1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
__reverse_ulong(unsigned char * str)36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
__reverse_ffs(unsigned long word)55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
f2fs_need_SSR(struct f2fs_sb_info * sbi)172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_mode == GC_URGENT)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
f2fs_register_inmem_page(struct inode * inode,struct page * page)187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover,
220 bool trylock)
221 {
222 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
223 struct inmem_pages *cur, *tmp;
224 int err = 0;
225
226 list_for_each_entry_safe(cur, tmp, head, list) {
227 struct page *page = cur->page;
228
229 if (drop)
230 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
231
232 if (trylock) {
233 /*
234 * to avoid deadlock in between page lock and
235 * inmem_lock.
236 */
237 if (!trylock_page(page))
238 continue;
239 } else {
240 lock_page(page);
241 }
242
243 f2fs_wait_on_page_writeback(page, DATA, true);
244
245 if (recover) {
246 struct dnode_of_data dn;
247 struct node_info ni;
248
249 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
250 retry:
251 set_new_dnode(&dn, inode, NULL, NULL, 0);
252 err = f2fs_get_dnode_of_data(&dn, page->index,
253 LOOKUP_NODE);
254 if (err) {
255 if (err == -ENOMEM) {
256 congestion_wait(BLK_RW_ASYNC, HZ/50);
257 cond_resched();
258 goto retry;
259 }
260 err = -EAGAIN;
261 goto next;
262 }
263
264 err = f2fs_get_node_info(sbi, dn.nid, &ni);
265 if (err) {
266 f2fs_put_dnode(&dn);
267 return err;
268 }
269
270 if (cur->old_addr == NEW_ADDR) {
271 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
272 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
273 } else
274 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
275 cur->old_addr, ni.version, true, true);
276 f2fs_put_dnode(&dn);
277 }
278 next:
279 /* we don't need to invalidate this in the sccessful status */
280 if (drop || recover) {
281 ClearPageUptodate(page);
282 clear_cold_data(page);
283 }
284 set_page_private(page, 0);
285 ClearPagePrivate(page);
286 f2fs_put_page(page, 1);
287
288 list_del(&cur->list);
289 kmem_cache_free(inmem_entry_slab, cur);
290 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
291 }
292 return err;
293 }
294
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)295 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
296 {
297 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
298 struct inode *inode;
299 struct f2fs_inode_info *fi;
300 next:
301 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
302 if (list_empty(head)) {
303 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
304 return;
305 }
306 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
307 inode = igrab(&fi->vfs_inode);
308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309
310 if (inode) {
311 if (gc_failure) {
312 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
313 goto drop;
314 goto skip;
315 }
316 drop:
317 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
318 f2fs_drop_inmem_pages(inode);
319 iput(inode);
320 }
321 skip:
322 congestion_wait(BLK_RW_ASYNC, HZ/50);
323 cond_resched();
324 goto next;
325 }
326
f2fs_drop_inmem_pages(struct inode * inode)327 void f2fs_drop_inmem_pages(struct inode *inode)
328 {
329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
330 struct f2fs_inode_info *fi = F2FS_I(inode);
331
332 while (!list_empty(&fi->inmem_pages)) {
333 mutex_lock(&fi->inmem_lock);
334 __revoke_inmem_pages(inode, &fi->inmem_pages,
335 true, false, true);
336
337 if (list_empty(&fi->inmem_pages)) {
338 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
339 if (!list_empty(&fi->inmem_ilist))
340 list_del_init(&fi->inmem_ilist);
341 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
342 }
343 mutex_unlock(&fi->inmem_lock);
344 }
345
346 clear_inode_flag(inode, FI_ATOMIC_FILE);
347 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
348 stat_dec_atomic_write(inode);
349 }
350
f2fs_drop_inmem_page(struct inode * inode,struct page * page)351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352 {
353 struct f2fs_inode_info *fi = F2FS_I(inode);
354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 struct list_head *head = &fi->inmem_pages;
356 struct inmem_pages *cur = NULL;
357 struct inmem_pages *tmp;
358
359 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
360
361 mutex_lock(&fi->inmem_lock);
362 list_for_each_entry(tmp, head, list) {
363 if (tmp->page == page) {
364 cur = tmp;
365 break;
366 }
367 }
368
369 f2fs_bug_on(sbi, !cur);
370 list_del(&cur->list);
371 mutex_unlock(&fi->inmem_lock);
372
373 dec_page_count(sbi, F2FS_INMEM_PAGES);
374 kmem_cache_free(inmem_entry_slab, cur);
375
376 ClearPageUptodate(page);
377 set_page_private(page, 0);
378 ClearPagePrivate(page);
379 f2fs_put_page(page, 0);
380
381 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
382 }
383
__f2fs_commit_inmem_pages(struct inode * inode)384 static int __f2fs_commit_inmem_pages(struct inode *inode)
385 {
386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387 struct f2fs_inode_info *fi = F2FS_I(inode);
388 struct inmem_pages *cur, *tmp;
389 struct f2fs_io_info fio = {
390 .sbi = sbi,
391 .ino = inode->i_ino,
392 .type = DATA,
393 .op = REQ_OP_WRITE,
394 .op_flags = REQ_SYNC | REQ_PRIO,
395 .io_type = FS_DATA_IO,
396 };
397 struct list_head revoke_list;
398 pgoff_t last_idx = ULONG_MAX;
399 int err = 0;
400
401 INIT_LIST_HEAD(&revoke_list);
402
403 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
404 struct page *page = cur->page;
405
406 lock_page(page);
407 if (page->mapping == inode->i_mapping) {
408 trace_f2fs_commit_inmem_page(page, INMEM);
409
410 set_page_dirty(page);
411 f2fs_wait_on_page_writeback(page, DATA, true);
412 if (clear_page_dirty_for_io(page)) {
413 inode_dec_dirty_pages(inode);
414 f2fs_remove_dirty_inode(inode);
415 }
416 retry:
417 fio.page = page;
418 fio.old_blkaddr = NULL_ADDR;
419 fio.encrypted_page = NULL;
420 fio.need_lock = LOCK_DONE;
421 err = f2fs_do_write_data_page(&fio);
422 if (err) {
423 if (err == -ENOMEM) {
424 congestion_wait(BLK_RW_ASYNC, HZ/50);
425 cond_resched();
426 goto retry;
427 }
428 unlock_page(page);
429 break;
430 }
431 /* record old blkaddr for revoking */
432 cur->old_addr = fio.old_blkaddr;
433 last_idx = page->index;
434 }
435 unlock_page(page);
436 list_move_tail(&cur->list, &revoke_list);
437 }
438
439 if (last_idx != ULONG_MAX)
440 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
441
442 if (err) {
443 /*
444 * try to revoke all committed pages, but still we could fail
445 * due to no memory or other reason, if that happened, EAGAIN
446 * will be returned, which means in such case, transaction is
447 * already not integrity, caller should use journal to do the
448 * recovery or rewrite & commit last transaction. For other
449 * error number, revoking was done by filesystem itself.
450 */
451 err = __revoke_inmem_pages(inode, &revoke_list,
452 false, true, false);
453
454 /* drop all uncommitted pages */
455 __revoke_inmem_pages(inode, &fi->inmem_pages,
456 true, false, false);
457 } else {
458 __revoke_inmem_pages(inode, &revoke_list,
459 false, false, false);
460 }
461
462 return err;
463 }
464
f2fs_commit_inmem_pages(struct inode * inode)465 int f2fs_commit_inmem_pages(struct inode *inode)
466 {
467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
468 struct f2fs_inode_info *fi = F2FS_I(inode);
469 int err;
470
471 f2fs_balance_fs(sbi, true);
472
473 down_write(&fi->i_gc_rwsem[WRITE]);
474
475 f2fs_lock_op(sbi);
476 set_inode_flag(inode, FI_ATOMIC_COMMIT);
477
478 mutex_lock(&fi->inmem_lock);
479 err = __f2fs_commit_inmem_pages(inode);
480
481 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
482 if (!list_empty(&fi->inmem_ilist))
483 list_del_init(&fi->inmem_ilist);
484 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
485 mutex_unlock(&fi->inmem_lock);
486
487 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
488
489 f2fs_unlock_op(sbi);
490 up_write(&fi->i_gc_rwsem[WRITE]);
491
492 return err;
493 }
494
495 /*
496 * This function balances dirty node and dentry pages.
497 * In addition, it controls garbage collection.
498 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)499 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
500 {
501 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
502 f2fs_show_injection_info(FAULT_CHECKPOINT);
503 f2fs_stop_checkpoint(sbi, false);
504 }
505
506 /* balance_fs_bg is able to be pending */
507 if (need && excess_cached_nats(sbi))
508 f2fs_balance_fs_bg(sbi);
509
510 /*
511 * We should do GC or end up with checkpoint, if there are so many dirty
512 * dir/node pages without enough free segments.
513 */
514 if (has_not_enough_free_secs(sbi, 0, 0)) {
515 mutex_lock(&sbi->gc_mutex);
516 f2fs_gc(sbi, false, false, NULL_SEGNO);
517 }
518 }
519
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi)520 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
521 {
522 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
523 return;
524
525 /* try to shrink extent cache when there is no enough memory */
526 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
527 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
528
529 /* check the # of cached NAT entries */
530 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
531 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
532
533 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
534 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
535 else
536 f2fs_build_free_nids(sbi, false, false);
537
538 if (!is_idle(sbi) &&
539 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
540 return;
541
542 /* checkpoint is the only way to shrink partial cached entries */
543 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
544 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
545 excess_prefree_segs(sbi) ||
546 excess_dirty_nats(sbi) ||
547 excess_dirty_nodes(sbi) ||
548 f2fs_time_over(sbi, CP_TIME)) {
549 if (test_opt(sbi, DATA_FLUSH)) {
550 struct blk_plug plug;
551
552 blk_start_plug(&plug);
553 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
554 blk_finish_plug(&plug);
555 }
556 f2fs_sync_fs(sbi->sb, true);
557 stat_inc_bg_cp_count(sbi->stat_info);
558 }
559 }
560
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)561 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
562 struct block_device *bdev)
563 {
564 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
565 int ret;
566
567 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
568 bio_set_dev(bio, bdev);
569 ret = submit_bio_wait(bio);
570 bio_put(bio);
571
572 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
573 test_opt(sbi, FLUSH_MERGE), ret);
574 return ret;
575 }
576
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)577 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
578 {
579 int ret = 0;
580 int i;
581
582 if (!f2fs_is_multi_device(sbi))
583 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
584
585 for (i = 0; i < sbi->s_ndevs; i++) {
586 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
587 continue;
588 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
589 if (ret)
590 break;
591 }
592 return ret;
593 }
594
issue_flush_thread(void * data)595 static int issue_flush_thread(void *data)
596 {
597 struct f2fs_sb_info *sbi = data;
598 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
599 wait_queue_head_t *q = &fcc->flush_wait_queue;
600 repeat:
601 if (kthread_should_stop())
602 return 0;
603
604 sb_start_intwrite(sbi->sb);
605
606 if (!llist_empty(&fcc->issue_list)) {
607 struct flush_cmd *cmd, *next;
608 int ret;
609
610 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
611 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
612
613 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
614
615 ret = submit_flush_wait(sbi, cmd->ino);
616 atomic_inc(&fcc->issued_flush);
617
618 llist_for_each_entry_safe(cmd, next,
619 fcc->dispatch_list, llnode) {
620 cmd->ret = ret;
621 complete(&cmd->wait);
622 }
623 fcc->dispatch_list = NULL;
624 }
625
626 sb_end_intwrite(sbi->sb);
627
628 wait_event_interruptible(*q,
629 kthread_should_stop() || !llist_empty(&fcc->issue_list));
630 goto repeat;
631 }
632
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)633 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
634 {
635 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
636 struct flush_cmd cmd;
637 int ret;
638
639 if (test_opt(sbi, NOBARRIER))
640 return 0;
641
642 if (!test_opt(sbi, FLUSH_MERGE)) {
643 atomic_inc(&fcc->issing_flush);
644 ret = submit_flush_wait(sbi, ino);
645 atomic_dec(&fcc->issing_flush);
646 atomic_inc(&fcc->issued_flush);
647 return ret;
648 }
649
650 if (atomic_inc_return(&fcc->issing_flush) == 1 ||
651 f2fs_is_multi_device(sbi)) {
652 ret = submit_flush_wait(sbi, ino);
653 atomic_dec(&fcc->issing_flush);
654
655 atomic_inc(&fcc->issued_flush);
656 return ret;
657 }
658
659 cmd.ino = ino;
660 init_completion(&cmd.wait);
661
662 llist_add(&cmd.llnode, &fcc->issue_list);
663
664 /* update issue_list before we wake up issue_flush thread */
665 smp_mb();
666
667 if (waitqueue_active(&fcc->flush_wait_queue))
668 wake_up(&fcc->flush_wait_queue);
669
670 if (fcc->f2fs_issue_flush) {
671 wait_for_completion(&cmd.wait);
672 atomic_dec(&fcc->issing_flush);
673 } else {
674 struct llist_node *list;
675
676 list = llist_del_all(&fcc->issue_list);
677 if (!list) {
678 wait_for_completion(&cmd.wait);
679 atomic_dec(&fcc->issing_flush);
680 } else {
681 struct flush_cmd *tmp, *next;
682
683 ret = submit_flush_wait(sbi, ino);
684
685 llist_for_each_entry_safe(tmp, next, list, llnode) {
686 if (tmp == &cmd) {
687 cmd.ret = ret;
688 atomic_dec(&fcc->issing_flush);
689 continue;
690 }
691 tmp->ret = ret;
692 complete(&tmp->wait);
693 }
694 }
695 }
696
697 return cmd.ret;
698 }
699
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
701 {
702 dev_t dev = sbi->sb->s_bdev->bd_dev;
703 struct flush_cmd_control *fcc;
704 int err = 0;
705
706 if (SM_I(sbi)->fcc_info) {
707 fcc = SM_I(sbi)->fcc_info;
708 if (fcc->f2fs_issue_flush)
709 return err;
710 goto init_thread;
711 }
712
713 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
714 if (!fcc)
715 return -ENOMEM;
716 atomic_set(&fcc->issued_flush, 0);
717 atomic_set(&fcc->issing_flush, 0);
718 init_waitqueue_head(&fcc->flush_wait_queue);
719 init_llist_head(&fcc->issue_list);
720 SM_I(sbi)->fcc_info = fcc;
721 if (!test_opt(sbi, FLUSH_MERGE))
722 return err;
723
724 init_thread:
725 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
726 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
727 if (IS_ERR(fcc->f2fs_issue_flush)) {
728 err = PTR_ERR(fcc->f2fs_issue_flush);
729 kfree(fcc);
730 SM_I(sbi)->fcc_info = NULL;
731 return err;
732 }
733
734 return err;
735 }
736
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
738 {
739 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
740
741 if (fcc && fcc->f2fs_issue_flush) {
742 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
743
744 fcc->f2fs_issue_flush = NULL;
745 kthread_stop(flush_thread);
746 }
747 if (free) {
748 kfree(fcc);
749 SM_I(sbi)->fcc_info = NULL;
750 }
751 }
752
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)753 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
754 {
755 int ret = 0, i;
756
757 if (!f2fs_is_multi_device(sbi))
758 return 0;
759
760 for (i = 1; i < sbi->s_ndevs; i++) {
761 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
762 continue;
763 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
764 if (ret)
765 break;
766
767 spin_lock(&sbi->dev_lock);
768 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
769 spin_unlock(&sbi->dev_lock);
770 }
771
772 return ret;
773 }
774
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)775 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
776 enum dirty_type dirty_type)
777 {
778 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
779
780 /* need not be added */
781 if (IS_CURSEG(sbi, segno))
782 return;
783
784 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
785 dirty_i->nr_dirty[dirty_type]++;
786
787 if (dirty_type == DIRTY) {
788 struct seg_entry *sentry = get_seg_entry(sbi, segno);
789 enum dirty_type t = sentry->type;
790
791 if (unlikely(t >= DIRTY)) {
792 f2fs_bug_on(sbi, 1);
793 return;
794 }
795 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
796 dirty_i->nr_dirty[t]++;
797 }
798 }
799
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)800 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
801 enum dirty_type dirty_type)
802 {
803 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
804
805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
806 dirty_i->nr_dirty[dirty_type]--;
807
808 if (dirty_type == DIRTY) {
809 struct seg_entry *sentry = get_seg_entry(sbi, segno);
810 enum dirty_type t = sentry->type;
811
812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
813 dirty_i->nr_dirty[t]--;
814
815 if (get_valid_blocks(sbi, segno, true) == 0)
816 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
817 dirty_i->victim_secmap);
818 }
819 }
820
821 /*
822 * Should not occur error such as -ENOMEM.
