1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
f2fs_filemap_fault(struct vm_fault * vmf)36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 vm_fault_t ret;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return ret;
46 }
47
f2fs_vm_page_mkwrite(struct vm_fault * vmf)48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
59 }
60
61 sb_start_pagefault(inode->i_sb);
62
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64
65 /* block allocation */
66 f2fs_lock_op(sbi);
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
69 if (err) {
70 f2fs_unlock_op(sbi);
71 goto out;
72 }
73 f2fs_put_dnode(&dn);
74 f2fs_unlock_op(sbi);
75
76 f2fs_balance_fs(sbi, dn.node_changed);
77
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
80 lock_page(page);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
84 unlock_page(page);
85 err = -EFAULT;
86 goto out_sem;
87 }
88
89 /*
90 * check to see if the page is mapped already (no holes)
91 */
92 if (PageMappedToDisk(page))
93 goto mapped;
94
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 i_size_read(inode)) {
98 loff_t offset;
99
100 offset = i_size_read(inode) & ~PAGE_MASK;
101 zero_user_segment(page, offset, PAGE_SIZE);
102 }
103 set_page_dirty(page);
104 if (!PageUptodate(page))
105 SetPageUptodate(page);
106
107 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
108
109 trace_f2fs_vm_page_mkwrite(page, DATA);
110 mapped:
111 /* fill the page */
112 f2fs_wait_on_page_writeback(page, DATA, false);
113
114 /* wait for GCed page writeback via META_MAPPING */
115 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
116
117 out_sem:
118 up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 sb_end_pagefault(inode->i_sb);
121 f2fs_update_time(sbi, REQ_TIME);
122 err:
123 return block_page_mkwrite_return(err);
124 }
125
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 .fault = f2fs_filemap_fault,
128 .map_pages = filemap_map_pages,
129 .page_mkwrite = f2fs_vm_page_mkwrite,
130 };
131
get_parent_ino(struct inode * inode,nid_t * pino)132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 struct dentry *dentry;
135
136 inode = igrab(inode);
137 dentry = d_find_any_alias(inode);
138 iput(inode);
139 if (!dentry)
140 return 0;
141
142 *pino = parent_ino(dentry);
143 dput(dentry);
144 return 1;
145 }
146
need_do_checkpoint(struct inode * inode)147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 enum cp_reason_type cp_reason = CP_NO_NEEDED;
151
152 if (!S_ISREG(inode->i_mode))
153 cp_reason = CP_NON_REGULAR;
154 else if (inode->i_nlink != 1)
155 cp_reason = CP_HARDLINK;
156 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 cp_reason = CP_SB_NEED_CP;
158 else if (file_wrong_pino(inode))
159 cp_reason = CP_WRONG_PINO;
160 else if (!f2fs_space_for_roll_forward(sbi))
161 cp_reason = CP_NO_SPC_ROLL;
162 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 cp_reason = CP_NODE_NEED_CP;
164 else if (test_opt(sbi, FASTBOOT))
165 cp_reason = CP_FASTBOOT_MODE;
166 else if (F2FS_OPTION(sbi).active_logs == 2)
167 cp_reason = CP_SPEC_LOG_NUM;
168 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
169 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
170 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
171 TRANS_DIR_INO))
172 cp_reason = CP_RECOVER_DIR;
173
174 return cp_reason;
175 }
176
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)177 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
178 {
179 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
180 bool ret = false;
181 /* But we need to avoid that there are some inode updates */
182 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
183 ret = true;
184 f2fs_put_page(i, 0);
185 return ret;
186 }
187
try_to_fix_pino(struct inode * inode)188 static void try_to_fix_pino(struct inode *inode)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 nid_t pino;
192
193 down_write(&fi->i_sem);
194 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
195 get_parent_ino(inode, &pino)) {
196 f2fs_i_pino_write(inode, pino);
197 file_got_pino(inode);
198 }
199 up_write(&fi->i_sem);
200 }
201
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)202 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
203 int datasync, bool atomic)
204 {
205 struct inode *inode = file->f_mapping->host;
206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
207 nid_t ino = inode->i_ino;
208 int ret = 0;
209 enum cp_reason_type cp_reason = 0;
210 struct writeback_control wbc = {
211 .sync_mode = WB_SYNC_ALL,
212 .nr_to_write = LONG_MAX,
213 .for_reclaim = 0,
214 };
215 unsigned int seq_id = 0;
216
217 if (unlikely(f2fs_readonly(inode->i_sb)))
218 return 0;
219
220 trace_f2fs_sync_file_enter(inode);
221
222 if (S_ISDIR(inode->i_mode))
223 goto go_write;
224
225 /* if fdatasync is triggered, let's do in-place-update */
226 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
227 set_inode_flag(inode, FI_NEED_IPU);
228 ret = file_write_and_wait_range(file, start, end);
229 clear_inode_flag(inode, FI_NEED_IPU);
230
231 if (ret) {
232 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
233 return ret;
234 }
235
236 /* if the inode is dirty, let's recover all the time */
237 if (!f2fs_skip_inode_update(inode, datasync)) {
238 f2fs_write_inode(inode, NULL);
239 goto go_write;
240 }
241
242 /*
243 * if there is no written data, don't waste time to write recovery info.
244 */
245 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
246 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
247
248 /* it may call write_inode just prior to fsync */
249 if (need_inode_page_update(sbi, ino))
250 goto go_write;
251
252 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
253 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
254 goto flush_out;
255 goto out;
256 }
257 go_write:
258 /*
259 * Both of fdatasync() and fsync() are able to be recovered from
260 * sudden-power-off.
261 */
262 down_read(&F2FS_I(inode)->i_sem);
263 cp_reason = need_do_checkpoint(inode);
264 up_read(&F2FS_I(inode)->i_sem);
265
266 if (cp_reason) {
267 /* all the dirty node pages should be flushed for POR */
268 ret = f2fs_sync_fs(inode->i_sb, 1);
269
270 /*
271 * We've secured consistency through sync_fs. Following pino
272 * will be used only for fsynced inodes after checkpoint.
273 */
274 try_to_fix_pino(inode);
275 clear_inode_flag(inode, FI_APPEND_WRITE);
276 clear_inode_flag(inode, FI_UPDATE_WRITE);
277 goto out;
278 }
279 sync_nodes:
280 atomic_inc(&sbi->wb_sync_req[NODE]);
281 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
282 atomic_dec(&sbi->wb_sync_req[NODE]);
283 if (ret)
284 goto out;
285
286 /* if cp_error was enabled, we should avoid infinite loop */
287 if (unlikely(f2fs_cp_error(sbi))) {
288 ret = -EIO;
289 goto out;
290 }
291
292 if (f2fs_need_inode_block_update(sbi, ino)) {
293 f2fs_mark_inode_dirty_sync(inode, true);
294 f2fs_write_inode(inode, NULL);
295 goto sync_nodes;
296 }
297
298 /*
299 * If it's atomic_write, it's just fine to keep write ordering. So
300 * here we don't need to wait for node write completion, since we use
301 * node chain which serializes node blocks. If one of node writes are
302 * reordered, we can see simply broken chain, resulting in stopping
303 * roll-forward recovery. It means we'll recover all or none node blocks
304 * given fsync mark.
305 */
306 if (!atomic) {
307 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
308 if (ret)
309 goto out;
310 }
311
312 /* once recovery info is written, don't need to tack this */
313 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
314 clear_inode_flag(inode, FI_APPEND_WRITE);
315 flush_out:
316 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
317 ret = f2fs_issue_flush(sbi, inode->i_ino);
318 if (!ret) {
319 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
320 clear_inode_flag(inode, FI_UPDATE_WRITE);
321 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
322 }
323 f2fs_update_time(sbi, REQ_TIME);
324 out:
325 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
326 f2fs_trace_ios(NULL, 1);
327 return ret;
328 }
329
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)330 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
331 {
332 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
333 return -EIO;
334 return f2fs_do_sync_file(file, start, end, datasync, false);
335 }
336
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)337 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
338 pgoff_t pgofs, int whence)
339 {
340 struct page *page;
341 int nr_pages;
342
343 if (whence != SEEK_DATA)
344 return 0;
345
346 /* find first dirty page index */
347 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
348 1, &page);
349 if (!nr_pages)
350 return ULONG_MAX;
351 pgofs = page->index;
352 put_page(page);
353 return pgofs;
354 }
355
__found_offset(struct f2fs_sb_info * sbi,block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)356 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
357 pgoff_t dirty, pgoff_t pgofs, int whence)
358 {
359 switch (whence) {
360 case SEEK_DATA:
361 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
362 is_valid_data_blkaddr(sbi, blkaddr))
363 return true;
364 break;
365 case SEEK_HOLE:
366 if (blkaddr == NULL_ADDR)
367 return true;
368 break;
369 }
370 return false;
371 }
372
f2fs_seek_block(struct file * file,loff_t offset,int whence)373 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
374 {
375 struct inode *inode = file->f_mapping->host;
376 loff_t maxbytes = inode->i_sb->s_maxbytes;
377 struct dnode_of_data dn;
378 pgoff_t pgofs, end_offset, dirty;
379 loff_t data_ofs = offset;
380 loff_t isize;
381 int err = 0;
382
383 inode_lock(inode);
384
385 isize = i_size_read(inode);
386 if (offset >= isize)
387 goto fail;
388
389 /* handle inline data case */
390 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
391 if (whence == SEEK_HOLE)
392 data_ofs = isize;
393 goto found;
394 }
395
396 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
397
398 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
399
400 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
401 set_new_dnode(&dn, inode, NULL, NULL, 0);
402 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
403 if (err && err != -ENOENT) {
404 goto fail;
405 } else if (err == -ENOENT) {
406 /* direct node does not exists */
407 if (whence == SEEK_DATA) {
408 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
409 continue;
410 } else {
411 goto found;
412 }
413 }
414
415 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
416
417 /* find data/hole in dnode block */
418 for (; dn.ofs_in_node < end_offset;
419 dn.ofs_in_node++, pgofs++,
420 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
421 block_t blkaddr;
422
423 blkaddr = datablock_addr(dn.inode,
424 dn.node_page, dn.ofs_in_node);
425
426 if (__is_valid_data_blkaddr(blkaddr) &&
427 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
428 blkaddr, DATA_GENERIC)) {
429 f2fs_put_dnode(&dn);
430 goto fail;
431 }
432
433 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
434 pgofs, whence)) {
435 f2fs_put_dnode(&dn);
436 goto found;
437 }
438 }
439 f2fs_put_dnode(&dn);
440 }
441
442 if (whence == SEEK_DATA)
443 goto fail;
444 found:
445 if (whence == SEEK_HOLE && data_ofs > isize)
446 data_ofs = isize;
447 inode_unlock(inode);
448 return vfs_setpos(file, data_ofs, maxbytes);
449 fail:
450 inode_unlock(inode);
451 return -ENXIO;
452 }
453
f2fs_llseek(struct file * file,loff_t offset,int whence)454 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
455 {
456 struct inode *inode = file->f_mapping->host;
457 loff_t maxbytes = inode->i_sb->s_maxbytes;
458
459 switch (whence) {
460 case SEEK_SET:
461 case SEEK_CUR:
462 case SEEK_END:
463 return generic_file_llseek_size(file, offset, whence,
464 maxbytes, i_size_read(inode));
465 case SEEK_DATA:
466 case SEEK_HOLE:
467 if (offset < 0)
468 return -ENXIO;
469 return f2fs_seek_block(file, offset, whence);
470 }
471
472 return -EINVAL;
473 }
474
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)475 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
476 {
477 struct inode *inode = file_inode(file);
478 int err;
479
480 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
481 return -EIO;
482
483 /* we don't need to use inline_data strictly */
484 err = f2fs_convert_inline_inode(inode);
485 if (err)
486 return err;
487
488 file_accessed(file);
489 vma->vm_ops = &f2fs_file_vm_ops;
490 return 0;
491 }
492
f2fs_file_open(struct inode * inode,struct file * filp)493 static int f2fs_file_open(struct inode *inode, struct file *filp)
494 {
495 int err = fscrypt_file_open(inode, filp);
496
497 if (err)
498 return err;
499
500 filp->f_mode |= FMODE_NOWAIT;
501
502 return dquot_file_open(inode, filp);
503 }
504
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)505 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
506 {
507 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
508 struct f2fs_node *raw_node;
509 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
510 __le32 *addr;
511 int base = 0;
512
513 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
514 base = get_extra_isize(dn->inode);
515
516 raw_node = F2FS_NODE(dn->node_page);
517 addr = blkaddr_in_node(raw_node) + base + ofs;
518
519 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
520 block_t blkaddr = le32_to_cpu(*addr);
521
522 if (blkaddr == NULL_ADDR)
523 continue;
524
525 dn->data_blkaddr = NULL_ADDR;
526 f2fs_set_data_blkaddr(dn);
527
528 if (__is_valid_data_blkaddr(blkaddr) &&
529 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
530 continue;
531
532 f2fs_invalidate_blocks(sbi, blkaddr);
533 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
534 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
535 nr_free++;
536 }
537
538 if (nr_free) {
539 pgoff_t fofs;
540 /*
541 * once we invalidate valid blkaddr in range [ofs, ofs + count],
542 * we will invalidate all blkaddr in the whole range.
