1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *f2fs_fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 };
60 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate,unsigned int type)61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_err,
142 };
143 
144 static match_table_t f2fs_tokens = {
145 	{Opt_gc_background, "background_gc=%s"},
146 	{Opt_disable_roll_forward, "disable_roll_forward"},
147 	{Opt_norecovery, "norecovery"},
148 	{Opt_discard, "discard"},
149 	{Opt_nodiscard, "nodiscard"},
150 	{Opt_noheap, "no_heap"},
151 	{Opt_heap, "heap"},
152 	{Opt_user_xattr, "user_xattr"},
153 	{Opt_nouser_xattr, "nouser_xattr"},
154 	{Opt_acl, "acl"},
155 	{Opt_noacl, "noacl"},
156 	{Opt_active_logs, "active_logs=%u"},
157 	{Opt_disable_ext_identify, "disable_ext_identify"},
158 	{Opt_inline_xattr, "inline_xattr"},
159 	{Opt_noinline_xattr, "noinline_xattr"},
160 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
161 	{Opt_inline_data, "inline_data"},
162 	{Opt_inline_dentry, "inline_dentry"},
163 	{Opt_noinline_dentry, "noinline_dentry"},
164 	{Opt_flush_merge, "flush_merge"},
165 	{Opt_noflush_merge, "noflush_merge"},
166 	{Opt_nobarrier, "nobarrier"},
167 	{Opt_fastboot, "fastboot"},
168 	{Opt_extent_cache, "extent_cache"},
169 	{Opt_noextent_cache, "noextent_cache"},
170 	{Opt_noinline_data, "noinline_data"},
171 	{Opt_data_flush, "data_flush"},
172 	{Opt_reserve_root, "reserve_root=%u"},
173 	{Opt_resgid, "resgid=%u"},
174 	{Opt_resuid, "resuid=%u"},
175 	{Opt_mode, "mode=%s"},
176 	{Opt_io_size_bits, "io_bits=%u"},
177 	{Opt_fault_injection, "fault_injection=%u"},
178 	{Opt_fault_type, "fault_type=%u"},
179 	{Opt_lazytime, "lazytime"},
180 	{Opt_nolazytime, "nolazytime"},
181 	{Opt_quota, "quota"},
182 	{Opt_noquota, "noquota"},
183 	{Opt_usrquota, "usrquota"},
184 	{Opt_grpquota, "grpquota"},
185 	{Opt_prjquota, "prjquota"},
186 	{Opt_usrjquota, "usrjquota=%s"},
187 	{Opt_grpjquota, "grpjquota=%s"},
188 	{Opt_prjjquota, "prjjquota=%s"},
189 	{Opt_offusrjquota, "usrjquota="},
190 	{Opt_offgrpjquota, "grpjquota="},
191 	{Opt_offprjjquota, "prjjquota="},
192 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
193 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
194 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
195 	{Opt_whint, "whint_mode=%s"},
196 	{Opt_alloc, "alloc_mode=%s"},
197 	{Opt_fsync, "fsync_mode=%s"},
198 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
199 	{Opt_err, NULL},
200 };
201 
f2fs_msg(struct super_block * sb,const char * level,const char * fmt,...)202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204 	struct va_format vaf;
205 	va_list args;
206 
207 	va_start(args, fmt);
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211 	va_end(args);
212 }
213 
limit_reserve_root(struct f2fs_sb_info * sbi)214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216 	block_t limit = (sbi->user_block_count << 1) / 1000;
217 
218 	/* limit is 0.2% */
219 	if (test_opt(sbi, RESERVE_ROOT) &&
220 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
222 		f2fs_msg(sbi->sb, KERN_INFO,
223 			"Reduce reserved blocks for root = %u",
224 			F2FS_OPTION(sbi).root_reserved_blocks);
225 	}
226 	if (!test_opt(sbi, RESERVE_ROOT) &&
227 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
228 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
230 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231 		f2fs_msg(sbi->sb, KERN_INFO,
232 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 				from_kuid_munged(&init_user_ns,
234 					F2FS_OPTION(sbi).s_resuid),
235 				from_kgid_munged(&init_user_ns,
236 					F2FS_OPTION(sbi).s_resgid));
237 }
238 
init_once(void * foo)239 static void init_once(void *foo)
240 {
241 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242 
243 	inode_init_once(&fi->vfs_inode);
244 }
245 
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250 							substring_t *args)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 	char *qname;
254 	int ret = -EINVAL;
255 
256 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257 		f2fs_msg(sb, KERN_ERR,
258 			"Cannot change journaled "
259 			"quota options when quota turned on");
260 		return -EINVAL;
261 	}
262 	if (f2fs_sb_has_quota_ino(sb)) {
263 		f2fs_msg(sb, KERN_INFO,
264 			"QUOTA feature is enabled, so ignore qf_name");
265 		return 0;
266 	}
267 
268 	qname = match_strdup(args);
269 	if (!qname) {
270 		f2fs_msg(sb, KERN_ERR,
271 			"Not enough memory for storing quotafile name");
272 		return -EINVAL;
273 	}
274 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276 			ret = 0;
277 		else
278 			f2fs_msg(sb, KERN_ERR,
279 				 "%s quota file already specified",
280 				 QTYPE2NAME(qtype));
281 		goto errout;
282 	}
283 	if (strchr(qname, '/')) {
284 		f2fs_msg(sb, KERN_ERR,
285 			"quotafile must be on filesystem root");
286 		goto errout;
287 	}
288 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289 	set_opt(sbi, QUOTA);
290 	return 0;
291 errout:
292 	kfree(qname);
293 	return ret;
294 }
295 
f2fs_clear_qf_name(struct super_block * sb,int qtype)296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
299 
300 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302 			" when quota turned on");
303 		return -EINVAL;
304 	}
305 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307 	return 0;
308 }
309 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312 	/*
313 	 * We do the test below only for project quotas. 'usrquota' and
314 	 * 'grpquota' mount options are allowed even without quota feature
315 	 * to support legacy quotas in quota files.
316 	 */
317 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
318 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319 			 "Cannot enable project quota enforcement.");
320 		return -1;
321 	}
322 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325 		if (test_opt(sbi, USRQUOTA) &&
326 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327 			clear_opt(sbi, USRQUOTA);
328 
329 		if (test_opt(sbi, GRPQUOTA) &&
330 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331 			clear_opt(sbi, GRPQUOTA);
332 
333 		if (test_opt(sbi, PRJQUOTA) &&
334 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335 			clear_opt(sbi, PRJQUOTA);
336 
337 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338 				test_opt(sbi, PRJQUOTA)) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340 					"format mixing");
341 			return -1;
342 		}
343 
344 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346 					"not specified");
347 			return -1;
348 		}
349 	}
350 
351 	if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
352 		f2fs_msg(sbi->sb, KERN_INFO,
353 			"QUOTA feature is enabled, so ignore jquota_fmt");
354 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
355 	}
356 	return 0;
357 }
358 #endif
359 
parse_options(struct super_block * sb,char * options)360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	substring_t args[MAX_OPT_ARGS];
364 	char *p, *name;
365 	int arg = 0;
366 	kuid_t uid;
367 	kgid_t gid;
368 #ifdef CONFIG_QUOTA
369 	int ret;
370 #endif
371 
372 	if (!options)
373 		return 0;
374 
375 	while ((p = strsep(&options, ",")) != NULL) {
376 		int token;
377 		if (!*p)
378 			continue;
379 		/*
380 		 * Initialize args struct so we know whether arg was
381 		 * found; some options take optional arguments.
382 		 */
383 		args[0].to = args[0].from = NULL;
384 		token = match_token(p, f2fs_tokens, args);
385 
386 		switch (token) {
387 		case Opt_gc_background:
388 			name = match_strdup(&args[0]);
389 
390 			if (!name)
391 				return -ENOMEM;
392 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393 				set_opt(sbi, BG_GC);
394 				clear_opt(sbi, FORCE_FG_GC);
395 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396 				clear_opt(sbi, BG_GC);
397 				clear_opt(sbi, FORCE_FG_GC);
398 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399 				set_opt(sbi, BG_GC);
400 				set_opt(sbi, FORCE_FG_GC);
401 			} else {
402 				kfree(name);
403 				return -EINVAL;
404 			}
405 			kfree(name);
406 			break;
407 		case Opt_disable_roll_forward:
408 			set_opt(sbi, DISABLE_ROLL_FORWARD);
409 			break;
410 		case Opt_norecovery:
411 			/* this option mounts f2fs with ro */
412 			set_opt(sbi, DISABLE_ROLL_FORWARD);
413 			if (!f2fs_readonly(sb))
414 				return -EINVAL;
415 			break;
416 		case Opt_discard:
417 			set_opt(sbi, DISCARD);
418 			break;
419 		case Opt_nodiscard:
420 			if (f2fs_sb_has_blkzoned(sb)) {
421 				f2fs_msg(sb, KERN_WARNING,
422 					"discard is required for zoned block devices");
423 				return -EINVAL;
424 			}
425 			clear_opt(sbi, DISCARD);
426 			break;
427 		case Opt_noheap:
428 			set_opt(sbi, NOHEAP);
429 			break;
430 		case Opt_heap:
431 			clear_opt(sbi, NOHEAP);
432 			break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434 		case Opt_user_xattr:
435 			set_opt(sbi, XATTR_USER);
436 			break;
437 		case Opt_nouser_xattr:
438 			clear_opt(sbi, XATTR_USER);
439 			break;
440 		case Opt_inline_xattr:
441 			set_opt(sbi, INLINE_XATTR);
442 			break;
443 		case Opt_noinline_xattr:
444 			clear_opt(sbi, INLINE_XATTR);
445 			break;
446 		case Opt_inline_xattr_size:
447 			if (args->from && match_int(args, &arg))
448 				return -EINVAL;
449 			set_opt(sbi, INLINE_XATTR_SIZE);
450 			F2FS_OPTION(sbi).inline_xattr_size = arg;
451 			break;
452 #else
453 		case Opt_user_xattr:
454 			f2fs_msg(sb, KERN_INFO,
455 				"user_xattr options not supported");
456 			break;
457 		case Opt_nouser_xattr:
458 			f2fs_msg(sb, KERN_INFO,
459 				"nouser_xattr options not supported");
460 			break;
461 		case Opt_inline_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"inline_xattr options not supported");
464 			break;
465 		case Opt_noinline_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"noinline_xattr options not supported");
468 			break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471 		case Opt_acl:
472 			set_opt(sbi, POSIX_ACL);
473 			break;
474 		case Opt_noacl:
475 			clear_opt(sbi, POSIX_ACL);
476 			break;
477 #else
478 		case Opt_acl:
479 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
480 			break;
481 		case Opt_noacl:
482 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483 			break;
484 #endif
485 		case Opt_active_logs:
486 			if (args->from && match_int(args, &arg))
487 				return -EINVAL;
488 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489 				return -EINVAL;
490 			F2FS_OPTION(sbi).active_logs = arg;
491 			break;
492 		case Opt_disable_ext_identify:
493 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
494 			break;
495 		case Opt_inline_data:
496 			set_opt(sbi, INLINE_DATA);
497 			break;
498 		case Opt_inline_dentry:
499 			set_opt(sbi, INLINE_DENTRY);
500 			break;
501 		case Opt_noinline_dentry:
502 			clear_opt(sbi, INLINE_DENTRY);
503 			break;
504 		case Opt_flush_merge:
505 			set_opt(sbi, FLUSH_MERGE);
506 			break;
507 		case Opt_noflush_merge:
508 			clear_opt(sbi, FLUSH_MERGE);
509 			break;
510 		case Opt_nobarrier:
511 			set_opt(sbi, NOBARRIER);
512 			break;
513 		case Opt_fastboot:
514 			set_opt(sbi, FASTBOOT);
515 			break;
516 		case Opt_extent_cache:
517 			set_opt(sbi, EXTENT_CACHE);
518 			break;
519 		case Opt_noextent_cache:
520 			clear_opt(sbi, EXTENT_CACHE);
521 			break;
522 		case Opt_noinline_data:
523 			clear_opt(sbi, INLINE_DATA);
524 			break;
525 		case Opt_data_flush:
526 			set_opt(sbi, DATA_FLUSH);
527 			break;
528 		case Opt_reserve_root:
529 			if (args->from && match_int(args, &arg))
530 				return -EINVAL;
531 			if (test_opt(sbi, RESERVE_ROOT)) {
532 				f2fs_msg(sb, KERN_INFO,
533 					"Preserve previous reserve_root=%u",
534 					F2FS_OPTION(sbi).root_reserved_blocks);
535 			} else {
536 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
537 				set_opt(sbi, RESERVE_ROOT);
538 			}
539 			break;
540 		case Opt_resuid:
541 			if (args->from && match_int(args, &arg))
542 				return -EINVAL;
543 			uid = make_kuid(current_user_ns(), arg);
544 			if (!uid_valid(uid)) {
545 				f2fs_msg(sb, KERN_ERR,
546 					"Invalid uid value %d", arg);
547 				return -EINVAL;
548 			}
549 			F2FS_OPTION(sbi).s_resuid = uid;
550 			break;
551 		case Opt_resgid:
552 			if (args->from && match_int(args, &arg))