823 * Adding dirty entry into seglist is not critical operation.
824 * If a given segment is one of current working segments, it won't be added.
825 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
827 {
828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
829 unsigned short valid_blocks;
830
831 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
832 return;
833
834 mutex_lock(&dirty_i->seglist_lock);
835
836 valid_blocks = get_valid_blocks(sbi, segno, false);
837
838 if (valid_blocks == 0) {
839 __locate_dirty_segment(sbi, segno, PRE);
840 __remove_dirty_segment(sbi, segno, DIRTY);
841 } else if (valid_blocks < sbi->blocks_per_seg) {
842 __locate_dirty_segment(sbi, segno, DIRTY);
843 } else {
844 /* Recovery routine with SSR needs this */
845 __remove_dirty_segment(sbi, segno, DIRTY);
846 }
847
848 mutex_unlock(&dirty_i->seglist_lock);
849 }
850
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)851 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
852 struct block_device *bdev, block_t lstart,
853 block_t start, block_t len)
854 {
855 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
856 struct list_head *pend_list;
857 struct discard_cmd *dc;
858
859 f2fs_bug_on(sbi, !len);
860
861 pend_list = &dcc->pend_list[plist_idx(len)];
862
863 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
864 INIT_LIST_HEAD(&dc->list);
865 dc->bdev = bdev;
866 dc->lstart = lstart;
867 dc->start = start;
868 dc->len = len;
869 dc->ref = 0;
870 dc->state = D_PREP;
871 dc->issuing = 0;
872 dc->error = 0;
873 init_completion(&dc->wait);
874 list_add_tail(&dc->list, pend_list);
875 spin_lock_init(&dc->lock);
876 dc->bio_ref = 0;
877 atomic_inc(&dcc->discard_cmd_cnt);
878 dcc->undiscard_blks += len;
879
880 return dc;
881 }
882
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p)883 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
884 struct block_device *bdev, block_t lstart,
885 block_t start, block_t len,
886 struct rb_node *parent, struct rb_node **p)
887 {
888 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
889 struct discard_cmd *dc;
890
891 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
892
893 rb_link_node(&dc->rb_node, parent, p);
894 rb_insert_color(&dc->rb_node, &dcc->root);
895
896 return dc;
897 }
898
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)899 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
900 struct discard_cmd *dc)
901 {
902 if (dc->state == D_DONE)
903 atomic_sub(dc->issuing, &dcc->issing_discard);
904
905 list_del(&dc->list);
906 rb_erase(&dc->rb_node, &dcc->root);
907 dcc->undiscard_blks -= dc->len;
908
909 kmem_cache_free(discard_cmd_slab, dc);
910
911 atomic_dec(&dcc->discard_cmd_cnt);
912 }
913
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)914 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
915 struct discard_cmd *dc)
916 {
917 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
918 unsigned long flags;
919
920 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
921
922 spin_lock_irqsave(&dc->lock, flags);
923 if (dc->bio_ref) {
924 spin_unlock_irqrestore(&dc->lock, flags);
925 return;
926 }
927 spin_unlock_irqrestore(&dc->lock, flags);
928
929 f2fs_bug_on(sbi, dc->ref);
930
931 if (dc->error == -EOPNOTSUPP)
932 dc->error = 0;
933
934 if (dc->error)
935 f2fs_msg(sbi->sb, KERN_INFO,
936 "Issue discard(%u, %u, %u) failed, ret: %d",
937 dc->lstart, dc->start, dc->len, dc->error);
938 __detach_discard_cmd(dcc, dc);
939 }
940
f2fs_submit_discard_endio(struct bio * bio)941 static void f2fs_submit_discard_endio(struct bio *bio)
942 {
943 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
944 unsigned long flags;
945
946 dc->error = blk_status_to_errno(bio->bi_status);
947
948 spin_lock_irqsave(&dc->lock, flags);
949 dc->bio_ref--;
950 if (!dc->bio_ref && dc->state == D_SUBMIT) {
951 dc->state = D_DONE;
952 complete_all(&dc->wait);
953 }
954 spin_unlock_irqrestore(&dc->lock, flags);
955 bio_put(bio);
956 }
957
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)958 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
959 block_t start, block_t end)
960 {
961 #ifdef CONFIG_F2FS_CHECK_FS
962 struct seg_entry *sentry;
963 unsigned int segno;
964 block_t blk = start;
965 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
966 unsigned long *map;
967
968 while (blk < end) {
969 segno = GET_SEGNO(sbi, blk);
970 sentry = get_seg_entry(sbi, segno);
971 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
972
973 if (end < START_BLOCK(sbi, segno + 1))
974 size = GET_BLKOFF_FROM_SEG0(sbi, end);
975 else
976 size = max_blocks;
977 map = (unsigned long *)(sentry->cur_valid_map);
978 offset = __find_rev_next_bit(map, size, offset);
979 f2fs_bug_on(sbi, offset != size);
980 blk = START_BLOCK(sbi, segno + 1);
981 }
982 #endif
983 }
984
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)985 static void __init_discard_policy(struct f2fs_sb_info *sbi,
986 struct discard_policy *dpolicy,
987 int discard_type, unsigned int granularity)
988 {
989 /* common policy */
990 dpolicy->type = discard_type;
991 dpolicy->sync = true;
992 dpolicy->ordered = false;
993 dpolicy->granularity = granularity;
994
995 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
996 dpolicy->io_aware_gran = MAX_PLIST_NUM;
997
998 if (discard_type == DPOLICY_BG) {
999 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1000 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1001 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1002 dpolicy->io_aware = true;
1003 dpolicy->sync = false;
1004 dpolicy->ordered = true;
1005 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1006 dpolicy->granularity = 1;
1007 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1008 }
1009 } else if (discard_type == DPOLICY_FORCE) {
1010 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1011 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1012 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1013 dpolicy->io_aware = false;
1014 } else if (discard_type == DPOLICY_FSTRIM) {
1015 dpolicy->io_aware = false;
1016 } else if (discard_type == DPOLICY_UMOUNT) {
1017 dpolicy->max_requests = UINT_MAX;
1018 dpolicy->io_aware = false;
1019 }
1020 }
1021
1022 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1023 struct block_device *bdev, block_t lstart,
1024 block_t start, block_t len);
1025 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1026 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1027 struct discard_policy *dpolicy,
1028 struct discard_cmd *dc,
1029 unsigned int *issued)
1030 {
1031 struct block_device *bdev = dc->bdev;
1032 struct request_queue *q = bdev_get_queue(bdev);
1033 unsigned int max_discard_blocks =
1034 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1035 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1036 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1037 &(dcc->fstrim_list) : &(dcc->wait_list);
1038 int flag = dpolicy->sync ? REQ_SYNC : 0;
1039 block_t lstart, start, len, total_len;
1040 int err = 0;
1041
1042 if (dc->state != D_PREP)
1043 return 0;
1044
1045 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1046 return 0;
1047
1048 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1049
1050 lstart = dc->lstart;
1051 start = dc->start;
1052 len = dc->len;
1053 total_len = len;
1054
1055 dc->len = 0;
1056
1057 while (total_len && *issued < dpolicy->max_requests && !err) {
1058 struct bio *bio = NULL;
1059 unsigned long flags;
1060 bool last = true;
1061
1062 if (len > max_discard_blocks) {
1063 len = max_discard_blocks;
1064 last = false;
1065 }
1066
1067 (*issued)++;
1068 if (*issued == dpolicy->max_requests)
1069 last = true;
1070
1071 dc->len += len;
1072
1073 if (time_to_inject(sbi, FAULT_DISCARD)) {
1074 f2fs_show_injection_info(FAULT_DISCARD);
1075 err = -EIO;
1076 goto submit;
1077 }
1078 err = __blkdev_issue_discard(bdev,
1079 SECTOR_FROM_BLOCK(start),
1080 SECTOR_FROM_BLOCK(len),
1081 GFP_NOFS, 0, &bio);
1082 submit:
1083 if (err) {
1084 spin_lock_irqsave(&dc->lock, flags);
1085 if (dc->state == D_PARTIAL)
1086 dc->state = D_SUBMIT;
1087 spin_unlock_irqrestore(&dc->lock, flags);
1088
1089 break;
1090 }
1091
1092 f2fs_bug_on(sbi, !bio);
1093
1094 /*
1095 * should keep before submission to avoid D_DONE
1096 * right away
1097 */
1098 spin_lock_irqsave(&dc->lock, flags);
1099 if (last)
1100 dc->state = D_SUBMIT;
1101 else
1102 dc->state = D_PARTIAL;
1103 dc->bio_ref++;
1104 spin_unlock_irqrestore(&dc->lock, flags);
1105
1106 atomic_inc(&dcc->issing_discard);
1107 dc->issuing++;
1108 list_move_tail(&dc->list, wait_list);
1109
1110 /* sanity check on discard range */
1111 __check_sit_bitmap(sbi, lstart, lstart + len);
1112
1113 bio->bi_private = dc;
1114 bio->bi_end_io = f2fs_submit_discard_endio;
1115 bio->bi_opf |= flag;
1116 submit_bio(bio);
1117
1118 atomic_inc(&dcc->issued_discard);
1119
1120 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1121
1122 lstart += len;
1123 start += len;
1124 total_len -= len;
1125 len = total_len;
1126 }
1127
1128 if (!err && len)
1129 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1130 return err;
1131 }
1132
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1133 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1134 struct block_device *bdev, block_t lstart,
1135 block_t start, block_t len,
1136 struct rb_node **insert_p,
1137 struct rb_node *insert_parent)
1138 {
1139 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1140 struct rb_node **p;
1141 struct rb_node *parent = NULL;
1142 struct discard_cmd *dc = NULL;
1143
1144 if (insert_p && insert_parent) {
1145 parent = insert_parent;
1146 p = insert_p;
1147 goto do_insert;
1148 }
1149
1150 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1151 do_insert:
1152 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1153 if (!dc)
1154 return NULL;
1155
1156 return dc;
1157 }
1158
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1159 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1160 struct discard_cmd *dc)
1161 {
1162 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1163 }
1164
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1165 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1166 struct discard_cmd *dc, block_t blkaddr)
1167 {
1168 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1169 struct discard_info di = dc->di;
1170 bool modified = false;
1171
1172 if (dc->state == D_DONE || dc->len == 1) {
1173 __remove_discard_cmd(sbi, dc);
1174 return;
1175 }
1176
1177 dcc->undiscard_blks -= di.len;
1178
1179 if (blkaddr > di.lstart) {
1180 dc->len = blkaddr - dc->lstart;
1181 dcc->undiscard_blks += dc->len;
1182 __relocate_discard_cmd(dcc, dc);
1183 modified = true;
1184 }
1185
1186 if (blkaddr < di.lstart + di.len - 1) {
1187 if (modified) {
1188 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1189 di.start + blkaddr + 1 - di.lstart,
1190 di.lstart + di.len - 1 - blkaddr,
1191 NULL, NULL);
1192 } else {
1193 dc->lstart++;
1194 dc->len--;
1195 dc->start++;
1196 dcc->undiscard_blks += dc->len;
1197 __relocate_discard_cmd(dcc, dc);
1198 }
1199 }
1200 }
1201
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1202 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203 struct block_device *bdev, block_t lstart,
1204 block_t start, block_t len)
1205 {
1206 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1207 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1208 struct discard_cmd *dc;
1209 struct discard_info di = {0};
1210 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1211 struct request_queue *q = bdev_get_queue(bdev);
1212 unsigned int max_discard_blocks =
1213 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1214 block_t end = lstart + len;
1215
1216 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1217 NULL, lstart,
1218 (struct rb_entry **)&prev_dc,
1219 (struct rb_entry **)&next_dc,
1220 &insert_p, &insert_parent, true);
1221 if (dc)
1222 prev_dc = dc;
1223
1224 if (!prev_dc) {
1225 di.lstart = lstart;
1226 di.len = next_dc ? next_dc->lstart - lstart : len;
1227 di.len = min(di.len, len);
1228 di.start = start;
1229 }
1230
1231 while (1) {
1232 struct rb_node *node;
1233 bool merged = false;
1234 struct discard_cmd *tdc = NULL;
1235
1236 if (prev_dc) {
1237 di.lstart = prev_dc->lstart + prev_dc->len;
1238 if (di.lstart < lstart)
1239 di.lstart = lstart;
1240 if (di.lstart >= end)
1241 break;
1242
1243 if (!next_dc || next_dc->lstart > end)
1244 di.len = end - di.lstart;
1245 else
1246 di.len = next_dc->lstart - di.lstart;
1247 di.start = start + di.lstart - lstart;
1248 }
1249
1250 if (!di.len)
1251 goto next;
1252
1253 if (prev_dc && prev_dc->state == D_PREP &&
1254 prev_dc->bdev == bdev &&
1255 __is_discard_back_mergeable(&di, &prev_dc->di,
1256 max_discard_blocks)) {
1257 prev_dc->di.len += di.len;
1258 dcc->undiscard_blks += di.len;
1259 __relocate_discard_cmd(dcc, prev_dc);
1260 di = prev_dc->di;
1261 tdc = prev_dc;
1262 merged = true;
1263 }
1264
1265 if (next_dc && next_dc->state == D_PREP &&
1266 next_dc->bdev == bdev &&
1267 __is_discard_front_mergeable(&di, &next_dc->di,
1268 max_discard_blocks)) {
1269 next_dc->di.lstart = di.lstart;
1270 next_dc->di.len += di.len;
1271 next_dc->di.start = di.start;
1272 dcc->undiscard_blks += di.len;
1273 __relocate_discard_cmd(dcc, next_dc);
1274 if (tdc)
1275 __remove_discard_cmd(sbi, tdc);
1276 merged = true;
1277 }
1278
1279 if (!merged) {
1280 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1281 di.len, NULL, NULL);
1282 }
1283 next:
1284 prev_dc = next_dc;
1285 if (!prev_dc)
1286 break;
1287
1288 node = rb_next(&prev_dc->rb_node);
1289 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1290 }
1291 }
1292
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1293 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1294 struct block_device *bdev, block_t blkstart, block_t blklen)
1295 {
1296 block_t lblkstart = blkstart;
1297
1298 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1299
1300 if (f2fs_is_multi_device(sbi)) {
1301 int devi = f2fs_target_device_index(sbi, blkstart);
1302
1303 blkstart -= FDEV(devi).start_blk;
1304 }
1305 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1306 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1307 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1308 return 0;
1309 }
1310
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1311 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1312 struct discard_policy *dpolicy)
1313 {
1314 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1315 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1316 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1317 struct discard_cmd *dc;
1318 struct blk_plug plug;
1319 unsigned int pos = dcc->next_pos;
1320 unsigned int issued = 0;
1321 bool io_interrupted = false;
1322
1323 mutex_lock(&dcc->cmd_lock);
1324 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1325 NULL, pos,
1326 (struct rb_entry **)&prev_dc,
1327 (struct rb_entry **)&next_dc,
1328 &insert_p, &insert_parent, true);
1329 if (!dc)
1330 dc = next_dc;
1331
1332 blk_start_plug(&plug);
1333
1334 while (dc) {
1335 struct rb_node *node;
1336 int err = 0;
1337
1338 if (dc->state != D_PREP)
1339 goto next;
1340
1341 if (dpolicy->io_aware && !is_idle(sbi)) {
1342 io_interrupted = true;
1343 break;
1344 }
1345
1346 dcc->next_pos = dc->lstart + dc->len;
1347 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1348
1349 if (issued >= dpolicy->max_requests)
1350 break;
1351 next:
1352 node = rb_next(&dc->rb_node);
1353 if (err)
1354 __remove_discard_cmd(sbi, dc);
