e2fsck uses
5008 	 * NeilBrown 1999oct15
5009 	 */
5010 	if (inode->i_nlink == 0) {
5011 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5012 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5013 		    ino != EXT4_BOOT_LOADER_INO) {
5014 			/* this inode is deleted or unallocated */
5015 			if (flags & EXT4_IGET_SPECIAL) {
5016 				ext4_error_inode(inode, function, line, 0,
5017 						 "iget: special inode unallocated");
5018 				ret = -EFSCORRUPTED;
5019 			} else
5020 				ret = -ESTALE;
5021 			goto bad_inode;
5022 		}
5023 		/* The only unlinked inodes we let through here have
5024 		 * valid i_mode and are being read by the orphan
5025 		 * recovery code: that's fine, we're about to complete
5026 		 * the process of deleting those.
5027 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5028 		 * not initialized on a new filesystem. */
5029 	}
5030 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5031 	ext4_set_inode_flags(inode);
5032 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5033 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5034 	if (ext4_has_feature_64bit(sb))
5035 		ei->i_file_acl |=
5036 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5037 	inode->i_size = ext4_isize(sb, raw_inode);
5038 	if ((size = i_size_read(inode)) < 0) {
5039 		ext4_error_inode(inode, function, line, 0,
5040 				 "iget: bad i_size value: %lld", size);
5041 		ret = -EFSCORRUPTED;
5042 		goto bad_inode;
5043 	}
5044 	/*
5045 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5046 	 * we'd normally treat htree data as empty space. But with metadata
5047 	 * checksumming that corrupts checksums so forbid that.
5048 	 */
5049 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
5050 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5051 		ext4_error_inode(inode, function, line, 0,
5052 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5053 		ret = -EFSCORRUPTED;
5054 		goto bad_inode;
5055 	}
5056 	ei->i_disksize = inode->i_size;
5057 #ifdef CONFIG_QUOTA
5058 	ei->i_reserved_quota = 0;
5059 #endif
5060 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5061 	ei->i_block_group = iloc.block_group;
5062 	ei->i_last_alloc_group = ~0;
5063 	/*
5064 	 * NOTE! The in-memory inode i_data array is in little-endian order
5065 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5066 	 */
5067 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5068 		ei->i_data[block] = raw_inode->i_block[block];
5069 	INIT_LIST_HEAD(&ei->i_orphan);
5070 
5071 	/*
5072 	 * Set transaction id's of transactions that have to be committed
5073 	 * to finish f[data]sync. We set them to currently running transaction
5074 	 * as we cannot be sure that the inode or some of its metadata isn't
5075 	 * part of the transaction - the inode could have been reclaimed and
5076 	 * now it is reread from disk.
5077 	 */
5078 	if (journal) {
5079 		transaction_t *transaction;
5080 		tid_t tid;
5081 
5082 		read_lock(&journal->j_state_lock);
5083 		if (journal->j_running_transaction)
5084 			transaction = journal->j_running_transaction;
5085 		else
5086 			transaction = journal->j_committing_transaction;
5087 		if (transaction)
5088 			tid = transaction->t_tid;
5089 		else
5090 			tid = journal->j_commit_sequence;
5091 		read_unlock(&journal->j_state_lock);
5092 		ei->i_sync_tid = tid;
5093 		ei->i_datasync_tid = tid;
5094 	}
5095 
5096 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5097 		if (ei->i_extra_isize == 0) {
5098 			/* The extra space is currently unused. Use it. */
5099 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5100 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5101 					    EXT4_GOOD_OLD_INODE_SIZE;
5102 		} else {
5103 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5104 			if (ret)
5105 				goto bad_inode;
5106 		}
5107 	}
5108 
5109 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5110 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5111 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5112 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5113 
5114 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5115 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5116 
5117 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5118 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5119 				ivers |=
5120 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5121 		}
5122 		ext4_inode_set_iversion_queried(inode, ivers);
5123 	}
5124 
5125 	ret = 0;
5126 	if (ei->i_file_acl &&
5127 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5128 		ext4_error_inode(inode, function, line, 0,
5129 				 "iget: bad extended attribute block %llu",
5130 				 ei->i_file_acl);
5131 		ret = -EFSCORRUPTED;
5132 		goto bad_inode;
5133 	} else if (!ext4_has_inline_data(inode)) {
5134 		/* validate the block references in the inode */
5135 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5136 		   (S_ISLNK(inode->i_mode) &&
5137 		    !ext4_inode_is_fast_symlink(inode))) {
5138 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5139 				ret = ext4_ext_check_inode(inode);
5140 			else
5141 				ret = ext4_ind_check_inode(inode);
5142 		}
5143 	}
5144 	if (ret)
5145 		goto bad_inode;
5146 
5147 	if (S_ISREG(inode->i_mode)) {
5148 		inode->i_op = &ext4_file_inode_operations;
5149 		inode->i_fop = &ext4_file_operations;
5150 		ext4_set_aops(inode);
5151 	} else if (S_ISDIR(inode->i_mode)) {
5152 		inode->i_op = &ext4_dir_inode_operations;
5153 		inode->i_fop = &ext4_dir_operations;
5154 	} else if (S_ISLNK(inode->i_mode)) {
5155 		/* VFS does not allow setting these so must be corruption */