553 				return -EINVAL;
554 			gid = make_kgid(current_user_ns(), arg);
555 			if (!gid_valid(gid)) {
556 				f2fs_msg(sb, KERN_ERR,
557 					"Invalid gid value %d", arg);
558 				return -EINVAL;
559 			}
560 			F2FS_OPTION(sbi).s_resgid = gid;
561 			break;
562 		case Opt_mode:
563 			name = match_strdup(&args[0]);
564 
565 			if (!name)
566 				return -ENOMEM;
567 			if (strlen(name) == 8 &&
568 					!strncmp(name, "adaptive", 8)) {
569 				if (f2fs_sb_has_blkzoned(sb)) {
570 					f2fs_msg(sb, KERN_WARNING,
571 						 "adaptive mode is not allowed with "
572 						 "zoned block device feature");
573 					kfree(name);
574 					return -EINVAL;
575 				}
576 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577 			} else if (strlen(name) == 3 &&
578 					!strncmp(name, "lfs", 3)) {
579 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
580 			} else {
581 				kfree(name);
582 				return -EINVAL;
583 			}
584 			kfree(name);
585 			break;
586 		case Opt_io_size_bits:
587 			if (args->from && match_int(args, &arg))
588 				return -EINVAL;
589 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
590 				f2fs_msg(sb, KERN_WARNING,
591 					"Not support %d, larger than %d",
592 					1 << arg, BIO_MAX_PAGES);
593 				return -EINVAL;
594 			}
595 			F2FS_OPTION(sbi).write_io_size_bits = arg;
596 			break;
597 		case Opt_fault_injection:
598 			if (args->from && match_int(args, &arg))
599 				return -EINVAL;
600 #ifdef CONFIG_F2FS_FAULT_INJECTION
601 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602 			set_opt(sbi, FAULT_INJECTION);
603 #else
604 			f2fs_msg(sb, KERN_INFO,
605 				"FAULT_INJECTION was not selected");
606 #endif
607 			break;
608 		case Opt_fault_type:
609 			if (args->from && match_int(args, &arg))
610 				return -EINVAL;
611 #ifdef CONFIG_F2FS_FAULT_INJECTION
612 			f2fs_build_fault_attr(sbi, 0, arg);
613 			set_opt(sbi, FAULT_INJECTION);
614 #else
615 			f2fs_msg(sb, KERN_INFO,
616 				"FAULT_INJECTION was not selected");
617 #endif
618 			break;
619 		case Opt_lazytime:
620 			sb->s_flags |= SB_LAZYTIME;
621 			break;
622 		case Opt_nolazytime:
623 			sb->s_flags &= ~SB_LAZYTIME;
624 			break;
625 #ifdef CONFIG_QUOTA
626 		case Opt_quota:
627 		case Opt_usrquota:
628 			set_opt(sbi, USRQUOTA);
629 			break;
630 		case Opt_grpquota:
631 			set_opt(sbi, GRPQUOTA);
632 			break;
633 		case Opt_prjquota:
634 			set_opt(sbi, PRJQUOTA);
635 			break;
636 		case Opt_usrjquota:
637 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
638 			if (ret)
639 				return ret;
640 			break;
641 		case Opt_grpjquota:
642 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
643 			if (ret)
644 				return ret;
645 			break;
646 		case Opt_prjjquota:
647 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
648 			if (ret)
649 				return ret;
650 			break;
651 		case Opt_offusrjquota:
652 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
653 			if (ret)
654 				return ret;
655 			break;
656 		case Opt_offgrpjquota:
657 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
658 			if (ret)
659 				return ret;
660 			break;
661 		case Opt_offprjjquota:
662 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
663 			if (ret)
664 				return ret;
665 			break;
666 		case Opt_jqfmt_vfsold:
667 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
668 			break;
669 		case Opt_jqfmt_vfsv0:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
671 			break;
672 		case Opt_jqfmt_vfsv1:
673 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
674 			break;
675 		case Opt_noquota:
676 			clear_opt(sbi, QUOTA);
677 			clear_opt(sbi, USRQUOTA);
678 			clear_opt(sbi, GRPQUOTA);
679 			clear_opt(sbi, PRJQUOTA);
680 			break;
681 #else
682 		case Opt_quota:
683 		case Opt_usrquota:
684 		case Opt_grpquota:
685 		case Opt_prjquota:
686 		case Opt_usrjquota:
687 		case Opt_grpjquota:
688 		case Opt_prjjquota:
689 		case Opt_offusrjquota:
690 		case Opt_offgrpjquota:
691 		case Opt_offprjjquota:
692 		case Opt_jqfmt_vfsold:
693 		case Opt_jqfmt_vfsv0:
694 		case Opt_jqfmt_vfsv1:
695 		case Opt_noquota:
696 			f2fs_msg(sb, KERN_INFO,
697 					"quota operations not supported");
698 			break;
699 #endif
700 		case Opt_whint:
701 			name = match_strdup(&args[0]);
702 			if (!name)
703 				return -ENOMEM;
704 			if (strlen(name) == 10 &&
705 					!strncmp(name, "user-based", 10)) {
706 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
707 			} else if (strlen(name) == 3 &&
708 					!strncmp(name, "off", 3)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
710 			} else if (strlen(name) == 8 &&
711 					!strncmp(name, "fs-based", 8)) {
712 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
713 			} else {
714 				kfree(name);
715 				return -EINVAL;
716 			}
717 			kfree(name);
718 			break;
719 		case Opt_alloc:
720 			name = match_strdup(&args[0]);
721 			if (!name)
722 				return -ENOMEM;
723 
724 			if (strlen(name) == 7 &&
725 					!strncmp(name, "default", 7)) {
726 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
727 			} else if (strlen(name) == 5 &&
728 					!strncmp(name, "reuse", 5)) {
729 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
730 			} else {
731 				kfree(name);
732 				return -EINVAL;
733 			}
734 			kfree(name);
735 			break;
736 		case Opt_fsync:
737 			name = match_strdup(&args[0]);
738 			if (!name)
739 				return -ENOMEM;
740 			if (strlen(name) == 5 &&
741 					!strncmp(name, "posix", 5)) {
742 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
743 			} else if (strlen(name) == 6 &&
744 					!strncmp(name, "strict", 6)) {
745 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
746 			} else if (strlen(name) == 9 &&
747 					!strncmp(name, "nobarrier", 9)) {
748 				F2FS_OPTION(sbi).fsync_mode =
749 							FSYNC_MODE_NOBARRIER;
750 			} else {
751 				kfree(name);
752 				return -EINVAL;
753 			}
754 			kfree(name);
755 			break;
756 		case Opt_test_dummy_encryption:
757 #ifdef CONFIG_F2FS_FS_ENCRYPTION
758 			if (!f2fs_sb_has_encrypt(sb)) {
759 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
760 				return -EINVAL;
761 			}
762 
763 			F2FS_OPTION(sbi).test_dummy_encryption = true;
764 			f2fs_msg(sb, KERN_INFO,
765 					"Test dummy encryption mode enabled");
766 #else
767 			f2fs_msg(sb, KERN_INFO,
768 					"Test dummy encryption mount option ignored");
769 #endif
770 			break;
771 		default:
772 			f2fs_msg(sb, KERN_ERR,
773 				"Unrecognized mount option \"%s\" or missing value",
774 				p);
775 			return -EINVAL;
776 		}
777 	}
778 #ifdef CONFIG_QUOTA
779 	if (f2fs_check_quota_options(sbi))
780 		return -EINVAL;
781 #else
782 	if (f2fs_sb_has_quota_ino(sbi->sb) && !f2fs_readonly(sbi->sb)) {
783 		f2fs_msg(sbi->sb, KERN_INFO,
784 			 "Filesystem with quota feature cannot be mounted RDWR "
785 			 "without CONFIG_QUOTA");
786 		return -EINVAL;
787 	}
788 	if (f2fs_sb_has_project_quota(sbi->sb) && !f2fs_readonly(sbi->sb)) {
789 		f2fs_msg(sb, KERN_ERR,
790 			"Filesystem with project quota feature cannot be "
791 			"mounted RDWR without CONFIG_QUOTA");
792 		return -EINVAL;
793 	}
794 #endif
795 
796 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
797 		f2fs_msg(sb, KERN_ERR,
798 				"Should set mode=lfs with %uKB-sized IO",
799 				F2FS_IO_SIZE_KB(sbi));
800 		return -EINVAL;
801 	}
802 
803 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
804 		if (!f2fs_sb_has_extra_attr(sb) ||
805 			!f2fs_sb_has_flexible_inline_xattr(sb)) {
806 			f2fs_msg(sb, KERN_ERR,
807 					"extra_attr or flexible_inline_xattr "
808 					"feature is off");
809 			return -EINVAL;
810 		}
811 		if (!test_opt(sbi, INLINE_XATTR)) {
812 			f2fs_msg(sb, KERN_ERR,
813 					"inline_xattr_size option should be "
814 					"set with inline_xattr option");
815 			return -EINVAL;
816 		}
817 		if (F2FS_OPTION(sbi).inline_xattr_size <
818 			sizeof(struct f2fs_xattr_header) / sizeof(__le32) ||
819 			F2FS_OPTION(sbi).inline_xattr_size >
820 			DEF_ADDRS_PER_INODE -
821 			F2FS_TOTAL_EXTRA_ATTR_SIZE / sizeof(__le32) -
822 			DEF_INLINE_RESERVED_SIZE -
823 			MIN_INLINE_DENTRY_SIZE / sizeof(__le32)) {
824 			f2fs_msg(sb, KERN_ERR,
825 					"inline xattr size is out of range");
826 			return -EINVAL;
827 		}
828 	}
829 
830 	/* Not pass down write hints if the number of active logs is lesser
831 	 * than NR_CURSEG_TYPE.
832 	 */
833 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
834 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
835 	return 0;
836 }
837 
f2fs_alloc_inode(struct super_block * sb)838 static struct inode *f2fs_alloc_inode(struct super_block *sb)
839 {
840 	struct f2fs_inode_info *fi;
841 
842 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
843 	if (!fi)
844 		return NULL;
845 
846 	init_once((void *) fi);
847 
848 	/* Initialize f2fs-specific inode info */
849 	atomic_set(&fi->dirty_pages, 0);
850 	init_rwsem(&fi->i_sem);
851 	INIT_LIST_HEAD(&fi->dirty_list);
852 	INIT_LIST_HEAD(&fi->gdirty_list);
853 	INIT_LIST_HEAD(&fi->inmem_ilist);
854 	INIT_LIST_HEAD(&fi->inmem_pages);
855 	mutex_init(&fi->inmem_lock);
856 	init_rwsem(&fi->i_gc_rwsem[READ]);
857 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
858 	init_rwsem(&fi->i_mmap_sem);
859 	init_rwsem(&fi->i_xattr_sem);
860 
861 	/* Will be used by directory only */
862 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
863 
864 	return &fi->vfs_inode;
865 }
866 
f2fs_drop_inode(struct inode * inode)867 static int f2fs_drop_inode(struct inode *inode)
868 {
869 	int ret;
870 	/*
871 	 * This is to avoid a deadlock condition like below.
872 	 * writeback_single_inode(inode)
873 	 *  - f2fs_write_data_page
874 	 *    - f2fs_gc -> iput -> evict
875 	 *       - inode_wait_for_writeback(inode)
876 	 */
877 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
878 		if (!inode->i_nlink && !is_bad_inode(inode)) {
879 			/* to avoid evict_inode call simultaneously */
880 			atomic_inc(&inode->i_count);
881 			spin_unlock(&inode->i_lock);
882 
883 			/* some remained atomic pages should discarded */
884 			if (f2fs_is_atomic_file(inode))
885 				f2fs_drop_inmem_pages(inode);
886 
887 			/* should remain fi->extent_tree for writepage */
888 			f2fs_destroy_extent_node(inode);
889 
890 			sb_start_intwrite(inode->i_sb);
891 			f2fs_i_size_write(inode, 0);
892 
893 			if (F2FS_HAS_BLOCKS(inode))
894 				f2fs_truncate(inode);
895 
896 			sb_end_intwrite(inode->i_sb);
897 
898 			spin_lock(&inode->i_lock);
899 			atomic_dec(&inode->i_count);
900 		}
901 		trace_f2fs_drop_inode(inode, 0);
902 		return 0;
903 	}
904 	ret = generic_drop_inode(inode);
905 	trace_f2fs_drop_inode(inode, ret);
906 	return ret;
907 }
908 
f2fs_inode_dirtied(struct inode * inode,bool sync)909 int f2fs_inode_dirtied(struct inode *inode, bool sync)
910 {
911 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
912 	int ret = 0;
913 
914 	spin_lock(&sbi->inode_lock[DIRTY_META]);
915 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
916 		ret = 1;
917 	} else {
918 		set_inode_flag(inode, FI_DIRTY_INODE);
919 		stat_inc_dirty_inode(sbi, DIRTY_META);
920 	}
921 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
922 		list_add_tail(&F2FS_I(inode)->gdirty_list,
923 				&sbi->inode_list[DIRTY_META]);
924 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
925 	}
926 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
927 	return ret;
928 }
929 
f2fs_inode_synced(struct inode * inode)930 void f2fs_inode_synced(struct inode *inode)
931 {
932 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
933 
934 	spin_lock(&sbi->inode_lock[DIRTY_META]);
935 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
936 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
937 		return;
938 	}
939 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
940 		list_del_init(&F2FS_I(inode)->gdirty_list);
941 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
942 	}
943 	clear_inode_flag(inode, FI_DIRTY_INODE);
944 	clear_inode_flag(inode, FI_AUTO_RECOVER);
945 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
946 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
947 }
948 
949 /*
950  * f2fs_dirty_inode() is called from __mark_inode_dirty()
951  *
952  * We should call set_dirty_inode to write the dirty inode through write_inode.