543 */
544 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
545 dn->inode) + ofs;
546 f2fs_update_extent_cache_range(dn, fofs, 0, len);
547 dec_valid_block_count(sbi, dn->inode, nr_free);
548 }
549 dn->ofs_in_node = ofs;
550
551 f2fs_update_time(sbi, REQ_TIME);
552 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
553 dn->ofs_in_node, nr_free);
554 }
555
f2fs_truncate_data_blocks(struct dnode_of_data * dn)556 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
557 {
558 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
559 }
560
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)561 static int truncate_partial_data_page(struct inode *inode, u64 from,
562 bool cache_only)
563 {
564 loff_t offset = from & (PAGE_SIZE - 1);
565 pgoff_t index = from >> PAGE_SHIFT;
566 struct address_space *mapping = inode->i_mapping;
567 struct page *page;
568
569 if (!offset && !cache_only)
570 return 0;
571
572 if (cache_only) {
573 page = find_lock_page(mapping, index);
574 if (page && PageUptodate(page))
575 goto truncate_out;
576 f2fs_put_page(page, 1);
577 return 0;
578 }
579
580 page = f2fs_get_lock_data_page(inode, index, true);
581 if (IS_ERR(page))
582 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
583 truncate_out:
584 f2fs_wait_on_page_writeback(page, DATA, true);
585 zero_user(page, offset, PAGE_SIZE - offset);
586
587 /* An encrypted inode should have a key and truncate the last page. */
588 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
589 if (!cache_only)
590 set_page_dirty(page);
591 f2fs_put_page(page, 1);
592 return 0;
593 }
594
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)595 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
596 {
597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
598 struct dnode_of_data dn;
599 pgoff_t free_from;
600 int count = 0, err = 0;
601 struct page *ipage;
602 bool truncate_page = false;
603
604 trace_f2fs_truncate_blocks_enter(inode, from);
605
606 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
607
608 if (free_from >= sbi->max_file_blocks)
609 goto free_partial;
610
611 if (lock)
612 f2fs_lock_op(sbi);
613
614 ipage = f2fs_get_node_page(sbi, inode->i_ino);
615 if (IS_ERR(ipage)) {
616 err = PTR_ERR(ipage);
617 goto out;
618 }
619
620 if (f2fs_has_inline_data(inode)) {
621 f2fs_truncate_inline_inode(inode, ipage, from);
622 f2fs_put_page(ipage, 1);
623 truncate_page = true;
624 goto out;
625 }
626
627 set_new_dnode(&dn, inode, ipage, NULL, 0);
628 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
629 if (err) {
630 if (err == -ENOENT)
631 goto free_next;
632 goto out;
633 }
634
635 count = ADDRS_PER_PAGE(dn.node_page, inode);
636
637 count -= dn.ofs_in_node;
638 f2fs_bug_on(sbi, count < 0);
639
640 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
641 f2fs_truncate_data_blocks_range(&dn, count);
642 free_from += count;
643 }
644
645 f2fs_put_dnode(&dn);
646 free_next:
647 err = f2fs_truncate_inode_blocks(inode, free_from);
648 out:
649 if (lock)
650 f2fs_unlock_op(sbi);
651 free_partial:
652 /* lastly zero out the first data page */
653 if (!err)
654 err = truncate_partial_data_page(inode, from, truncate_page);
655
656 trace_f2fs_truncate_blocks_exit(inode, err);
657 return err;
658 }
659
f2fs_truncate(struct inode * inode)660 int f2fs_truncate(struct inode *inode)
661 {
662 int err;
663
664 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
665 return -EIO;
666
667 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
668 S_ISLNK(inode->i_mode)))
669 return 0;
670
671 trace_f2fs_truncate(inode);
672
673 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
674 f2fs_show_injection_info(FAULT_TRUNCATE);
675 return -EIO;
676 }
677
678 err = dquot_initialize(inode);
679 if (err)
680 return err;
681
682 /* we should check inline_data size */
683 if (!f2fs_may_inline_data(inode)) {
684 err = f2fs_convert_inline_inode(inode);
685 if (err)
686 return err;
687 }
688
689 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
690 if (err)
691 return err;
692
693 inode->i_mtime = inode->i_ctime = current_time(inode);
694 f2fs_mark_inode_dirty_sync(inode, false);
695 return 0;
696 }
697
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)698 int f2fs_getattr(const struct path *path, struct kstat *stat,
699 u32 request_mask, unsigned int query_flags)
700 {
701 struct inode *inode = d_inode(path->dentry);
702 struct f2fs_inode_info *fi = F2FS_I(inode);
703 struct f2fs_inode *ri;
704 unsigned int flags;
705
706 if (f2fs_has_extra_attr(inode) &&
707 f2fs_sb_has_inode_crtime(inode->i_sb) &&
708 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
709 stat->result_mask |= STATX_BTIME;
710 stat->btime.tv_sec = fi->i_crtime.tv_sec;
711 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
712 }
713
714 flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
715 if (flags & F2FS_APPEND_FL)
716 stat->attributes |= STATX_ATTR_APPEND;
717 if (flags & F2FS_COMPR_FL)
718 stat->attributes |= STATX_ATTR_COMPRESSED;
719 if (f2fs_encrypted_inode(inode))
720 stat->attributes |= STATX_ATTR_ENCRYPTED;
721 if (flags & F2FS_IMMUTABLE_FL)
722 stat->attributes |= STATX_ATTR_IMMUTABLE;
723 if (flags & F2FS_NODUMP_FL)
724 stat->attributes |= STATX_ATTR_NODUMP;
725
726 stat->attributes_mask |= (STATX_ATTR_APPEND |
727 STATX_ATTR_COMPRESSED |
728 STATX_ATTR_ENCRYPTED |
729 STATX_ATTR_IMMUTABLE |
730 STATX_ATTR_NODUMP);
731
732 generic_fillattr(inode, stat);
733
734 /* we need to show initial sectors used for inline_data/dentries */
735 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
736 f2fs_has_inline_dentry(inode))
737 stat->blocks += (stat->size + 511) >> 9;
738
739 return 0;
740 }
741
742 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)743 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
744 {
745 unsigned int ia_valid = attr->ia_valid;
746
747 if (ia_valid & ATTR_UID)
748 inode->i_uid = attr->ia_uid;
749 if (ia_valid & ATTR_GID)
750 inode->i_gid = attr->ia_gid;
751 if (ia_valid & ATTR_ATIME)
752 inode->i_atime = timespec64_trunc(attr->ia_atime,
753 inode->i_sb->s_time_gran);
754 if (ia_valid & ATTR_MTIME)
755 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
756 inode->i_sb->s_time_gran);
757 if (ia_valid & ATTR_CTIME)
758 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
759 inode->i_sb->s_time_gran);
760 if (ia_valid & ATTR_MODE) {
761 umode_t mode = attr->ia_mode;
762
763 if (!in_group_p(inode->i_gid) &&
764 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
765 mode &= ~S_ISGID;
766 set_acl_inode(inode, mode);
767 }
768 }
769 #else
770 #define __setattr_copy setattr_copy
771 #endif
772
f2fs_setattr(struct dentry * dentry,struct iattr * attr)773 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
774 {
775 struct inode *inode = d_inode(dentry);
776 int err;
777
778 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
779 return -EIO;
780
781 err = setattr_prepare(dentry, attr);
782 if (err)
783 return err;
784
785 err = fscrypt_prepare_setattr(dentry, attr);
786 if (err)
787 return err;
788
789 if (is_quota_modification(inode, attr)) {
790 err = dquot_initialize(inode);
791 if (err)
792 return err;
793 }
794 if ((attr->ia_valid & ATTR_UID &&
795 !uid_eq(attr->ia_uid, inode->i_uid)) ||
796 (attr->ia_valid & ATTR_GID &&
797 !gid_eq(attr->ia_gid, inode->i_gid))) {
798 err = dquot_transfer(inode, attr);
799 if (err)
800 return err;
801 }
802
803 if (attr->ia_valid & ATTR_SIZE) {
804 bool to_smaller = (attr->ia_size <= i_size_read(inode));
805
806 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
807 down_write(&F2FS_I(inode)->i_mmap_sem);
808
809 truncate_setsize(inode, attr->ia_size);
810
811 if (to_smaller)
812 err = f2fs_truncate(inode);
813 /*
814 * do not trim all blocks after i_size if target size is
815 * larger than i_size.