5156 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5157 			ext4_error_inode(inode, function, line, 0,
5158 					 "iget: immutable or append flags "
5159 					 "not allowed on symlinks");
5160 			ret = -EFSCORRUPTED;
5161 			goto bad_inode;
5162 		}
5163 		if (ext4_encrypted_inode(inode)) {
5164 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5165 			ext4_set_aops(inode);
5166 		} else if (ext4_inode_is_fast_symlink(inode)) {
5167 			inode->i_link = (char *)ei->i_data;
5168 			inode->i_op = &ext4_fast_symlink_inode_operations;
5169 			nd_terminate_link(ei->i_data, inode->i_size,
5170 				sizeof(ei->i_data) - 1);
5171 		} else {
5172 			inode->i_op = &ext4_symlink_inode_operations;
5173 			ext4_set_aops(inode);
5174 		}
5175 		inode_nohighmem(inode);
5176 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5177 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5178 		inode->i_op = &ext4_special_inode_operations;
5179 		if (raw_inode->i_block[0])
5180 			init_special_inode(inode, inode->i_mode,
5181 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5182 		else
5183 			init_special_inode(inode, inode->i_mode,
5184 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5185 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5186 		make_bad_inode(inode);
5187 	} else {
5188 		ret = -EFSCORRUPTED;
5189 		ext4_error_inode(inode, function, line, 0,
5190 				 "iget: bogus i_mode (%o)", inode->i_mode);
5191 		goto bad_inode;
5192 	}
5193 	brelse(iloc.bh);
5194 
5195 	unlock_new_inode(inode);
5196 	return inode;
5197 
5198 bad_inode:
5199 	brelse(iloc.bh);
5200 	iget_failed(inode);
5201 	return ERR_PTR(ret);
5202 }
5203 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5204 static int ext4_inode_blocks_set(handle_t *handle,
5205 				struct ext4_inode *raw_inode,
5206 				struct ext4_inode_info *ei)
5207 {
5208 	struct inode *inode = &(ei->vfs_inode);
5209 	u64 i_blocks = READ_ONCE(inode->i_blocks);
5210 	struct super_block *sb = inode->i_sb;
5211 
5212 	if (i_blocks <= ~0U) {
5213 		/*
5214 		 * i_blocks can be represented in a 32 bit variable
5215 		 * as multiple of 512 bytes
5216 		 */
5217 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5218 		raw_inode->i_blocks_high = 0;
5219 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5220 		return 0;
5221 	}
5222 	if (!ext4_has_feature_huge_file(sb))
5223 		return -EFBIG;
5224 
5225 	if (i_blocks <= 0xffffffffffffULL) {
5226 		/*
5227 		 * i_blocks can be represented in a 48 bit variable
5228 		 * as multiple of 512 bytes
5229 		 */
5230 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5231 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5232 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5233 	} else {
5234 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5235 		/* i_block is stored in file system block size */
5236 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5237 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5238 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5239 	}
5240 	return 0;
5241 }
5242 
5243 struct other_inode {
5244 	unsigned long		orig_ino;
5245 	struct ext4_inode	*raw_inode;
5246 };
5247 
other_inode_match(struct inode * inode,unsigned long ino,void * data)5248 static int other_inode_match(struct inode * inode, unsigned long ino,
5249 			     void *data)
5250 {
5251 	struct other_inode *oi = (struct other_inode *) data;
5252 
5253 	if ((inode->i_ino != ino) ||
5254 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5255 			       I_DIRTY_INODE)) ||
5256 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5257 		return 0;
5258 	spin_lock(&inode->i_lock);
5259 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5260 				I_DIRTY_INODE)) == 0) &&
5261 	    (inode->i_state & I_DIRTY_TIME)) {
5262 		struct ext4_inode_info	*ei = EXT4_I(inode);
5263 
5264 		inode->i_state &= ~I_DIRTY_TIME;
5265 		spin_unlock(&inode->i_lock);
5266 
5267 		spin_lock(&ei->i_raw_lock);
5268 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5269 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5270 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5271 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5272 		spin_unlock(&ei->i_raw_lock);
5273 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5274 		return -1;
5275 	}
5276 	spin_unlock(&inode->i_lock);
5277 	return -1;
5278 }
5279 
5280 /*
5281  * Opportunistically update the other time fields for other inodes in
5282  * the same inode table block.
5283  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5284 static void ext4_update_other_inodes_time(struct super_block *sb,
5285 					  unsigned long orig_ino, char *buf)
5286 {
5287 	struct other_inode oi;
5288 	unsigned long ino;
5289 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5290 	int inode_size = EXT4_INODE_SIZE(sb);
5291 
5292 	oi.orig_ino = orig_ino;
5293 	/*
5294 	 * Calculate the first inode in the inode table block.  Inode
5295 	 * numbers are one-based.  That is, the first inode in a block
5296 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5297 	 */
5298 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5299 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5300 		if (ino == orig_ino)
5301 			continue;
5302 		oi.raw_inode = (struct ext4_inode *) buf;
5303 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5304 	}
5305 }
5306 
5307 /*
5308  * Post the struct inode info into an on-disk inode location in the
5309  * buffer-cache.  This gobbles the caller's reference to the
5310  * buffer_head in the inode location struct.
5311  *
5312  * The caller must have write access to iloc->bh.