953  */
f2fs_dirty_inode(struct inode * inode,int flags)954 static void f2fs_dirty_inode(struct inode *inode, int flags)
955 {
956 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
957 
958 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
959 			inode->i_ino == F2FS_META_INO(sbi))
960 		return;
961 
962 	if (flags == I_DIRTY_TIME)
963 		return;
964 
965 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
966 		clear_inode_flag(inode, FI_AUTO_RECOVER);
967 
968 	f2fs_inode_dirtied(inode, false);
969 }
970 
f2fs_i_callback(struct rcu_head * head)971 static void f2fs_i_callback(struct rcu_head *head)
972 {
973 	struct inode *inode = container_of(head, struct inode, i_rcu);
974 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
975 }
976 
f2fs_destroy_inode(struct inode * inode)977 static void f2fs_destroy_inode(struct inode *inode)
978 {
979 	call_rcu(&inode->i_rcu, f2fs_i_callback);
980 }
981 
destroy_percpu_info(struct f2fs_sb_info * sbi)982 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
983 {
984 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
985 	percpu_counter_destroy(&sbi->total_valid_inode_count);
986 }
987 
destroy_device_list(struct f2fs_sb_info * sbi)988 static void destroy_device_list(struct f2fs_sb_info *sbi)
989 {
990 	int i;
991 
992 	for (i = 0; i < sbi->s_ndevs; i++) {
993 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
994 #ifdef CONFIG_BLK_DEV_ZONED
995 		kfree(FDEV(i).blkz_type);
996 #endif
997 	}
998 	kfree(sbi->devs);
999 }
1000 
f2fs_put_super(struct super_block * sb)1001 static void f2fs_put_super(struct super_block *sb)
1002 {
1003 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1004 	int i;
1005 	bool dropped;
1006 
1007 	/* unregister procfs/sysfs entries in advance to avoid race case */
1008 	f2fs_unregister_sysfs(sbi);
1009 
1010 	f2fs_quota_off_umount(sb);
1011 
1012 	/* prevent remaining shrinker jobs */
1013 	mutex_lock(&sbi->umount_mutex);
1014 
1015 	/*
1016 	 * We don't need to do checkpoint when superblock is clean.
1017 	 * But, the previous checkpoint was not done by umount, it needs to do
1018 	 * clean checkpoint again.
1019 	 */
1020 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1021 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1022 		struct cp_control cpc = {
1023 			.reason = CP_UMOUNT,
1024 		};
1025 		f2fs_write_checkpoint(sbi, &cpc);
1026 	}
1027 
1028 	/* be sure to wait for any on-going discard commands */
1029 	dropped = f2fs_wait_discard_bios(sbi);
1030 
1031 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1032 					!sbi->discard_blks && !dropped) {
1033 		struct cp_control cpc = {
1034 			.reason = CP_UMOUNT | CP_TRIMMED,
1035 		};
1036 		f2fs_write_checkpoint(sbi, &cpc);
1037 	}
1038 
1039 	/*
1040 	 * normally superblock is clean, so we need to release this.
1041 	 * In addition, EIO will skip do checkpoint, we need this as well.
1042 	 */
1043 	f2fs_release_ino_entry(sbi, true);
1044 
1045 	f2fs_leave_shrinker(sbi);
1046 	mutex_unlock(&sbi->umount_mutex);
1047 
1048 	/* our cp_error case, we can wait for any writeback page */
1049 	f2fs_flush_merged_writes(sbi);
1050 
1051 	f2fs_wait_on_all_pages_writeback(sbi);
1052 
1053 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1054 
1055 	iput(sbi->node_inode);
1056 	sbi->node_inode = NULL;
1057 
1058 	iput(sbi->meta_inode);
1059 	sbi->meta_inode = NULL;
1060 
1061 	/*
1062 	 * iput() can update stat information, if f2fs_write_checkpoint()
1063 	 * above failed with error.
1064 	 */
1065 	f2fs_destroy_stats(sbi);
1066 
1067 	/* destroy f2fs internal modules */
1068 	f2fs_destroy_node_manager(sbi);
1069 	f2fs_destroy_segment_manager(sbi);
1070 
1071 	kfree(sbi->ckpt);
1072 
1073 	sb->s_fs_info = NULL;
1074 	if (sbi->s_chksum_driver)
1075 		crypto_free_shash(sbi->s_chksum_driver);
1076 	kfree(sbi->raw_super);
1077 
1078 	destroy_device_list(sbi);
1079 	mempool_destroy(sbi->write_io_dummy);
1080 #ifdef CONFIG_QUOTA
1081 	for (i = 0; i < MAXQUOTAS; i++)
1082 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1083 #endif
1084 	destroy_percpu_info(sbi);
1085 	for (i = 0; i < NR_PAGE_TYPE; i++)
1086 		kfree(sbi->write_io[i]);
1087 	kfree(sbi);
1088 }
1089 
f2fs_sync_fs(struct super_block * sb,int sync)1090 int f2fs_sync_fs(struct super_block *sb, int sync)
1091 {
1092 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1093 	int err = 0;
1094 
1095 	if (unlikely(f2fs_cp_error(sbi)))
1096 		return 0;
1097 
1098 	trace_f2fs_sync_fs(sb, sync);
1099 
1100 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1101 		return -EAGAIN;
1102 
1103 	if (sync) {
1104 		struct cp_control cpc;
1105 
1106 		cpc.reason = __get_cp_reason(sbi);
1107 
1108 		mutex_lock(&sbi->gc_mutex);
1109 		err = f2fs_write_checkpoint(sbi, &cpc);
1110 		mutex_unlock(&sbi->gc_mutex);
1111 	}
1112 	f2fs_trace_ios(NULL, 1);
1113 
1114 	return err;
1115 }
1116 
f2fs_freeze(struct super_block * sb)1117 static int f2fs_freeze(struct super_block *sb)
1118 {
1119 	if (f2fs_readonly(sb))
1120 		return 0;
1121 
1122 	/* IO error happened before */
1123 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1124 		return -EIO;
1125 
1126 	/* must be clean, since sync_filesystem() was already called */
1127 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1128 		return -EINVAL;
1129 	return 0;
1130 }
1131 
f2fs_unfreeze(struct super_block * sb)1132 static int f2fs_unfreeze(struct super_block *sb)
1133 {
1134 	return 0;
1135 }
1136 
1137 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1138 static int f2fs_statfs_project(struct super_block *sb,
1139 				kprojid_t projid, struct kstatfs *buf)
1140 {
1141 	struct kqid qid;
1142 	struct dquot *dquot;
1143 	u64 limit;
1144 	u64 curblock;
1145 
1146 	qid = make_kqid_projid(projid);
1147 	dquot = dqget(sb, qid);
1148 	if (IS_ERR(dquot))
1149 		return PTR_ERR(dquot);
1150 	spin_lock(&dquot->dq_dqb_lock);
1151 
1152 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1153 					dquot->dq_dqb.dqb_bhardlimit);
1154 	if (limit)
1155 		limit >>= sb->s_blocksize_bits;
1156 
1157 	if (limit && buf->f_blocks > limit) {
1158 		curblock = (dquot->dq_dqb.dqb_curspace +
1159 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1160 		buf->f_blocks = limit;
1161 		buf->f_bfree = buf->f_bavail =
1162 			(buf->f_blocks > curblock) ?
1163 			 (buf->f_blocks - curblock) : 0;
1164 	}
1165 
1166 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1167 					dquot->dq_dqb.dqb_ihardlimit);
1168 
1169 	if (limit && buf->f_files > limit) {
1170 		buf->f_files = limit;
1171 		buf->f_ffree =
1172 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1173 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1174 	}
1175 
1176 	spin_unlock(&dquot->dq_dqb_lock);
1177 	dqput(dquot);
1178 	return 0;
1179 }
1180 #endif
1181 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1182 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1183 {
1184 	struct super_block *sb = dentry->d_sb;
1185 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1186 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1187 	block_t total_count, user_block_count, start_count;
1188 	u64 avail_node_count;
1189 
1190 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1191 	user_block_count = sbi->user_block_count;
1192 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1193 	buf->f_type = F2FS_SUPER_MAGIC;
1194 	buf->f_bsize = sbi->blocksize;
1195 
1196 	buf->f_blocks = total_count - start_count;
1197 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1198 						sbi->current_reserved_blocks;
1199 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1200 		buf->f_bavail = buf->f_bfree -
1201 				F2FS_OPTION(sbi).root_reserved_blocks;
1202 	else
1203 		buf->f_bavail = 0;
1204 
1205 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1206 						F2FS_RESERVED_NODE_NUM;
1207 
1208 	if (avail_node_count > user_block_count) {
1209 		buf->f_files = user_block_count;
1210 		buf->f_ffree = buf->f_bavail;
1211 	} else {
1212 		buf->f_files = avail_node_count;
1213 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1214 					buf->f_bavail);
1215 	}
1216 
1217 	buf->f_namelen = F2FS_NAME_LEN;
1218 	buf->f_fsid.val[0] = (u32)id;
1219 	buf->f_fsid.val[1] = (u32)(id >> 32);
1220 
1221 #ifdef CONFIG_QUOTA
1222 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1223 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1224 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1225 	}
1226 #endif
1227 	return 0;
1228 }
1229 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1230 static inline void f2fs_show_quota_options(struct seq_file *seq,
1231 					   struct super_block *sb)
1232 {
1233 #ifdef CONFIG_QUOTA
1234 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1235 
1236 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1237 		char *fmtname = "";
1238 
1239 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1240 		case QFMT_VFS_OLD:
1241 			fmtname = "vfsold";
1242 			break;
1243 		case QFMT_VFS_V0:
1244 			fmtname = "vfsv0";
1245 			break;
1246 		case QFMT_VFS_V1:
1247 			fmtname = "vfsv1";
1248 			break;
1249 		}
1250 		seq_printf(seq, ",jqfmt=%s", fmtname);
1251 	}
1252 
1253 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1254 		seq_show_option(seq, "usrjquota",
1255 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1256 
1257 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1258 		seq_show_option(seq, "grpjquota",
1259 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1260 
1261 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1262 		seq_show_option(seq, "prjjquota",
1263 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1264 #endif
1265 }
1266 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1267 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1268 {
1269 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1270 
1271 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1272 		if (test_opt(sbi, FORCE_FG_GC))
1273 			seq_printf(seq, ",background_gc=%s", "sync");
1274 		else
1275 			seq_printf(seq, ",background_gc=%s", "on");
1276 	} else {
1277 		seq_printf(seq, ",background_gc=%s", "off");
1278 	}
1279 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1280 		seq_puts(seq, ",disable_roll_forward");
1281 	if (test_opt(sbi, DISCARD))
1282 		seq_puts(seq, ",discard");
1283 	if (test_opt(sbi, NOHEAP))
1284 		seq_puts(seq, ",no_heap");
1285 	else
1286 		seq_puts(seq, ",heap");
1287 #ifdef CONFIG_F2FS_FS_XATTR
1288 	if (test_opt(sbi, XATTR_USER))
1289 		seq_puts(seq, ",user_xattr");
1290 	else
1291 		seq_puts(seq, ",nouser_xattr");
1292 	if (test_opt(sbi, INLINE_XATTR))
1293 		seq_puts(seq, ",inline_xattr");
1294 	else
1295 		seq_puts(seq, ",noinline_xattr");
1296 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1297 		seq_printf(seq, ",inline_xattr_size=%u",
1298 					F2FS_OPTION(sbi).inline_xattr_size);
1299 #endif
1300 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1301 	if (test_opt(sbi, POSIX_ACL))
1302 		seq_puts(seq, ",acl");
1303 	else
1304 		seq_puts(seq, ",noacl");
1305 #endif
1306 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1307 		seq_puts(seq, ",disable_ext_identify");
1308 	if (test_opt(sbi, INLINE_DATA))
1309 		seq_puts(seq, ",inline_data");
1310 	else
1311 		seq_puts(seq, ",noinline_data");
1312 	if (test_opt(sbi, INLINE_DENTRY))
1313 		seq_puts(seq, ",inline_dentry");
1314 	else
1315 		seq_puts(seq, ",noinline_dentry");
1316 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1317 		seq_puts(seq, ",flush_merge");
1318 	if (test_opt(sbi, NOBARRIER))
1319 		seq_puts(seq, ",nobarrier");
1320 	if (test_opt(sbi, FASTBOOT))
1321 		seq_puts(seq, ",fastboot");
1322 	if (test_opt(sbi, EXTENT_CACHE))
1323 		seq_puts(seq, ",extent_cache");
1324 	else
1325 		seq_puts(seq, ",noextent_cache");
1326 	if (test_opt(sbi, DATA_FLUSH))
1327 		seq_puts(seq, ",data_flush");
1328 
1329 	seq_puts(seq, ",mode=");
1330 	if (test_opt(sbi, ADAPTIVE))
1331 		seq_puts(seq, "adaptive");
1332 	else if (test_opt(sbi, LFS))
1333 		seq_puts(seq, "lfs");
1334 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1335 	if (test_opt(sbi, RESERVE_ROOT))
1336 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1337 				F2FS_OPTION(sbi).root_reserved_blocks,
1338 				from_kuid_munged(&init_user_ns,
1339 					F2FS_OPTION(sbi).s_resuid),
1340 				from_kgid_munged(&init_user_ns,
1341 					F2FS_OPTION(sbi).s_resgid));
1342 	if (F2FS_IO_SIZE_BITS(sbi))
1343 		seq_printf(seq, ",io_bits=%u",
1344 				F2FS_OPTION(sbi).write_io_size_bits);
1345 #ifdef CONFIG_F2FS_FAULT_INJECTION
1346 	if (test_opt(sbi, FAULT_INJECTION)) {
1347 		seq_printf(seq, ",fault_injection=%u",
1348 				F2FS_OPTION(sbi).fault_info.inject_rate);
1349 		seq_printf(seq, ",fault_type=%u",
1350 				F2FS_OPTION(sbi).fault_info.inject_type);
1351 	}
1352 #endif
1353 #ifdef CONFIG_QUOTA
1354 	if (test_opt(sbi, QUOTA))
1355 		seq_puts(seq, ",quota");
1356 	if (test_opt(sbi, USRQUOTA))
1357 		seq_puts(seq, ",usrquota");
1358 	if (test_opt(sbi, GRPQUOTA))
1359 		seq_puts(seq, ",grpquota");
1360 	if (test_opt(sbi, PRJQUOTA))
1361 		seq_puts(seq, ",prjquota");
1362 #endif
1363 	f2fs_show_quota_options(seq, sbi->sb);
1364 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1365 		seq_printf(seq, ",whint_mode=%s", "user-based");
1366 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1367 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1368 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1369 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1370 		seq_puts(seq, ",test_dummy_encryption");
1371 #endif
1372 
1373 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1374 		seq_printf(seq, ",alloc_mode=%s", "default");
1375 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1376 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1377 
1378 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1379 		seq_printf(seq, ",fsync_mode=%s", "posix");
1380 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1381 		seq_printf(seq, ",fsync_mode=%s", "strict");
1382 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1383 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1384 	return 0;
1385 }
1386 
default_options(struct f2fs_sb_info * sbi)1387 static void default_options(struct f2fs_sb_info *sbi)
1388 {
1389 	/* init some FS parameters */
1390 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1391 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1392 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1393 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1394 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1395 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1396 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1397 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1398 
1399 	set_opt(sbi, BG_GC);
1400 	set_opt(sbi, INLINE_XATTR);
1401 	set_opt(sbi, INLINE_DATA);
1402 	set_opt(sbi, INLINE_DENTRY);
1403 	set_opt(sbi, EXTENT_CACHE);
1404 	set_opt(sbi, NOHEAP);
1405 	sbi->sb->s_flags |= SB_LAZYTIME;
1406 	set_opt(sbi, FLUSH_MERGE);
1407 	set_opt(sbi, DISCARD);
1408 	if (f2fs_sb_has_blkzoned(sbi->sb))
1409 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1410 	else
1411 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1412 
1413 #ifdef CONFIG_F2FS_FS_XATTR
1414 	set_opt(sbi, XATTR_USER);
1415 #endif
1416 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1417 	set_opt(sbi, POSIX_ACL);
1418 #endif
1419 
1420 	f2fs_build_fault_attr(sbi, 0, 0);
1421 }
1422 
1423 #ifdef CONFIG_QUOTA
1424 static int f2fs_enable_quotas(struct super_block *sb);
1425 #endif
f2fs_remount(struct super_block * sb,int * flags,char * data)1426 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1427 {
1428 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1429 	struct f2fs_mount_info org_mount_opt;
1430 	unsigned long old_sb_flags;
1431 	int err;
1432 	bool need_restart_gc = false;
1433 	bool need_stop_gc = false;
1434 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1435 #ifdef CONFIG_QUOTA
1436 	int i, j;
1437 #endif
1438 
1439 	/*
1440 	 * Save the old mount options in case we
1441 	 * need to restore them.