816 */
817 up_write(&F2FS_I(inode)->i_mmap_sem);
818 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
819
820 if (err)
821 return err;
822
823 if (!to_smaller) {
824 /* should convert inline inode here */
825 if (!f2fs_may_inline_data(inode)) {
826 err = f2fs_convert_inline_inode(inode);
827 if (err)
828 return err;
829 }
830 inode->i_mtime = inode->i_ctime = current_time(inode);
831 }
832
833 down_write(&F2FS_I(inode)->i_sem);
834 F2FS_I(inode)->last_disk_size = i_size_read(inode);
835 up_write(&F2FS_I(inode)->i_sem);
836 }
837
838 __setattr_copy(inode, attr);
839
840 if (attr->ia_valid & ATTR_MODE) {
841 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
842 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
843 inode->i_mode = F2FS_I(inode)->i_acl_mode;
844 clear_inode_flag(inode, FI_ACL_MODE);
845 }
846 }
847
848 /* file size may changed here */
849 f2fs_mark_inode_dirty_sync(inode, true);
850
851 /* inode change will produce dirty node pages flushed by checkpoint */
852 f2fs_balance_fs(F2FS_I_SB(inode), true);
853
854 return err;
855 }
856
857 const struct inode_operations f2fs_file_inode_operations = {
858 .getattr = f2fs_getattr,
859 .setattr = f2fs_setattr,
860 .get_acl = f2fs_get_acl,
861 .set_acl = f2fs_set_acl,
862 #ifdef CONFIG_F2FS_FS_XATTR
863 .listxattr = f2fs_listxattr,
864 #endif
865 .fiemap = f2fs_fiemap,
866 };
867
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)868 static int fill_zero(struct inode *inode, pgoff_t index,
869 loff_t start, loff_t len)
870 {
871 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
872 struct page *page;
873
874 if (!len)
875 return 0;
876
877 f2fs_balance_fs(sbi, true);
878
879 f2fs_lock_op(sbi);
880 page = f2fs_get_new_data_page(inode, NULL, index, false);
881 f2fs_unlock_op(sbi);
882
883 if (IS_ERR(page))
884 return PTR_ERR(page);
885
886 f2fs_wait_on_page_writeback(page, DATA, true);
887 zero_user(page, start, len);
888 set_page_dirty(page);
889 f2fs_put_page(page, 1);
890 return 0;
891 }
892
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)893 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
894 {
895 int err;
896
897 while (pg_start < pg_end) {
898 struct dnode_of_data dn;
899 pgoff_t end_offset, count;
900
901 set_new_dnode(&dn, inode, NULL, NULL, 0);
902 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
903 if (err) {
904 if (err == -ENOENT) {
905 pg_start = f2fs_get_next_page_offset(&dn,
906 pg_start);
907 continue;
908 }
909 return err;
910 }
911
912 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
913 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
914
915 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
916
917 f2fs_truncate_data_blocks_range(&dn, count);
918 f2fs_put_dnode(&dn);
919
920 pg_start += count;
921 }
922 return 0;
923 }
924
punch_hole(struct inode * inode,loff_t offset,loff_t len)925 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
926 {
927 pgoff_t pg_start, pg_end;
928 loff_t off_start, off_end;
929 int ret;
930
931 ret = f2fs_convert_inline_inode(inode);
932 if (ret)
933 return ret;
934
935 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
936 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
937
938 off_start = offset & (PAGE_SIZE - 1);
939 off_end = (offset + len) & (PAGE_SIZE - 1);
940
941 if (pg_start == pg_end) {
942 ret = fill_zero(inode, pg_start, off_start,
943 off_end - off_start);
944 if (ret)
945 return ret;
946 } else {
947 if (off_start) {
948 ret = fill_zero(inode, pg_start++, off_start,
949 PAGE_SIZE - off_start);
950 if (ret)
951 return ret;
952 }
953 if (off_end) {
954 ret = fill_zero(inode, pg_end, 0, off_end);
955 if (ret)
956 return ret;
957 }
958
959 if (pg_start < pg_end) {
960 loff_t blk_start, blk_end;
961 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
962
963 f2fs_balance_fs(sbi, true);
964
965 blk_start = (loff_t)pg_start << PAGE_SHIFT;
966 blk_end = (loff_t)pg_end << PAGE_SHIFT;
967
968 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
969 down_write(&F2FS_I(inode)->i_mmap_sem);
970
971 truncate_pagecache_range(inode, blk_start, blk_end - 1);
972
973 f2fs_lock_op(sbi);
974 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
975 f2fs_unlock_op(sbi);
976
977 up_write(&F2FS_I(inode)->i_mmap_sem);
978 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
979 }
980 }
981
982 return ret;
983 }
984
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)985 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
986 int *do_replace, pgoff_t off, pgoff_t len)
987 {
988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 struct dnode_of_data dn;
990 int ret, done, i;
991
992 next_dnode:
993 set_new_dnode(&dn, inode, NULL, NULL, 0);
994 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
995 if (ret && ret != -ENOENT) {
996 return ret;
997 } else if (ret == -ENOENT) {
998 if (dn.max_level == 0)
999 return -ENOENT;
1000 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
1001 blkaddr += done;
1002 do_replace += done;
1003 goto next;
1004 }
1005
1006 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1007 dn.ofs_in_node, len);
1008 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1009 *blkaddr = datablock_addr(dn.inode,
1010 dn.node_page, dn.ofs_in_node);
1011 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1012
1013 if (test_opt(sbi, LFS)) {
1014 f2fs_put_dnode(&dn);
1015 return -ENOTSUPP;
1016 }
1017
1018 /* do not invalidate this block address */
1019 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1020 *do_replace = 1;
1021 }
1022 }
1023 f2fs_put_dnode(&dn);
1024 next:
1025 len -= done;
1026 off += done;
1027 if (len)
1028 goto next_dnode;
1029 return 0;
1030 }
1031
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1032 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1033 int *do_replace, pgoff_t off, int len)
1034 {
1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 struct dnode_of_data dn;
1037 int ret, i;
1038
1039 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1040 if (*do_replace == 0)
1041 continue;
1042
1043 set_new_dnode(&dn, inode, NULL, NULL, 0);
1044 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1045 if (ret) {
1046 dec_valid_block_count(sbi, inode, 1);
1047 f2fs_invalidate_blocks(sbi, *blkaddr);
1048 } else {
1049 f2fs_update_data_blkaddr(&dn, *blkaddr);
1050 }
1051 f2fs_put_dnode(&dn);
1052 }
1053 return 0;
1054 }
1055
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1056 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1057 block_t *blkaddr, int *do_replace,
1058 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1059 {
1060 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1061 pgoff_t i = 0;
1062 int ret;
1063
1064 while (i < len) {
1065 if (blkaddr[i] == NULL_ADDR && !full) {
1066 i++;
1067 continue;
1068 }
1069
1070 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1071 struct dnode_of_data dn;
1072 struct node_info ni;
1073 size_t new_size;
1074 pgoff_t ilen;
1075
1076 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1077 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1078 if (ret)
1079 return ret;
1080
1081 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1082 if (ret) {
1083 f2fs_put_dnode(&dn);
1084 return ret;
1085 }
1086
1087 ilen = min((pgoff_t)
1088 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1089 dn.ofs_in_node, len - i);
1090 do {
1091 dn.data_blkaddr = datablock_addr(dn.inode,
1092 dn.node_page, dn.ofs_in_node);
1093 f2fs_truncate_data_blocks_range(&dn, 1);
1094
1095 if (do_replace[i]) {
1096 f2fs_i_blocks_write(src_inode,
1097 1, false, false);
1098 f2fs_i_blocks_write(dst_inode,
1099 1, true, false);
1100 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1101 blkaddr[i], ni.version, true, false);
1102
1103 do_replace[i] = 0;
1104 }
1105 dn.ofs_in_node++;
1106 i++;
1107 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1108 if (dst_inode->i_size < new_size)
1109 f2fs_i_size_write(dst_inode, new_size);
1110 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1111
1112 f2fs_put_dnode(&dn);
1113 } else {
1114 struct page *psrc, *pdst;
1115
1116 psrc = f2fs_get_lock_data_page(src_inode,
1117 src + i, true);
1118 if (IS_ERR(psrc))
1119 return PTR_ERR(psrc);
1120 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1121 true);
1122 if (IS_ERR(pdst)) {
1123 f2fs_put_page(psrc, 1);
1124 return PTR_ERR(pdst);
1125 }
1126 f2fs_copy_page(psrc, pdst);
1127 set_page_dirty(pdst);
1128 f2fs_put_page(pdst, 1);
1129 f2fs_put_page(psrc, 1);
1130
1131 ret = f2fs_truncate_hole(src_inode,
1132 src + i, src + i + 1);
1133 if (ret)
1134 return ret;
1135 i++;
1136 }
1137 }
1138 return 0;
1139 }
1140
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1141 static int __exchange_data_block(struct inode *src_inode,
1142 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1143 pgoff_t len, bool full)
1144 {
1145 block_t *src_blkaddr;
1146 int *do_replace;
1147 pgoff_t olen;
1148 int ret;
1149
1150 while (len) {
1151 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1152
1153 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1154 array_size(olen, sizeof(block_t)),
1155 GFP_KERNEL);
1156 if (!src_blkaddr)
1157 return -ENOMEM;
1158
1159 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1160 array_size(olen, sizeof(int)),
1161 GFP_KERNEL);
1162 if (!do_replace) {
1163 kvfree(src_blkaddr);
1164 return -ENOMEM;
1165 }
1166
1167 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1168 do_replace, src, olen);
1169 if (ret)
1170 goto roll_back;
1171
1172 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1173 do_replace, src, dst, olen, full);
1174 if (ret)
1175 goto roll_back;
1176
1177 src += olen;
1178 dst += olen;
1179 len -= olen;
1180
1181 kvfree(src_blkaddr);
1182 kvfree(do_replace);
1183 }
1184 return 0;
1185
1186 roll_back:
1187 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1188 kvfree(src_blkaddr);
1189 kvfree(do_replace);
1190 return ret;
1191 }
1192
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1193 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1194 {
1195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1196 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1197 pgoff_t start = offset >> PAGE_SHIFT;
1198 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1199 int ret;
1200
1201 f2fs_balance_fs(sbi, true);
1202
1203 /* avoid gc operation during block exchange */
1204 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1205 down_write(&F2FS_I(inode)->i_mmap_sem);
1206
1207 f2fs_lock_op(sbi);
1208 f2fs_drop_extent_tree(inode);
1209 truncate_pagecache(inode, offset);
1210 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1211 f2fs_unlock_op(sbi);
1212
1213 up_write(&F2FS_I(inode)->i_mmap_sem);
1214 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1215 return ret;
1216 }
1217
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1218 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1219 {
1220 loff_t new_size;
1221 int ret;
1222
1223 if (offset + len >= i_size_read(inode))
1224 return -EINVAL;
1225
1226 /* collapse range should be aligned to block size of f2fs. */
1227 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1228 return -EINVAL;
1229
1230 ret = f2fs_convert_inline_inode(inode);
1231 if (ret)
1232 return ret;
1233
1234 /* write out all dirty pages from offset */
1235 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1236 if (ret)
1237 return ret;
1238
1239 ret = f2fs_do_collapse(inode, offset, len);
1240 if (ret)
1241 return ret;
1242
1243 /* write out all moved pages, if possible */
1244 down_write(&F2FS_I(inode)->i_mmap_sem);
1245 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1246 truncate_pagecache(inode, offset);
1247
1248 new_size = i_size_read(inode) - len;
1249 truncate_pagecache(inode, new_size);
1250
1251 ret = f2fs_truncate_blocks(inode, new_size, true);
1252 up_write(&F2FS_I(inode)->i_mmap_sem);
1253 if (!ret)
1254 f2fs_i_size_write(inode, new_size);
1255 return ret;
1256 }
1257
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1258 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1259 pgoff_t end)
1260 {
1261 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1262 pgoff_t index = start;
1263 unsigned int ofs_in_node = dn->ofs_in_node;
1264 blkcnt_t count = 0;
1265 int ret;
1266
1267 for (; index < end; index++, dn->ofs_in_node++) {
1268 if (datablock_addr(dn->inode, dn->node_page,
1269 dn->ofs_in_node) == NULL_ADDR)
1270 count++;
1271 }
1272
1273 dn->ofs_in_node = ofs_in_node;
1274 ret = f2fs_reserve_new_blocks(dn, count);
1275 if (ret)
1276 return ret;
1277
1278 dn->ofs_in_node = ofs_in_node;
1279 for (index = start; index < end; index++, dn->ofs_in_node++) {
1280 dn->data_blkaddr = datablock_addr(dn->inode,
1281 dn->node_page, dn->ofs_in_node);
1282 /*
1283 * f2fs_reserve_new_blocks will not guarantee entire block
1284 * allocation.