1355 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1356 }
1357
1358 blk_finish_plug(&plug);
1359
1360 if (!dc)
1361 dcc->next_pos = 0;
1362
1363 mutex_unlock(&dcc->cmd_lock);
1364
1365 if (!issued && io_interrupted)
1366 issued = -1;
1367
1368 return issued;
1369 }
1370
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1371 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1372 struct discard_policy *dpolicy)
1373 {
1374 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1375 struct list_head *pend_list;
1376 struct discard_cmd *dc, *tmp;
1377 struct blk_plug plug;
1378 int i, issued = 0;
1379 bool io_interrupted = false;
1380
1381 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1382 if (i + 1 < dpolicy->granularity)
1383 break;
1384
1385 if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1386 return __issue_discard_cmd_orderly(sbi, dpolicy);
1387
1388 pend_list = &dcc->pend_list[i];
1389
1390 mutex_lock(&dcc->cmd_lock);
1391 if (list_empty(pend_list))
1392 goto next;
1393 if (unlikely(dcc->rbtree_check))
1394 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1395 &dcc->root));
1396 blk_start_plug(&plug);
1397 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1398 f2fs_bug_on(sbi, dc->state != D_PREP);
1399
1400 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1401 !is_idle(sbi)) {
1402 io_interrupted = true;
1403 break;
1404 }
1405
1406 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1407
1408 if (issued >= dpolicy->max_requests)
1409 break;
1410 }
1411 blk_finish_plug(&plug);
1412 next:
1413 mutex_unlock(&dcc->cmd_lock);
1414
1415 if (issued >= dpolicy->max_requests || io_interrupted)
1416 break;
1417 }
1418
1419 if (!issued && io_interrupted)
1420 issued = -1;
1421
1422 return issued;
1423 }
1424
__drop_discard_cmd(struct f2fs_sb_info * sbi)1425 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1426 {
1427 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1428 struct list_head *pend_list;
1429 struct discard_cmd *dc, *tmp;
1430 int i;
1431 bool dropped = false;
1432
1433 mutex_lock(&dcc->cmd_lock);
1434 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1435 pend_list = &dcc->pend_list[i];
1436 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1437 f2fs_bug_on(sbi, dc->state != D_PREP);
1438 __remove_discard_cmd(sbi, dc);
1439 dropped = true;
1440 }
1441 }
1442 mutex_unlock(&dcc->cmd_lock);
1443
1444 return dropped;
1445 }
1446
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1447 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1448 {
1449 __drop_discard_cmd(sbi);
1450 }
1451
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1452 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1453 struct discard_cmd *dc)
1454 {
1455 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1456 unsigned int len = 0;
1457
1458 wait_for_completion_io(&dc->wait);
1459 mutex_lock(&dcc->cmd_lock);
1460 f2fs_bug_on(sbi, dc->state != D_DONE);
1461 dc->ref--;
1462 if (!dc->ref) {
1463 if (!dc->error)
1464 len = dc->len;
1465 __remove_discard_cmd(sbi, dc);
1466 }
1467 mutex_unlock(&dcc->cmd_lock);
1468
1469 return len;
1470 }
1471
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1472 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1473 struct discard_policy *dpolicy,
1474 block_t start, block_t end)
1475 {
1476 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1477 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1478 &(dcc->fstrim_list) : &(dcc->wait_list);
1479 struct discard_cmd *dc, *tmp;
1480 bool need_wait;
1481 unsigned int trimmed = 0;
1482
1483 next:
1484 need_wait = false;
1485
1486 mutex_lock(&dcc->cmd_lock);
1487 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1488 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1489 continue;
1490 if (dc->len < dpolicy->granularity)
1491 continue;
1492 if (dc->state == D_DONE && !dc->ref) {
1493 wait_for_completion_io(&dc->wait);
1494 if (!dc->error)
1495 trimmed += dc->len;
1496 __remove_discard_cmd(sbi, dc);
1497 } else {
1498 dc->ref++;
1499 need_wait = true;
1500 break;
1501 }
1502 }
1503 mutex_unlock(&dcc->cmd_lock);
1504
1505 if (need_wait) {
1506 trimmed += __wait_one_discard_bio(sbi, dc);
1507 goto next;
1508 }
1509
1510 return trimmed;
1511 }
1512
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1513 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1514 struct discard_policy *dpolicy)
1515 {
1516 struct discard_policy dp;
1517 unsigned int discard_blks;
1518
1519 if (dpolicy)
1520 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1521
1522 /* wait all */
1523 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1524 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1525 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1526 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1527
1528 return discard_blks;
1529 }
1530
1531 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1532 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1533 {
1534 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535 struct discard_cmd *dc;
1536 bool need_wait = false;
1537
1538 mutex_lock(&dcc->cmd_lock);
1539 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1540 NULL, blkaddr);
1541 if (dc) {
1542 if (dc->state == D_PREP) {
1543 __punch_discard_cmd(sbi, dc, blkaddr);
1544 } else {
1545 dc->ref++;
1546 need_wait = true;
1547 }
1548 }
1549 mutex_unlock(&dcc->cmd_lock);
1550
1551 if (need_wait)
1552 __wait_one_discard_bio(sbi, dc);
1553 }
1554
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1555 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1556 {
1557 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1558
1559 if (dcc && dcc->f2fs_issue_discard) {
1560 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1561
1562 dcc->f2fs_issue_discard = NULL;
1563 kthread_stop(discard_thread);
1564 }
1565 }
1566
1567 /* This comes from f2fs_put_super */
f2fs_wait_discard_bios(struct f2fs_sb_info * sbi)1568 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1569 {
1570 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1571 struct discard_policy dpolicy;
1572 bool dropped;
1573
1574 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1575 dcc->discard_granularity);
1576 __issue_discard_cmd(sbi, &dpolicy);
1577 dropped = __drop_discard_cmd(sbi);
1578
1579 /* just to make sure there is no pending discard commands */
1580 __wait_all_discard_cmd(sbi, NULL);
1581
1582 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1583 return dropped;
1584 }
1585
issue_discard_thread(void * data)1586 static int issue_discard_thread(void *data)
1587 {
1588 struct f2fs_sb_info *sbi = data;
1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 wait_queue_head_t *q = &dcc->discard_wait_queue;
1591 struct discard_policy dpolicy;
1592 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1593 int issued;
1594
1595 set_freezable();
1596
1597 do {
1598 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1599 dcc->discard_granularity);
1600
1601 wait_event_interruptible_timeout(*q,
1602 kthread_should_stop() || freezing(current) ||
1603 dcc->discard_wake,
1604 msecs_to_jiffies(wait_ms));
1605
1606 if (dcc->discard_wake)
1607 dcc->discard_wake = 0;
1608
1609 if (try_to_freeze())
1610 continue;
1611 if (f2fs_readonly(sbi->sb))
1612 continue;
1613 if (kthread_should_stop())
1614 return 0;
1615 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1616 wait_ms = dpolicy.max_interval;
1617 continue;
1618 }
1619
1620 if (sbi->gc_mode == GC_URGENT)
1621 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1622
1623 sb_start_intwrite(sbi->sb);
1624
1625 issued = __issue_discard_cmd(sbi, &dpolicy);
1626 if (issued > 0) {
1627 __wait_all_discard_cmd(sbi, &dpolicy);
1628 wait_ms = dpolicy.min_interval;
1629 } else if (issued == -1){
1630 wait_ms = dpolicy.mid_interval;
1631 } else {
1632 wait_ms = dpolicy.max_interval;
1633 }
1634
1635 sb_end_intwrite(sbi->sb);
1636
1637 } while (!kthread_should_stop());
1638 return 0;
1639 }
1640
1641 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1642 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1643 struct block_device *bdev, block_t blkstart, block_t blklen)
1644 {
1645 sector_t sector, nr_sects;
1646 block_t lblkstart = blkstart;
1647 int devi = 0;
1648
1649 if (f2fs_is_multi_device(sbi)) {
1650 devi = f2fs_target_device_index(sbi, blkstart);
1651 blkstart -= FDEV(devi).start_blk;
1652 }
1653
1654 /*
1655 * We need to know the type of the zone: for conventional zones,
1656 * use regular discard if the drive supports it. For sequential
1657 * zones, reset the zone write pointer.
1658 */
1659 switch (get_blkz_type(sbi, bdev, blkstart)) {
1660
1661 case BLK_ZONE_TYPE_CONVENTIONAL:
1662 if (!blk_queue_discard(bdev_get_queue(bdev)))
1663 return 0;
1664 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1665 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1666 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1667 sector = SECTOR_FROM_BLOCK(blkstart);
1668 nr_sects = SECTOR_FROM_BLOCK(blklen);
1669
1670 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1671 nr_sects != bdev_zone_sectors(bdev)) {
1672 f2fs_msg(sbi->sb, KERN_INFO,
1673 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1674 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1675 blkstart, blklen);
1676 return -EIO;
1677 }
1678 trace_f2fs_issue_reset_zone(bdev, blkstart);
1679 return blkdev_reset_zones(bdev, sector,
1680 nr_sects, GFP_NOFS);
1681 default:
1682 /* Unknown zone type: broken device ? */
1683 return -EIO;
1684 }
1685 }
1686 #endif
1687
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1688 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1689 struct block_device *bdev, block_t blkstart, block_t blklen)
1690 {
1691 #ifdef CONFIG_BLK_DEV_ZONED
1692 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1693 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1694 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1695 #endif
1696 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1697 }
1698
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1699 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1700 block_t blkstart, block_t blklen)
1701 {
1702 sector_t start = blkstart, len = 0;
1703 struct block_device *bdev;
1704 struct seg_entry *se;
1705 unsigned int offset;
1706 block_t i;
1707 int err = 0;
1708
1709 bdev = f2fs_target_device(sbi, blkstart, NULL);
1710
1711 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1712 if (i != start) {
1713 struct block_device *bdev2 =
1714 f2fs_target_device(sbi, i, NULL);
1715
1716 if (bdev2 != bdev) {
1717 err = __issue_discard_async(sbi, bdev,
1718 start, len);
1719 if (err)
1720 return err;
1721 bdev = bdev2;
1722 start = i;
1723 len = 0;
1724 }
1725 }
1726
1727 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1728 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1729
1730 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1731 sbi->discard_blks--;
1732 }
1733
1734 if (len)
1735 err = __issue_discard_async(sbi, bdev, start, len);
1736 return err;
1737 }
1738
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1739 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1740 bool check_only)
1741 {
1742 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1743 int max_blocks = sbi->blocks_per_seg;
1744 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1745 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1746 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1747 unsigned long *discard_map = (unsigned long *)se->discard_map;
1748 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1749 unsigned int start = 0, end = -1;
1750 bool force = (cpc->reason & CP_DISCARD);
1751 struct discard_entry *de = NULL;
1752 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1753 int i;
1754
1755 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1756 return false;
1757
1758 if (!force) {
1759 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1760 SM_I(sbi)->dcc_info->nr_discards >=
1761 SM_I(sbi)->dcc_info->max_discards)
1762 return false;
1763 }
1764
1765 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1766 for (i = 0; i < entries; i++)
1767 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1768 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1769
1770 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1771 SM_I(sbi)->dcc_info->max_discards) {
1772 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1773 if (start >= max_blocks)
1774 break;
1775
1776 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1777 if (force && start && end != max_blocks
1778 && (end - start) < cpc->trim_minlen)
1779 continue;
1780
1781 if (check_only)
1782 return true;
1783
1784 if (!de) {
1785 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1786 GFP_F2FS_ZERO);
1787 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1788 list_add_tail(&de->list, head);
1789 }
1790
1791 for (i = start; i < end; i++)
1792 __set_bit_le(i, (void *)de->discard_map);
1793
1794 SM_I(sbi)->dcc_info->nr_discards += end - start;
1795 }
1796 return false;
1797 }
1798
release_discard_addr(struct discard_entry * entry)1799 static void release_discard_addr(struct discard_entry *entry)
1800 {
1801 list_del(&entry->list);
1802 kmem_cache_free(discard_entry_slab, entry);
1803 }
1804
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1805 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1806 {
1807 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1808 struct discard_entry *entry, *this;
1809
1810 /* drop caches */
1811 list_for_each_entry_safe(entry, this, head, list)
1812 release_discard_addr(entry);
1813 }
1814
1815 /*
1816 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1817 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1818 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1819 {
1820 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1821 unsigned int segno;
1822
1823 mutex_lock(&dirty_i->seglist_lock);
1824 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1825 __set_test_and_free(sbi, segno);
1826 mutex_unlock(&dirty_i->seglist_lock);
1827 }
1828
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1829 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1830 struct cp_control *cpc)
1831 {
1832 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1833 struct list_head *head = &dcc->entry_list;
1834 struct discard_entry *entry, *this;
1835 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1836 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1837 unsigned int start = 0, end = -1;
1838 unsigned int secno, start_segno;
1839 bool force = (cpc->reason & CP_DISCARD);
1840 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1841
1842 mutex_lock(&dirty_i->seglist_lock);
1843
1844 while (1) {
1845 int i;
1846
1847 if (need_align && end != -1)
1848 end--;
1849 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1850 if (start >= MAIN_SEGS(sbi))
1851 break;
1852 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1853 start + 1);
1854
1855 if (need_align) {
1856 start = rounddown(start, sbi->segs_per_sec);
1857 end = roundup(end, sbi->segs_per_sec);
1858 }
1859
1860 for (i = start; i < end; i++) {
1861 if (test_and_clear_bit(i, prefree_map))
1862 dirty_i->nr_dirty[PRE]--;
1863 }
1864
1865 if (!f2fs_realtime_discard_enable(sbi))
1866 continue;
1867
1868 if (force && start >= cpc->trim_start &&
1869 (end - 1) <= cpc->trim_end)
1870 continue;
1871
1872 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1873 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1874 (end - start) << sbi->log_blocks_per_seg);