5313  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5314 static int ext4_do_update_inode(handle_t *handle,
5315 				struct inode *inode,
5316 				struct ext4_iloc *iloc)
5317 {
5318 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5319 	struct ext4_inode_info *ei = EXT4_I(inode);
5320 	struct buffer_head *bh = iloc->bh;
5321 	struct super_block *sb = inode->i_sb;
5322 	int err = 0, block;
5323 	int need_datasync = 0, set_large_file = 0;
5324 	uid_t i_uid;
5325 	gid_t i_gid;
5326 	projid_t i_projid;
5327 
5328 	spin_lock(&ei->i_raw_lock);
5329 
5330 	/* For fields not tracked in the in-memory inode,
5331 	 * initialise them to zero for new inodes. */
5332 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5333 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5334 
5335 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5336 	if (err) {
5337 		spin_unlock(&ei->i_raw_lock);
5338 		goto out_brelse;
5339 	}
5340 
5341 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5342 	i_uid = i_uid_read(inode);
5343 	i_gid = i_gid_read(inode);
5344 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5345 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5346 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5347 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5348 /*
5349  * Fix up interoperability with old kernels. Otherwise, old inodes get
5350  * re-used with the upper 16 bits of the uid/gid intact
5351  */
5352 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5353 			raw_inode->i_uid_high = 0;
5354 			raw_inode->i_gid_high = 0;
5355 		} else {
5356 			raw_inode->i_uid_high =
5357 				cpu_to_le16(high_16_bits(i_uid));
5358 			raw_inode->i_gid_high =
5359 				cpu_to_le16(high_16_bits(i_gid));
5360 		}
5361 	} else {
5362 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5363 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5364 		raw_inode->i_uid_high = 0;
5365 		raw_inode->i_gid_high = 0;
5366 	}
5367 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5368 
5369 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5370 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5371 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5372 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5373 
5374 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5375 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5376 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5377 		raw_inode->i_file_acl_high =
5378 			cpu_to_le16(ei->i_file_acl >> 32);
5379 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5380 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5381 		ext4_isize_set(raw_inode, ei->i_disksize);
5382 		need_datasync = 1;
5383 	}
5384 	if (ei->i_disksize > 0x7fffffffULL) {
5385 		if (!ext4_has_feature_large_file(sb) ||
5386 				EXT4_SB(sb)->s_es->s_rev_level ==
5387 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5388 			set_large_file = 1;
5389 	}
5390 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5391 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5392 		if (old_valid_dev(inode->i_rdev)) {
5393 			raw_inode->i_block[0] =
5394 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5395 			raw_inode->i_block[1] = 0;
5396 		} else {
5397 			raw_inode->i_block[0] = 0;
5398 			raw_inode->i_block[1] =
5399 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5400 			raw_inode->i_block[2] = 0;
5401 		}
5402 	} else if (!ext4_has_inline_data(inode)) {
5403 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5404 			raw_inode->i_block[block] = ei->i_data[block];
5405 	}
5406 
5407 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5408 		u64 ivers = ext4_inode_peek_iversion(inode);
5409 
5410 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5411 		if (ei->i_extra_isize) {
5412 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5413 				raw_inode->i_version_hi =
5414 					cpu_to_le32(ivers >> 32);
5415 			raw_inode->i_extra_isize =
5416 				cpu_to_le16(ei->i_extra_isize);
5417 		}
5418 	}
5419 
5420 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5421 	       i_projid != EXT4_DEF_PROJID);
5422 
5423 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5424 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5425 		raw_inode->i_projid = cpu_to_le32(i_projid);
5426 
5427 	ext4_inode_csum_set(inode, raw_inode, ei);
5428 	spin_unlock(&ei->i_raw_lock);
5429 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5430 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5431 					      bh->b_data);
5432 
5433 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5434 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5435 	if (err)
5436 		goto out_brelse;
5437 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5438 	if (set_large_file) {
5439 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5440 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5441 		if (err)
5442 			goto out_brelse;
5443 		ext4_set_feature_large_file(sb);
5444 		ext4_handle_sync(handle);
5445 		err = ext4_handle_dirty_super(handle, sb);
5446 	}
5447 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5448 out_brelse:
5449 	brelse(bh);
5450 	ext4_std_error(inode->i_sb, err);
5451 	return err;
5452 }
5453 
5454 /*
5455  * ext4_write_inode()
5456  *
5457  * We are called from a few places:
5458  *
5459  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5460  *   Here, there will be no transaction running. We wait for any running
5461  *   transaction to commit.
5462  *
5463  * - Within flush work (sys_sync(), kupdate and such).
5464  *   We wait on commit, if told to.
5465  *
5466  * - Within iput_final() -> write_inode_now()
5467  *   We wait on commit, if told to.
5468  *
5469  * In all cases it is actually safe for us to return without doing anything,
5470  * because the inode has been copied into a raw inode buffer in
5471  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5472  * writeback.
5473  *
5474  * Note that we are absolutely dependent upon all inode dirtiers doing the
5475  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5476  * which we are interested.
5477  *
5478  * It would be a bug for them to not do this.  The code:
5479  *
5480  *	mark_inode_dirty(inode)
5481  *	stuff();
5482  *	inode->i_size = expr;
5483  *
5484  * is in error because write_inode() could occur while `stuff()' is running,
5485  * and the new i_size will be lost.  Plus the inode will no longer be on the
5486  * superblock's dirty inode list.
5487  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5488 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5489 {
5490 	int err;
5491 
5492 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5493 	    sb_rdonly(inode->i_sb))
5494 		return 0;
5495 
5496 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5497 		return -EIO;
5498 
5499 	if (EXT4_SB(inode->i_sb)->s_journal) {
5500 		if (ext4_journal_current_handle()) {
5501 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5502 			dump_stack();
5503 			return -EIO;
5504 		}
5505 
5506 		/*
5507 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5508 		 * ext4_sync_fs() will force the commit after everything is
5509 		 * written.
5510 		 */
5511 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5512 			return 0;
5513 
5514 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5515 						EXT4_I(inode)->i_sync_tid);
5516 	} else {
5517 		struct ext4_iloc iloc;
5518 
5519 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5520 		if (err)
5521 			return err;
5522 		/*
5523 		 * sync(2) will flush the whole buffer cache. No need to do
5524 		 * it here separately for each inode.
5525 		 */
5526 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5527 			sync_dirty_buffer(iloc.bh);
5528 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5529 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5530 					 "IO error syncing inode");
5531 			err = -EIO;
5532 		}
5533 		brelse(iloc.bh);
5534 	}
5535 	return err;
5536 }
5537 
5538 /*
5539  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5540  * buffers that are attached to a page stradding i_size and are undergoing
5541  * commit. In that case we have to wait for commit to finish and try again.
5542  */
ext4_wait_for_tail_page_commit(struct inode * inode)5543 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5544 {
5545 	struct page *page;
5546 	unsigned offset;
5547 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5548 	tid_t commit_tid = 0;
5549 	int ret;
5550 
5551 	offset = inode->i_size & (PAGE_SIZE - 1);
5552 	/*
5553 	 * If the page is fully truncated, we don't need to wait for any commit
5554 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5555 	 * strip all buffers from the page but keep the page dirty which can then
5556 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5557 	 * buffers). Also we don't need to wait for any commit if all buffers in
5558 	 * the page remain valid. This is most beneficial for the common case of
5559 	 * blocksize == PAGESIZE.