1285 */
1286 if (dn->data_blkaddr == NULL_ADDR) {
1287 ret = -ENOSPC;
1288 break;
1289 }
1290 if (dn->data_blkaddr != NEW_ADDR) {
1291 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1292 dn->data_blkaddr = NEW_ADDR;
1293 f2fs_set_data_blkaddr(dn);
1294 }
1295 }
1296
1297 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1298
1299 return ret;
1300 }
1301
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1302 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1303 int mode)
1304 {
1305 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1306 struct address_space *mapping = inode->i_mapping;
1307 pgoff_t index, pg_start, pg_end;
1308 loff_t new_size = i_size_read(inode);
1309 loff_t off_start, off_end;
1310 int ret = 0;
1311
1312 ret = inode_newsize_ok(inode, (len + offset));
1313 if (ret)
1314 return ret;
1315
1316 ret = f2fs_convert_inline_inode(inode);
1317 if (ret)
1318 return ret;
1319
1320 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1321 if (ret)
1322 return ret;
1323
1324 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1325 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1326
1327 off_start = offset & (PAGE_SIZE - 1);
1328 off_end = (offset + len) & (PAGE_SIZE - 1);
1329
1330 if (pg_start == pg_end) {
1331 ret = fill_zero(inode, pg_start, off_start,
1332 off_end - off_start);
1333 if (ret)
1334 return ret;
1335
1336 new_size = max_t(loff_t, new_size, offset + len);
1337 } else {
1338 if (off_start) {
1339 ret = fill_zero(inode, pg_start++, off_start,
1340 PAGE_SIZE - off_start);
1341 if (ret)
1342 return ret;
1343
1344 new_size = max_t(loff_t, new_size,
1345 (loff_t)pg_start << PAGE_SHIFT);
1346 }
1347
1348 for (index = pg_start; index < pg_end;) {
1349 struct dnode_of_data dn;
1350 unsigned int end_offset;
1351 pgoff_t end;
1352
1353 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1354 down_write(&F2FS_I(inode)->i_mmap_sem);
1355
1356 truncate_pagecache_range(inode,
1357 (loff_t)index << PAGE_SHIFT,
1358 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1359
1360 f2fs_lock_op(sbi);
1361
1362 set_new_dnode(&dn, inode, NULL, NULL, 0);
1363 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1364 if (ret) {
1365 f2fs_unlock_op(sbi);
1366 up_write(&F2FS_I(inode)->i_mmap_sem);
1367 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1368 goto out;
1369 }
1370
1371 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1372 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1373
1374 ret = f2fs_do_zero_range(&dn, index, end);
1375 f2fs_put_dnode(&dn);
1376
1377 f2fs_unlock_op(sbi);
1378 up_write(&F2FS_I(inode)->i_mmap_sem);
1379 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1380
1381 f2fs_balance_fs(sbi, dn.node_changed);
1382
1383 if (ret)
1384 goto out;
1385
1386 index = end;
1387 new_size = max_t(loff_t, new_size,
1388 (loff_t)index << PAGE_SHIFT);
1389 }
1390
1391 if (off_end) {
1392 ret = fill_zero(inode, pg_end, 0, off_end);
1393 if (ret)
1394 goto out;
1395
1396 new_size = max_t(loff_t, new_size, offset + len);
1397 }
1398 }
1399
1400 out:
1401 if (new_size > i_size_read(inode)) {
1402 if (mode & FALLOC_FL_KEEP_SIZE)
1403 file_set_keep_isize(inode);
1404 else
1405 f2fs_i_size_write(inode, new_size);
1406 }
1407 return ret;
1408 }
1409
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1410 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1413 pgoff_t nr, pg_start, pg_end, delta, idx;
1414 loff_t new_size;
1415 int ret = 0;
1416
1417 new_size = i_size_read(inode) + len;
1418 ret = inode_newsize_ok(inode, new_size);
1419 if (ret)
1420 return ret;
1421
1422 if (offset >= i_size_read(inode))
1423 return -EINVAL;
1424
1425 /* insert range should be aligned to block size of f2fs. */
1426 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1427 return -EINVAL;
1428
1429 ret = f2fs_convert_inline_inode(inode);
1430 if (ret)
1431 return ret;
1432
1433 f2fs_balance_fs(sbi, true);
1434
1435 down_write(&F2FS_I(inode)->i_mmap_sem);
1436 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1437 up_write(&F2FS_I(inode)->i_mmap_sem);
1438 if (ret)
1439 return ret;
1440
1441 /* write out all dirty pages from offset */
1442 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1443 if (ret)
1444 return ret;
1445
1446 pg_start = offset >> PAGE_SHIFT;
1447 pg_end = (offset + len) >> PAGE_SHIFT;
1448 delta = pg_end - pg_start;
1449 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1450
1451 /* avoid gc operation during block exchange */
1452 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1453 down_write(&F2FS_I(inode)->i_mmap_sem);
1454 truncate_pagecache(inode, offset);
1455
1456 while (!ret && idx > pg_start) {
1457 nr = idx - pg_start;
1458 if (nr > delta)
1459 nr = delta;
1460 idx -= nr;
1461
1462 f2fs_lock_op(sbi);
1463 f2fs_drop_extent_tree(inode);
1464
1465 ret = __exchange_data_block(inode, inode, idx,
1466 idx + delta, nr, false);
1467 f2fs_unlock_op(sbi);
1468 }
1469 up_write(&F2FS_I(inode)->i_mmap_sem);
1470 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1471
1472 /* write out all moved pages, if possible */
1473 down_write(&F2FS_I(inode)->i_mmap_sem);
1474 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1475 truncate_pagecache(inode, offset);
1476 up_write(&F2FS_I(inode)->i_mmap_sem);
1477
1478 if (!ret)
1479 f2fs_i_size_write(inode, new_size);
1480 return ret;
1481 }
1482
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1483 static int expand_inode_data(struct inode *inode, loff_t offset,
1484 loff_t len, int mode)
1485 {
1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1488 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1489 pgoff_t pg_end;
1490 loff_t new_size = i_size_read(inode);
1491 loff_t off_end;
1492 int err;
1493
1494 err = inode_newsize_ok(inode, (len + offset));
1495 if (err)
1496 return err;
1497
1498 err = f2fs_convert_inline_inode(inode);
1499 if (err)
1500 return err;
1501
1502 f2fs_balance_fs(sbi, true);
1503
1504 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1505 off_end = (offset + len) & (PAGE_SIZE - 1);
1506
1507 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1508 map.m_len = pg_end - map.m_lblk;
1509 if (off_end)
1510 map.m_len++;
1511
1512 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1513 if (err) {
1514 pgoff_t last_off;
1515
1516 if (!map.m_len)
1517 return err;
1518
1519 last_off = map.m_lblk + map.m_len - 1;
1520
1521 /* update new size to the failed position */
1522 new_size = (last_off == pg_end) ? offset + len :
1523 (loff_t)(last_off + 1) << PAGE_SHIFT;
1524 } else {
1525 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1526 }
1527
1528 if (new_size > i_size_read(inode)) {
1529 if (mode & FALLOC_FL_KEEP_SIZE)
1530 file_set_keep_isize(inode);
1531 else
1532 f2fs_i_size_write(inode, new_size);
1533 }
1534
1535 return err;
1536 }
1537
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1538 static long f2fs_fallocate(struct file *file, int mode,
1539 loff_t offset, loff_t len)
1540 {
1541 struct inode *inode = file_inode(file);
1542 long ret = 0;
1543
1544 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1545 return -EIO;
1546
1547 /* f2fs only support ->fallocate for regular file */
1548 if (!S_ISREG(inode->i_mode))
1549 return -EINVAL;
1550
1551 if (f2fs_encrypted_inode(inode) &&
1552 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1553 return -EOPNOTSUPP;
1554
1555 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1556 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1557 FALLOC_FL_INSERT_RANGE))
1558 return -EOPNOTSUPP;
1559
1560 inode_lock(inode);
1561
1562 if (mode & FALLOC_FL_PUNCH_HOLE) {
1563 if (offset >= inode->i_size)
1564 goto out;
1565
1566 ret = punch_hole(inode, offset, len);
1567 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1568 ret = f2fs_collapse_range(inode, offset, len);
1569 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1570 ret = f2fs_zero_range(inode, offset, len, mode);
1571 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1572 ret = f2fs_insert_range(inode, offset, len);
1573 } else {
1574 ret = expand_inode_data(inode, offset, len, mode);
1575 }
1576
1577 if (!ret) {
1578 inode->i_mtime = inode->i_ctime = current_time(inode);
1579 f2fs_mark_inode_dirty_sync(inode, false);
1580 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1581 }
1582
1583 out:
1584 inode_unlock(inode);
1585
1586 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1587 return ret;
1588 }
1589
f2fs_release_file(struct inode * inode,struct file * filp)1590 static int f2fs_release_file(struct inode *inode, struct file *filp)
1591 {
1592 /*
1593 * f2fs_relase_file is called at every close calls. So we should
1594 * not drop any inmemory pages by close called by other process.