1875 continue;
1876 }
1877 next:
1878 secno = GET_SEC_FROM_SEG(sbi, start);
1879 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1880 if (!IS_CURSEC(sbi, secno) &&
1881 !get_valid_blocks(sbi, start, true))
1882 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1883 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1884
1885 start = start_segno + sbi->segs_per_sec;
1886 if (start < end)
1887 goto next;
1888 else
1889 end = start - 1;
1890 }
1891 mutex_unlock(&dirty_i->seglist_lock);
1892
1893 /* send small discards */
1894 list_for_each_entry_safe(entry, this, head, list) {
1895 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1896 bool is_valid = test_bit_le(0, entry->discard_map);
1897
1898 find_next:
1899 if (is_valid) {
1900 next_pos = find_next_zero_bit_le(entry->discard_map,
1901 sbi->blocks_per_seg, cur_pos);
1902 len = next_pos - cur_pos;
1903
1904 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1905 (force && len < cpc->trim_minlen))
1906 goto skip;
1907
1908 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1909 len);
1910 total_len += len;
1911 } else {
1912 next_pos = find_next_bit_le(entry->discard_map,
1913 sbi->blocks_per_seg, cur_pos);
1914 }
1915 skip:
1916 cur_pos = next_pos;
1917 is_valid = !is_valid;
1918
1919 if (cur_pos < sbi->blocks_per_seg)
1920 goto find_next;
1921
1922 release_discard_addr(entry);
1923 dcc->nr_discards -= total_len;
1924 }
1925
1926 wake_up_discard_thread(sbi, false);
1927 }
1928
create_discard_cmd_control(struct f2fs_sb_info * sbi)1929 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1930 {
1931 dev_t dev = sbi->sb->s_bdev->bd_dev;
1932 struct discard_cmd_control *dcc;
1933 int err = 0, i;
1934
1935 if (SM_I(sbi)->dcc_info) {
1936 dcc = SM_I(sbi)->dcc_info;
1937 goto init_thread;
1938 }
1939
1940 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1941 if (!dcc)
1942 return -ENOMEM;
1943
1944 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1945 INIT_LIST_HEAD(&dcc->entry_list);
1946 for (i = 0; i < MAX_PLIST_NUM; i++)
1947 INIT_LIST_HEAD(&dcc->pend_list[i]);
1948 INIT_LIST_HEAD(&dcc->wait_list);
1949 INIT_LIST_HEAD(&dcc->fstrim_list);
1950 mutex_init(&dcc->cmd_lock);
1951 atomic_set(&dcc->issued_discard, 0);
1952 atomic_set(&dcc->issing_discard, 0);
1953 atomic_set(&dcc->discard_cmd_cnt, 0);
1954 dcc->nr_discards = 0;
1955 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1956 dcc->undiscard_blks = 0;
1957 dcc->next_pos = 0;
1958 dcc->root = RB_ROOT;
1959 dcc->rbtree_check = false;
1960
1961 init_waitqueue_head(&dcc->discard_wait_queue);
1962 SM_I(sbi)->dcc_info = dcc;
1963 init_thread:
1964 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1965 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1966 if (IS_ERR(dcc->f2fs_issue_discard)) {
1967 err = PTR_ERR(dcc->f2fs_issue_discard);
1968 kfree(dcc);
1969 SM_I(sbi)->dcc_info = NULL;
1970 return err;
1971 }
1972
1973 return err;
1974 }
1975
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)1976 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1977 {
1978 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1979
1980 if (!dcc)
1981 return;
1982
1983 f2fs_stop_discard_thread(sbi);
1984
1985 kfree(dcc);
1986 SM_I(sbi)->dcc_info = NULL;
1987 }
1988
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)1989 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1990 {
1991 struct sit_info *sit_i = SIT_I(sbi);
1992
1993 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1994 sit_i->dirty_sentries++;
1995 return false;
1996 }
1997
1998 return true;
1999 }
2000
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2001 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2002 unsigned int segno, int modified)
2003 {
2004 struct seg_entry *se = get_seg_entry(sbi, segno);
2005 se->type = type;
2006 if (modified)
2007 __mark_sit_entry_dirty(sbi, segno);
2008 }
2009
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2010 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2011 {
2012 struct seg_entry *se;
2013 unsigned int segno, offset;
2014 long int new_vblocks;
2015 bool exist;
2016 #ifdef CONFIG_F2FS_CHECK_FS
2017 bool mir_exist;
2018 #endif
2019
2020 segno = GET_SEGNO(sbi, blkaddr);
2021
2022 se = get_seg_entry(sbi, segno);
2023 new_vblocks = se->valid_blocks + del;
2024 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2025
2026 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2027 (new_vblocks > sbi->blocks_per_seg)));
2028
2029 se->valid_blocks = new_vblocks;
2030 se->mtime = get_mtime(sbi, false);
2031 if (se->mtime > SIT_I(sbi)->max_mtime)
2032 SIT_I(sbi)->max_mtime = se->mtime;
2033
2034 /* Update valid block bitmap */
2035 if (del > 0) {
2036 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2037 #ifdef CONFIG_F2FS_CHECK_FS
2038 mir_exist = f2fs_test_and_set_bit(offset,
2039 se->cur_valid_map_mir);
2040 if (unlikely(exist != mir_exist)) {
2041 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2042 "when setting bitmap, blk:%u, old bit:%d",
2043 blkaddr, exist);
2044 f2fs_bug_on(sbi, 1);
2045 }
2046 #endif
2047 if (unlikely(exist)) {
2048 f2fs_msg(sbi->sb, KERN_ERR,
2049 "Bitmap was wrongly set, blk:%u", blkaddr);
2050 f2fs_bug_on(sbi, 1);
2051 se->valid_blocks--;
2052 del = 0;
2053 }
2054
2055 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2056 sbi->discard_blks--;
2057
2058 /* don't overwrite by SSR to keep node chain */
2059 if (IS_NODESEG(se->type)) {
2060 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2061 se->ckpt_valid_blocks++;
2062 }
2063 } else {
2064 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2065 #ifdef CONFIG_F2FS_CHECK_FS
2066 mir_exist = f2fs_test_and_clear_bit(offset,
2067 se->cur_valid_map_mir);
2068 if (unlikely(exist != mir_exist)) {
2069 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2070 "when clearing bitmap, blk:%u, old bit:%d",
2071 blkaddr, exist);
2072 f2fs_bug_on(sbi, 1);
2073 }
2074 #endif
2075 if (unlikely(!exist)) {
2076 f2fs_msg(sbi->sb, KERN_ERR,
2077 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2078 f2fs_bug_on(sbi, 1);
2079 se->valid_blocks++;
2080 del = 0;
2081 }
2082
2083 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2084 sbi->discard_blks++;
2085 }
2086 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2087 se->ckpt_valid_blocks += del;
2088
2089 __mark_sit_entry_dirty(sbi, segno);
2090
2091 /* update total number of valid blocks to be written in ckpt area */
2092 SIT_I(sbi)->written_valid_blocks += del;
2093
2094 if (sbi->segs_per_sec > 1)
2095 get_sec_entry(sbi, segno)->valid_blocks += del;
2096 }
2097
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2098 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2099 {
2100 unsigned int segno = GET_SEGNO(sbi, addr);
2101 struct sit_info *sit_i = SIT_I(sbi);
2102
2103 f2fs_bug_on(sbi, addr == NULL_ADDR);
2104 if (addr == NEW_ADDR)
2105 return;
2106
2107 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2108
2109 /* add it into sit main buffer */
2110 down_write(&sit_i->sentry_lock);
2111
2112 update_sit_entry(sbi, addr, -1);
2113
2114 /* add it into dirty seglist */
2115 locate_dirty_segment(sbi, segno);
2116
2117 up_write(&sit_i->sentry_lock);
2118 }
2119
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2120 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2121 {
2122 struct sit_info *sit_i = SIT_I(sbi);
2123 unsigned int segno, offset;
2124 struct seg_entry *se;
2125 bool is_cp = false;
2126
2127 if (!is_valid_data_blkaddr(sbi, blkaddr))
2128 return true;
2129
2130 down_read(&sit_i->sentry_lock);
2131
2132 segno = GET_SEGNO(sbi, blkaddr);
2133 se = get_seg_entry(sbi, segno);
2134 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2135
2136 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2137 is_cp = true;
2138
2139 up_read(&sit_i->sentry_lock);
2140
2141 return is_cp;
2142 }
2143
2144 /*
2145 * This function should be resided under the curseg_mutex lock
2146 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2147 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2148 struct f2fs_summary *sum)
2149 {
2150 struct curseg_info *curseg = CURSEG_I(sbi, type);
2151 void *addr = curseg->sum_blk;
2152 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2153 memcpy(addr, sum, sizeof(struct f2fs_summary));
2154 }
2155
2156 /*
2157 * Calculate the number of current summary pages for writing
2158 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2159 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2160 {
2161 int valid_sum_count = 0;
2162 int i, sum_in_page;
2163
2164 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2165 if (sbi->ckpt->alloc_type[i] == SSR)
2166 valid_sum_count += sbi->blocks_per_seg;
2167 else {
2168 if (for_ra)
2169 valid_sum_count += le16_to_cpu(
2170 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2171 else
2172 valid_sum_count += curseg_blkoff(sbi, i);
2173 }
2174 }
2175
2176 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2177 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2178 if (valid_sum_count <= sum_in_page)
2179 return 1;
2180 else if ((valid_sum_count - sum_in_page) <=
2181 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2182 return 2;
2183 return 3;
2184 }
2185
2186 /*
2187 * Caller should put this summary page
2188 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2189 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2190 {
2191 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2192 }
2193
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2194 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2195 void *src, block_t blk_addr)
2196 {
2197 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2198
2199 memcpy(page_address(page), src, PAGE_SIZE);
2200 set_page_dirty(page);
2201 f2fs_put_page(page, 1);
2202 }
2203
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2204 static void write_sum_page(struct f2fs_sb_info *sbi,
2205 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2206 {
2207 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2208 }
2209
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2210 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2211 int type, block_t blk_addr)
2212 {
2213 struct curseg_info *curseg = CURSEG_I(sbi, type);
2214 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2215 struct f2fs_summary_block *src = curseg->sum_blk;
2216 struct f2fs_summary_block *dst;
2217
2218 dst = (struct f2fs_summary_block *)page_address(page);
2219 memset(dst, 0, PAGE_SIZE);
2220
2221 mutex_lock(&curseg->curseg_mutex);
2222
2223 down_read(&curseg->journal_rwsem);
2224 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2225 up_read(&curseg->journal_rwsem);
2226
2227 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2228 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2229
2230 mutex_unlock(&curseg->curseg_mutex);
2231
2232 set_page_dirty(page);
2233 f2fs_put_page(page, 1);
2234 }
2235
is_next_segment_free(struct f2fs_sb_info * sbi,int type)2236 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2237 {
2238 struct curseg_info *curseg = CURSEG_I(sbi, type);
2239 unsigned int segno = curseg->segno + 1;
2240 struct free_segmap_info *free_i = FREE_I(sbi);
2241
2242 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2243 return !test_bit(segno, free_i->free_segmap);
2244 return 0;
2245 }
2246
2247 /*
2248 * Find a new segment from the free segments bitmap to right order
2249 * This function should be returned with success, otherwise BUG
2250 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2251 static void get_new_segment(struct f2fs_sb_info *sbi,
2252 unsigned int *newseg, bool new_sec, int dir)
2253 {
2254 struct free_segmap_info *free_i = FREE_I(sbi);
2255 unsigned int segno, secno, zoneno;
2256 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2257 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2258 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2259 unsigned int left_start = hint;
2260 bool init = true;
2261 int go_left = 0;
2262 int i;
2263
2264 spin_lock(&free_i->segmap_lock);
2265
2266 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2267 segno = find_next_zero_bit(free_i->free_segmap,
2268 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2269 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2270 goto got_it;
2271 }
2272 find_other_zone:
2273 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2274 if (secno >= MAIN_SECS(sbi)) {
2275 if (dir == ALLOC_RIGHT) {
2276 secno = find_next_zero_bit(free_i->free_secmap,
2277 MAIN_SECS(sbi), 0);
2278 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2279 } else {
2280 go_left = 1;
2281 left_start = hint - 1;
2282 }
2283 }
2284 if (go_left == 0)
2285 goto skip_left;
2286
2287 while (test_bit(left_start, free_i->free_secmap)) {
2288 if (left_start > 0) {
2289 left_start--;
2290 continue;
2291 }
2292 left_start = find_next_zero_bit(free_i->free_secmap,
2293 MAIN_SECS(sbi), 0);
2294 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2295 break;
2296 }
2297 secno = left_start;
2298 skip_left:
2299 segno = GET_SEG_FROM_SEC(sbi, secno);
2300 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2301
2302 /* give up on finding another zone */
2303 if (!init)
2304 goto got_it;
2305 if (sbi->secs_per_zone == 1)
2306 goto got_it;
2307 if (zoneno == old_zoneno)
2308 goto got_it;
2309 if (dir == ALLOC_LEFT) {
2310 if (!go_left && zoneno + 1 >= total_zones)
2311 goto got_it;
2312 if (go_left && zoneno == 0)
2313 goto got_it;
2314 }
2315 for (i = 0; i < NR_CURSEG_TYPE; i++)
2316 if (CURSEG_I(sbi, i)->zone == zoneno)
2317 break;
2318
2319 if (i < NR_CURSEG_TYPE) {
2320 /* zone is in user, try another */
2321 if (go_left)
2322 hint = zoneno * sbi->secs_per_zone - 1;
2323 else if (zoneno + 1 >= total_zones)
2324 hint = 0;
2325 else
2326 hint = (zoneno + 1) * sbi->secs_per_zone;
2327 init = false;
2328 goto find_other_zone;
2329 }
2330 got_it:
2331 /* set it as dirty segment in free segmap */
2332 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2333 __set_inuse(sbi, segno);
2334 *newseg = segno;
2335 spin_unlock(&free_i->segmap_lock);
2336 }
2337
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2338 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2339 {
2340 struct curseg_info *curseg = CURSEG_I(sbi, type);
2341 struct summary_footer *sum_footer;
2342
2343 curseg->segno = curseg->next_segno;
2344 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2345 curseg->next_blkoff = 0;
2346 curseg->next_segno = NULL_SEGNO;
2347
2348 sum_footer = &(curseg->sum_blk->footer);
2349 memset(sum_footer, 0, sizeof(struct summary_footer));
2350 if (IS_DATASEG(type))
2351 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2352 if (IS_NODESEG(type))
2353 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2354 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2355 }
2356
__get_next_segno(struct f2fs_sb_info * sbi,int type)2357 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2358 {
2359 /* if segs_per_sec is large than 1, we need to keep original policy. */
2360 if (sbi->segs_per_sec != 1)
2361 return CURSEG_I(sbi, type)->segno;
2362
2363 if (test_opt(sbi, NOHEAP) &&
2364 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2365 return 0;
2366
2367 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2368 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2369
2370 /* find segments from 0 to reuse freed segments */
2371 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2372 return 0;
2373
2374 return CURSEG_I(sbi, type)->segno;
2375 }
2376
2377 /*
2378 * Allocate a current working segment.