1442 	 */
1443 	org_mount_opt = sbi->mount_opt;
1444 	old_sb_flags = sb->s_flags;
1445 
1446 #ifdef CONFIG_QUOTA
1447 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1448 	for (i = 0; i < MAXQUOTAS; i++) {
1449 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1450 			org_mount_opt.s_qf_names[i] =
1451 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1452 				GFP_KERNEL);
1453 			if (!org_mount_opt.s_qf_names[i]) {
1454 				for (j = 0; j < i; j++)
1455 					kfree(org_mount_opt.s_qf_names[j]);
1456 				return -ENOMEM;
1457 			}
1458 		} else {
1459 			org_mount_opt.s_qf_names[i] = NULL;
1460 		}
1461 	}
1462 #endif
1463 
1464 	/* recover superblocks we couldn't write due to previous RO mount */
1465 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1466 		err = f2fs_commit_super(sbi, false);
1467 		f2fs_msg(sb, KERN_INFO,
1468 			"Try to recover all the superblocks, ret: %d", err);
1469 		if (!err)
1470 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1471 	}
1472 
1473 	default_options(sbi);
1474 
1475 	/* parse mount options */
1476 	err = parse_options(sb, data);
1477 	if (err)
1478 		goto restore_opts;
1479 
1480 	/*
1481 	 * Previous and new state of filesystem is RO,
1482 	 * so skip checking GC and FLUSH_MERGE conditions.
1483 	 */
1484 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1485 		goto skip;
1486 
1487 #ifdef CONFIG_QUOTA
1488 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1489 		err = dquot_suspend(sb, -1);
1490 		if (err < 0)
1491 			goto restore_opts;
1492 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1493 		/* dquot_resume needs RW */
1494 		sb->s_flags &= ~SB_RDONLY;
1495 		if (sb_any_quota_suspended(sb)) {
1496 			dquot_resume(sb, -1);
1497 		} else if (f2fs_sb_has_quota_ino(sb)) {
1498 			err = f2fs_enable_quotas(sb);
1499 			if (err)
1500 				goto restore_opts;
1501 		}
1502 	}
1503 #endif
1504 	/* disallow enable/disable extent_cache dynamically */
1505 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1506 		err = -EINVAL;
1507 		f2fs_msg(sbi->sb, KERN_WARNING,
1508 				"switch extent_cache option is not allowed");
1509 		goto restore_opts;
1510 	}
1511 
1512 	/*
1513 	 * We stop the GC thread if FS is mounted as RO
1514 	 * or if background_gc = off is passed in mount
1515 	 * option. Also sync the filesystem.
1516 	 */
1517 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1518 		if (sbi->gc_thread) {
1519 			f2fs_stop_gc_thread(sbi);
1520 			need_restart_gc = true;
1521 		}
1522 	} else if (!sbi->gc_thread) {
1523 		err = f2fs_start_gc_thread(sbi);
1524 		if (err)
1525 			goto restore_opts;
1526 		need_stop_gc = true;
1527 	}
1528 
1529 	if (*flags & SB_RDONLY ||
1530 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1531 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1532 		sync_inodes_sb(sb);
1533 
1534 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1535 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1536 		f2fs_sync_fs(sb, 1);
1537 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1538 	}
1539 
1540 	/*
1541 	 * We stop issue flush thread if FS is mounted as RO
1542 	 * or if flush_merge is not passed in mount option.
1543 	 */
1544 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1545 		clear_opt(sbi, FLUSH_MERGE);
1546 		f2fs_destroy_flush_cmd_control(sbi, false);
1547 	} else {
1548 		err = f2fs_create_flush_cmd_control(sbi);
1549 		if (err)
1550 			goto restore_gc;
1551 	}
1552 skip:
1553 #ifdef CONFIG_QUOTA
1554 	/* Release old quota file names */
1555 	for (i = 0; i < MAXQUOTAS; i++)
1556 		kfree(org_mount_opt.s_qf_names[i]);
1557 #endif
1558 	/* Update the POSIXACL Flag */
1559 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1560 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1561 
1562 	limit_reserve_root(sbi);
1563 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1564 	return 0;
1565 restore_gc:
1566 	if (need_restart_gc) {
1567 		if (f2fs_start_gc_thread(sbi))
1568 			f2fs_msg(sbi->sb, KERN_WARNING,
1569 				"background gc thread has stopped");
1570 	} else if (need_stop_gc) {
1571 		f2fs_stop_gc_thread(sbi);
1572 	}
1573 restore_opts:
1574 #ifdef CONFIG_QUOTA
1575 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1576 	for (i = 0; i < MAXQUOTAS; i++) {
1577 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1578 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1579 	}
1580 #endif
1581 	sbi->mount_opt = org_mount_opt;
1582 	sb->s_flags = old_sb_flags;
1583 	return err;
1584 }
1585 
1586 #ifdef CONFIG_QUOTA
1587 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)1588 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1589 			       size_t len, loff_t off)
1590 {
1591 	struct inode *inode = sb_dqopt(sb)->files[type];
1592 	struct address_space *mapping = inode->i_mapping;
1593 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1594 	int offset = off & (sb->s_blocksize - 1);
1595 	int tocopy;
1596 	size_t toread;
1597 	loff_t i_size = i_size_read(inode);
1598 	struct page *page;
1599 	char *kaddr;
1600 
1601 	if (off > i_size)
1602 		return 0;
1603 
1604 	if (off + len > i_size)
1605 		len = i_size - off;
1606 	toread = len;
1607 	while (toread > 0) {
1608 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1609 repeat:
1610 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1611 		if (IS_ERR(page)) {
1612 			if (PTR_ERR(page) == -ENOMEM) {
1613 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1614 				goto repeat;
1615 			}
1616 			return PTR_ERR(page);
1617 		}
1618 
1619 		lock_page(page);
1620 
1621 		if (unlikely(page->mapping != mapping)) {
1622 			f2fs_put_page(page, 1);
1623 			goto repeat;
1624 		}
1625 		if (unlikely(!PageUptodate(page))) {
1626 			f2fs_put_page(page, 1);
1627 			return -EIO;
1628 		}
1629 
1630 		kaddr = kmap_atomic(page);
1631 		memcpy(data, kaddr + offset, tocopy);
1632 		kunmap_atomic(kaddr);
1633 		f2fs_put_page(page, 1);
1634 
1635 		offset = 0;
1636 		toread -= tocopy;
1637 		data += tocopy;
1638 		blkidx++;
1639 	}
1640 	return len;
1641 }
1642 
1643 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)1644 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1645 				const char *data, size_t len, loff_t off)
1646 {
1647 	struct inode *inode = sb_dqopt(sb)->files[type];
1648 	struct address_space *mapping = inode->i_mapping;
1649 	const struct address_space_operations *a_ops = mapping->a_ops;
1650 	int offset = off & (sb->s_blocksize - 1);
1651 	size_t towrite = len;
1652 	struct page *page;
1653 	void *fsdata = NULL;
1654 	char *kaddr;
1655 	int err = 0;
1656 	int tocopy;
1657 
1658 	while (towrite > 0) {
1659 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1660 								towrite);
1661 retry:
1662 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1663 							&page, &fsdata);
1664 		if (unlikely(err)) {
1665 			if (err == -ENOMEM) {
1666 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1667 				goto retry;
1668 			}
1669 			break;
1670 		}
1671 
1672 		kaddr = kmap_atomic(page);
1673 		memcpy(kaddr + offset, data, tocopy);
1674 		kunmap_atomic(kaddr);
1675 		flush_dcache_page(page);
1676 
1677 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1678 						page, fsdata);
1679 		offset = 0;
1680 		towrite -= tocopy;
1681 		off += tocopy;
1682 		data += tocopy;
1683 		cond_resched();
1684 	}
1685 
1686 	if (len == towrite)
1687 		return err;
1688 	inode->i_mtime = inode->i_ctime = current_time(inode);
1689 	f2fs_mark_inode_dirty_sync(inode, false);
1690 	return len - towrite;
1691 }
1692 
f2fs_get_dquots(struct inode * inode)1693 static struct dquot **f2fs_get_dquots(struct inode *inode)
1694 {
1695 	return F2FS_I(inode)->i_dquot;
1696 }
1697 
f2fs_get_reserved_space(struct inode * inode)1698 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1699 {
1700 	return &F2FS_I(inode)->i_reserved_quota;
1701 }
1702 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)1703 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1704 {
1705 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1706 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1707 }
1708 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)1709 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1710 {
1711 	int enabled = 0;
1712 	int i, err;
1713 
1714 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1715 		err = f2fs_enable_quotas(sbi->sb);
1716 		if (err) {
1717 			f2fs_msg(sbi->sb, KERN_ERR,
1718 					"Cannot turn on quota_ino: %d", err);
1719 			return 0;
1720 		}
1721 		return 1;
1722 	}
1723 
1724 	for (i = 0; i < MAXQUOTAS; i++) {
1725 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1726 			err = f2fs_quota_on_mount(sbi, i);
1727 			if (!err) {
1728 				enabled = 1;
1729 				continue;
1730 			}
1731 			f2fs_msg(sbi->sb, KERN_ERR,
1732 				"Cannot turn on quotas: %d on %d", err, i);
1733 		}
1734 	}
1735 	return enabled;
1736 }
1737 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)1738 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1739 			     unsigned int flags)
1740 {
1741 	struct inode *qf_inode;
1742 	unsigned long qf_inum;
1743 	int err;
1744 
1745 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1746 
1747 	qf_inum = f2fs_qf_ino(sb, type);
1748 	if (!qf_inum)
1749 		return -EPERM;
1750 
1751 	qf_inode = f2fs_iget(sb, qf_inum);
1752 	if (IS_ERR(qf_inode)) {
1753 		f2fs_msg(sb, KERN_ERR,
1754 			"Bad quota inode %u:%lu", type, qf_inum);
1755 		return PTR_ERR(qf_inode);
1756 	}
1757 
1758 	/* Don't account quota for quota files to avoid recursion */
1759 	qf_inode->i_flags |= S_NOQUOTA;
1760 	err = dquot_enable(qf_inode, type, format_id, flags);
1761 	iput(qf_inode);
1762 	return err;
1763 }
1764 
f2fs_enable_quotas(struct super_block * sb)1765 static int f2fs_enable_quotas(struct super_block *sb)
1766 {
1767 	int type, err = 0;
1768 	unsigned long qf_inum;
1769 	bool quota_mopt[MAXQUOTAS] = {
1770 		test_opt(F2FS_SB(sb), USRQUOTA),
1771 		test_opt(F2FS_SB(sb), GRPQUOTA),
1772 		test_opt(F2FS_SB(sb), PRJQUOTA),
1773 	};
1774 
1775 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1776 	for (type = 0; type < MAXQUOTAS; type++) {
1777 		qf_inum = f2fs_qf_ino(sb, type);
1778 		if (qf_inum) {
1779 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1780 				DQUOT_USAGE_ENABLED |
1781 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1782 			if (err) {
1783 				f2fs_msg(sb, KERN_ERR,
1784 					"Failed to enable quota tracking "
1785 					"(type=%d, err=%d). Please run "
1786 					"fsck to fix.", type, err);
1787 				for (type--; type >= 0; type--)
1788 					dquot_quota_off(sb, type);
1789 				return err;
1790 			}
1791 		}
1792 	}
1793 	return 0;
1794 }
1795 
f2fs_quota_sync(struct super_block * sb,int type)1796 static int f2fs_quota_sync(struct super_block *sb, int type)
1797 {
1798 	struct quota_info *dqopt = sb_dqopt(sb);
1799 	int cnt;
1800 	int ret;
1801 
1802 	ret = dquot_writeback_dquots(sb, type);
1803 	if (ret)
1804 		return ret;
1805 
1806 	/*
1807 	 * Now when everything is written we can discard the pagecache so
1808 	 * that userspace sees the changes.