1595 */
1596 if (!(filp->f_mode & FMODE_WRITE) ||
1597 atomic_read(&inode->i_writecount) != 1)
1598 return 0;
1599
1600 /* some remained atomic pages should discarded */
1601 if (f2fs_is_atomic_file(inode))
1602 f2fs_drop_inmem_pages(inode);
1603 if (f2fs_is_volatile_file(inode)) {
1604 set_inode_flag(inode, FI_DROP_CACHE);
1605 filemap_fdatawrite(inode->i_mapping);
1606 clear_inode_flag(inode, FI_DROP_CACHE);
1607 clear_inode_flag(inode, FI_VOLATILE_FILE);
1608 stat_dec_volatile_write(inode);
1609 }
1610 return 0;
1611 }
1612
f2fs_file_flush(struct file * file,fl_owner_t id)1613 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1614 {
1615 struct inode *inode = file_inode(file);
1616
1617 /*
1618 * If the process doing a transaction is crashed, we should do
1619 * roll-back. Otherwise, other reader/write can see corrupted database
1620 * until all the writers close its file. Since this should be done
1621 * before dropping file lock, it needs to do in ->flush.
1622 */
1623 if (f2fs_is_atomic_file(inode) &&
1624 F2FS_I(inode)->inmem_task == current)
1625 f2fs_drop_inmem_pages(inode);
1626 return 0;
1627 }
1628
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1629 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1630 {
1631 struct inode *inode = file_inode(filp);
1632 struct f2fs_inode_info *fi = F2FS_I(inode);
1633 unsigned int flags = fi->i_flags;
1634
1635 if (f2fs_encrypted_inode(inode))
1636 flags |= F2FS_ENCRYPT_FL;
1637 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1638 flags |= F2FS_INLINE_DATA_FL;
1639
1640 flags &= F2FS_FL_USER_VISIBLE;
1641
1642 return put_user(flags, (int __user *)arg);
1643 }
1644
__f2fs_ioc_setflags(struct inode * inode,unsigned int flags)1645 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1646 {
1647 struct f2fs_inode_info *fi = F2FS_I(inode);
1648 unsigned int oldflags;
1649
1650 /* Is it quota file? Do not allow user to mess with it */
1651 if (IS_NOQUOTA(inode))
1652 return -EPERM;
1653
1654 flags = f2fs_mask_flags(inode->i_mode, flags);
1655
1656 oldflags = fi->i_flags;
1657
1658 if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1659 if (!capable(CAP_LINUX_IMMUTABLE))
1660 return -EPERM;
1661
1662 flags = flags & F2FS_FL_USER_MODIFIABLE;
1663 flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1664 fi->i_flags = flags;
1665
1666 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1667 set_inode_flag(inode, FI_PROJ_INHERIT);
1668 else
1669 clear_inode_flag(inode, FI_PROJ_INHERIT);
1670
1671 inode->i_ctime = current_time(inode);
1672 f2fs_set_inode_flags(inode);
1673 f2fs_mark_inode_dirty_sync(inode, true);
1674 return 0;
1675 }
1676
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1677 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1678 {
1679 struct inode *inode = file_inode(filp);
1680 unsigned int flags;
1681 int ret;
1682
1683 if (!inode_owner_or_capable(inode))
1684 return -EACCES;
1685
1686 if (get_user(flags, (int __user *)arg))
1687 return -EFAULT;
1688
1689 ret = mnt_want_write_file(filp);
1690 if (ret)
1691 return ret;
1692
1693 inode_lock(inode);
1694
1695 ret = __f2fs_ioc_setflags(inode, flags);
1696
1697 inode_unlock(inode);
1698 mnt_drop_write_file(filp);
1699 return ret;
1700 }
1701
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1702 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1703 {
1704 struct inode *inode = file_inode(filp);
1705
1706 return put_user(inode->i_generation, (int __user *)arg);
1707 }
1708
f2fs_ioc_start_atomic_write(struct file * filp)1709 static int f2fs_ioc_start_atomic_write(struct file *filp)
1710 {
1711 struct inode *inode = file_inode(filp);
1712 int ret;
1713
1714 if (!inode_owner_or_capable(inode))
1715 return -EACCES;
1716
1717 if (!S_ISREG(inode->i_mode))
1718 return -EINVAL;
1719
1720 ret = mnt_want_write_file(filp);
1721 if (ret)
1722 return ret;
1723
1724 inode_lock(inode);
1725
1726 if (f2fs_is_atomic_file(inode)) {
1727 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1728 ret = -EINVAL;
1729 goto out;
1730 }
1731
1732 ret = f2fs_convert_inline_inode(inode);
1733 if (ret)
1734 goto out;
1735
1736 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1737
1738 /*
1739 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1740 * f2fs_is_atomic_file.
1741 */
1742 if (get_dirty_pages(inode))
1743 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1744 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1745 inode->i_ino, get_dirty_pages(inode));
1746 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1747 if (ret) {
1748 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1749 goto out;
1750 }
1751
1752 set_inode_flag(inode, FI_ATOMIC_FILE);
1753 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1754 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1755
1756 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1757 F2FS_I(inode)->inmem_task = current;
1758 stat_inc_atomic_write(inode);
1759 stat_update_max_atomic_write(inode);
1760 out:
1761 inode_unlock(inode);
1762 mnt_drop_write_file(filp);
1763 return ret;
1764 }
1765
f2fs_ioc_commit_atomic_write(struct file * filp)1766 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1767 {
1768 struct inode *inode = file_inode(filp);
1769 int ret;
1770
1771 if (!inode_owner_or_capable(inode))
1772 return -EACCES;
1773
1774 ret = mnt_want_write_file(filp);
1775 if (ret)
1776 return ret;
1777
1778 f2fs_balance_fs(F2FS_I_SB(inode), true);
1779
1780 inode_lock(inode);
1781
1782 if (f2fs_is_volatile_file(inode)) {
1783 ret = -EINVAL;
1784 goto err_out;
1785 }
1786
1787 if (f2fs_is_atomic_file(inode)) {
1788 ret = f2fs_commit_inmem_pages(inode);
1789 if (ret)
1790 goto err_out;
1791
1792 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1793 if (!ret) {
1794 clear_inode_flag(inode, FI_ATOMIC_FILE);
1795 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1796 stat_dec_atomic_write(inode);
1797 }
1798 } else {
1799 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1800 }
1801 err_out:
1802 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1803 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1804 ret = -EINVAL;
1805 }
1806 inode_unlock(inode);
1807 mnt_drop_write_file(filp);
1808 return ret;
1809 }
1810
f2fs_ioc_start_volatile_write(struct file * filp)1811 static int f2fs_ioc_start_volatile_write(struct file *filp)
1812 {
1813 struct inode *inode = file_inode(filp);
1814 int ret;
1815
1816 if (!inode_owner_or_capable(inode))
1817 return -EACCES;
1818
1819 if (!S_ISREG(inode->i_mode))
1820 return -EINVAL;
1821
1822 ret = mnt_want_write_file(filp);
1823 if (ret)
1824 return ret;
1825
1826 inode_lock(inode);
1827
1828 if (f2fs_is_volatile_file(inode))
1829 goto out;
1830
1831 ret = f2fs_convert_inline_inode(inode);
1832 if (ret)
1833 goto out;
1834
1835 stat_inc_volatile_write(inode);
1836 stat_update_max_volatile_write(inode);
1837
1838 set_inode_flag(inode, FI_VOLATILE_FILE);
1839 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1840 out:
1841 inode_unlock(inode);
1842 mnt_drop_write_file(filp);
1843 return ret;
1844 }
1845
f2fs_ioc_release_volatile_write(struct file * filp)1846 static int f2fs_ioc_release_volatile_write(struct file *filp)
1847 {
1848 struct inode *inode = file_inode(filp);
1849 int ret;
1850
1851 if (!inode_owner_or_capable(inode))
1852 return -EACCES;
1853
1854 ret = mnt_want_write_file(filp);
1855 if (ret)
1856 return ret;
1857
1858 inode_lock(inode);
1859
1860 if (!f2fs_is_volatile_file(inode))
1861 goto out;
1862
1863 if (!f2fs_is_first_block_written(inode)) {
1864 ret = truncate_partial_data_page(inode, 0, true);
1865 goto out;
1866 }
1867
1868 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1869 out:
1870 inode_unlock(inode);
1871 mnt_drop_write_file(filp);
1872 return ret;
1873 }
1874
f2fs_ioc_abort_volatile_write(struct file * filp)1875 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1876 {
1877 struct inode *inode = file_inode(filp);
1878 int ret;
1879
1880 if (!inode_owner_or_capable(inode))
1881 return -EACCES;
1882
1883 ret = mnt_want_write_file(filp);
1884 if (ret)
1885 return ret;
1886
1887 inode_lock(inode);
1888
1889 if (f2fs_is_atomic_file(inode))
1890 f2fs_drop_inmem_pages(inode);
1891 if (f2fs_is_volatile_file(inode)) {
1892 clear_inode_flag(inode, FI_VOLATILE_FILE);
1893 stat_dec_volatile_write(inode);
1894 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1895 }
1896
1897 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1898
1899 inode_unlock(inode);
1900
1901 mnt_drop_write_file(filp);
1902 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1903 return ret;
1904 }
1905