2379 * This function always allocates a free segment in LFS manner.
2380 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2381 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2382 {
2383 struct curseg_info *curseg = CURSEG_I(sbi, type);
2384 unsigned int segno = curseg->segno;
2385 int dir = ALLOC_LEFT;
2386
2387 write_sum_page(sbi, curseg->sum_blk,
2388 GET_SUM_BLOCK(sbi, segno));
2389 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2390 dir = ALLOC_RIGHT;
2391
2392 if (test_opt(sbi, NOHEAP))
2393 dir = ALLOC_RIGHT;
2394
2395 segno = __get_next_segno(sbi, type);
2396 get_new_segment(sbi, &segno, new_sec, dir);
2397 curseg->next_segno = segno;
2398 reset_curseg(sbi, type, 1);
2399 curseg->alloc_type = LFS;
2400 }
2401
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2402 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2403 struct curseg_info *seg, block_t start)
2404 {
2405 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2406 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2407 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2408 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2409 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2410 int i, pos;
2411
2412 for (i = 0; i < entries; i++)
2413 target_map[i] = ckpt_map[i] | cur_map[i];
2414
2415 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2416
2417 seg->next_blkoff = pos;
2418 }
2419
2420 /*
2421 * If a segment is written by LFS manner, next block offset is just obtained
2422 * by increasing the current block offset. However, if a segment is written by
2423 * SSR manner, next block offset obtained by calling __next_free_blkoff
2424 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2425 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2426 struct curseg_info *seg)
2427 {
2428 if (seg->alloc_type == SSR)
2429 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2430 else
2431 seg->next_blkoff++;
2432 }
2433
2434 /*
2435 * This function always allocates a used segment(from dirty seglist) by SSR
2436 * manner, so it should recover the existing segment information of valid blocks
2437 */
change_curseg(struct f2fs_sb_info * sbi,int type)2438 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2439 {
2440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2441 struct curseg_info *curseg = CURSEG_I(sbi, type);
2442 unsigned int new_segno = curseg->next_segno;
2443 struct f2fs_summary_block *sum_node;
2444 struct page *sum_page;
2445
2446 write_sum_page(sbi, curseg->sum_blk,
2447 GET_SUM_BLOCK(sbi, curseg->segno));
2448 __set_test_and_inuse(sbi, new_segno);
2449
2450 mutex_lock(&dirty_i->seglist_lock);
2451 __remove_dirty_segment(sbi, new_segno, PRE);
2452 __remove_dirty_segment(sbi, new_segno, DIRTY);
2453 mutex_unlock(&dirty_i->seglist_lock);
2454
2455 reset_curseg(sbi, type, 1);
2456 curseg->alloc_type = SSR;
2457 __next_free_blkoff(sbi, curseg, 0);
2458
2459 sum_page = f2fs_get_sum_page(sbi, new_segno);
2460 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2461 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2462 f2fs_put_page(sum_page, 1);
2463 }
2464
get_ssr_segment(struct f2fs_sb_info * sbi,int type)2465 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2466 {
2467 struct curseg_info *curseg = CURSEG_I(sbi, type);
2468 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2469 unsigned segno = NULL_SEGNO;
2470 int i, cnt;
2471 bool reversed = false;
2472
2473 /* f2fs_need_SSR() already forces to do this */
2474 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2475 curseg->next_segno = segno;
2476 return 1;
2477 }
2478
2479 /* For node segments, let's do SSR more intensively */
2480 if (IS_NODESEG(type)) {
2481 if (type >= CURSEG_WARM_NODE) {
2482 reversed = true;
2483 i = CURSEG_COLD_NODE;
2484 } else {
2485 i = CURSEG_HOT_NODE;
2486 }
2487 cnt = NR_CURSEG_NODE_TYPE;
2488 } else {
2489 if (type >= CURSEG_WARM_DATA) {
2490 reversed = true;
2491 i = CURSEG_COLD_DATA;
2492 } else {
2493 i = CURSEG_HOT_DATA;
2494 }
2495 cnt = NR_CURSEG_DATA_TYPE;
2496 }
2497
2498 for (; cnt-- > 0; reversed ? i-- : i++) {
2499 if (i == type)
2500 continue;
2501 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2502 curseg->next_segno = segno;
2503 return 1;
2504 }
2505 }
2506 return 0;
2507 }
2508
2509 /*
2510 * flush out current segment and replace it with new segment
2511 * This function should be returned with success, otherwise BUG
2512 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2513 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2514 int type, bool force)
2515 {
2516 struct curseg_info *curseg = CURSEG_I(sbi, type);
2517
2518 if (force)
2519 new_curseg(sbi, type, true);
2520 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2521 type == CURSEG_WARM_NODE)
2522 new_curseg(sbi, type, false);
2523 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2524 new_curseg(sbi, type, false);
2525 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2526 change_curseg(sbi, type);
2527 else
2528 new_curseg(sbi, type, false);
2529
2530 stat_inc_seg_type(sbi, curseg);
2531 }
2532
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2533 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2534 {
2535 struct curseg_info *curseg;
2536 unsigned int old_segno;
2537 int i;
2538
2539 down_write(&SIT_I(sbi)->sentry_lock);
2540
2541 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2542 curseg = CURSEG_I(sbi, i);
2543 old_segno = curseg->segno;
2544 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2545 locate_dirty_segment(sbi, old_segno);
2546 }
2547
2548 up_write(&SIT_I(sbi)->sentry_lock);
2549 }
2550
2551 static const struct segment_allocation default_salloc_ops = {
2552 .allocate_segment = allocate_segment_by_default,
2553 };
2554
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2555 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2556 struct cp_control *cpc)
2557 {
2558 __u64 trim_start = cpc->trim_start;
2559 bool has_candidate = false;
2560
2561 down_write(&SIT_I(sbi)->sentry_lock);
2562 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2563 if (add_discard_addrs(sbi, cpc, true)) {
2564 has_candidate = true;
2565 break;
2566 }
2567 }
2568 up_write(&SIT_I(sbi)->sentry_lock);
2569
2570 cpc->trim_start = trim_start;
2571 return has_candidate;
2572 }
2573
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2574 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2575 struct discard_policy *dpolicy,
2576 unsigned int start, unsigned int end)
2577 {
2578 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2579 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2580 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2581 struct discard_cmd *dc;
2582 struct blk_plug plug;
2583 int issued;
2584 unsigned int trimmed = 0;
2585
2586 next:
2587 issued = 0;
2588
2589 mutex_lock(&dcc->cmd_lock);
2590 if (unlikely(dcc->rbtree_check))
2591 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2592 &dcc->root));
2593
2594 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2595 NULL, start,
2596 (struct rb_entry **)&prev_dc,
2597 (struct rb_entry **)&next_dc,
2598 &insert_p, &insert_parent, true);
2599 if (!dc)
2600 dc = next_dc;
2601
2602 blk_start_plug(&plug);
2603
2604 while (dc && dc->lstart <= end) {
2605 struct rb_node *node;
2606 int err = 0;
2607
2608 if (dc->len < dpolicy->granularity)
2609 goto skip;
2610
2611 if (dc->state != D_PREP) {
2612 list_move_tail(&dc->list, &dcc->fstrim_list);
2613 goto skip;
2614 }
2615
2616 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2617
2618 if (issued >= dpolicy->max_requests) {
2619 start = dc->lstart + dc->len;
2620
2621 if (err)
2622 __remove_discard_cmd(sbi, dc);
2623
2624 blk_finish_plug(&plug);
2625 mutex_unlock(&dcc->cmd_lock);
2626 trimmed += __wait_all_discard_cmd(sbi, NULL);
2627 congestion_wait(BLK_RW_ASYNC, HZ/50);
2628 goto next;
2629 }
2630 skip:
2631 node = rb_next(&dc->rb_node);
2632 if (err)
2633 __remove_discard_cmd(sbi, dc);
2634 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2635
2636 if (fatal_signal_pending(current))
2637 break;
2638 }
2639
2640 blk_finish_plug(&plug);
2641 mutex_unlock(&dcc->cmd_lock);
2642
2643 return trimmed;
2644 }
2645
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)2646 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2647 {
2648 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2649 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2650 unsigned int start_segno, end_segno;
2651 block_t start_block, end_block;
2652 struct cp_control cpc;
2653 struct discard_policy dpolicy;
2654 unsigned long long trimmed = 0;
2655 int err = 0;
2656 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2657
2658 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2659 return -EINVAL;
2660
2661 if (end < MAIN_BLKADDR(sbi))
2662 goto out;
2663
2664 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2665 f2fs_msg(sbi->sb, KERN_WARNING,
2666 "Found FS corruption, run fsck to fix.");
2667 return -EFSCORRUPTED;
2668 }
2669
2670 /* start/end segment number in main_area */
2671 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2672 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2673 GET_SEGNO(sbi, end);
2674 if (need_align) {
2675 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2676 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2677 }
2678
2679 cpc.reason = CP_DISCARD;
2680 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2681 cpc.trim_start = start_segno;
2682 cpc.trim_end = end_segno;
2683
2684 if (sbi->discard_blks == 0)
2685 goto out;
2686
2687 mutex_lock(&sbi->gc_mutex);
2688 err = f2fs_write_checkpoint(sbi, &cpc);
2689 mutex_unlock(&sbi->gc_mutex);
2690 if (err)
2691 goto out;
2692
2693 /*
2694 * We filed discard candidates, but actually we don't need to wait for
2695 * all of them, since they'll be issued in idle time along with runtime
2696 * discard option. User configuration looks like using runtime discard
2697 * or periodic fstrim instead of it.
2698 */
2699 if (f2fs_realtime_discard_enable(sbi))
2700 goto out;
2701
2702 start_block = START_BLOCK(sbi, start_segno);
2703 end_block = START_BLOCK(sbi, end_segno + 1);
2704
2705 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2706 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2707 start_block, end_block);
2708
2709 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2710 start_block, end_block);
2711 out:
2712 if (!err)
2713 range->len = F2FS_BLK_TO_BYTES(trimmed);
2714 return err;
2715 }
2716
__has_curseg_space(struct f2fs_sb_info * sbi,int type)2717 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2718 {
2719 struct curseg_info *curseg = CURSEG_I(sbi, type);
2720 if (curseg->next_blkoff < sbi->blocks_per_seg)
2721 return true;
2722 return false;
2723 }
2724
f2fs_rw_hint_to_seg_type(enum rw_hint hint)2725 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2726 {
2727 switch (hint) {
2728 case WRITE_LIFE_SHORT:
2729 return CURSEG_HOT_DATA;
2730 case WRITE_LIFE_EXTREME:
2731 return CURSEG_COLD_DATA;
2732 default:
2733 return CURSEG_WARM_DATA;
2734 }
2735 }
2736
2737 /* This returns write hints for each segment type. This hints will be
2738 * passed down to block layer. There are mapping tables which depend on
2739 * the mount option 'whint_mode'.
2740 *
2741 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2742 *
2743 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2744 *
2745 * User F2FS Block
2746 * ---- ---- -----
2747 * META WRITE_LIFE_NOT_SET
2748 * HOT_NODE "
2749 * WARM_NODE "
2750 * COLD_NODE "
2751 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2752 * extension list " "
2753 *
2754 * -- buffered io
2755 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2756 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2757 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2758 * WRITE_LIFE_NONE " "
2759 * WRITE_LIFE_MEDIUM " "
2760 * WRITE_LIFE_LONG " "
2761 *
2762 * -- direct io
2763 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2764 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2765 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2766 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2767 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2768 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2769 *
2770 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2771 *
2772 * User F2FS Block
2773 * ---- ---- -----
2774 * META WRITE_LIFE_MEDIUM;
2775 * HOT_NODE WRITE_LIFE_NOT_SET
2776 * WARM_NODE "
2777 * COLD_NODE WRITE_LIFE_NONE
2778 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2779 * extension list " "
2780 *
2781 * -- buffered io
2782 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2783 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2784 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2785 * WRITE_LIFE_NONE " "
2786 * WRITE_LIFE_MEDIUM " "
2787 * WRITE_LIFE_LONG " "
2788 *
2789 * -- direct io
2790 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2791 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2792 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2793 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2794 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2795 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2796 */
2797
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)2798 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2799 enum page_type type, enum temp_type temp)
2800 {
2801 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2802 if (type == DATA) {
2803 if (temp == WARM)
2804 return WRITE_LIFE_NOT_SET;
2805 else if (temp == HOT)
2806 return WRITE_LIFE_SHORT;
2807 else if (temp == COLD)
2808 return WRITE_LIFE_EXTREME;
2809 } else {
2810 return WRITE_LIFE_NOT_SET;
2811 }
2812 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2813 if (type == DATA) {
2814 if (temp == WARM)
2815 return WRITE_LIFE_LONG;
2816 else if (temp == HOT)
2817 return WRITE_LIFE_SHORT;
2818 else if (temp == COLD)
2819 return WRITE_LIFE_EXTREME;
2820 } else if (type == NODE) {
2821 if (temp == WARM || temp == HOT)
2822 return WRITE_LIFE_NOT_SET;
2823 else if (temp == COLD)
2824 return WRITE_LIFE_NONE;
2825 } else if (type == META) {
2826 return WRITE_LIFE_MEDIUM;
2827 }
2828 }
2829 return WRITE_LIFE_NOT_SET;
2830 }
2831
__get_segment_type_2(struct f2fs_io_info * fio)2832 static int __get_segment_type_2(struct f2fs_io_info *fio)
2833 {
2834 if (fio->type == DATA)
2835 return CURSEG_HOT_DATA;
2836 else
2837 return CURSEG_HOT_NODE;
2838 }
2839
__get_segment_type_4(struct f2fs_io_info * fio)2840 static int __get_segment_type_4(struct f2fs_io_info *fio)
2841 {
2842 if (fio->type == DATA) {
2843 struct inode *inode = fio->page->mapping->host;
2844
2845 if (S_ISDIR(inode->i_mode))
2846 return CURSEG_HOT_DATA;
2847 else
2848 return CURSEG_COLD_DATA;
2849 } else {
2850 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2851 return CURSEG_WARM_NODE;
2852 else
2853 return CURSEG_COLD_NODE;
2854 }
2855 }
2856
__get_segment_type_6(struct f2fs_io_info * fio)2857 static int __get_segment_type_6(struct f2fs_io_info *fio)
2858 {
2859 if (fio->type == DATA) {
2860 struct inode *inode = fio->page->mapping->host;
2861
2862 if (is_cold_data(fio->page) || file_is_cold(inode))
2863 return CURSEG_COLD_DATA;
2864 if (file_is_hot(inode) ||
2865 is_inode_flag_set(inode, FI_HOT_DATA) ||
2866 f2fs_is_atomic_file(inode) ||
2867 f2fs_is_volatile_file(inode))
2868 return CURSEG_HOT_DATA;
2869 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2870 } else {
2871 if (IS_DNODE(fio->page))
2872 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2873 CURSEG_HOT_NODE;
2874 return CURSEG_COLD_NODE;
2875 }
2876 }
2877
__get_segment_type(struct f2fs_io_info * fio)2878 static int __get_segment_type(struct f2fs_io_info *fio)
2879 {
2880 int type = 0;
2881
2882 switch (F2FS_OPTION(fio->sbi).active_logs) {
2883 case 2:
2884 type = __get_segment_type_2(fio);
2885 break;
2886 case 4:
2887 type = __get_segment_type_4(fio);
2888 break;
2889 case 6:
2890 type = __get_segment_type_6(fio);
2891 break;
2892 default:
2893 f2fs_bug_on(fio->sbi, true);
2894 }
2895
2896 if (IS_HOT(type))
2897 fio->temp = HOT;
2898 else if (IS_WARM(type))
2899 fio->temp = WARM;
2900 else
2901 fio->temp = COLD;
2902 return type;
2903 }
2904
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,bool add_list)2905 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2906 block_t old_blkaddr, block_t *new_blkaddr,
2907 struct f2fs_summary *sum, int type,
2908 struct f2fs_io_info *fio, bool add_list)
2909 {
2910 struct sit_info *sit_i = SIT_I(sbi);
2911 struct curseg_info *curseg = CURSEG_I(sbi, type);
2912
2913 down_read(&SM_I(sbi)->curseg_lock);
2914
2915 mutex_lock(&curseg->curseg_mutex);
2916 down_write(&sit_i->sentry_lock);
2917
2918 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2919
2920 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2921
2922 /*
2923 * __add_sum_entry should be resided under the curseg_mutex
2924 * because, this function updates a summary entry in the
2925 * current summary block.