5560 	 */
5561 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5562 		return;
5563 	while (1) {
5564 		page = find_lock_page(inode->i_mapping,
5565 				      inode->i_size >> PAGE_SHIFT);
5566 		if (!page)
5567 			return;
5568 		ret = __ext4_journalled_invalidatepage(page, offset,
5569 						PAGE_SIZE - offset);
5570 		unlock_page(page);
5571 		put_page(page);
5572 		if (ret != -EBUSY)
5573 			return;
5574 		commit_tid = 0;
5575 		read_lock(&journal->j_state_lock);
5576 		if (journal->j_committing_transaction)
5577 			commit_tid = journal->j_committing_transaction->t_tid;
5578 		read_unlock(&journal->j_state_lock);
5579 		if (commit_tid)
5580 			jbd2_log_wait_commit(journal, commit_tid);
5581 	}
5582 }
5583 
5584 /*
5585  * ext4_setattr()
5586  *
5587  * Called from notify_change.
5588  *
5589  * We want to trap VFS attempts to truncate the file as soon as
5590  * possible.  In particular, we want to make sure that when the VFS
5591  * shrinks i_size, we put the inode on the orphan list and modify
5592  * i_disksize immediately, so that during the subsequent flushing of
5593  * dirty pages and freeing of disk blocks, we can guarantee that any
5594  * commit will leave the blocks being flushed in an unused state on
5595  * disk.  (On recovery, the inode will get truncated and the blocks will
5596  * be freed, so we have a strong guarantee that no future commit will
5597  * leave these blocks visible to the user.)
5598  *
5599  * Another thing we have to assure is that if we are in ordered mode
5600  * and inode is still attached to the committing transaction, we must
5601  * we start writeout of all the dirty pages which are being truncated.
5602  * This way we are sure that all the data written in the previous
5603  * transaction are already on disk (truncate waits for pages under
5604  * writeback).
5605  *
5606  * Called with inode->i_mutex down.
5607  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5608 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5609 {
5610 	struct inode *inode = d_inode(dentry);
5611 	int error, rc = 0;
5612 	int orphan = 0;
5613 	const unsigned int ia_valid = attr->ia_valid;
5614 
5615 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5616 		return -EIO;
5617 
5618 	if (unlikely(IS_IMMUTABLE(inode)))
5619 		return -EPERM;
5620 
5621 	if (unlikely(IS_APPEND(inode) &&
5622 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5623 				  ATTR_GID | ATTR_TIMES_SET))))
5624 		return -EPERM;
5625 
5626 	error = setattr_prepare(dentry, attr);
5627 	if (error)
5628 		return error;
5629 
5630 	error = fscrypt_prepare_setattr(dentry, attr);
5631 	if (error)
5632 		return error;
5633 
5634 	if (is_quota_modification(inode, attr)) {
5635 		error = dquot_initialize(inode);
5636 		if (error)
5637 			return error;
5638 	}
5639 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5640 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5641 		handle_t *handle;
5642 
5643 		/* (user+group)*(old+new) structure, inode write (sb,
5644 		 * inode block, ? - but truncate inode update has it) */
5645 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5646 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5647 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5648 		if (IS_ERR(handle)) {
5649 			error = PTR_ERR(handle);
5650 			goto err_out;
5651 		}
5652 
5653 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5654 		 * counts xattr inode references.
5655 		 */
5656 		down_read(&EXT4_I(inode)->xattr_sem);
5657 		error = dquot_transfer(inode, attr);
5658 		up_read(&EXT4_I(inode)->xattr_sem);
5659 
5660 		if (error) {
5661 			ext4_journal_stop(handle);
5662 			return error;
5663 		}
5664 		/* Update corresponding info in inode so that everything is in
5665 		 * one transaction */
5666 		if (attr->ia_valid & ATTR_UID)
5667 			inode->i_uid = attr->ia_uid;
5668 		if (attr->ia_valid & ATTR_GID)
5669 			inode->i_gid = attr->ia_gid;
5670 		error = ext4_mark_inode_dirty(handle, inode);
5671 		ext4_journal_stop(handle);
5672 	}
5673 
5674 	if (attr->ia_valid & ATTR_SIZE) {
5675 		handle_t *handle;
5676 		loff_t oldsize = inode->i_size;
5677 		int shrink = (attr->ia_size <= inode->i_size);
5678 
5679 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5680 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5681 
5682 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5683 				return -EFBIG;
5684 		}
5685 		if (!S_ISREG(inode->i_mode))
5686 			return -EINVAL;
5687 
5688 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5689 			inode_inc_iversion(inode);
5690 
5691 		if (ext4_should_order_data(inode) &&
5692 		    (attr->ia_size < inode->i_size)) {
5693 			error = ext4_begin_ordered_truncate(inode,
5694 							    attr->ia_size);
5695 			if (error)
5696 				goto err_out;
5697 		}
5698 		if (attr->ia_size != inode->i_size) {
5699 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5700 			if (IS_ERR(handle)) {
5701 				error = PTR_ERR(handle);
5702 				goto err_out;
5703 			}
5704 			if (ext4_handle_valid(handle) && shrink) {
5705 				error = ext4_orphan_add(handle, inode);
5706 				orphan = 1;
5707 			}
5708 			/*
5709 			 * Update c/mtime on truncate up, ext4_truncate() will
5710 			 * update c/mtime in shrink case below
5711 			 */
5712 			if (!shrink) {
5713 				inode->i_mtime = current_time(inode);
5714 				inode->i_ctime = inode->i_mtime;
5715 			}
5716 			down_write(&EXT4_I(inode)->i_data_sem);
5717 			EXT4_I(inode)->i_disksize = attr->ia_size;
5718 			rc = ext4_mark_inode_dirty(handle, inode);
5719 			if (!error)
5720 				error = rc;
5721 			/*
5722 			 * We have to update i_size under i_data_sem together
5723 			 * with i_disksize to avoid races with writeback code
5724 			 * running ext4_wb_update_i_disksize().