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)1906 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1907 {
1908 struct inode *inode = file_inode(filp);
1909 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1910 struct super_block *sb = sbi->sb;
1911 __u32 in;
1912 int ret = 0;
1913
1914 if (!capable(CAP_SYS_ADMIN))
1915 return -EPERM;
1916
1917 if (get_user(in, (__u32 __user *)arg))
1918 return -EFAULT;
1919
1920 if (in != F2FS_GOING_DOWN_FULLSYNC) {
1921 ret = mnt_want_write_file(filp);
1922 if (ret)
1923 return ret;
1924 }
1925
1926 switch (in) {
1927 case F2FS_GOING_DOWN_FULLSYNC:
1928 sb = freeze_bdev(sb->s_bdev);
1929 if (IS_ERR(sb)) {
1930 ret = PTR_ERR(sb);
1931 goto out;
1932 }
1933 if (sb) {
1934 f2fs_stop_checkpoint(sbi, false);
1935 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1936 thaw_bdev(sb->s_bdev, sb);
1937 }
1938 break;
1939 case F2FS_GOING_DOWN_METASYNC:
1940 /* do checkpoint only */
1941 ret = f2fs_sync_fs(sb, 1);
1942 if (ret)
1943 goto out;
1944 f2fs_stop_checkpoint(sbi, false);
1945 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1946 break;
1947 case F2FS_GOING_DOWN_NOSYNC:
1948 f2fs_stop_checkpoint(sbi, false);
1949 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1950 break;
1951 case F2FS_GOING_DOWN_METAFLUSH:
1952 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1953 f2fs_stop_checkpoint(sbi, false);
1954 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1955 break;
1956 default:
1957 ret = -EINVAL;
1958 goto out;
1959 }
1960
1961 f2fs_stop_gc_thread(sbi);
1962 f2fs_stop_discard_thread(sbi);
1963
1964 f2fs_drop_discard_cmd(sbi);
1965 clear_opt(sbi, DISCARD);
1966
1967 f2fs_update_time(sbi, REQ_TIME);
1968 out:
1969 if (in != F2FS_GOING_DOWN_FULLSYNC)
1970 mnt_drop_write_file(filp);
1971 return ret;
1972 }
1973
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)1974 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1975 {
1976 struct inode *inode = file_inode(filp);
1977 struct super_block *sb = inode->i_sb;
1978 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1979 struct fstrim_range range;
1980 int ret;
1981
1982 if (!capable(CAP_SYS_ADMIN))
1983 return -EPERM;
1984
1985 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
1986 return -EOPNOTSUPP;
1987
1988 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1989 sizeof(range)))
1990 return -EFAULT;
1991
1992 ret = mnt_want_write_file(filp);
1993 if (ret)
1994 return ret;
1995
1996 range.minlen = max((unsigned int)range.minlen,
1997 q->limits.discard_granularity);
1998 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1999 mnt_drop_write_file(filp);
2000 if (ret < 0)
2001 return ret;
2002
2003 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2004 sizeof(range)))
2005 return -EFAULT;
2006 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2007 return 0;
2008 }
2009
uuid_is_nonzero(__u8 u[16])2010 static bool uuid_is_nonzero(__u8 u[16])
2011 {
2012 int i;
2013
2014 for (i = 0; i < 16; i++)
2015 if (u[i])
2016 return true;
2017 return false;
2018 }
2019
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2020 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2021 {
2022 struct inode *inode = file_inode(filp);
2023
2024 if (!f2fs_sb_has_encrypt(inode->i_sb))
2025 return -EOPNOTSUPP;
2026
2027 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2028
2029 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2030 }
2031
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2032 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2033 {
2034 if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
2035 return -EOPNOTSUPP;
2036 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2037 }
2038
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2039 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2040 {
2041 struct inode *inode = file_inode(filp);
2042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2043 int err;
2044
2045 if (!f2fs_sb_has_encrypt(inode->i_sb))
2046 return -EOPNOTSUPP;
2047
2048 err = mnt_want_write_file(filp);
2049 if (err)
2050 return err;
2051
2052 down_write(&sbi->sb_lock);
2053
2054 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2055 goto got_it;
2056
2057 /* update superblock with uuid */
2058 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2059
2060 err = f2fs_commit_super(sbi, false);
2061 if (err) {
2062 /* undo new data */
2063 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2064 goto out_err;
2065 }
2066 got_it:
2067 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2068 16))
2069 err = -EFAULT;
2070 out_err:
2071 up_write(&sbi->sb_lock);
2072 mnt_drop_write_file(filp);
2073 return err;
2074 }
2075
f2fs_ioc_gc(struct file * filp,unsigned long arg)2076 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2077 {
2078 struct inode *inode = file_inode(filp);
2079 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2080 __u32 sync;
2081 int ret;
2082
2083 if (!capable(CAP_SYS_ADMIN))
2084 return -EPERM;
2085
2086 if (get_user(sync, (__u32 __user *)arg))
2087 return -EFAULT;
2088
2089 if (f2fs_readonly(sbi->sb))
2090 return -EROFS;
2091
2092 ret = mnt_want_write_file(filp);
2093 if (ret)
2094 return ret;
2095
2096 if (!sync) {
2097 if (!mutex_trylock(&sbi->gc_mutex)) {
2098 ret = -EBUSY;
2099 goto out;
2100 }
2101 } else {
2102 mutex_lock(&sbi->gc_mutex);
2103 }
2104
2105 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2106 out:
2107 mnt_drop_write_file(filp);
2108 return ret;
2109 }
2110
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2111 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2112 {
2113 struct inode *inode = file_inode(filp);
2114 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2115 struct f2fs_gc_range range;
2116 u64 end;
2117 int ret;
2118
2119 if (!capable(CAP_SYS_ADMIN))
2120 return -EPERM;
2121
2122 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2123 sizeof(range)))
2124 return -EFAULT;
2125
2126 if (f2fs_readonly(sbi->sb))
2127 return -EROFS;
2128
2129 end = range.start + range.len;
2130 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2131 return -EINVAL;
2132 }
2133
2134 ret = mnt_want_write_file(filp);
2135 if (ret)
2136 return ret;
2137
2138 do_more:
2139 if (!range.sync) {
2140 if (!mutex_trylock(&sbi->gc_mutex)) {
2141 ret = -EBUSY;
2142 goto out;
2143 }
2144 } else {
2145 mutex_lock(&sbi->gc_mutex);
2146 }
2147
2148 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2149 range.start += BLKS_PER_SEC(sbi);
2150 if (range.start <= end)
2151 goto do_more;
2152 out:
2153 mnt_drop_write_file(filp);
2154 return ret;
2155 }
2156
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2157 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2158 {
2159 struct inode *inode = file_inode(filp);
2160 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2161 int ret;
2162
2163 if (!capable(CAP_SYS_ADMIN))
2164 return -EPERM;
2165
2166 if (f2fs_readonly(sbi->sb))
2167 return -EROFS;
2168
2169 ret = mnt_want_write_file(filp);
2170 if (ret)
2171 return ret;
2172
2173 ret = f2fs_sync_fs(sbi->sb, 1);
2174
2175 mnt_drop_write_file(filp);
2176 return ret;
2177 }
2178
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2179 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2180 struct file *filp,
2181 struct f2fs_defragment *range)
2182 {
2183 struct inode *inode = file_inode(filp);
2184 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2185 .m_seg_type = NO_CHECK_TYPE };
2186 struct extent_info ei = {0, 0, 0};
2187 pgoff_t pg_start, pg_end, next_pgofs;
2188 unsigned int blk_per_seg = sbi->blocks_per_seg;
2189 unsigned int total = 0, sec_num;
2190 block_t blk_end = 0;
2191 bool fragmented = false;
2192 int err;
2193
2194 /* if in-place-update policy is enabled, don't waste time here */
2195 if (f2fs_should_update_inplace(inode, NULL))
2196 return -EINVAL;
2197
2198 pg_start = range->start >> PAGE_SHIFT;
2199 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2200
2201 f2fs_balance_fs(sbi, true);
2202
2203 inode_lock(inode);
2204
2205 /* writeback all dirty pages in the range */
2206 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2207 range->start + range->len - 1);
2208 if (err)
2209 goto out;
2210
2211 /*
2212 * lookup mapping info in extent cache, skip defragmenting if physical
2213 * block addresses are continuous.
2214 */
2215 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2216 if (ei.fofs + ei.len >= pg_end)
2217 goto out;
2218 }
2219
2220 map.m_lblk = pg_start;
2221 map.m_next_pgofs = &next_pgofs;
2222
2223 /*
2224 * lookup mapping info in dnode page cache, skip defragmenting if all
2225 * physical block addresses are continuous even if there are hole(s)
2226 * in logical blocks.