1809 	 */
1810 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1811 		if (type != -1 && cnt != type)
1812 			continue;
1813 		if (!sb_has_quota_active(sb, cnt))
1814 			continue;
1815 
1816 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1817 		if (ret)
1818 			return ret;
1819 
1820 		inode_lock(dqopt->files[cnt]);
1821 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1822 		inode_unlock(dqopt->files[cnt]);
1823 	}
1824 	return 0;
1825 }
1826 
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)1827 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1828 							const struct path *path)
1829 {
1830 	struct inode *inode;
1831 	int err;
1832 
1833 	err = f2fs_quota_sync(sb, type);
1834 	if (err)
1835 		return err;
1836 
1837 	err = dquot_quota_on(sb, type, format_id, path);
1838 	if (err)
1839 		return err;
1840 
1841 	inode = d_inode(path->dentry);
1842 
1843 	inode_lock(inode);
1844 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1845 	f2fs_set_inode_flags(inode);
1846 	inode_unlock(inode);
1847 	f2fs_mark_inode_dirty_sync(inode, false);
1848 
1849 	return 0;
1850 }
1851 
f2fs_quota_off(struct super_block * sb,int type)1852 static int f2fs_quota_off(struct super_block *sb, int type)
1853 {
1854 	struct inode *inode = sb_dqopt(sb)->files[type];
1855 	int err;
1856 
1857 	if (!inode || !igrab(inode))
1858 		return dquot_quota_off(sb, type);
1859 
1860 	err = f2fs_quota_sync(sb, type);
1861 	if (err)
1862 		goto out_put;
1863 
1864 	err = dquot_quota_off(sb, type);
1865 	if (err || f2fs_sb_has_quota_ino(sb))
1866 		goto out_put;
1867 
1868 	inode_lock(inode);
1869 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1870 	f2fs_set_inode_flags(inode);
1871 	inode_unlock(inode);
1872 	f2fs_mark_inode_dirty_sync(inode, false);
1873 out_put:
1874 	iput(inode);
1875 	return err;
1876 }
1877 
f2fs_quota_off_umount(struct super_block * sb)1878 void f2fs_quota_off_umount(struct super_block *sb)
1879 {
1880 	int type;
1881 	int err;
1882 
1883 	for (type = 0; type < MAXQUOTAS; type++) {
1884 		err = f2fs_quota_off(sb, type);
1885 		if (err) {
1886 			int ret = dquot_quota_off(sb, type);
1887 
1888 			f2fs_msg(sb, KERN_ERR,
1889 				"Fail to turn off disk quota "
1890 				"(type: %d, err: %d, ret:%d), Please "
1891 				"run fsck to fix it.", type, err, ret);
1892 			set_sbi_flag(F2FS_SB(sb), SBI_NEED_FSCK);
1893 		}
1894 	}
1895 	/*
1896 	 * In case of checkpoint=disable, we must flush quota blocks.
1897 	 * This can cause NULL exception for node_inode in end_io, since
1898 	 * put_super already dropped it.
1899 	 */
1900 	sync_filesystem(sb);
1901 }
1902 
f2fs_truncate_quota_inode_pages(struct super_block * sb)1903 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
1904 {
1905 	struct quota_info *dqopt = sb_dqopt(sb);
1906 	int type;
1907 
1908 	for (type = 0; type < MAXQUOTAS; type++) {
1909 		if (!dqopt->files[type])
1910 			continue;
1911 		f2fs_inode_synced(dqopt->files[type]);
1912 	}
1913 }
1914 
1915 
f2fs_get_projid(struct inode * inode,kprojid_t * projid)1916 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1917 {
1918 	*projid = F2FS_I(inode)->i_projid;
1919 	return 0;
1920 }
1921 
1922 static const struct dquot_operations f2fs_quota_operations = {
1923 	.get_reserved_space = f2fs_get_reserved_space,
1924 	.write_dquot	= dquot_commit,
1925 	.acquire_dquot	= dquot_acquire,
1926 	.release_dquot	= dquot_release,
1927 	.mark_dirty	= dquot_mark_dquot_dirty,
1928 	.write_info	= dquot_commit_info,
1929 	.alloc_dquot	= dquot_alloc,
1930 	.destroy_dquot	= dquot_destroy,
1931 	.get_projid	= f2fs_get_projid,
1932 	.get_next_id	= dquot_get_next_id,
1933 };
1934 
1935 static const struct quotactl_ops f2fs_quotactl_ops = {
1936 	.quota_on	= f2fs_quota_on,
1937 	.quota_off	= f2fs_quota_off,
1938 	.quota_sync	= f2fs_quota_sync,
1939 	.get_state	= dquot_get_state,
1940 	.set_info	= dquot_set_dqinfo,
1941 	.get_dqblk	= dquot_get_dqblk,
1942 	.set_dqblk	= dquot_set_dqblk,
1943 	.get_nextdqblk	= dquot_get_next_dqblk,
1944 };
1945 #else
f2fs_quota_off_umount(struct super_block * sb)1946 void f2fs_quota_off_umount(struct super_block *sb)
1947 {
1948 }
1949 #endif
1950 
1951 static const struct super_operations f2fs_sops = {
1952 	.alloc_inode	= f2fs_alloc_inode,
1953 	.drop_inode	= f2fs_drop_inode,
1954 	.destroy_inode	= f2fs_destroy_inode,
1955 	.write_inode	= f2fs_write_inode,
1956 	.dirty_inode	= f2fs_dirty_inode,
1957 	.show_options	= f2fs_show_options,
1958 #ifdef CONFIG_QUOTA
1959 	.quota_read	= f2fs_quota_read,
1960 	.quota_write	= f2fs_quota_write,
1961 	.get_dquots	= f2fs_get_dquots,
1962 #endif
1963 	.evict_inode	= f2fs_evict_inode,
1964 	.put_super	= f2fs_put_super,
1965 	.sync_fs	= f2fs_sync_fs,
1966 	.freeze_fs	= f2fs_freeze,
1967 	.unfreeze_fs	= f2fs_unfreeze,
1968 	.statfs		= f2fs_statfs,
1969 	.remount_fs	= f2fs_remount,
1970 };
1971 
1972 #ifdef CONFIG_F2FS_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)1973 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1974 {
1975 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1976 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1977 				ctx, len, NULL);
1978 }
1979 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1980 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1981 							void *fs_data)
1982 {
1983 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1984 
1985 	/*
1986 	 * Encrypting the root directory is not allowed because fsck
1987 	 * expects lost+found directory to exist and remain unencrypted
1988 	 * if LOST_FOUND feature is enabled.
1989 	 *
1990 	 */
1991 	if (f2fs_sb_has_lost_found(sbi->sb) &&
1992 			inode->i_ino == F2FS_ROOT_INO(sbi))
1993 		return -EPERM;
1994 
1995 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1996 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1997 				ctx, len, fs_data, XATTR_CREATE);
1998 }
1999 
f2fs_dummy_context(struct inode * inode)2000 static bool f2fs_dummy_context(struct inode *inode)
2001 {
2002 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2003 }
2004 
2005 static const struct fscrypt_operations f2fs_cryptops = {
2006 	.key_prefix	= "f2fs:",
2007 	.get_context	= f2fs_get_context,
2008 	.set_context	= f2fs_set_context,
2009 	.dummy_context	= f2fs_dummy_context,
2010 	.empty_dir	= f2fs_empty_dir,
2011 	.max_namelen	= F2FS_NAME_LEN,
2012 };
2013 #endif
2014 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)2015 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2016 		u64 ino, u32 generation)
2017 {
2018 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2019 	struct inode *inode;
2020 
2021 	if (f2fs_check_nid_range(sbi, ino))
2022 		return ERR_PTR(-ESTALE);
2023 
2024 	/*
2025 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2026 	 * However f2fs_iget currently does appropriate checks to handle stale
2027 	 * inodes so everything is OK.
2028 	 */
2029 	inode = f2fs_iget(sb, ino);
2030 	if (IS_ERR(inode))
2031 		return ERR_CAST(inode);
2032 	if (unlikely(generation && inode->i_generation != generation)) {
2033 		/* we didn't find the right inode.. */
2034 		iput(inode);
2035 		return ERR_PTR(-ESTALE);
2036 	}
2037 	return inode;
2038 }
2039 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2040 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2041 		int fh_len, int fh_type)
2042 {
2043 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2044 				    f2fs_nfs_get_inode);
2045 }
2046 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2047 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2048 		int fh_len, int fh_type)
2049 {
2050 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2051 				    f2fs_nfs_get_inode);
2052 }
2053 
2054 static const struct export_operations f2fs_export_ops = {
2055 	.fh_to_dentry = f2fs_fh_to_dentry,
2056 	.fh_to_parent = f2fs_fh_to_parent,
2057 	.get_parent = f2fs_get_parent,
2058 };
2059 
max_file_blocks(void)2060 static loff_t max_file_blocks(void)
2061 {
2062 	loff_t result = 0;
2063 	loff_t leaf_count = ADDRS_PER_BLOCK;
2064 
2065 	/*
2066 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2067 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2068 	 * space in inode.i_addr, it will be more safe to reassign
2069 	 * result as zero.