5725 			 */
5726 			if (!error)
5727 				i_size_write(inode, attr->ia_size);
5728 			up_write(&EXT4_I(inode)->i_data_sem);
5729 			ext4_journal_stop(handle);
5730 			if (error) {
5731 				if (orphan && inode->i_nlink)
5732 					ext4_orphan_del(NULL, inode);
5733 				goto err_out;
5734 			}
5735 		}
5736 		if (!shrink) {
5737 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5738 		} else {
5739 			/*
5740 			 * Blocks are going to be removed from the inode. Wait
5741 			 * for dio in flight.
5742 			 */
5743 			inode_dio_wait(inode);
5744 		}
5745 		if (orphan && ext4_should_journal_data(inode))
5746 			ext4_wait_for_tail_page_commit(inode);
5747 		down_write(&EXT4_I(inode)->i_mmap_sem);
5748 
5749 		rc = ext4_break_layouts(inode);
5750 		if (rc) {
5751 			up_write(&EXT4_I(inode)->i_mmap_sem);
5752 			error = rc;
5753 			goto err_out;
5754 		}
5755 
5756 		/*
5757 		 * Truncate pagecache after we've waited for commit
5758 		 * in data=journal mode to make pages freeable.
5759 		 */
5760 		truncate_pagecache(inode, inode->i_size);
5761 		if (shrink) {
5762 			rc = ext4_truncate(inode);
5763 			if (rc)
5764 				error = rc;
5765 		}
5766 		up_write(&EXT4_I(inode)->i_mmap_sem);
5767 	}
5768 
5769 	if (!error) {
5770 		setattr_copy(inode, attr);
5771 		mark_inode_dirty(inode);
5772 	}
5773 
5774 	/*
5775 	 * If the call to ext4_truncate failed to get a transaction handle at
5776 	 * all, we need to clean up the in-core orphan list manually.
5777 	 */
5778 	if (orphan && inode->i_nlink)
5779 		ext4_orphan_del(NULL, inode);
5780 
5781 	if (!error && (ia_valid & ATTR_MODE))
5782 		rc = posix_acl_chmod(inode, inode->i_mode);
5783 
5784 err_out:
5785 	ext4_std_error(inode->i_sb, error);
5786 	if (!error)
5787 		error = rc;
5788 	return error;
5789 }
5790 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5791 int ext4_getattr(const struct path *path, struct kstat *stat,
5792 		 u32 request_mask, unsigned int query_flags)
5793 {
5794 	struct inode *inode = d_inode(path->dentry);
5795 	struct ext4_inode *raw_inode;
5796 	struct ext4_inode_info *ei = EXT4_I(inode);
5797 	unsigned int flags;
5798 
5799 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5800 		stat->result_mask |= STATX_BTIME;
5801 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5802 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5803 	}
5804 
5805 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5806 	if (flags & EXT4_APPEND_FL)
5807 		stat->attributes |= STATX_ATTR_APPEND;
5808 	if (flags & EXT4_COMPR_FL)
5809 		stat->attributes |= STATX_ATTR_COMPRESSED;
5810 	if (flags & EXT4_ENCRYPT_FL)
5811 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5812 	if (flags & EXT4_IMMUTABLE_FL)
5813 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5814 	if (flags & EXT4_NODUMP_FL)
5815 		stat->attributes |= STATX_ATTR_NODUMP;
5816 
5817 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5818 				  STATX_ATTR_COMPRESSED |
5819 				  STATX_ATTR_ENCRYPTED |
5820 				  STATX_ATTR_IMMUTABLE |
5821 				  STATX_ATTR_NODUMP);
5822 
5823 	generic_fillattr(inode, stat);
5824 	return 0;
5825 }
5826 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5827 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5828 		      u32 request_mask, unsigned int query_flags)
5829 {
5830 	struct inode *inode = d_inode(path->dentry);
5831 	u64 delalloc_blocks;
5832 
5833 	ext4_getattr(path, stat, request_mask, query_flags);
5834 
5835 	/*
5836 	 * If there is inline data in the inode, the inode will normally not
5837 	 * have data blocks allocated (it may have an external xattr block).
5838 	 * Report at least one sector for such files, so tools like tar, rsync,
5839 	 * others don't incorrectly think the file is completely sparse.
5840 	 */
5841 	if (unlikely(ext4_has_inline_data(inode)))
5842 		stat->blocks += (stat->size + 511) >> 9;
5843 
5844 	/*
5845 	 * We can't update i_blocks if the block allocation is delayed
5846 	 * otherwise in the case of system crash before the real block
5847 	 * allocation is done, we will have i_blocks inconsistent with
5848 	 * on-disk file blocks.
5849 	 * We always keep i_blocks updated together with real
5850 	 * allocation. But to not confuse with user, stat
5851 	 * will return the blocks that include the delayed allocation
5852 	 * blocks for this file.
5853 	 */
5854 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5855 				   EXT4_I(inode)->i_reserved_data_blocks);
5856 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5857 	return 0;
5858 }
5859 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5860 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5861 				   int pextents)
5862 {
5863 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5864 		return ext4_ind_trans_blocks(inode, lblocks);
5865 	return ext4_ext_index_trans_blocks(inode, pextents);
5866 }
5867 
5868 /*
5869  * Account for index blocks, block groups bitmaps and block group
5870  * descriptor blocks if modify datablocks and index blocks
5871  * worse case, the indexs blocks spread over different block groups
5872  *
5873  * If datablocks are discontiguous, they are possible to spread over
5874  * different block groups too. If they are contiguous, with flexbg,
5875  * they could still across block group boundary.
5876  *
5877  * Also account for superblock, inode, quota and xattr blocks
5878  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5879 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5880 				  int pextents)
5881 {
5882 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5883 	int gdpblocks;
5884 	int idxblocks;
5885 	int ret = 0;
5886 
5887 	/*
5888 	 * How many index blocks need to touch to map @lblocks logical blocks
5889 	 * to @pextents physical extents?