2227 */
2228 while (map.m_lblk < pg_end) {
2229 map.m_len = pg_end - map.m_lblk;
2230 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2231 if (err)
2232 goto out;
2233
2234 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2235 map.m_lblk = next_pgofs;
2236 continue;
2237 }
2238
2239 if (blk_end && blk_end != map.m_pblk)
2240 fragmented = true;
2241
2242 /* record total count of block that we're going to move */
2243 total += map.m_len;
2244
2245 blk_end = map.m_pblk + map.m_len;
2246
2247 map.m_lblk += map.m_len;
2248 }
2249
2250 if (!fragmented)
2251 goto out;
2252
2253 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2254
2255 /*
2256 * make sure there are enough free section for LFS allocation, this can
2257 * avoid defragment running in SSR mode when free section are allocated
2258 * intensively
2259 */
2260 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2261 err = -EAGAIN;
2262 goto out;
2263 }
2264
2265 map.m_lblk = pg_start;
2266 map.m_len = pg_end - pg_start;
2267 total = 0;
2268
2269 while (map.m_lblk < pg_end) {
2270 pgoff_t idx;
2271 int cnt = 0;
2272
2273 do_map:
2274 map.m_len = pg_end - map.m_lblk;
2275 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2276 if (err)
2277 goto clear_out;
2278
2279 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2280 map.m_lblk = next_pgofs;
2281 continue;
2282 }
2283
2284 set_inode_flag(inode, FI_DO_DEFRAG);
2285
2286 idx = map.m_lblk;
2287 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2288 struct page *page;
2289
2290 page = f2fs_get_lock_data_page(inode, idx, true);
2291 if (IS_ERR(page)) {
2292 err = PTR_ERR(page);
2293 goto clear_out;
2294 }
2295
2296 set_page_dirty(page);
2297 f2fs_put_page(page, 1);
2298
2299 idx++;
2300 cnt++;
2301 total++;
2302 }
2303
2304 map.m_lblk = idx;
2305
2306 if (idx < pg_end && cnt < blk_per_seg)
2307 goto do_map;
2308
2309 clear_inode_flag(inode, FI_DO_DEFRAG);
2310
2311 err = filemap_fdatawrite(inode->i_mapping);
2312 if (err)
2313 goto out;
2314 }
2315 clear_out:
2316 clear_inode_flag(inode, FI_DO_DEFRAG);
2317 out:
2318 inode_unlock(inode);
2319 if (!err)
2320 range->len = (u64)total << PAGE_SHIFT;
2321 return err;
2322 }
2323
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2324 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2325 {
2326 struct inode *inode = file_inode(filp);
2327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2328 struct f2fs_defragment range;
2329 int err;
2330
2331 if (!capable(CAP_SYS_ADMIN))
2332 return -EPERM;
2333
2334 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2335 return -EINVAL;
2336
2337 if (f2fs_readonly(sbi->sb))
2338 return -EROFS;
2339
2340 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2341 sizeof(range)))
2342 return -EFAULT;
2343
2344 /* verify alignment of offset & size */
2345 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2346 return -EINVAL;
2347
2348 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2349 sbi->max_file_blocks))
2350 return -EINVAL;
2351
2352 err = mnt_want_write_file(filp);
2353 if (err)
2354 return err;
2355
2356 err = f2fs_defragment_range(sbi, filp, &range);
2357 mnt_drop_write_file(filp);
2358
2359 f2fs_update_time(sbi, REQ_TIME);
2360 if (err < 0)
2361 return err;
2362
2363 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2364 sizeof(range)))
2365 return -EFAULT;
2366
2367 return 0;
2368 }
2369
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2370 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2371 struct file *file_out, loff_t pos_out, size_t len)
2372 {
2373 struct inode *src = file_inode(file_in);
2374 struct inode *dst = file_inode(file_out);
2375 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2376 size_t olen = len, dst_max_i_size = 0;
2377 size_t dst_osize;
2378 int ret;
2379
2380 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2381 src->i_sb != dst->i_sb)
2382 return -EXDEV;
2383
2384 if (unlikely(f2fs_readonly(src->i_sb)))
2385 return -EROFS;
2386
2387 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2388 return -EINVAL;
2389
2390 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2391 return -EOPNOTSUPP;
2392
2393 if (src == dst) {
2394 if (pos_in == pos_out)
2395 return 0;
2396 if (pos_out > pos_in && pos_out < pos_in + len)
2397 return -EINVAL;
2398 }
2399
2400 inode_lock(src);
2401 if (src != dst) {
2402 ret = -EBUSY;
2403 if (!inode_trylock(dst))
2404 goto out;
2405 }
2406
2407 ret = -EINVAL;
2408 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2409 goto out_unlock;
2410 if (len == 0)
2411 olen = len = src->i_size - pos_in;
2412 if (pos_in + len == src->i_size)
2413 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2414 if (len == 0) {
2415 ret = 0;
2416 goto out_unlock;
2417 }
2418
2419 dst_osize = dst->i_size;
2420 if (pos_out + olen > dst->i_size)
2421 dst_max_i_size = pos_out + olen;
2422
2423 /* verify the end result is block aligned */
2424 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2425 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2426 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2427 goto out_unlock;
2428
2429 ret = f2fs_convert_inline_inode(src);
2430 if (ret)
2431 goto out_unlock;
2432
2433 ret = f2fs_convert_inline_inode(dst);
2434 if (ret)
2435 goto out_unlock;
2436
2437 /* write out all dirty pages from offset */
2438 ret = filemap_write_and_wait_range(src->i_mapping,
2439 pos_in, pos_in + len);
2440 if (ret)
2441 goto out_unlock;
2442
2443 ret = filemap_write_and_wait_range(dst->i_mapping,
2444 pos_out, pos_out + len);
2445 if (ret)
2446 goto out_unlock;
2447
2448 f2fs_balance_fs(sbi, true);
2449
2450 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2451 if (src != dst) {
2452 ret = -EBUSY;
2453 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2454 goto out_src;
2455 }
2456
2457 f2fs_lock_op(sbi);
2458 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2459 pos_out >> F2FS_BLKSIZE_BITS,
2460 len >> F2FS_BLKSIZE_BITS, false);
2461
2462 if (!ret) {
2463 if (dst_max_i_size)
2464 f2fs_i_size_write(dst, dst_max_i_size);
2465 else if (dst_osize != dst->i_size)
2466 f2fs_i_size_write(dst, dst_osize);
2467 }
2468 f2fs_unlock_op(sbi);
2469
2470 if (src != dst)
2471 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2472 out_src:
2473 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2474 out_unlock:
2475 if (src != dst)
2476 inode_unlock(dst);
2477 out:
2478 inode_unlock(src);
2479 return ret;
2480 }
2481
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2482 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2483 {
2484 struct f2fs_move_range range;
2485 struct fd dst;
2486 int err;
2487
2488 if (!(filp->f_mode & FMODE_READ) ||
2489 !(filp->f_mode & FMODE_WRITE))
2490 return -EBADF;
2491
2492 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2493 sizeof(range)))
2494 return -EFAULT;
2495
2496 dst = fdget(range.dst_fd);
2497 if (!dst.file)
2498 return -EBADF;
2499
2500 if (!(dst.file->f_mode & FMODE_WRITE)) {
2501 err = -EBADF;
2502 goto err_out;
2503 }
2504
2505 err = mnt_want_write_file(filp);
2506 if (err)
2507 goto err_out;
2508
2509 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2510 range.pos_out, range.len);
2511
2512 mnt_drop_write_file(filp);
2513 if (err)
2514 goto err_out;
2515
2516 if (copy_to_user((struct f2fs_move_range __user *)arg,
2517 &range, sizeof(range)))
2518 err = -EFAULT;
2519 err_out:
2520 fdput(dst);
2521 return err;
2522 }
2523
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2524 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2525 {
2526 struct inode *inode = file_inode(filp);
2527 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2528 struct sit_info *sm = SIT_I(sbi);
2529 unsigned int start_segno = 0, end_segno = 0;
2530 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2531 struct f2fs_flush_device range;
2532 int ret;
2533
2534 if (!capable(CAP_SYS_ADMIN))
2535 return -EPERM;
2536
2537 if (f2fs_readonly(sbi->sb))
2538 return -EROFS;
2539
2540 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2541 sizeof(range)))
2542 return -EFAULT;
2543
2544 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2545 sbi->segs_per_sec != 1) {
2546 f2fs_msg(sbi->sb, KERN_WARNING,
2547 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2548 range.dev_num, sbi->s_ndevs,
2549 sbi->segs_per_sec);
2550 return -EINVAL;
2551 }
2552
2553 ret = mnt_want_write_file(filp);
2554 if (ret)
2555 return ret;
2556
2557 if (range.dev_num != 0)
2558 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2559 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2560
2561 start_segno = sm->last_victim[FLUSH_DEVICE];
2562 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2563 start_segno = dev_start_segno;
2564 end_segno = min(start_segno + range.segments, dev_end_segno);
2565
2566 while (start_segno < end_segno) {
2567 if (!mutex_trylock(&sbi->gc_mutex)) {
2568 ret = -EBUSY;
2569 goto out;
2570 }
2571 sm->last_victim[GC_CB] = end_segno + 1;
2572 sm->last_victim[GC_GREEDY] = end_segno + 1;
2573 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2574 ret = f2fs_gc(sbi, true, true, start_segno);
2575 if (ret == -EAGAIN)
2576 ret = 0;
2577 else if (ret < 0)
2578 break;
2579 start_segno++;
2580 }
2581 out:
2582 mnt_drop_write_file(filp);
2583 return ret;
2584 }
2585
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2586 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2587 {
2588 struct inode *inode = file_inode(filp);
2589 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2590
2591 /* Must validate to set it with SQLite behavior in Android. */
2592 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2593
2594 return put_user(sb_feature, (u32 __user *)arg);
2595 }
2596
2597 #ifdef CONFIG_QUOTA
f2fs_ioc_setproject(struct file * filp,__u32 projid)2598 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2599 {
2600 struct inode *inode = file_inode(filp);
2601 struct f2fs_inode_info *fi = F2FS_I(inode);
2602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603 struct super_block *sb = sbi->sb;
2604 struct dquot *transfer_to[MAXQUOTAS] = {};
2605 struct page *ipage;
2606 kprojid_t kprojid;
2607 int err;
2608
2609 if (!f2fs_sb_has_project_quota(sb)) {
2610 if (projid != F2FS_DEF_PROJID)
2611 return -EOPNOTSUPP;
2612 else
2613 return 0;
2614 }
2615
2616 if (!f2fs_has_extra_attr(inode))
2617 return -EOPNOTSUPP;
2618
2619 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2620
2621 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2622 return 0;
2623
2624 err = -EPERM;
2625 /* Is it quota file? Do not allow user to mess with it */
2626 if (IS_NOQUOTA(inode))
2627 return err;
2628
2629 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2630 if (IS_ERR(ipage))
2631 return PTR_ERR(ipage);
2632
2633 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2634 i_projid)) {
2635 err = -EOVERFLOW;
2636 f2fs_put_page(ipage, 1);
2637 return err;
2638 }
2639 f2fs_put_page(ipage, 1);
2640
2641 err = dquot_initialize(inode);
2642 if (err)
2643 return err;
2644
2645 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2646 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2647 err = __dquot_transfer(inode, transfer_to);
2648 dqput(transfer_to[PRJQUOTA]);
2649 if (err)
2650 goto out_dirty;
2651 }
2652
2653 F2FS_I(inode)->i_projid = kprojid;
2654 inode->i_ctime = current_time(inode);
2655 out_dirty:
2656 f2fs_mark_inode_dirty_sync(inode, true);
2657 return err;
2658 }
2659 #else
f2fs_ioc_setproject(struct file * filp,__u32 projid)2660 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2661 {
2662 if (projid != F2FS_DEF_PROJID)
2663 return -EOPNOTSUPP;
2664 return 0;
2665 }
2666 #endif
2667
2668 /* Transfer internal flags to xflags */
f2fs_iflags_to_xflags(unsigned long iflags)2669 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2670 {
2671 __u32 xflags = 0;
2672
2673 if (iflags & F2FS_SYNC_FL)
2674 xflags |= FS_XFLAG_SYNC;
2675 if (iflags & F2FS_IMMUTABLE_FL)
2676 xflags |= FS_XFLAG_IMMUTABLE;
2677 if (iflags & F2FS_APPEND_FL)
2678 xflags |= FS_XFLAG_APPEND;
2679 if (iflags & F2FS_NODUMP_FL)
2680 xflags |= FS_XFLAG_NODUMP;
2681 if (iflags & F2FS_NOATIME_FL)
2682 xflags |= FS_XFLAG_NOATIME;
2683 if (iflags & F2FS_PROJINHERIT_FL)
2684 xflags |= FS_XFLAG_PROJINHERIT;
2685 return xflags;
2686 }
2687
2688 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2689 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2690 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2691
2692 /* Transfer xflags flags to internal */
f2fs_xflags_to_iflags(__u32 xflags)2693 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2694 {
2695 unsigned long iflags = 0;
2696
2697 if (xflags & FS_XFLAG_SYNC)
2698 iflags |= F2FS_SYNC_FL;
2699 if (xflags & FS_XFLAG_IMMUTABLE)
2700 iflags |= F2FS_IMMUTABLE_FL;
2701 if (xflags & FS_XFLAG_APPEND)
2702 iflags |= F2FS_APPEND_FL;
2703 if (xflags & FS_XFLAG_NODUMP)
2704 iflags |= F2FS_NODUMP_FL;
2705 if (xflags & FS_XFLAG_NOATIME)
2706 iflags |= F2FS_NOATIME_FL;
2707 if (xflags & FS_XFLAG_PROJINHERIT)
2708 iflags |= F2FS_PROJINHERIT_FL;
2709
2710 return iflags;
2711 }
2712
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)2713 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2714 {
2715 struct inode *inode = file_inode(filp);
2716 struct f2fs_inode_info *fi = F2FS_I(inode);
2717 struct fsxattr fa;
2718
2719 memset(&fa, 0, sizeof(struct fsxattr));
2720 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2721 F2FS_FL_USER_VISIBLE);
2722
2723 if (f2fs_sb_has_project_quota(inode->i_sb))
2724 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2725 fi->i_projid);
2726
2727 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2728 return -EFAULT;
2729 return 0;
2730 }
2731
f2fs_ioctl_check_project(struct inode * inode,struct fsxattr * fa)2732 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
2733 {
2734 /*
2735 * Project Quota ID state is only allowed to change from within the init
2736 * namespace. Enforce that restriction only if we are trying to change
2737 * the quota ID state. Everything else is allowed in user namespaces.