2070 	 */
2071 
2072 	/* two direct node blocks */
2073 	result += (leaf_count * 2);
2074 
2075 	/* two indirect node blocks */
2076 	leaf_count *= NIDS_PER_BLOCK;
2077 	result += (leaf_count * 2);
2078 
2079 	/* one double indirect node block */
2080 	leaf_count *= NIDS_PER_BLOCK;
2081 	result += leaf_count;
2082 
2083 	return result;
2084 }
2085 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2086 static int __f2fs_commit_super(struct buffer_head *bh,
2087 			struct f2fs_super_block *super)
2088 {
2089 	lock_buffer(bh);
2090 	if (super)
2091 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2092 	set_buffer_dirty(bh);
2093 	unlock_buffer(bh);
2094 
2095 	/* it's rare case, we can do fua all the time */
2096 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2097 }
2098 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2099 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2100 					struct buffer_head *bh)
2101 {
2102 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2103 					(bh->b_data + F2FS_SUPER_OFFSET);
2104 	struct super_block *sb = sbi->sb;
2105 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2106 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2107 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2108 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2109 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2110 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2111 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2112 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2113 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2114 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2115 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2116 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2117 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2118 	u64 main_end_blkaddr = main_blkaddr +
2119 				(segment_count_main << log_blocks_per_seg);
2120 	u64 seg_end_blkaddr = segment0_blkaddr +
2121 				(segment_count << log_blocks_per_seg);
2122 
2123 	if (segment0_blkaddr != cp_blkaddr) {
2124 		f2fs_msg(sb, KERN_INFO,
2125 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2126 			segment0_blkaddr, cp_blkaddr);
2127 		return true;
2128 	}
2129 
2130 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2131 							sit_blkaddr) {
2132 		f2fs_msg(sb, KERN_INFO,
2133 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2134 			cp_blkaddr, sit_blkaddr,
2135 			segment_count_ckpt << log_blocks_per_seg);
2136 		return true;
2137 	}
2138 
2139 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2140 							nat_blkaddr) {
2141 		f2fs_msg(sb, KERN_INFO,
2142 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2143 			sit_blkaddr, nat_blkaddr,
2144 			segment_count_sit << log_blocks_per_seg);
2145 		return true;
2146 	}
2147 
2148 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2149 							ssa_blkaddr) {
2150 		f2fs_msg(sb, KERN_INFO,
2151 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2152 			nat_blkaddr, ssa_blkaddr,
2153 			segment_count_nat << log_blocks_per_seg);
2154 		return true;
2155 	}
2156 
2157 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2158 							main_blkaddr) {
2159 		f2fs_msg(sb, KERN_INFO,
2160 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2161 			ssa_blkaddr, main_blkaddr,
2162 			segment_count_ssa << log_blocks_per_seg);
2163 		return true;
2164 	}
2165 
2166 	if (main_end_blkaddr > seg_end_blkaddr) {
2167 		f2fs_msg(sb, KERN_INFO,
2168 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2169 			main_blkaddr,
2170 			segment0_blkaddr +
2171 				(segment_count << log_blocks_per_seg),
2172 			segment_count_main << log_blocks_per_seg);
2173 		return true;
2174 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2175 		int err = 0;
2176 		char *res;
2177 
2178 		/* fix in-memory information all the time */
2179 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2180 				segment0_blkaddr) >> log_blocks_per_seg);
2181 
2182 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2183 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2184 			res = "internally";
2185 		} else {
2186 			err = __f2fs_commit_super(bh, NULL);
2187 			res = err ? "failed" : "done";
2188 		}
2189 		f2fs_msg(sb, KERN_INFO,
2190 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2191 			res, main_blkaddr,
2192 			segment0_blkaddr +
2193 				(segment_count << log_blocks_per_seg),
2194 			segment_count_main << log_blocks_per_seg);
2195 		if (err)
2196 			return true;
2197 	}
2198 	return false;
2199 }
2200 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2201 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2202 				struct buffer_head *bh)
2203 {
2204 	block_t segment_count, segs_per_sec, secs_per_zone;
2205 	block_t total_sections, blocks_per_seg;
2206 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2207 					(bh->b_data + F2FS_SUPER_OFFSET);
2208 	struct super_block *sb = sbi->sb;
2209 	unsigned int blocksize;
2210 
2211 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2212 		f2fs_msg(sb, KERN_INFO,
2213 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2214 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2215 		return -EINVAL;
2216 	}
2217 
2218 	/* Currently, support only 4KB page cache size */
2219 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2220 		f2fs_msg(sb, KERN_INFO,
2221 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2222 			PAGE_SIZE);
2223 		return -EFSCORRUPTED;
2224 	}
2225 
2226 	/* Currently, support only 4KB block size */
2227 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2228 	if (blocksize != F2FS_BLKSIZE) {
2229 		f2fs_msg(sb, KERN_INFO,
2230 			"Invalid blocksize (%u), supports only 4KB\n",
2231 			blocksize);
2232 		return -EFSCORRUPTED;
2233 	}
2234 
2235 	/* check log blocks per segment */
2236 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2237 		f2fs_msg(sb, KERN_INFO,
2238 			"Invalid log blocks per segment (%u)\n",
2239 			le32_to_cpu(raw_super->log_blocks_per_seg));
2240 		return -EFSCORRUPTED;
2241 	}
2242 
2243 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2244 	if (le32_to_cpu(raw_super->log_sectorsize) >
2245 				F2FS_MAX_LOG_SECTOR_SIZE ||
2246 		le32_to_cpu(raw_super->log_sectorsize) <
2247 				F2FS_MIN_LOG_SECTOR_SIZE) {
2248 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2249 			le32_to_cpu(raw_super->log_sectorsize));
2250 		return -EFSCORRUPTED;
2251 	}
2252 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2253 		le32_to_cpu(raw_super->log_sectorsize) !=
2254 			F2FS_MAX_LOG_SECTOR_SIZE) {
2255 		f2fs_msg(sb, KERN_INFO,
2256 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2257 			le32_to_cpu(raw_super->log_sectors_per_block),
2258 			le32_to_cpu(raw_super->log_sectorsize));
2259 		return -EFSCORRUPTED;
2260 	}
2261 
2262 	segment_count = le32_to_cpu(raw_super->segment_count);
2263 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2264 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2265 	total_sections = le32_to_cpu(raw_super->section_count);
2266 
2267 	/* blocks_per_seg should be 512, given the above check */
2268 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2269 
2270 	if (segment_count > F2FS_MAX_SEGMENT ||
2271 				segment_count < F2FS_MIN_SEGMENTS) {
2272 		f2fs_msg(sb, KERN_INFO,
2273 			"Invalid segment count (%u)",
2274 			segment_count);
2275 		return -EFSCORRUPTED;
2276 	}
2277 
2278 	if (total_sections > segment_count ||
2279 			total_sections < F2FS_MIN_SEGMENTS ||
2280 			segs_per_sec > segment_count || !segs_per_sec) {
2281 		f2fs_msg(sb, KERN_INFO,
2282 			"Invalid segment/section count (%u, %u x %u)",
2283 			segment_count, total_sections, segs_per_sec);
2284 		return -EFSCORRUPTED;
2285 	}
2286 
2287 	if ((segment_count / segs_per_sec) < total_sections) {
2288 		f2fs_msg(sb, KERN_INFO,
2289 			"Small segment_count (%u < %u * %u)",
2290 			segment_count, segs_per_sec, total_sections);
2291 		return -EFSCORRUPTED;
2292 	}
2293 
2294 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2295 		f2fs_msg(sb, KERN_INFO,
2296 			"Wrong segment_count / block_count (%u > %llu)",
2297 			segment_count, le64_to_cpu(raw_super->block_count));
2298 		return -EFSCORRUPTED;
2299 	}
2300 
2301 	if (secs_per_zone > total_sections || !secs_per_zone) {
2302 		f2fs_msg(sb, KERN_INFO,
2303 			"Wrong secs_per_zone / total_sections (%u, %u)",
2304 			secs_per_zone, total_sections);
2305 		return -EFSCORRUPTED;
2306 	}
2307 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2308 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2309 			(le32_to_cpu(raw_super->extension_count) +
2310 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2311 		f2fs_msg(sb, KERN_INFO,
2312 			"Corrupted extension count (%u + %u > %u)",
2313 			le32_to_cpu(raw_super->extension_count),
2314 			raw_super->hot_ext_count,
2315 			F2FS_MAX_EXTENSION);
2316 		return -EFSCORRUPTED;
2317 	}
2318 
2319 	if (le32_to_cpu(raw_super->cp_payload) >
2320 				(blocks_per_seg - F2FS_CP_PACKS)) {
2321 		f2fs_msg(sb, KERN_INFO,
2322 			"Insane cp_payload (%u > %u)",
2323 			le32_to_cpu(raw_super->cp_payload),
2324 			blocks_per_seg - F2FS_CP_PACKS);
2325 		return -EFSCORRUPTED;
2326 	}
2327 
2328 	/* check reserved ino info */
2329 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2330 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2331 		le32_to_cpu(raw_super->root_ino) != 3) {
2332 		f2fs_msg(sb, KERN_INFO,
2333 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2334 			le32_to_cpu(raw_super->node_ino),
2335 			le32_to_cpu(raw_super->meta_ino),
2336 			le32_to_cpu(raw_super->root_ino));
2337 		return -EFSCORRUPTED;
2338 	}
2339 
2340 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2341 	if (sanity_check_area_boundary(sbi, bh))
2342 		return -EFSCORRUPTED;
2343 
2344 	return 0;
2345 }
2346 
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)2347 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2348 {
2349 	unsigned int total, fsmeta;
2350 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2351 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2352 	unsigned int ovp_segments, reserved_segments;
2353 	unsigned int main_segs, blocks_per_seg;
2354 	unsigned int sit_segs, nat_segs;
2355 	unsigned int sit_bitmap_size, nat_bitmap_size;
2356 	unsigned int log_blocks_per_seg;
2357 	unsigned int segment_count_main;
2358 	unsigned int cp_pack_start_sum, cp_payload;
2359 	block_t user_block_count;
2360 	int i, j;
2361 
2362 	total = le32_to_cpu(raw_super->segment_count);
2363 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2364 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2365 	fsmeta += sit_segs;
2366 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2367 	fsmeta += nat_segs;
2368 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2369 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2370 
2371 	if (unlikely(fsmeta >= total))
2372 		return 1;
2373 
2374 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2375 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2376 
2377 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2378 			ovp_segments == 0 || reserved_segments == 0)) {
2379 		f2fs_msg(sbi->sb, KERN_ERR,
2380 			"Wrong layout: check mkfs.f2fs version");
2381 		return 1;
2382 	}
2383 
2384 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2385 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2386 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2387 	if (!user_block_count || user_block_count >=
2388 			segment_count_main << log_blocks_per_seg) {
2389 		f2fs_msg(sbi->sb, KERN_ERR,
2390 			"Wrong user_block_count: %u", user_block_count);
2391 		return 1;
2392 	}
2393 
2394 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2395 	blocks_per_seg = sbi->blocks_per_seg;
2396 
2397 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2398 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2399 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2400 			return 1;
2401 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2402 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2403 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2404 				f2fs_msg(sbi->sb, KERN_ERR,
2405 					"Node segment (%u, %u) has the same "
2406 					"segno: %u", i, j,
2407 					le32_to_cpu(ckpt->cur_node_segno[i]));
2408 				return 1;
2409 			}
2410 		}
2411 	}
2412 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2413 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2414 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2415 			return 1;
2416 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2417 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2418 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2419 				f2fs_msg(sbi->sb, KERN_ERR,
2420 					"Data segment (%u, %u) has the same "
2421 					"segno: %u", i, j,
2422 					le32_to_cpu(ckpt->cur_data_segno[i]));
2423 				return 1;
2424 			}
2425 		}
2426 	}
2427 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2428 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2429 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2430 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2431 				f2fs_msg(sbi->sb, KERN_ERR,
2432 					"Node segment (%u) and Data segment (%u)"
2433 					" has the same segno: %u", i, j,
2434 					le32_to_cpu(ckpt->cur_node_segno[i]));
2435 				return 1;
2436 			}
2437 		}
2438 	}
2439 
2440 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2441 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2442 
2443 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2444 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2445 		f2fs_msg(sbi->sb, KERN_ERR,
2446 			"Wrong bitmap size: sit: %u, nat:%u",
2447 			sit_bitmap_size, nat_bitmap_size);
2448 		return 1;
2449 	}
2450 
2451 	cp_pack_start_sum = __start_sum_addr(sbi);
2452 	cp_payload = __cp_payload(sbi);
2453 	if (cp_pack_start_sum < cp_payload + 1 ||
2454 		cp_pack_start_sum > blocks_per_seg - 1 -
2455 			NR_CURSEG_TYPE) {
2456 		f2fs_msg(sbi->sb, KERN_ERR,
2457 			"Wrong cp_pack_start_sum: %u",
2458 			cp_pack_start_sum);
2459 		return 1;
2460 	}
2461 
2462 	if (unlikely(f2fs_cp_error(sbi))) {
2463 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2464 		return 1;
2465 	}
2466 	return 0;
2467 }
2468 
init_sb_info(struct f2fs_sb_info * sbi)2469 static void init_sb_info(struct f2fs_sb_info *sbi)
2470 {
2471 	struct f2fs_super_block *raw_super = sbi->raw_super;
2472 	int i, j;
2473 
2474 	sbi->log_sectors_per_block =
2475 		le32_to_cpu(raw_super->log_sectors_per_block);
2476 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2477 	sbi->blocksize = 1 << sbi->log_blocksize;
2478 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2479 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2480 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2481 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2482 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2483 	sbi->total_node_count =
2484 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2485 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2486 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2487 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2488 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2489 	sbi->cur_victim_sec = NULL_SECNO;
2490 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2491 
2492 	sbi->dir_level = DEF_DIR_LEVEL;
2493 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2494 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2495 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2496 
2497 	for (i = 0; i < NR_COUNT_TYPE; i++)
2498 		atomic_set(&sbi->nr_pages[i], 0);
2499 
2500 	for (i = 0; i < META; i++)
2501 		atomic_set(&sbi->wb_sync_req[i], 0);
2502 
2503 	INIT_LIST_HEAD(&sbi->s_list);
2504 	mutex_init(&sbi->umount_mutex);
2505 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2506 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2507 			mutex_init(&sbi->wio_mutex[i][j]);
2508 	init_rwsem(&sbi->io_order_lock);
2509 	spin_lock_init(&sbi->cp_lock);
2510 
2511 	sbi->dirty_device = 0;
2512 	spin_lock_init(&sbi->dev_lock);
2513 
2514 	init_rwsem(&sbi->sb_lock);
2515 }
2516 
init_percpu_info(struct f2fs_sb_info * sbi)2517 static int init_percpu_info(struct f2fs_sb_info *sbi)
2518 {
2519 	int err;
2520 
2521 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2522 	if (err)
2523 		return err;
2524 
2525 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2526 								GFP_KERNEL);
2527 	if (err)
2528 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2529 
2530 	return err;
2531 }
2532 
2533 #ifdef CONFIG_BLK_DEV_ZONED
init_blkz_info(struct f2fs_sb_info * sbi,int devi)2534 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2535 {
2536 	struct block_device *bdev = FDEV(devi).bdev;
2537 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2538 	sector_t sector = 0;
2539 	struct blk_zone *zones;
2540 	unsigned int i, nr_zones;
2541 	unsigned int n = 0;
2542 	int err = -EIO;
2543 
2544 	if (!f2fs_sb_has_blkzoned(sbi->sb))
2545 		return 0;
2546 
2547 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2548 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2549 		return -EINVAL;
2550 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2551 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2552 				__ilog2_u32(sbi->blocks_per_blkz))
2553 		return -EINVAL;
2554 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2555 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2556 					sbi->log_blocks_per_blkz;
2557 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2558 		FDEV(devi).nr_blkz++;
2559 
2560 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2561 								GFP_KERNEL);
2562 	if (!FDEV(devi).blkz_type)
2563 		return -ENOMEM;
2564 
2565 #define F2FS_REPORT_NR_ZONES   4096
2566 
2567 	zones = f2fs_kzalloc(sbi,
2568 			     array_size(F2FS_REPORT_NR_ZONES,
2569 					sizeof(struct blk_zone)),
2570 			     GFP_KERNEL);
2571 	if (!zones)
2572 		return -ENOMEM;
2573 
2574 	/* Get block zones type */
2575 	while (zones && sector < nr_sectors) {
2576 
2577 		nr_zones = F2FS_REPORT_NR_ZONES;
2578 		err = blkdev_report_zones(bdev, sector,
2579 					  zones, &nr_zones,
2580 					  GFP_KERNEL);
2581 		if (err)
2582 			break;
2583 		if (!nr_zones) {
2584 			err = -EIO;
2585 			break;
2586 		}
2587 
2588 		for (i = 0; i < nr_zones; i++) {
2589 			FDEV(devi).blkz_type[n] = zones[i].type;
2590 			sector += zones[i].len;
2591 			n++;
2592 		}
2593 	}
2594 
2595 	kfree(zones);
2596 
2597 	return err;
2598 }
2599 #endif
2600 
2601 /*
2602  * Read f2fs raw super block.