5890 	 */
5891 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5892 
5893 	ret = idxblocks;
5894 
5895 	/*
5896 	 * Now let's see how many group bitmaps and group descriptors need
5897 	 * to account
5898 	 */
5899 	groups = idxblocks + pextents;
5900 	gdpblocks = groups;
5901 	if (groups > ngroups)
5902 		groups = ngroups;
5903 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5904 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5905 
5906 	/* bitmaps and block group descriptor blocks */
5907 	ret += groups + gdpblocks;
5908 
5909 	/* Blocks for super block, inode, quota and xattr blocks */
5910 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5911 
5912 	return ret;
5913 }
5914 
5915 /*
5916  * Calculate the total number of credits to reserve to fit
5917  * the modification of a single pages into a single transaction,
5918  * which may include multiple chunks of block allocations.
5919  *
5920  * This could be called via ext4_write_begin()
5921  *
5922  * We need to consider the worse case, when
5923  * one new block per extent.
5924  */
ext4_writepage_trans_blocks(struct inode * inode)5925 int ext4_writepage_trans_blocks(struct inode *inode)
5926 {
5927 	int bpp = ext4_journal_blocks_per_page(inode);
5928 	int ret;
5929 
5930 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5931 
5932 	/* Account for data blocks for journalled mode */
5933 	if (ext4_should_journal_data(inode))
5934 		ret += bpp;
5935 	return ret;
5936 }
5937 
5938 /*
5939  * Calculate the journal credits for a chunk of data modification.
5940  *
5941  * This is called from DIO, fallocate or whoever calling
5942  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5943  *
5944  * journal buffers for data blocks are not included here, as DIO
5945  * and fallocate do no need to journal data buffers.
5946  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5947 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5948 {
5949 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5950 }
5951 
5952 /*
5953  * The caller must have previously called ext4_reserve_inode_write().
5954  * Give this, we know that the caller already has write access to iloc->bh.
5955  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5956 int ext4_mark_iloc_dirty(handle_t *handle,
5957 			 struct inode *inode, struct ext4_iloc *iloc)
5958 {
5959 	int err = 0;
5960 
5961 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5962 		put_bh(iloc->bh);
5963 		return -EIO;
5964 	}
5965 	if (IS_I_VERSION(inode))
5966 		inode_inc_iversion(inode);
5967 
5968 	/* the do_update_inode consumes one bh->b_count */
5969 	get_bh(iloc->bh);
5970 
5971 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5972 	err = ext4_do_update_inode(handle, inode, iloc);
5973 	put_bh(iloc->bh);
5974 	return err;
5975 }
5976 
5977 /*
5978  * On success, We end up with an outstanding reference count against
5979  * iloc->bh.  This _must_ be cleaned up later.
5980  */
5981 
5982 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5983 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5984 			 struct ext4_iloc *iloc)
5985 {
5986 	int err;
5987 
5988 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5989 		return -EIO;
5990 
5991 	err = ext4_get_inode_loc(inode, iloc);
5992 	if (!err) {
5993 		BUFFER_TRACE(iloc->bh, "get_write_access");
5994 		err = ext4_journal_get_write_access(handle, iloc->bh);
5995 		if (err) {
5996 			brelse(iloc->bh);
5997 			iloc->bh = NULL;
5998 		}
5999 	}
6000 	ext4_std_error(inode->i_sb, err);
6001 	return err;
6002 }
6003 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)6004 static int __ext4_expand_extra_isize(struct inode *inode,
6005 				     unsigned int new_extra_isize,
6006 				     struct ext4_iloc *iloc,
6007 				     handle_t *handle, int *no_expand)
6008 {
6009 	struct ext4_inode *raw_inode;
6010 	struct ext4_xattr_ibody_header *header;
6011 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6012 	struct ext4_inode_info *ei = EXT4_I(inode);
6013 	int error;
6014 
6015 	/* this was checked at iget time, but double check for good measure */
6016 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6017 	    (ei->i_extra_isize & 3)) {
6018 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6019 				 ei->i_extra_isize,
6020 				 EXT4_INODE_SIZE(inode->i_sb));
6021 		return -EFSCORRUPTED;
6022 	}
6023 	if ((new_extra_isize < ei->i_extra_isize) ||
6024 	    (new_extra_isize < 4) ||
6025 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6026 		return -EINVAL;	/* Should never happen */
6027 
6028 	raw_inode = ext4_raw_inode(iloc);
6029 
6030 	header = IHDR(inode, raw_inode);
6031 
6032 	/* No extended attributes present */
6033 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6034 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6035 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6036 		       EXT4_I(inode)->i_extra_isize, 0,
6037 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6038 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6039 		return 0;
6040 	}
6041 
6042 	/*
6043 	 * We may need to allocate external xattr block so we need quotas
6044 	 * initialized. Here we can be called with various locks held so we
6045 	 * cannot affort to initialize quotas ourselves. So just bail.
6046 	 */
6047 	if (dquot_initialize_needed(inode))
6048 		return -EAGAIN;
6049 
6050 	/* try to expand with EAs present */
6051 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6052 					   raw_inode, handle);
6053 	if (error) {
6054 		/*
6055 		 * Inode size expansion failed; don't try again
6056 		 */
6057 		*no_expand = 1;
6058 	}
6059 
6060 	return error;
6061 }
6062 
6063 /*
6064  * Expand an inode by new_extra_isize bytes.
6065  * Returns 0 on success or negative error number on failure.
6066  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)6067 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6068 					  unsigned int new_extra_isize,
6069 					  struct ext4_iloc iloc,
6070 					  handle_t *handle)
6071 {
6072 	int no_expand;
6073 	int error;
6074 
6075 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6076 		return -EOVERFLOW;
6077 
6078 	/*
6079 	 * In nojournal mode, we can immediately attempt to expand
6080 	 * the inode.  When journaled, we first need to obtain extra
6081 	 * buffer credits since we may write into the EA block
6082 	 * with this same handle. If journal_extend fails, then it will
6083 	 * only result in a minor loss of functionality for that inode.
6084 	 * If this is felt to be critical, then e2fsck should be run to
6085 	 * force a large enough s_min_extra_isize.