2926 */
2927 __add_sum_entry(sbi, type, sum);
2928
2929 __refresh_next_blkoff(sbi, curseg);
2930
2931 stat_inc_block_count(sbi, curseg);
2932
2933 /*
2934 * SIT information should be updated before segment allocation,
2935 * since SSR needs latest valid block information.
2936 */
2937 update_sit_entry(sbi, *new_blkaddr, 1);
2938 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2939 update_sit_entry(sbi, old_blkaddr, -1);
2940
2941 if (!__has_curseg_space(sbi, type))
2942 sit_i->s_ops->allocate_segment(sbi, type, false);
2943
2944 /*
2945 * segment dirty status should be updated after segment allocation,
2946 * so we just need to update status only one time after previous
2947 * segment being closed.
2948 */
2949 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2950 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2951
2952 up_write(&sit_i->sentry_lock);
2953
2954 if (page && IS_NODESEG(type)) {
2955 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2956
2957 f2fs_inode_chksum_set(sbi, page);
2958 }
2959
2960 if (add_list) {
2961 struct f2fs_bio_info *io;
2962
2963 INIT_LIST_HEAD(&fio->list);
2964 fio->in_list = true;
2965 fio->retry = false;
2966 io = sbi->write_io[fio->type] + fio->temp;
2967 spin_lock(&io->io_lock);
2968 list_add_tail(&fio->list, &io->io_list);
2969 spin_unlock(&io->io_lock);
2970 }
2971
2972 mutex_unlock(&curseg->curseg_mutex);
2973
2974 up_read(&SM_I(sbi)->curseg_lock);
2975 }
2976
update_device_state(struct f2fs_io_info * fio)2977 static void update_device_state(struct f2fs_io_info *fio)
2978 {
2979 struct f2fs_sb_info *sbi = fio->sbi;
2980 unsigned int devidx;
2981
2982 if (!f2fs_is_multi_device(sbi))
2983 return;
2984
2985 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2986
2987 /* update device state for fsync */
2988 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2989
2990 /* update device state for checkpoint */
2991 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2992 spin_lock(&sbi->dev_lock);
2993 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2994 spin_unlock(&sbi->dev_lock);
2995 }
2996 }
2997
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)2998 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2999 {
3000 int type = __get_segment_type(fio);
3001 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3002
3003 if (keep_order)
3004 down_read(&fio->sbi->io_order_lock);
3005 reallocate:
3006 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3007 &fio->new_blkaddr, sum, type, fio, true);
3008 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3009 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3010 fio->old_blkaddr, fio->old_blkaddr);
3011
3012 /* writeout dirty page into bdev */
3013 f2fs_submit_page_write(fio);
3014 if (fio->retry) {
3015 fio->old_blkaddr = fio->new_blkaddr;
3016 goto reallocate;
3017 }
3018
3019 update_device_state(fio);
3020
3021 if (keep_order)
3022 up_read(&fio->sbi->io_order_lock);
3023 }
3024
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3025 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3026 enum iostat_type io_type)
3027 {
3028 struct f2fs_io_info fio = {
3029 .sbi = sbi,
3030 .type = META,
3031 .temp = HOT,
3032 .op = REQ_OP_WRITE,
3033 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3034 .old_blkaddr = page->index,
3035 .new_blkaddr = page->index,
3036 .page = page,
3037 .encrypted_page = NULL,
3038 .in_list = false,
3039 };
3040
3041 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3042 fio.op_flags &= ~REQ_META;
3043
3044 set_page_writeback(page);
3045 ClearPageError(page);
3046 f2fs_submit_page_write(&fio);
3047
3048 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3049 }
3050
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3051 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3052 {
3053 struct f2fs_summary sum;
3054
3055 set_summary(&sum, nid, 0, 0);
3056 do_write_page(&sum, fio);
3057
3058 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3059 }
3060
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3061 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3062 struct f2fs_io_info *fio)
3063 {
3064 struct f2fs_sb_info *sbi = fio->sbi;
3065 struct f2fs_summary sum;
3066
3067 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3068 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3069 do_write_page(&sum, fio);
3070 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3071
3072 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3073 }
3074
f2fs_inplace_write_data(struct f2fs_io_info * fio)3075 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3076 {
3077 int err;
3078 struct f2fs_sb_info *sbi = fio->sbi;
3079 unsigned int segno;
3080
3081 fio->new_blkaddr = fio->old_blkaddr;
3082 /* i/o temperature is needed for passing down write hints */
3083 __get_segment_type(fio);
3084
3085 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3086
3087 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3088 set_sbi_flag(sbi, SBI_NEED_FSCK);
3089 return -EFSCORRUPTED;
3090 }
3091
3092 stat_inc_inplace_blocks(fio->sbi);
3093
3094 err = f2fs_submit_page_bio(fio);
3095 if (!err)
3096 update_device_state(fio);
3097
3098 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3099
3100 return err;
3101 }
3102
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3103 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3104 unsigned int segno)
3105 {
3106 int i;
3107
3108 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3109 if (CURSEG_I(sbi, i)->segno == segno)
3110 break;
3111 }
3112 return i;
3113 }
3114
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr)3115 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3116 block_t old_blkaddr, block_t new_blkaddr,
3117 bool recover_curseg, bool recover_newaddr)
3118 {
3119 struct sit_info *sit_i = SIT_I(sbi);
3120 struct curseg_info *curseg;
3121 unsigned int segno, old_cursegno;
3122 struct seg_entry *se;
3123 int type;
3124 unsigned short old_blkoff;
3125
3126 segno = GET_SEGNO(sbi, new_blkaddr);
3127 se = get_seg_entry(sbi, segno);
3128 type = se->type;
3129
3130 down_write(&SM_I(sbi)->curseg_lock);
3131
3132 if (!recover_curseg) {
3133 /* for recovery flow */
3134 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3135 if (old_blkaddr == NULL_ADDR)
3136 type = CURSEG_COLD_DATA;
3137 else
3138 type = CURSEG_WARM_DATA;
3139 }
3140 } else {
3141 if (IS_CURSEG(sbi, segno)) {
3142 /* se->type is volatile as SSR allocation */
3143 type = __f2fs_get_curseg(sbi, segno);
3144 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3145 } else {
3146 type = CURSEG_WARM_DATA;
3147 }
3148 }
3149
3150 f2fs_bug_on(sbi, !IS_DATASEG(type));
3151 curseg = CURSEG_I(sbi, type);
3152
3153 mutex_lock(&curseg->curseg_mutex);
3154 down_write(&sit_i->sentry_lock);
3155
3156 old_cursegno = curseg->segno;
3157 old_blkoff = curseg->next_blkoff;
3158
3159 /* change the current segment */
3160 if (segno != curseg->segno) {
3161 curseg->next_segno = segno;
3162 change_curseg(sbi, type);
3163 }
3164
3165 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3166 __add_sum_entry(sbi, type, sum);
3167
3168 if (!recover_curseg || recover_newaddr)
3169 update_sit_entry(sbi, new_blkaddr, 1);
3170 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3171 invalidate_mapping_pages(META_MAPPING(sbi),
3172 old_blkaddr, old_blkaddr);
3173 update_sit_entry(sbi, old_blkaddr, -1);
3174 }
3175
3176 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3177 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3178
3179 locate_dirty_segment(sbi, old_cursegno);
3180
3181 if (recover_curseg) {
3182 if (old_cursegno != curseg->segno) {
3183 curseg->next_segno = old_cursegno;
3184 change_curseg(sbi, type);
3185 }
3186 curseg->next_blkoff = old_blkoff;
3187 }
3188
3189 up_write(&sit_i->sentry_lock);
3190 mutex_unlock(&curseg->curseg_mutex);
3191 up_write(&SM_I(sbi)->curseg_lock);
3192 }
3193
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3194 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3195 block_t old_addr, block_t new_addr,
3196 unsigned char version, bool recover_curseg,
3197 bool recover_newaddr)
3198 {
3199 struct f2fs_summary sum;
3200
3201 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3202
3203 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3204 recover_curseg, recover_newaddr);
3205
3206 f2fs_update_data_blkaddr(dn, new_addr);
3207 }
3208
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered)3209 void f2fs_wait_on_page_writeback(struct page *page,
3210 enum page_type type, bool ordered)
3211 {
3212 if (PageWriteback(page)) {
3213 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3214
3215 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3216 0, page->index, type);
3217 if (ordered)
3218 wait_on_page_writeback(page);
3219 else
3220 wait_for_stable_page(page);
3221 }
3222 }
3223
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3224 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3225 {
3226 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3227 struct page *cpage;
3228
3229 if (!f2fs_post_read_required(inode))
3230 return;
3231
3232 if (!is_valid_data_blkaddr(sbi, blkaddr))
3233 return;
3234
3235 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3236 if (cpage) {
3237 f2fs_wait_on_page_writeback(cpage, DATA, true);
3238 f2fs_put_page(cpage, 1);
3239 }
3240 }
3241
read_compacted_summaries(struct f2fs_sb_info * sbi)3242 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3243 {
3244 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3245 struct curseg_info *seg_i;
3246 unsigned char *kaddr;
3247 struct page *page;
3248 block_t start;
3249 int i, j, offset;
3250
3251 start = start_sum_block(sbi);
3252
3253 page = f2fs_get_meta_page(sbi, start++);
3254 if (IS_ERR(page))
3255 return PTR_ERR(page);
3256 kaddr = (unsigned char *)page_address(page);
3257
3258 /* Step 1: restore nat cache */
3259 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3260 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3261
3262 /* Step 2: restore sit cache */
3263 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3264 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3265 offset = 2 * SUM_JOURNAL_SIZE;
3266
3267 /* Step 3: restore summary entries */
3268 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3269 unsigned short blk_off;
3270 unsigned int segno;
3271
3272 seg_i = CURSEG_I(sbi, i);
3273 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3274 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3275 seg_i->next_segno = segno;
3276 reset_curseg(sbi, i, 0);
3277 seg_i->alloc_type = ckpt->alloc_type[i];
3278 seg_i->next_blkoff = blk_off;
3279
3280 if (seg_i->alloc_type == SSR)
3281 blk_off = sbi->blocks_per_seg;
3282
3283 for (j = 0; j < blk_off; j++) {
3284 struct f2fs_summary *s;
3285 s = (struct f2fs_summary *)(kaddr + offset);
3286 seg_i->sum_blk->entries[j] = *s;
3287 offset += SUMMARY_SIZE;
3288 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3289 SUM_FOOTER_SIZE)
3290 continue;
3291
3292 f2fs_put_page(page, 1);
3293 page = NULL;
3294
3295 page = f2fs_get_meta_page(sbi, start++);
3296 if (IS_ERR(page))
3297 return PTR_ERR(page);
3298 kaddr = (unsigned char *)page_address(page);
3299 offset = 0;
3300 }
3301 }
3302 f2fs_put_page(page, 1);
3303 return 0;
3304 }
3305
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3306 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3307 {
3308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3309 struct f2fs_summary_block *sum;
3310 struct curseg_info *curseg;
3311 struct page *new;
3312 unsigned short blk_off;
3313 unsigned int segno = 0;
3314 block_t blk_addr = 0;
3315 int err = 0;
3316
3317 /* get segment number and block addr */
3318 if (IS_DATASEG(type)) {
3319 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3320 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3321 CURSEG_HOT_DATA]);
3322 if (__exist_node_summaries(sbi))
3323 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3324 else
3325 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3326 } else {
3327 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3328 CURSEG_HOT_NODE]);
3329 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3330 CURSEG_HOT_NODE]);
3331 if (__exist_node_summaries(sbi))
3332 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3333 type - CURSEG_HOT_NODE);
3334 else
3335 blk_addr = GET_SUM_BLOCK(sbi, segno);
3336 }
3337
3338 new = f2fs_get_meta_page(sbi, blk_addr);
3339 if (IS_ERR(new))
3340 return PTR_ERR(new);
3341 sum = (struct f2fs_summary_block *)page_address(new);
3342
3343 if (IS_NODESEG(type)) {
3344 if (__exist_node_summaries(sbi)) {
3345 struct f2fs_summary *ns = &sum->entries[0];
3346 int i;
3347 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3348 ns->version = 0;
3349 ns->ofs_in_node = 0;
3350 }
3351 } else {
3352 err = f2fs_restore_node_summary(sbi, segno, sum);
3353 if (err)
3354 goto out;
3355 }
3356 }
3357
3358 /* set uncompleted segment to curseg */
3359 curseg = CURSEG_I(sbi, type);
3360 mutex_lock(&curseg->curseg_mutex);
3361
3362 /* update journal info */
3363 down_write(&curseg->journal_rwsem);
3364 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3365 up_write(&curseg->journal_rwsem);
3366
3367 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3368 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3369 curseg->next_segno = segno;
3370 reset_curseg(sbi, type, 0);
3371 curseg->alloc_type = ckpt->alloc_type[type];
3372 curseg->next_blkoff = blk_off;
3373 mutex_unlock(&curseg->curseg_mutex);
3374 out:
3375 f2fs_put_page(new, 1);
3376 return err;
3377 }
3378
restore_curseg_summaries(struct f2fs_sb_info * sbi)3379 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3380 {
3381 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3382 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3383 int type = CURSEG_HOT_DATA;
3384 int err;
3385
3386 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3387 int npages = f2fs_npages_for_summary_flush(sbi, true);
3388
3389 if (npages >= 2)
3390 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3391 META_CP, true);
3392
3393 /* restore for compacted data summary */
3394 err = read_compacted_summaries(sbi);
3395 if (err)
3396 return err;
3397 type = CURSEG_HOT_NODE;
3398 }
3399
3400 if (__exist_node_summaries(sbi))
3401 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3402 NR_CURSEG_TYPE - type, META_CP, true);
3403
3404 for (; type <= CURSEG_COLD_NODE; type++) {
3405 err = read_normal_summaries(sbi, type);
3406 if (err)
3407 return err;
3408 }
3409
3410 /* sanity check for summary blocks */
3411 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3412 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3413 return -EINVAL;
3414
3415 return 0;
3416 }
3417
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3418 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3419 {
3420 struct page *page;
3421 unsigned char *kaddr;
3422 struct f2fs_summary *summary;