2603  * Because we have two copies of super block, so read both of them
2604  * to get the first valid one. If any one of them is broken, we pass
2605  * them recovery flag back to the caller.
2606  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)2607 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2608 			struct f2fs_super_block **raw_super,
2609 			int *valid_super_block, int *recovery)
2610 {
2611 	struct super_block *sb = sbi->sb;
2612 	int block;
2613 	struct buffer_head *bh;
2614 	struct f2fs_super_block *super;
2615 	int err = 0;
2616 
2617 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2618 	if (!super)
2619 		return -ENOMEM;
2620 
2621 	for (block = 0; block < 2; block++) {
2622 		bh = sb_bread(sb, block);
2623 		if (!bh) {
2624 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2625 				block + 1);
2626 			err = -EIO;
2627 			continue;
2628 		}
2629 
2630 		/* sanity checking of raw super */
2631 		err = sanity_check_raw_super(sbi, bh);
2632 		if (err) {
2633 			f2fs_msg(sb, KERN_ERR,
2634 				"Can't find valid F2FS filesystem in %dth superblock",
2635 				block + 1);
2636 			brelse(bh);
2637 			continue;
2638 		}
2639 
2640 		if (!*raw_super) {
2641 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2642 							sizeof(*super));
2643 			*valid_super_block = block;
2644 			*raw_super = super;
2645 		}
2646 		brelse(bh);
2647 	}
2648 
2649 	/* Fail to read any one of the superblocks*/
2650 	if (err < 0)
2651 		*recovery = 1;
2652 
2653 	/* No valid superblock */
2654 	if (!*raw_super)
2655 		kfree(super);
2656 	else
2657 		err = 0;
2658 
2659 	return err;
2660 }
2661 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)2662 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2663 {
2664 	struct buffer_head *bh;
2665 	int err;
2666 
2667 	if ((recover && f2fs_readonly(sbi->sb)) ||
2668 				bdev_read_only(sbi->sb->s_bdev)) {
2669 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2670 		return -EROFS;
2671 	}
2672 
2673 	/* write back-up superblock first */
2674 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2675 	if (!bh)
2676 		return -EIO;
2677 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2678 	brelse(bh);
2679 
2680 	/* if we are in recovery path, skip writing valid superblock */
2681 	if (recover || err)
2682 		return err;
2683 
2684 	/* write current valid superblock */
2685 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2686 	if (!bh)
2687 		return -EIO;
2688 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2689 	brelse(bh);
2690 	return err;
2691 }
2692 
f2fs_scan_devices(struct f2fs_sb_info * sbi)2693 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2694 {
2695 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2696 	unsigned int max_devices = MAX_DEVICES;
2697 	int i;
2698 
2699 	/* Initialize single device information */
2700 	if (!RDEV(0).path[0]) {
2701 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2702 			return 0;
2703 		max_devices = 1;
2704 	}
2705 
2706 	/*
2707 	 * Initialize multiple devices information, or single
2708 	 * zoned block device information.
2709 	 */
2710 	sbi->devs = f2fs_kzalloc(sbi,
2711 				 array_size(max_devices,
2712 					    sizeof(struct f2fs_dev_info)),
2713 				 GFP_KERNEL);
2714 	if (!sbi->devs)
2715 		return -ENOMEM;
2716 
2717 	for (i = 0; i < max_devices; i++) {
2718 
2719 		if (i > 0 && !RDEV(i).path[0])
2720 			break;
2721 
2722 		if (max_devices == 1) {
2723 			/* Single zoned block device mount */
2724 			FDEV(0).bdev =
2725 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2726 					sbi->sb->s_mode, sbi->sb->s_type);
2727 		} else {
2728 			/* Multi-device mount */
2729 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2730 			FDEV(i).total_segments =
2731 				le32_to_cpu(RDEV(i).total_segments);
2732 			if (i == 0) {
2733 				FDEV(i).start_blk = 0;
2734 				FDEV(i).end_blk = FDEV(i).start_blk +
2735 				    (FDEV(i).total_segments <<
2736 				    sbi->log_blocks_per_seg) - 1 +
2737 				    le32_to_cpu(raw_super->segment0_blkaddr);
2738 			} else {
2739 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2740 				FDEV(i).end_blk = FDEV(i).start_blk +
2741 					(FDEV(i).total_segments <<
2742 					sbi->log_blocks_per_seg) - 1;
2743 			}
2744 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2745 					sbi->sb->s_mode, sbi->sb->s_type);
2746 		}
2747 		if (IS_ERR(FDEV(i).bdev))
2748 			return PTR_ERR(FDEV(i).bdev);
2749 
2750 		/* to release errored devices */
2751 		sbi->s_ndevs = i + 1;
2752 
2753 #ifdef CONFIG_BLK_DEV_ZONED
2754 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2755 				!f2fs_sb_has_blkzoned(sbi->sb)) {
2756 			f2fs_msg(sbi->sb, KERN_ERR,
2757 				"Zoned block device feature not enabled\n");
2758 			return -EINVAL;
2759 		}
2760 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2761 			if (init_blkz_info(sbi, i)) {
2762 				f2fs_msg(sbi->sb, KERN_ERR,
2763 					"Failed to initialize F2FS blkzone information");
2764 				return -EINVAL;
2765 			}
2766 			if (max_devices == 1)
2767 				break;
2768 			f2fs_msg(sbi->sb, KERN_INFO,
2769 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2770 				i, FDEV(i).path,
2771 				FDEV(i).total_segments,
2772 				FDEV(i).start_blk, FDEV(i).end_blk,
2773 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2774 				"Host-aware" : "Host-managed");
2775 			continue;
2776 		}
2777 #endif
2778 		f2fs_msg(sbi->sb, KERN_INFO,
2779 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2780 				i, FDEV(i).path,
2781 				FDEV(i).total_segments,
2782 				FDEV(i).start_blk, FDEV(i).end_blk);
2783 	}
2784 	f2fs_msg(sbi->sb, KERN_INFO,
2785 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2786 	return 0;
2787 }
2788 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)2789 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2790 {
2791 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2792 
2793 	/* adjust parameters according to the volume size */
2794 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2795 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2796 		sm_i->dcc_info->discard_granularity = 1;
2797 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2798 	}
2799 
2800 	sbi->readdir_ra = 1;
2801 }
2802 
f2fs_fill_super(struct super_block * sb,void * data,int silent)2803 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2804 {
2805 	struct f2fs_sb_info *sbi;
2806 	struct f2fs_super_block *raw_super;
2807 	struct inode *root;
2808 	int err;
2809 	bool retry = true, need_fsck = false;
2810 	char *options = NULL;
2811 	int recovery, i, valid_super_block;
2812 	struct curseg_info *seg_i;
2813 
2814 try_onemore:
2815 	err = -EINVAL;
2816 	raw_super = NULL;
2817 	valid_super_block = -1;
2818 	recovery = 0;
2819 
2820 	/* allocate memory for f2fs-specific super block info */
2821 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2822 	if (!sbi)
2823 		return -ENOMEM;
2824 
2825 	sbi->sb = sb;
2826 
2827 	/* Load the checksum driver */
2828 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2829 	if (IS_ERR(sbi->s_chksum_driver)) {
2830 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2831 		err = PTR_ERR(sbi->s_chksum_driver);
2832 		sbi->s_chksum_driver = NULL;
2833 		goto free_sbi;
2834 	}
2835 
2836 	/* set a block size */
2837 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2838 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2839 		goto free_sbi;
2840 	}
2841 
2842 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2843 								&recovery);
2844 	if (err)
2845 		goto free_sbi;
2846 
2847 	sb->s_fs_info = sbi;
2848 	sbi->raw_super = raw_super;
2849 
2850 	/* precompute checksum seed for metadata */
2851 	if (f2fs_sb_has_inode_chksum(sb))
2852 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2853 						sizeof(raw_super->uuid));
2854 
2855 	/*
2856 	 * The BLKZONED feature indicates that the drive was formatted with
2857 	 * zone alignment optimization. This is optional for host-aware
2858 	 * devices, but mandatory for host-managed zoned block devices.
2859 	 */
2860 #ifndef CONFIG_BLK_DEV_ZONED
2861 	if (f2fs_sb_has_blkzoned(sb)) {
2862 		f2fs_msg(sb, KERN_ERR,
2863 			 "Zoned block device support is not enabled\n");
2864 		err = -EOPNOTSUPP;
2865 		goto free_sb_buf;
2866 	}
2867 #endif
2868 	default_options(sbi);
2869 	/* parse mount options */
2870 	options = kstrdup((const char *)data, GFP_KERNEL);
2871 	if (data && !options) {
2872 		err = -ENOMEM;
2873 		goto free_sb_buf;
2874 	}
2875 
2876 	err = parse_options(sb, options);
2877 	if (err)
2878 		goto free_options;
2879 
2880 	sbi->max_file_blocks = max_file_blocks();
2881 	sb->s_maxbytes = sbi->max_file_blocks <<
2882 				le32_to_cpu(raw_super->log_blocksize);
2883 	sb->s_max_links = F2FS_LINK_MAX;
2884 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2885 
2886 #ifdef CONFIG_QUOTA
2887 	sb->dq_op = &f2fs_quota_operations;
2888 	if (f2fs_sb_has_quota_ino(sb))
2889 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2890 	else
2891 		sb->s_qcop = &f2fs_quotactl_ops;
2892 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2893 
2894 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2895 		for (i = 0; i < MAXQUOTAS; i++) {
2896 			if (f2fs_qf_ino(sbi->sb, i))
2897 				sbi->nquota_files++;
2898 		}
2899 	}
2900 #endif
2901 
2902 	sb->s_op = &f2fs_sops;
2903 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2904 	sb->s_cop = &f2fs_cryptops;
2905 #endif
2906 	sb->s_xattr = f2fs_xattr_handlers;
2907 	sb->s_export_op = &f2fs_export_ops;
2908 	sb->s_magic = F2FS_SUPER_MAGIC;
2909 	sb->s_time_gran = 1;
2910 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2911 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2912 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2913 	sb->s_iflags |= SB_I_CGROUPWB;
2914 
2915 	/* init f2fs-specific super block info */
2916 	sbi->valid_super_block = valid_super_block;
2917 	mutex_init(&sbi->gc_mutex);
2918 	mutex_init(&sbi->writepages);
2919 	mutex_init(&sbi->cp_mutex);
2920 	init_rwsem(&sbi->node_write);
2921 	init_rwsem(&sbi->node_change);
2922 
2923 	/* disallow all the data/node/meta page writes */
2924 	set_sbi_flag(sbi, SBI_POR_DOING);
2925 	spin_lock_init(&sbi->stat_lock);
2926 
2927 	/* init iostat info */
2928 	spin_lock_init(&sbi->iostat_lock);
2929 	sbi->iostat_enable = false;
2930 
2931 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2932 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2933 		int j;
2934 
2935 		sbi->write_io[i] =
2936 			f2fs_kmalloc(sbi,
2937 				     array_size(n,
2938 						sizeof(struct f2fs_bio_info)),
2939 				     GFP_KERNEL);
2940 		if (!sbi->write_io[i]) {
2941 			err = -ENOMEM;
2942 			goto free_bio_info;
2943 		}
2944 
2945 		for (j = HOT; j < n; j++) {
2946 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2947 			sbi->write_io[i][j].sbi = sbi;
2948 			sbi->write_io[i][j].bio = NULL;
2949 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2950 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2951 		}
2952 	}
2953 
2954 	init_rwsem(&sbi->cp_rwsem);
2955 	init_waitqueue_head(&sbi->cp_wait);
2956 	init_sb_info(sbi);
2957 
2958 	err = init_percpu_info(sbi);
2959 	if (err)
2960 		goto free_bio_info;
2961 
2962 	if (F2FS_IO_SIZE(sbi) > 1) {
2963 		sbi->write_io_dummy =
2964 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2965 		if (!sbi->write_io_dummy) {
2966 			err = -ENOMEM;
2967 			goto free_percpu;
2968 		}
2969 	}
2970 
2971 	/* get an inode for meta space */
2972 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2973 	if (IS_ERR(sbi->meta_inode)) {
2974 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2975 		err = PTR_ERR(sbi->meta_inode);
2976 		goto free_io_dummy;
2977 	}
2978 
2979 	err = f2fs_get_valid_checkpoint(sbi);
2980 	if (err) {
2981 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2982 		goto free_meta_inode;
2983 	}
2984 
2985 	/* Initialize device list */
2986 	err = f2fs_scan_devices(sbi);
2987 	if (err) {
2988 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2989 		goto free_devices;
2990 	}
2991 
2992 	sbi->total_valid_node_count =
2993 				le32_to_cpu(sbi->ckpt->valid_node_count);
2994 	percpu_counter_set(&sbi->total_valid_inode_count,
2995 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2996 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2997 	sbi->total_valid_block_count =
2998 				le64_to_cpu(sbi->ckpt->valid_block_count);
2999 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3000 	sbi->reserved_blocks = 0;
3001 	sbi->current_reserved_blocks = 0;
3002 	limit_reserve_root(sbi);
3003 
3004 	for (i = 0; i < NR_INODE_TYPE; i++) {
3005 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3006 		spin_lock_init(&sbi->inode_lock[i]);
3007 	}
3008 
3009 	f2fs_init_extent_cache_info(sbi);
3010 
3011 	f2fs_init_ino_entry_info(sbi);
3012 
3013 	f2fs_init_fsync_node_info(sbi);
3014 
3015 	/* setup f2fs internal modules */
3016 	err = f2fs_build_segment_manager(sbi);
3017 	if (err) {
3018 		f2fs_msg(sb, KERN_ERR,
3019 			"Failed to initialize F2FS segment manager");
3020 		goto free_sm;
3021 	}
3022 	err = f2fs_build_node_manager(sbi);
3023 	if (err) {
3024 		f2fs_msg(sb, KERN_ERR,
3025 			"Failed to initialize F2FS node manager");
3026 		goto free_nm;
3027 	}
3028 
3029 	/* For write statistics */
3030 	if (sb->s_bdev->bd_part)
3031 		sbi->sectors_written_start =
3032 			(u64)part_stat_read(sb->s_bdev->bd_part,
3033 					    sectors[STAT_WRITE]);
3034 
3035 	/* Read accumulated write IO statistics if exists */
3036 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3037 	if (__exist_node_summaries(sbi))
3038 		sbi->kbytes_written =
3039 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3040 
3041 	f2fs_build_gc_manager(sbi);
3042 
3043 	err = f2fs_build_stats(sbi);
3044 	if (err)
3045 		goto free_nm;
3046 
3047 	/* get an inode for node space */
3048 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3049 	if (IS_ERR(sbi->node_inode)) {
3050 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3051 		err = PTR_ERR(sbi->node_inode);
3052 		goto free_stats;
3053 	}
3054 
3055 	/* read root inode and dentry */
3056 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3057 	if (IS_ERR(root)) {
3058 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3059 		err = PTR_ERR(root);
3060 		goto free_node_inode;
3061 	}
3062 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3063 			!root->i_size || !root->i_nlink) {
3064 		iput(root);
3065 		err = -EINVAL;
3066 		goto free_node_inode;
3067 	}
3068 
3069 	sb->s_root = d_make_root(root); /* allocate root dentry */
3070 	if (!sb->s_root) {
3071 		err = -ENOMEM;
3072 		goto free_root_inode;
3073 	}
3074 
3075 	err = f2fs_register_sysfs(sbi);
3076 	if (err)
3077 		goto free_root_inode;
3078 
3079 #ifdef CONFIG_QUOTA
3080 	/* Enable quota usage during mount */
3081 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
3082 		err = f2fs_enable_quotas(sb);
3083 		if (err) {
3084 			f2fs_msg(sb, KERN_ERR,
3085 				"Cannot turn on quotas: error %d", err);
3086 			goto free_sysfs;
3087 		}
3088 	}
3089 #endif
3090 	/* if there are nt orphan nodes free them */
3091 	err = f2fs_recover_orphan_inodes(sbi);
3092 	if (err)
3093 		goto free_meta;
3094 
3095 	/* recover fsynced data */
3096 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3097 		/*
3098 		 * mount should be failed, when device has readonly mode, and
3099 		 * previous checkpoint was not done by clean system shutdown.