6086 	 */
6087 	if (ext4_handle_valid(handle) &&
6088 	    jbd2_journal_extend(handle,
6089 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6090 		return -ENOSPC;
6091 
6092 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6093 		return -EBUSY;
6094 
6095 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6096 					  handle, &no_expand);
6097 	ext4_write_unlock_xattr(inode, &no_expand);
6098 
6099 	return error;
6100 }
6101 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6102 int ext4_expand_extra_isize(struct inode *inode,
6103 			    unsigned int new_extra_isize,
6104 			    struct ext4_iloc *iloc)
6105 {
6106 	handle_t *handle;
6107 	int no_expand;
6108 	int error, rc;
6109 
6110 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6111 		brelse(iloc->bh);
6112 		return -EOVERFLOW;
6113 	}
6114 
6115 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6116 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6117 	if (IS_ERR(handle)) {
6118 		error = PTR_ERR(handle);
6119 		brelse(iloc->bh);
6120 		return error;
6121 	}
6122 
6123 	ext4_write_lock_xattr(inode, &no_expand);
6124 
6125 	BUFFER_TRACE(iloc->bh, "get_write_access");
6126 	error = ext4_journal_get_write_access(handle, iloc->bh);
6127 	if (error) {
6128 		brelse(iloc->bh);
6129 		goto out_unlock;
6130 	}
6131 
6132 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6133 					  handle, &no_expand);
6134 
6135 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6136 	if (!error)
6137 		error = rc;
6138 
6139 out_unlock:
6140 	ext4_write_unlock_xattr(inode, &no_expand);
6141 	ext4_journal_stop(handle);
6142 	return error;
6143 }
6144 
6145 /*
6146  * What we do here is to mark the in-core inode as clean with respect to inode
6147  * dirtiness (it may still be data-dirty).
6148  * This means that the in-core inode may be reaped by prune_icache
6149  * without having to perform any I/O.  This is a very good thing,
6150  * because *any* task may call prune_icache - even ones which
6151  * have a transaction open against a different journal.
6152  *
6153  * Is this cheating?  Not really.  Sure, we haven't written the
6154  * inode out, but prune_icache isn't a user-visible syncing function.
6155  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6156  * we start and wait on commits.
6157  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)6158 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6159 {
6160 	struct ext4_iloc iloc;
6161 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6162 	int err;
6163 
6164 	might_sleep();
6165 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6166 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6167 	if (err)
6168 		return err;
6169 
6170 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6171 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6172 					       iloc, handle);
6173 
6174 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6175 }
6176 
6177 /*
6178  * ext4_dirty_inode() is called from __mark_inode_dirty()
6179  *
6180  * We're really interested in the case where a file is being extended.
6181  * i_size has been changed by generic_commit_write() and we thus need
6182  * to include the updated inode in the current transaction.
6183  *
6184  * Also, dquot_alloc_block() will always dirty the inode when blocks
6185  * are allocated to the file.
6186  *
6187  * If the inode is marked synchronous, we don't honour that here - doing
6188  * so would cause a commit on atime updates, which we don't bother doing.
6189  * We handle synchronous inodes at the highest possible level.
6190  *
6191  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6192  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6193  * to copy into the on-disk inode structure are the timestamp files.
6194  */
ext4_dirty_inode(struct inode * inode,int flags)6195 void ext4_dirty_inode(struct inode *inode, int flags)
6196 {
6197 	handle_t *handle;
6198 
6199 	if (flags == I_DIRTY_TIME)
6200 		return;
6201 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6202 	if (IS_ERR(handle))
6203 		goto out;
6204 
6205 	ext4_mark_inode_dirty(handle, inode);
6206 
6207 	ext4_journal_stop(handle);
6208 out:
6209 	return;
6210 }
6211 
6212 #if 0
6213 /*
6214  * Bind an inode's backing buffer_head into this transaction, to prevent
6215  * it from being flushed to disk early.  Unlike
6216  * ext4_reserve_inode_write, this leaves behind no bh reference and
6217  * returns no iloc structure, so the caller needs to repeat the iloc
6218  * lookup to mark the inode dirty later.
6219  */
6220 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6221 {
6222 	struct ext4_iloc iloc;
6223 
6224 	int err = 0;
6225 	if (handle) {
6226 		err = ext4_get_inode_loc(inode, &iloc);
6227 		if (!err) {
6228 			BUFFER_TRACE(iloc.bh, "get_write_access");
6229 			err = jbd2_journal_get_write_access(handle, iloc.bh);
6230 			if (!err)
6231 				err = ext4_handle_dirty_metadata(handle,
6232 								 NULL,
6233 								 iloc.bh);
6234 			brelse(iloc.bh);
6235 		}
6236 	}
6237 	ext4_std_error(inode->i_sb, err);
6238 	return err;
6239 }
6240 #endif
6241 
ext4_change_inode_journal_flag(struct inode * inode,int val)6242 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6243 {
6244 	journal_t *journal;
6245 	handle_t *handle;
6246 	int err;
6247 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6248 
6249 	/*
6250 	 * We have to be very careful here: changing a data block's
6251 	 * journaling status dynamically is dangerous.  If we write a
6252 	 * data block to the journal, change the status and then delete
6253 	 * that block, we risk forgetting to revoke the old log record
6254 	 * from the journal and so a subsequent replay can corrupt data.
6255 	 * So, first we make sure that the journal is empty and that
6256 	 * nobody is changing anything.
6257 	 */
6258 
6259 	journal = EXT4_JOURNAL(inode);
6260 	if (!journal)
6261 		return 0;
6262 	if (is_journal_aborted(journal))
6263 		return -EROFS;
6264 
6265 	/* Wait for all existing dio workers */
6266 	inode_dio_wait(inode);
6267 
6268 	/*
6269 	 * Before flushing the journal and switching inode's aops, we have
6270 	 * to flush all dirty data the inode has. There can be outstanding
6271 	 * delayed allocations, there can be unwritten extents created by
6272 	 * fallocate or buffered writes in dioread_nolock mode covered by
6273 	 * dirty data which can be converted only after flushing the dirty
6274 	 * data (and journalled aops don't know how to handle these cases).