3423 struct curseg_info *seg_i;
3424 int written_size = 0;
3425 int i, j;
3426
3427 page = f2fs_grab_meta_page(sbi, blkaddr++);
3428 kaddr = (unsigned char *)page_address(page);
3429 memset(kaddr, 0, PAGE_SIZE);
3430
3431 /* Step 1: write nat cache */
3432 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3433 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3434 written_size += SUM_JOURNAL_SIZE;
3435
3436 /* Step 2: write sit cache */
3437 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3438 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3439 written_size += SUM_JOURNAL_SIZE;
3440
3441 /* Step 3: write summary entries */
3442 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3443 unsigned short blkoff;
3444 seg_i = CURSEG_I(sbi, i);
3445 if (sbi->ckpt->alloc_type[i] == SSR)
3446 blkoff = sbi->blocks_per_seg;
3447 else
3448 blkoff = curseg_blkoff(sbi, i);
3449
3450 for (j = 0; j < blkoff; j++) {
3451 if (!page) {
3452 page = f2fs_grab_meta_page(sbi, blkaddr++);
3453 kaddr = (unsigned char *)page_address(page);
3454 memset(kaddr, 0, PAGE_SIZE);
3455 written_size = 0;
3456 }
3457 summary = (struct f2fs_summary *)(kaddr + written_size);
3458 *summary = seg_i->sum_blk->entries[j];
3459 written_size += SUMMARY_SIZE;
3460
3461 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3462 SUM_FOOTER_SIZE)
3463 continue;
3464
3465 set_page_dirty(page);
3466 f2fs_put_page(page, 1);
3467 page = NULL;
3468 }
3469 }
3470 if (page) {
3471 set_page_dirty(page);
3472 f2fs_put_page(page, 1);
3473 }
3474 }
3475
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3476 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3477 block_t blkaddr, int type)
3478 {
3479 int i, end;
3480 if (IS_DATASEG(type))
3481 end = type + NR_CURSEG_DATA_TYPE;
3482 else
3483 end = type + NR_CURSEG_NODE_TYPE;
3484
3485 for (i = type; i < end; i++)
3486 write_current_sum_page(sbi, i, blkaddr + (i - type));
3487 }
3488
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3489 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3490 {
3491 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3492 write_compacted_summaries(sbi, start_blk);
3493 else
3494 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3495 }
3496
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3497 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3498 {
3499 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3500 }
3501
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3502 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3503 unsigned int val, int alloc)
3504 {
3505 int i;
3506
3507 if (type == NAT_JOURNAL) {
3508 for (i = 0; i < nats_in_cursum(journal); i++) {
3509 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3510 return i;
3511 }
3512 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3513 return update_nats_in_cursum(journal, 1);
3514 } else if (type == SIT_JOURNAL) {
3515 for (i = 0; i < sits_in_cursum(journal); i++)
3516 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3517 return i;
3518 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3519 return update_sits_in_cursum(journal, 1);
3520 }
3521 return -1;
3522 }
3523
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3524 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3525 unsigned int segno)
3526 {
3527 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3528 }
3529
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3530 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3531 unsigned int start)
3532 {
3533 struct sit_info *sit_i = SIT_I(sbi);
3534 struct page *page;
3535 pgoff_t src_off, dst_off;
3536
3537 src_off = current_sit_addr(sbi, start);
3538 dst_off = next_sit_addr(sbi, src_off);
3539
3540 page = f2fs_grab_meta_page(sbi, dst_off);
3541 seg_info_to_sit_page(sbi, page, start);
3542
3543 set_page_dirty(page);
3544 set_to_next_sit(sit_i, start);
3545
3546 return page;
3547 }
3548
grab_sit_entry_set(void)3549 static struct sit_entry_set *grab_sit_entry_set(void)
3550 {
3551 struct sit_entry_set *ses =
3552 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3553
3554 ses->entry_cnt = 0;
3555 INIT_LIST_HEAD(&ses->set_list);
3556 return ses;
3557 }
3558
release_sit_entry_set(struct sit_entry_set * ses)3559 static void release_sit_entry_set(struct sit_entry_set *ses)
3560 {
3561 list_del(&ses->set_list);
3562 kmem_cache_free(sit_entry_set_slab, ses);
3563 }
3564
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3565 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3566 struct list_head *head)
3567 {
3568 struct sit_entry_set *next = ses;
3569
3570 if (list_is_last(&ses->set_list, head))
3571 return;
3572
3573 list_for_each_entry_continue(next, head, set_list)
3574 if (ses->entry_cnt <= next->entry_cnt)
3575 break;
3576
3577 list_move_tail(&ses->set_list, &next->set_list);
3578 }
3579
add_sit_entry(unsigned int segno,struct list_head * head)3580 static void add_sit_entry(unsigned int segno, struct list_head *head)
3581 {
3582 struct sit_entry_set *ses;
3583 unsigned int start_segno = START_SEGNO(segno);
3584
3585 list_for_each_entry(ses, head, set_list) {
3586 if (ses->start_segno == start_segno) {
3587 ses->entry_cnt++;
3588 adjust_sit_entry_set(ses, head);
3589 return;
3590 }
3591 }
3592
3593 ses = grab_sit_entry_set();
3594
3595 ses->start_segno = start_segno;
3596 ses->entry_cnt++;
3597 list_add(&ses->set_list, head);
3598 }
3599
add_sits_in_set(struct f2fs_sb_info * sbi)3600 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3601 {
3602 struct f2fs_sm_info *sm_info = SM_I(sbi);
3603 struct list_head *set_list = &sm_info->sit_entry_set;
3604 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3605 unsigned int segno;
3606
3607 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3608 add_sit_entry(segno, set_list);
3609 }
3610
remove_sits_in_journal(struct f2fs_sb_info * sbi)3611 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3612 {
3613 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3614 struct f2fs_journal *journal = curseg->journal;
3615 int i;
3616
3617 down_write(&curseg->journal_rwsem);
3618 for (i = 0; i < sits_in_cursum(journal); i++) {
3619 unsigned int segno;
3620 bool dirtied;
3621
3622 segno = le32_to_cpu(segno_in_journal(journal, i));
3623 dirtied = __mark_sit_entry_dirty(sbi, segno);
3624
3625 if (!dirtied)
3626 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3627 }
3628 update_sits_in_cursum(journal, -i);
3629 up_write(&curseg->journal_rwsem);
3630 }
3631
3632 /*
3633 * CP calls this function, which flushes SIT entries including sit_journal,
3634 * and moves prefree segs to free segs.
3635 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3636 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3637 {
3638 struct sit_info *sit_i = SIT_I(sbi);
3639 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3640 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3641 struct f2fs_journal *journal = curseg->journal;
3642 struct sit_entry_set *ses, *tmp;
3643 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3644 bool to_journal = true;
3645 struct seg_entry *se;
3646
3647 down_write(&sit_i->sentry_lock);
3648
3649 if (!sit_i->dirty_sentries)
3650 goto out;
3651
3652 /*
3653 * add and account sit entries of dirty bitmap in sit entry
3654 * set temporarily
3655 */
3656 add_sits_in_set(sbi);
3657
3658 /*
3659 * if there are no enough space in journal to store dirty sit
3660 * entries, remove all entries from journal and add and account
3661 * them in sit entry set.
3662 */
3663 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3664 remove_sits_in_journal(sbi);
3665
3666 /*
3667 * there are two steps to flush sit entries:
3668 * #1, flush sit entries to journal in current cold data summary block.
3669 * #2, flush sit entries to sit page.
3670 */
3671 list_for_each_entry_safe(ses, tmp, head, set_list) {
3672 struct page *page = NULL;
3673 struct f2fs_sit_block *raw_sit = NULL;
3674 unsigned int start_segno = ses->start_segno;
3675 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3676 (unsigned long)MAIN_SEGS(sbi));
3677 unsigned int segno = start_segno;
3678
3679 if (to_journal &&
3680 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3681 to_journal = false;
3682
3683 if (to_journal) {
3684 down_write(&curseg->journal_rwsem);
3685 } else {
3686 page = get_next_sit_page(sbi, start_segno);
3687 raw_sit = page_address(page);
3688 }
3689
3690 /* flush dirty sit entries in region of current sit set */
3691 for_each_set_bit_from(segno, bitmap, end) {
3692 int offset, sit_offset;
3693
3694 se = get_seg_entry(sbi, segno);
3695 #ifdef CONFIG_F2FS_CHECK_FS
3696 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3697 SIT_VBLOCK_MAP_SIZE))
3698 f2fs_bug_on(sbi, 1);
3699 #endif
3700
3701 /* add discard candidates */
3702 if (!(cpc->reason & CP_DISCARD)) {
3703 cpc->trim_start = segno;
3704 add_discard_addrs(sbi, cpc, false);
3705 }
3706
3707 if (to_journal) {
3708 offset = f2fs_lookup_journal_in_cursum(journal,
3709 SIT_JOURNAL, segno, 1);
3710 f2fs_bug_on(sbi, offset < 0);
3711 segno_in_journal(journal, offset) =
3712 cpu_to_le32(segno);
3713 seg_info_to_raw_sit(se,
3714 &sit_in_journal(journal, offset));
3715 check_block_count(sbi, segno,
3716 &sit_in_journal(journal, offset));
3717 } else {
3718 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3719 seg_info_to_raw_sit(se,
3720 &raw_sit->entries[sit_offset]);
3721 check_block_count(sbi, segno,
3722 &raw_sit->entries[sit_offset]);
3723 }
3724
3725 __clear_bit(segno, bitmap);
3726 sit_i->dirty_sentries--;
3727 ses->entry_cnt--;
3728 }
3729
3730 if (to_journal)
3731 up_write(&curseg->journal_rwsem);
3732 else
3733 f2fs_put_page(page, 1);
3734
3735 f2fs_bug_on(sbi, ses->entry_cnt);
3736 release_sit_entry_set(ses);
3737 }
3738
3739 f2fs_bug_on(sbi, !list_empty(head));
3740 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3741 out:
3742 if (cpc->reason & CP_DISCARD) {
3743 __u64 trim_start = cpc->trim_start;
3744
3745 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3746 add_discard_addrs(sbi, cpc, false);
3747
3748 cpc->trim_start = trim_start;
3749 }
3750 up_write(&sit_i->sentry_lock);
3751
3752 set_prefree_as_free_segments(sbi);
3753 }
3754
build_sit_info(struct f2fs_sb_info * sbi)3755 static int build_sit_info(struct f2fs_sb_info *sbi)
3756 {
3757 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3758 struct sit_info *sit_i;
3759 unsigned int sit_segs, start;
3760 char *src_bitmap;
3761 unsigned int bitmap_size;
3762
3763 /* allocate memory for SIT information */
3764 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3765 if (!sit_i)
3766 return -ENOMEM;
3767
3768 SM_I(sbi)->sit_info = sit_i;
3769
3770 sit_i->sentries =
3771 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3772 MAIN_SEGS(sbi)),
3773 GFP_KERNEL);
3774 if (!sit_i->sentries)
3775 return -ENOMEM;
3776
3777 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3778 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3779 GFP_KERNEL);
3780 if (!sit_i->dirty_sentries_bitmap)
3781 return -ENOMEM;
3782
3783 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3784 sit_i->sentries[start].cur_valid_map
3785 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3786 sit_i->sentries[start].ckpt_valid_map
3787 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3788 if (!sit_i->sentries[start].cur_valid_map ||
3789 !sit_i->sentries[start].ckpt_valid_map)
3790 return -ENOMEM;
3791
3792 #ifdef CONFIG_F2FS_CHECK_FS
3793 sit_i->sentries[start].cur_valid_map_mir
3794 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3795 if (!sit_i->sentries[start].cur_valid_map_mir)
3796 return -ENOMEM;
3797 #endif
3798
3799 sit_i->sentries[start].discard_map
3800 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3801 GFP_KERNEL);
3802 if (!sit_i->sentries[start].discard_map)
3803 return -ENOMEM;
3804 }
3805
3806 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3807 if (!sit_i->tmp_map)
3808 return -ENOMEM;
3809
3810 if (sbi->segs_per_sec > 1) {
3811 sit_i->sec_entries =
3812 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3813 MAIN_SECS(sbi)),
3814 GFP_KERNEL);
3815 if (!sit_i->sec_entries)
3816 return -ENOMEM;
3817 }
3818
3819 /* get information related with SIT */
3820 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3821
3822 /* setup SIT bitmap from ckeckpoint pack */
3823 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3824 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3825
3826 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3827 if (!sit_i->sit_bitmap)
3828 return -ENOMEM;
3829
3830 #ifdef CONFIG_F2FS_CHECK_FS
3831 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3832 if (!sit_i->sit_bitmap_mir)
3833 return -ENOMEM;
3834 #endif
3835
3836 /* init SIT information */
3837 sit_i->s_ops = &default_salloc_ops;
3838
3839 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3840 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3841 sit_i->written_valid_blocks = 0;
3842 sit_i->bitmap_size = bitmap_size;
3843 sit_i->dirty_sentries = 0;
3844 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3845 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3846 sit_i->mounted_time = ktime_get_real_seconds();
3847 init_rwsem(&sit_i->sentry_lock);
3848 return 0;
3849 }
3850
build_free_segmap(struct f2fs_sb_info * sbi)3851 static int build_free_segmap(struct f2fs_sb_info *sbi)
3852 {
3853 struct free_segmap_info *free_i;
3854 unsigned int bitmap_size, sec_bitmap_size;
3855
3856 /* allocate memory for free segmap information */
3857 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3858 if (!free_i)
3859 return -ENOMEM;
3860
3861 SM_I(sbi)->free_info = free_i;
3862
3863 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3864 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3865 if (!free_i->free_segmap)
3866 return -ENOMEM;
3867
3868 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3869 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3870 if (!free_i->free_secmap)
3871 return -ENOMEM;
3872
3873 /* set all segments as dirty temporarily */
3874 memset(free_i->free_segmap, 0xff, bitmap_size);
3875 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3876
3877 /* init free segmap information */
3878 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3879 free_i->free_segments = 0;
3880 free_i->free_sections = 0;
3881 spin_lock_init(&free_i->segmap_lock);
3882 return 0;
3883 }
3884
build_curseg(struct f2fs_sb_info * sbi)3885 static int build_curseg(struct f2fs_sb_info *sbi)
3886 {
3887 struct curseg_info *array;
3888 int i;
3889
3890 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3891 GFP_KERNEL);
3892 if (!array)
3893 return -ENOMEM;
3894
3895 SM_I(sbi)->curseg_array = array;
3896
3897 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3898 mutex_init(&array[i].curseg_mutex);
3899 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3900 if (!array[i].sum_blk)
3901 return -ENOMEM;
3902 init_rwsem(&array[i].journal_rwsem);
3903 array[i].journal = f2fs_kzalloc(sbi,