3100 		 */
3101 		if (bdev_read_only(sb->s_bdev) &&
3102 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3103 			err = -EROFS;
3104 			goto free_meta;
3105 		}
3106 
3107 		if (need_fsck)
3108 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3109 
3110 		if (!retry)
3111 			goto skip_recovery;
3112 
3113 		err = f2fs_recover_fsync_data(sbi, false);
3114 		if (err < 0) {
3115 			need_fsck = true;
3116 			f2fs_msg(sb, KERN_ERR,
3117 				"Cannot recover all fsync data errno=%d", err);
3118 			goto free_meta;
3119 		}
3120 	} else {
3121 		err = f2fs_recover_fsync_data(sbi, true);
3122 
3123 		if (!f2fs_readonly(sb) && err > 0) {
3124 			err = -EINVAL;
3125 			f2fs_msg(sb, KERN_ERR,
3126 				"Need to recover fsync data");
3127 			goto free_meta;
3128 		}
3129 	}
3130 skip_recovery:
3131 	/* f2fs_recover_fsync_data() cleared this already */
3132 	clear_sbi_flag(sbi, SBI_POR_DOING);
3133 
3134 	/*
3135 	 * If filesystem is not mounted as read-only then
3136 	 * do start the gc_thread.
3137 	 */
3138 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3139 		/* After POR, we can run background GC thread.*/
3140 		err = f2fs_start_gc_thread(sbi);
3141 		if (err)
3142 			goto free_meta;
3143 	}
3144 	kfree(options);
3145 
3146 	/* recover broken superblock */
3147 	if (recovery) {
3148 		err = f2fs_commit_super(sbi, true);
3149 		f2fs_msg(sb, KERN_INFO,
3150 			"Try to recover %dth superblock, ret: %d",
3151 			sbi->valid_super_block ? 1 : 2, err);
3152 	}
3153 
3154 	f2fs_join_shrinker(sbi);
3155 
3156 	f2fs_tuning_parameters(sbi);
3157 
3158 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3159 				cur_cp_version(F2FS_CKPT(sbi)));
3160 	f2fs_update_time(sbi, CP_TIME);
3161 	f2fs_update_time(sbi, REQ_TIME);
3162 	return 0;
3163 
3164 free_meta:
3165 #ifdef CONFIG_QUOTA
3166 	f2fs_truncate_quota_inode_pages(sb);
3167 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3168 		f2fs_quota_off_umount(sbi->sb);
3169 #endif
3170 	/*
3171 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3172 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3173 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3174 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3175 	 */
3176 	truncate_inode_pages_final(META_MAPPING(sbi));
3177 #ifdef CONFIG_QUOTA
3178 free_sysfs:
3179 #endif
3180 	f2fs_unregister_sysfs(sbi);
3181 free_root_inode:
3182 	dput(sb->s_root);
3183 	sb->s_root = NULL;
3184 free_node_inode:
3185 	f2fs_release_ino_entry(sbi, true);
3186 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3187 	iput(sbi->node_inode);
3188 	sbi->node_inode = NULL;
3189 free_stats:
3190 	f2fs_destroy_stats(sbi);
3191 free_nm:
3192 	f2fs_destroy_node_manager(sbi);
3193 free_sm:
3194 	f2fs_destroy_segment_manager(sbi);
3195 free_devices:
3196 	destroy_device_list(sbi);
3197 	kfree(sbi->ckpt);
3198 free_meta_inode:
3199 	make_bad_inode(sbi->meta_inode);
3200 	iput(sbi->meta_inode);
3201 	sbi->meta_inode = NULL;
3202 free_io_dummy:
3203 	mempool_destroy(sbi->write_io_dummy);
3204 free_percpu:
3205 	destroy_percpu_info(sbi);
3206 free_bio_info:
3207 	for (i = 0; i < NR_PAGE_TYPE; i++)
3208 		kfree(sbi->write_io[i]);
3209 free_options:
3210 #ifdef CONFIG_QUOTA
3211 	for (i = 0; i < MAXQUOTAS; i++)
3212 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3213 #endif
3214 	kfree(options);
3215 free_sb_buf:
3216 	kfree(raw_super);
3217 free_sbi:
3218 	if (sbi->s_chksum_driver)
3219 		crypto_free_shash(sbi->s_chksum_driver);
3220 	kfree(sbi);
3221 
3222 	/* give only one another chance */
3223 	if (retry) {
3224 		retry = false;
3225 		shrink_dcache_sb(sb);
3226 		goto try_onemore;
3227 	}
3228 	return err;
3229 }
3230 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3231 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3232 			const char *dev_name, void *data)
3233 {
3234 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3235 }
3236 
kill_f2fs_super(struct super_block * sb)3237 static void kill_f2fs_super(struct super_block *sb)
3238 {
3239 	if (sb->s_root) {
3240 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3241 
3242 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3243 		f2fs_stop_gc_thread(sbi);
3244 		f2fs_stop_discard_thread(sbi);
3245 
3246 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3247 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3248 			struct cp_control cpc = {
3249 				.reason = CP_UMOUNT,
3250 			};
3251 			f2fs_write_checkpoint(sbi, &cpc);
3252 		}
3253 
3254 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3255 			sb->s_flags &= ~SB_RDONLY;
3256 	}
3257 	kill_block_super(sb);
3258 }
3259 
3260 static struct file_system_type f2fs_fs_type = {
3261 	.owner		= THIS_MODULE,
3262 	.name		= "f2fs",
3263 	.mount		= f2fs_mount,
3264 	.kill_sb	= kill_f2fs_super,
3265 	.fs_flags	= FS_REQUIRES_DEV,
3266 };
3267 MODULE_ALIAS_FS("f2fs");
3268 
init_inodecache(void)3269 static int __init init_inodecache(void)
3270 {
3271 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3272 			sizeof(struct f2fs_inode_info), 0,
3273 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3274 	if (!f2fs_inode_cachep)
3275 		return -ENOMEM;
3276 	return 0;
3277 }
3278 
destroy_inodecache(void)3279 static void destroy_inodecache(void)
3280 {
3281 	/*
3282 	 * Make sure all delayed rcu free inodes are flushed before we
3283 	 * destroy cache.
3284 	 */
3285 	rcu_barrier();
3286 	kmem_cache_destroy(f2fs_inode_cachep);
3287 }
3288 
init_f2fs_fs(void)3289 static int __init init_f2fs_fs(void)
3290 {
3291 	int err;
3292 
3293 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3294 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3295 				PAGE_SIZE, F2FS_BLKSIZE);
3296 		return -EINVAL;
3297 	}
3298 
3299 	f2fs_build_trace_ios();
3300 
3301 	err = init_inodecache();
3302 	if (err)
3303 		goto fail;
3304 	err = f2fs_create_node_manager_caches();
3305 	if (err)
3306 		goto free_inodecache;
3307 	err = f2fs_create_segment_manager_caches();
3308 	if (err)
3309 		goto free_node_manager_caches;
3310 	err = f2fs_create_checkpoint_caches();
3311 	if (err)
3312 		goto free_segment_manager_caches;
3313 	err = f2fs_create_extent_cache();
3314 	if (err)
3315 		goto free_checkpoint_caches;
3316 	err = f2fs_init_sysfs();
3317 	if (err)
3318 		goto free_extent_cache;
3319 	err = register_shrinker(&f2fs_shrinker_info);
3320 	if (err)
3321 		goto free_sysfs;
3322 	err = register_filesystem(&f2fs_fs_type);
3323 	if (err)
3324 		goto free_shrinker;
3325 	err = f2fs_create_root_stats();
3326 	if (err)
3327 		goto free_filesystem;
3328 	err = f2fs_init_post_read_processing();
3329 	if (err)
3330 		goto free_root_stats;
3331 	return 0;
3332 
3333 free_root_stats:
3334 	f2fs_destroy_root_stats();
3335 free_filesystem:
3336 	unregister_filesystem(&f2fs_fs_type);
3337 free_shrinker:
3338 	unregister_shrinker(&f2fs_shrinker_info);
3339 free_sysfs:
3340 	f2fs_exit_sysfs();
3341 free_extent_cache:
3342 	f2fs_destroy_extent_cache();
3343 free_checkpoint_caches:
3344 	f2fs_destroy_checkpoint_caches();
3345 free_segment_manager_caches:
3346 	f2fs_destroy_segment_manager_caches();
3347 free_node_manager_caches:
3348 	f2fs_destroy_node_manager_caches();
3349 free_inodecache:
3350 	destroy_inodecache();
3351 fail:
3352 	return err;
3353 }
3354 
exit_f2fs_fs(void)3355 static void __exit exit_f2fs_fs(void)
3356 {
3357 	f2fs_destroy_post_read_processing();
3358 	f2fs_destroy_root_stats();
3359 	unregister_filesystem(&f2fs_fs_type);
3360 	unregister_shrinker(&f2fs_shrinker_info);
3361 	f2fs_exit_sysfs();
3362 	f2fs_destroy_extent_cache();
3363 	f2fs_destroy_checkpoint_caches();
3364 	f2fs_destroy_segment_manager_caches();
3365 	f2fs_destroy_node_manager_caches();
3366 	destroy_inodecache();
3367 	f2fs_destroy_trace_ios();
3368 }
3369 
3370 module_init(init_f2fs_fs)
3371 module_exit(exit_f2fs_fs)
3372 
3373 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3374 MODULE_DESCRIPTION("Flash Friendly File System");
3375 MODULE_LICENSE("GPL");
3376 MODULE_SOFTDEP("pre: crc32");
3377 
3378