6275 	 */
6276 	if (val) {
6277 		down_write(&EXT4_I(inode)->i_mmap_sem);
6278 		err = filemap_write_and_wait(inode->i_mapping);
6279 		if (err < 0) {
6280 			up_write(&EXT4_I(inode)->i_mmap_sem);
6281 			return err;
6282 		}
6283 	}
6284 
6285 	percpu_down_write(&sbi->s_writepages_rwsem);
6286 	jbd2_journal_lock_updates(journal);
6287 
6288 	/*
6289 	 * OK, there are no updates running now, and all cached data is
6290 	 * synced to disk.  We are now in a completely consistent state
6291 	 * which doesn't have anything in the journal, and we know that
6292 	 * no filesystem updates are running, so it is safe to modify
6293 	 * the inode's in-core data-journaling state flag now.
6294 	 */
6295 
6296 	if (val)
6297 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6298 	else {
6299 		err = jbd2_journal_flush(journal);
6300 		if (err < 0) {
6301 			jbd2_journal_unlock_updates(journal);
6302 			percpu_up_write(&sbi->s_writepages_rwsem);
6303 			return err;
6304 		}
6305 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6306 	}
6307 	ext4_set_aops(inode);
6308 
6309 	jbd2_journal_unlock_updates(journal);
6310 	percpu_up_write(&sbi->s_writepages_rwsem);
6311 
6312 	if (val)
6313 		up_write(&EXT4_I(inode)->i_mmap_sem);
6314 
6315 	/* Finally we can mark the inode as dirty. */
6316 
6317 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6318 	if (IS_ERR(handle))
6319 		return PTR_ERR(handle);
6320 
6321 	err = ext4_mark_inode_dirty(handle, inode);
6322 	ext4_handle_sync(handle);
6323 	ext4_journal_stop(handle);
6324 	ext4_std_error(inode->i_sb, err);
6325 
6326 	return err;
6327 }
6328 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6329 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6330 {
6331 	return !buffer_mapped(bh);
6332 }
6333 
ext4_page_mkwrite(struct vm_fault * vmf)6334 int ext4_page_mkwrite(struct vm_fault *vmf)
6335 {
6336 	struct vm_area_struct *vma = vmf->vma;
6337 	struct page *page = vmf->page;
6338 	loff_t size;
6339 	unsigned long len;
6340 	int ret;
6341 	struct file *file = vma->vm_file;
6342 	struct inode *inode = file_inode(file);
6343 	struct address_space *mapping = inode->i_mapping;
6344 	handle_t *handle;
6345 	get_block_t *get_block;
6346 	int retries = 0;
6347 
6348 	if (unlikely(IS_IMMUTABLE(inode)))
6349 		return VM_FAULT_SIGBUS;
6350 
6351 	sb_start_pagefault(inode->i_sb);
6352 	file_update_time(vma->vm_file);
6353 
6354 	down_read(&EXT4_I(inode)->i_mmap_sem);
6355 
6356 	ret = ext4_convert_inline_data(inode);
6357 	if (ret)
6358 		goto out_ret;
6359 
6360 	/* Delalloc case is easy... */
6361 	if (test_opt(inode->i_sb, DELALLOC) &&
6362 	    !ext4_should_journal_data(inode) &&
6363 	    !ext4_nonda_switch(inode->i_sb)) {
6364 		do {
6365 			ret = block_page_mkwrite(vma, vmf,
6366 						   ext4_da_get_block_prep);
6367 		} while (ret == -ENOSPC &&
6368 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6369 		goto out_ret;
6370 	}
6371 
6372 	lock_page(page);
6373 	size = i_size_read(inode);
6374 	/* Page got truncated from under us? */
6375 	if (page->mapping != mapping || page_offset(page) > size) {
6376 		unlock_page(page);
6377 		ret = VM_FAULT_NOPAGE;
6378 		goto out;
6379 	}
6380 
6381 	if (page->index == size >> PAGE_SHIFT)
6382 		len = size & ~PAGE_MASK;
6383 	else
6384 		len = PAGE_SIZE;
6385 	/*
6386 	 * Return if we have all the buffers mapped. This avoids the need to do
6387 	 * journal_start/journal_stop which can block and take a long time
6388 	 */
6389 	if (page_has_buffers(page)) {
6390 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6391 					    0, len, NULL,
6392 					    ext4_bh_unmapped)) {
6393 			/* Wait so that we don't change page under IO */
6394 			wait_for_stable_page(page);
6395 			ret = VM_FAULT_LOCKED;
6396 			goto out;
6397 		}
6398 	}
6399 	unlock_page(page);
6400 	/* OK, we need to fill the hole... */
6401 	if (ext4_should_dioread_nolock(inode))
6402 		get_block = ext4_get_block_unwritten;
6403 	else
6404 		get_block = ext4_get_block;
6405 retry_alloc:
6406 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6407 				    ext4_writepage_trans_blocks(inode));
6408 	if (IS_ERR(handle)) {
6409 		ret = VM_FAULT_SIGBUS;
6410 		goto out;
6411 	}
6412 	ret = block_page_mkwrite(vma, vmf, get_block);
6413 	if (!ret && ext4_should_journal_data(inode)) {
6414 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6415 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6416 			unlock_page(page);
6417 			ret = VM_FAULT_SIGBUS;
6418 			ext4_journal_stop(handle);
6419 			goto out;
6420 		}
6421 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6422 	}
6423 	ext4_journal_stop(handle);
6424 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6425 		goto retry_alloc;
6426 out_ret:
6427 	ret = block_page_mkwrite_return(ret);
6428 out:
6429 	up_read(&EXT4_I(inode)->i_mmap_sem);
6430 	sb_end_pagefault(inode->i_sb);
6431 	return ret;
6432 }
6433 
ext4_filemap_fault(struct vm_fault * vmf)6434 int ext4_filemap_fault(struct vm_fault *vmf)
6435 {
6436 	struct inode *inode = file_inode(vmf->vma->vm_file);
6437 	int err;
6438 
6439 	down_read(&EXT4_I(inode)->i_mmap_sem);
6440 	err = filemap_fault(vmf);
6441 	up_read(&EXT4_I(inode)->i_mmap_sem);
6442 
6443 	return err;
6444 }
6445