3904 sizeof(struct f2fs_journal), GFP_KERNEL);
3905 if (!array[i].journal)
3906 return -ENOMEM;
3907 array[i].segno = NULL_SEGNO;
3908 array[i].next_blkoff = 0;
3909 }
3910 return restore_curseg_summaries(sbi);
3911 }
3912
build_sit_entries(struct f2fs_sb_info * sbi)3913 static int build_sit_entries(struct f2fs_sb_info *sbi)
3914 {
3915 struct sit_info *sit_i = SIT_I(sbi);
3916 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3917 struct f2fs_journal *journal = curseg->journal;
3918 struct seg_entry *se;
3919 struct f2fs_sit_entry sit;
3920 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3921 unsigned int i, start, end;
3922 unsigned int readed, start_blk = 0;
3923 int err = 0;
3924 block_t total_node_blocks = 0;
3925
3926 do {
3927 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3928 META_SIT, true);
3929
3930 start = start_blk * sit_i->sents_per_block;
3931 end = (start_blk + readed) * sit_i->sents_per_block;
3932
3933 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3934 struct f2fs_sit_block *sit_blk;
3935 struct page *page;
3936
3937 se = &sit_i->sentries[start];
3938 page = get_current_sit_page(sbi, start);
3939 sit_blk = (struct f2fs_sit_block *)page_address(page);
3940 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3941 f2fs_put_page(page, 1);
3942
3943 err = check_block_count(sbi, start, &sit);
3944 if (err)
3945 return err;
3946 seg_info_from_raw_sit(se, &sit);
3947 if (IS_NODESEG(se->type))
3948 total_node_blocks += se->valid_blocks;
3949
3950 /* build discard map only one time */
3951 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3952 memset(se->discard_map, 0xff,
3953 SIT_VBLOCK_MAP_SIZE);
3954 } else {
3955 memcpy(se->discard_map,
3956 se->cur_valid_map,
3957 SIT_VBLOCK_MAP_SIZE);
3958 sbi->discard_blks +=
3959 sbi->blocks_per_seg -
3960 se->valid_blocks;
3961 }
3962
3963 if (sbi->segs_per_sec > 1)
3964 get_sec_entry(sbi, start)->valid_blocks +=
3965 se->valid_blocks;
3966 }
3967 start_blk += readed;
3968 } while (start_blk < sit_blk_cnt);
3969
3970 down_read(&curseg->journal_rwsem);
3971 for (i = 0; i < sits_in_cursum(journal); i++) {
3972 unsigned int old_valid_blocks;
3973
3974 start = le32_to_cpu(segno_in_journal(journal, i));
3975 if (start >= MAIN_SEGS(sbi)) {
3976 f2fs_msg(sbi->sb, KERN_ERR,
3977 "Wrong journal entry on segno %u",
3978 start);
3979 set_sbi_flag(sbi, SBI_NEED_FSCK);
3980 err = -EFSCORRUPTED;
3981 break;
3982 }
3983
3984 se = &sit_i->sentries[start];
3985 sit = sit_in_journal(journal, i);
3986
3987 old_valid_blocks = se->valid_blocks;
3988 if (IS_NODESEG(se->type))
3989 total_node_blocks -= old_valid_blocks;
3990
3991 err = check_block_count(sbi, start, &sit);
3992 if (err)
3993 break;
3994 seg_info_from_raw_sit(se, &sit);
3995 if (IS_NODESEG(se->type))
3996 total_node_blocks += se->valid_blocks;
3997
3998 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3999 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4000 } else {
4001 memcpy(se->discard_map, se->cur_valid_map,
4002 SIT_VBLOCK_MAP_SIZE);
4003 sbi->discard_blks += old_valid_blocks;
4004 sbi->discard_blks -= se->valid_blocks;
4005 }
4006
4007 if (sbi->segs_per_sec > 1) {
4008 get_sec_entry(sbi, start)->valid_blocks +=
4009 se->valid_blocks;
4010 get_sec_entry(sbi, start)->valid_blocks -=
4011 old_valid_blocks;
4012 }
4013 }
4014 up_read(&curseg->journal_rwsem);
4015
4016 if (!err && total_node_blocks != valid_node_count(sbi)) {
4017 f2fs_msg(sbi->sb, KERN_ERR,
4018 "SIT is corrupted node# %u vs %u",
4019 total_node_blocks, valid_node_count(sbi));
4020 set_sbi_flag(sbi, SBI_NEED_FSCK);
4021 err = -EFSCORRUPTED;
4022 }
4023
4024 return err;
4025 }
4026
init_free_segmap(struct f2fs_sb_info * sbi)4027 static void init_free_segmap(struct f2fs_sb_info *sbi)
4028 {
4029 unsigned int start;
4030 int type;
4031
4032 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4033 struct seg_entry *sentry = get_seg_entry(sbi, start);
4034 if (!sentry->valid_blocks)
4035 __set_free(sbi, start);
4036 else
4037 SIT_I(sbi)->written_valid_blocks +=
4038 sentry->valid_blocks;
4039 }
4040
4041 /* set use the current segments */
4042 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4043 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4044 __set_test_and_inuse(sbi, curseg_t->segno);
4045 }
4046 }
4047
init_dirty_segmap(struct f2fs_sb_info * sbi)4048 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4049 {
4050 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4051 struct free_segmap_info *free_i = FREE_I(sbi);
4052 unsigned int segno = 0, offset = 0;
4053 unsigned short valid_blocks;
4054
4055 while (1) {
4056 /* find dirty segment based on free segmap */
4057 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4058 if (segno >= MAIN_SEGS(sbi))
4059 break;
4060 offset = segno + 1;
4061 valid_blocks = get_valid_blocks(sbi, segno, false);
4062 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4063 continue;
4064 if (valid_blocks > sbi->blocks_per_seg) {
4065 f2fs_bug_on(sbi, 1);
4066 continue;
4067 }
4068 mutex_lock(&dirty_i->seglist_lock);
4069 __locate_dirty_segment(sbi, segno, DIRTY);
4070 mutex_unlock(&dirty_i->seglist_lock);
4071 }
4072 }
4073
init_victim_secmap(struct f2fs_sb_info * sbi)4074 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4075 {
4076 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4077 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4078
4079 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4080 if (!dirty_i->victim_secmap)
4081 return -ENOMEM;
4082 return 0;
4083 }
4084
build_dirty_segmap(struct f2fs_sb_info * sbi)4085 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4086 {
4087 struct dirty_seglist_info *dirty_i;
4088 unsigned int bitmap_size, i;
4089
4090 /* allocate memory for dirty segments list information */
4091 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4092 GFP_KERNEL);
4093 if (!dirty_i)
4094 return -ENOMEM;
4095
4096 SM_I(sbi)->dirty_info = dirty_i;
4097 mutex_init(&dirty_i->seglist_lock);
4098
4099 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4100
4101 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4102 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4103 GFP_KERNEL);
4104 if (!dirty_i->dirty_segmap[i])
4105 return -ENOMEM;
4106 }
4107
4108 init_dirty_segmap(sbi);
4109 return init_victim_secmap(sbi);
4110 }
4111
sanity_check_curseg(struct f2fs_sb_info * sbi)4112 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4113 {
4114 int i;
4115
4116 /*
4117 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4118 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4119 */
4120 for (i = 0; i < NO_CHECK_TYPE; i++) {
4121 struct curseg_info *curseg = CURSEG_I(sbi, i);
4122 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4123 unsigned int blkofs = curseg->next_blkoff;
4124
4125 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4126 goto out;
4127
4128 if (curseg->alloc_type == SSR)
4129 continue;
4130
4131 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4132 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4133 continue;
4134 out:
4135 f2fs_msg(sbi->sb, KERN_ERR,
4136 "Current segment's next free block offset is "
4137 "inconsistent with bitmap, logtype:%u, "
4138 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4139 i, curseg->segno, curseg->alloc_type,
4140 curseg->next_blkoff, blkofs);
4141 return -EFSCORRUPTED;
4142 }
4143 }
4144 return 0;
4145 }
4146
4147 /*
4148 * Update min, max modified time for cost-benefit GC algorithm
4149 */
init_min_max_mtime(struct f2fs_sb_info * sbi)4150 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4151 {
4152 struct sit_info *sit_i = SIT_I(sbi);
4153 unsigned int segno;
4154
4155 down_write(&sit_i->sentry_lock);
4156
4157 sit_i->min_mtime = ULLONG_MAX;
4158
4159 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4160 unsigned int i;
4161 unsigned long long mtime = 0;
4162
4163 for (i = 0; i < sbi->segs_per_sec; i++)
4164 mtime += get_seg_entry(sbi, segno + i)->mtime;
4165
4166 mtime = div_u64(mtime, sbi->segs_per_sec);
4167
4168 if (sit_i->min_mtime > mtime)
4169 sit_i->min_mtime = mtime;
4170 }
4171 sit_i->max_mtime = get_mtime(sbi, false);
4172 up_write(&sit_i->sentry_lock);
4173 }
4174
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)4175 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4176 {
4177 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4178 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4179 struct f2fs_sm_info *sm_info;
4180 int err;
4181
4182 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4183 if (!sm_info)
4184 return -ENOMEM;
4185
4186 /* init sm info */
4187 sbi->sm_info = sm_info;
4188 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4189 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4190 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4191 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4192 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4193 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4194 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4195 sm_info->rec_prefree_segments = sm_info->main_segments *
4196 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4197 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4198 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4199
4200 if (!test_opt(sbi, LFS))
4201 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4202 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4203 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4204 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4205 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4206 sm_info->min_ssr_sections = reserved_sections(sbi);
4207
4208 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4209
4210 init_rwsem(&sm_info->curseg_lock);
4211
4212 if (!f2fs_readonly(sbi->sb)) {
4213 err = f2fs_create_flush_cmd_control(sbi);
4214 if (err)
4215 return err;
4216 }
4217
4218 err = create_discard_cmd_control(sbi);
4219 if (err)
4220 return err;
4221
4222 err = build_sit_info(sbi);
4223 if (err)
4224 return err;
4225 err = build_free_segmap(sbi);
4226 if (err)
4227 return err;
4228 err = build_curseg(sbi);
4229 if (err)
4230 return err;
4231
4232 /* reinit free segmap based on SIT */
4233 err = build_sit_entries(sbi);
4234 if (err)
4235 return err;
4236
4237 init_free_segmap(sbi);
4238 err = build_dirty_segmap(sbi);
4239 if (err)
4240 return err;
4241
4242 err = sanity_check_curseg(sbi);
4243 if (err)
4244 return err;
4245
4246 init_min_max_mtime(sbi);
4247 return 0;
4248 }
4249
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)4250 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4251 enum dirty_type dirty_type)
4252 {
4253 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4254
4255 mutex_lock(&dirty_i->seglist_lock);
4256 kvfree(dirty_i->dirty_segmap[dirty_type]);
4257 dirty_i->nr_dirty[dirty_type] = 0;
4258 mutex_unlock(&dirty_i->seglist_lock);
4259 }
4260
destroy_victim_secmap(struct f2fs_sb_info * sbi)4261 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4262 {
4263 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4264 kvfree(dirty_i->victim_secmap);
4265 }
4266
destroy_dirty_segmap(struct f2fs_sb_info * sbi)4267 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4268 {
4269 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4270 int i;
4271
4272 if (!dirty_i)
4273 return;
4274
4275 /* discard pre-free/dirty segments list */
4276 for (i = 0; i < NR_DIRTY_TYPE; i++)
4277 discard_dirty_segmap(sbi, i);
4278
4279 destroy_victim_secmap(sbi);
4280 SM_I(sbi)->dirty_info = NULL;
4281 kfree(dirty_i);
4282 }
4283
destroy_curseg(struct f2fs_sb_info * sbi)4284 static void destroy_curseg(struct f2fs_sb_info *sbi)
4285 {
4286 struct curseg_info *array = SM_I(sbi)->curseg_array;
4287 int i;
4288
4289 if (!array)
4290 return;
4291 SM_I(sbi)->curseg_array = NULL;
4292 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4293 kfree(array[i].sum_blk);
4294 kfree(array[i].journal);
4295 }
4296 kfree(array);
4297 }
4298
destroy_free_segmap(struct f2fs_sb_info * sbi)4299 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4300 {
4301 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4302 if (!free_i)
4303 return;
4304 SM_I(sbi)->free_info = NULL;
4305 kvfree(free_i->free_segmap);
4306 kvfree(free_i->free_secmap);
4307 kfree(free_i);
4308 }
4309
destroy_sit_info(struct f2fs_sb_info * sbi)4310 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4311 {
4312 struct sit_info *sit_i = SIT_I(sbi);
4313 unsigned int start;
4314
4315 if (!sit_i)
4316 return;
4317
4318 if (sit_i->sentries) {
4319 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4320 kfree(sit_i->sentries[start].cur_valid_map);
4321 #ifdef CONFIG_F2FS_CHECK_FS
4322 kfree(sit_i->sentries[start].cur_valid_map_mir);
4323 #endif
4324 kfree(sit_i->sentries[start].ckpt_valid_map);
4325 kfree(sit_i->sentries[start].discard_map);
4326 }
4327 }
4328 kfree(sit_i->tmp_map);
4329
4330 kvfree(sit_i->sentries);
4331 kvfree(sit_i->sec_entries);
4332 kvfree(sit_i->dirty_sentries_bitmap);
4333
4334 SM_I(sbi)->sit_info = NULL;
4335 kfree(sit_i->sit_bitmap);
4336 #ifdef CONFIG_F2FS_CHECK_FS
4337 kfree(sit_i->sit_bitmap_mir);
4338 #endif
4339 kfree(sit_i);
4340 }
4341
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)4342 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4343 {
4344 struct f2fs_sm_info *sm_info = SM_I(sbi);
4345
4346 if (!sm_info)
4347 return;
4348 f2fs_destroy_flush_cmd_control(sbi, true);
4349 destroy_discard_cmd_control(sbi);
4350 destroy_dirty_segmap(sbi);
4351 destroy_curseg(sbi);
4352 destroy_free_segmap(sbi);
4353 destroy_sit_info(sbi);
4354 sbi->sm_info = NULL;
4355 kfree(sm_info);
4356 }
4357
f2fs_create_segment_manager_caches(void)4358 int __init f2fs_create_segment_manager_caches(void)
4359 {
4360 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4361 sizeof(struct discard_entry));
4362 if (!discard_entry_slab)
4363 goto fail;
4364
4365 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4366 sizeof(struct discard_cmd));
4367 if (!discard_cmd_slab)
4368 goto destroy_discard_entry;
4369
4370 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4371 sizeof(struct sit_entry_set));
4372 if (!sit_entry_set_slab)
4373 goto destroy_discard_cmd;
4374
4375 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4376 sizeof(struct inmem_pages));
4377 if (!inmem_entry_slab)
4378 goto destroy_sit_entry_set;
4379 return 0;
4380
4381 destroy_sit_entry_set:
4382 kmem_cache_destroy(sit_entry_set_slab);
4383 destroy_discard_cmd:
4384 kmem_cache_destroy(discard_cmd_slab);
4385 destroy_discard_entry:
4386 kmem_cache_destroy(discard_entry_slab);
4387 fail:
4388 return -ENOMEM;
4389 }
4390
f2fs_destroy_segment_manager_caches(void)4391 void f2fs_destroy_segment_manager_caches(void)
4392 {
4393 kmem_cache_destroy(sit_entry_set_slab);
4394 kmem_cache_destroy(discard_cmd_slab);
4395 kmem_cache_destroy(discard_entry_slab);
4396 kmem_cache_destroy(inmem_entry_slab);
4397 }
4398