2738 */
2739 if (current_user_ns() == &init_user_ns)
2740 return 0;
2741
2742 if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
2743 return -EINVAL;
2744
2745 if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
2746 if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
2747 return -EINVAL;
2748 } else {
2749 if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
2750 return -EINVAL;
2751 }
2752
2753 return 0;
2754 }
2755
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)2756 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2757 {
2758 struct inode *inode = file_inode(filp);
2759 struct f2fs_inode_info *fi = F2FS_I(inode);
2760 struct fsxattr fa;
2761 unsigned int flags;
2762 int err;
2763
2764 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2765 return -EFAULT;
2766
2767 /* Make sure caller has proper permission */
2768 if (!inode_owner_or_capable(inode))
2769 return -EACCES;
2770
2771 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2772 return -EOPNOTSUPP;
2773
2774 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2775 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2776 return -EOPNOTSUPP;
2777
2778 err = mnt_want_write_file(filp);
2779 if (err)
2780 return err;
2781
2782 inode_lock(inode);
2783 err = f2fs_ioctl_check_project(inode, &fa);
2784 if (err)
2785 goto out;
2786 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2787 (flags & F2FS_FL_XFLAG_VISIBLE);
2788 err = __f2fs_ioc_setflags(inode, flags);
2789 if (err)
2790 goto out;
2791
2792 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2793 out:
2794 inode_unlock(inode);
2795 mnt_drop_write_file(filp);
2796 return err;
2797 }
2798
f2fs_pin_file_control(struct inode * inode,bool inc)2799 int f2fs_pin_file_control(struct inode *inode, bool inc)
2800 {
2801 struct f2fs_inode_info *fi = F2FS_I(inode);
2802 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2803
2804 /* Use i_gc_failures for normal file as a risk signal. */
2805 if (inc)
2806 f2fs_i_gc_failures_write(inode,
2807 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2808
2809 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2810 f2fs_msg(sbi->sb, KERN_WARNING,
2811 "%s: Enable GC = ino %lx after %x GC trials\n",
2812 __func__, inode->i_ino,
2813 fi->i_gc_failures[GC_FAILURE_PIN]);
2814 clear_inode_flag(inode, FI_PIN_FILE);
2815 return -EAGAIN;
2816 }
2817 return 0;
2818 }
2819
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)2820 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2821 {
2822 struct inode *inode = file_inode(filp);
2823 __u32 pin;
2824 int ret = 0;
2825
2826 if (!inode_owner_or_capable(inode))
2827 return -EACCES;
2828
2829 if (get_user(pin, (__u32 __user *)arg))
2830 return -EFAULT;
2831
2832 if (!S_ISREG(inode->i_mode))
2833 return -EINVAL;
2834
2835 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2836 return -EROFS;
2837
2838 ret = mnt_want_write_file(filp);
2839 if (ret)
2840 return ret;
2841
2842 inode_lock(inode);
2843
2844 if (f2fs_should_update_outplace(inode, NULL)) {
2845 ret = -EINVAL;
2846 goto out;
2847 }
2848
2849 if (!pin) {
2850 clear_inode_flag(inode, FI_PIN_FILE);
2851 f2fs_i_gc_failures_write(inode, 0);
2852 goto done;
2853 }
2854
2855 if (f2fs_pin_file_control(inode, false)) {
2856 ret = -EAGAIN;
2857 goto out;
2858 }
2859 ret = f2fs_convert_inline_inode(inode);
2860 if (ret)
2861 goto out;
2862
2863 set_inode_flag(inode, FI_PIN_FILE);
2864 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2865 done:
2866 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2867 out:
2868 inode_unlock(inode);
2869 mnt_drop_write_file(filp);
2870 return ret;
2871 }
2872
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)2873 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2874 {
2875 struct inode *inode = file_inode(filp);
2876 __u32 pin = 0;
2877
2878 if (is_inode_flag_set(inode, FI_PIN_FILE))
2879 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2880 return put_user(pin, (u32 __user *)arg);
2881 }
2882
f2fs_precache_extents(struct inode * inode)2883 int f2fs_precache_extents(struct inode *inode)
2884 {
2885 struct f2fs_inode_info *fi = F2FS_I(inode);
2886 struct f2fs_map_blocks map;
2887 pgoff_t m_next_extent;
2888 loff_t end;
2889 int err;
2890
2891 if (is_inode_flag_set(inode, FI_NO_EXTENT))
2892 return -EOPNOTSUPP;
2893
2894 map.m_lblk = 0;
2895 map.m_next_pgofs = NULL;
2896 map.m_next_extent = &m_next_extent;
2897 map.m_seg_type = NO_CHECK_TYPE;
2898 end = F2FS_I_SB(inode)->max_file_blocks;
2899
2900 while (map.m_lblk < end) {
2901 map.m_len = end - map.m_lblk;
2902
2903 down_write(&fi->i_gc_rwsem[WRITE]);
2904 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2905 up_write(&fi->i_gc_rwsem[WRITE]);
2906 if (err)
2907 return err;
2908
2909 map.m_lblk = m_next_extent;
2910 }
2911
2912 return err;
2913 }
2914
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)2915 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2916 {
2917 return f2fs_precache_extents(file_inode(filp));
2918 }
2919
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2920 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2921 {
2922 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2923 return -EIO;
2924
2925 switch (cmd) {
2926 case F2FS_IOC_GETFLAGS:
2927 return f2fs_ioc_getflags(filp, arg);
2928 case F2FS_IOC_SETFLAGS:
2929 return f2fs_ioc_setflags(filp, arg);
2930 case F2FS_IOC_GETVERSION:
2931 return f2fs_ioc_getversion(filp, arg);
2932 case F2FS_IOC_START_ATOMIC_WRITE:
2933 return f2fs_ioc_start_atomic_write(filp);
2934 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2935 return f2fs_ioc_commit_atomic_write(filp);
2936 case F2FS_IOC_START_VOLATILE_WRITE:
2937 return f2fs_ioc_start_volatile_write(filp);
2938 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2939 return f2fs_ioc_release_volatile_write(filp);
2940 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2941 return f2fs_ioc_abort_volatile_write(filp);
2942 case F2FS_IOC_SHUTDOWN:
2943 return f2fs_ioc_shutdown(filp, arg);
2944 case FITRIM:
2945 return f2fs_ioc_fitrim(filp, arg);
2946 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2947 return f2fs_ioc_set_encryption_policy(filp, arg);
2948 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2949 return f2fs_ioc_get_encryption_policy(filp, arg);
2950 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2951 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2952 case F2FS_IOC_GARBAGE_COLLECT:
2953 return f2fs_ioc_gc(filp, arg);
2954 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2955 return f2fs_ioc_gc_range(filp, arg);
2956 case F2FS_IOC_WRITE_CHECKPOINT:
2957 return f2fs_ioc_write_checkpoint(filp, arg);
2958 case F2FS_IOC_DEFRAGMENT:
2959 return f2fs_ioc_defragment(filp, arg);
2960 case F2FS_IOC_MOVE_RANGE:
2961 return f2fs_ioc_move_range(filp, arg);
2962 case F2FS_IOC_FLUSH_DEVICE:
2963 return f2fs_ioc_flush_device(filp, arg);
2964 case F2FS_IOC_GET_FEATURES:
2965 return f2fs_ioc_get_features(filp, arg);
2966 case F2FS_IOC_FSGETXATTR:
2967 return f2fs_ioc_fsgetxattr(filp, arg);
2968 case F2FS_IOC_FSSETXATTR:
2969 return f2fs_ioc_fssetxattr(filp, arg);
2970 case F2FS_IOC_GET_PIN_FILE:
2971 return f2fs_ioc_get_pin_file(filp, arg);
2972 case F2FS_IOC_SET_PIN_FILE:
2973 return f2fs_ioc_set_pin_file(filp, arg);
2974 case F2FS_IOC_PRECACHE_EXTENTS:
2975 return f2fs_ioc_precache_extents(filp, arg);
2976 default:
2977 return -ENOTTY;
2978 }
2979 }
2980
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2981 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2982 {
2983 struct file *file = iocb->ki_filp;
2984 struct inode *inode = file_inode(file);
2985 ssize_t ret;
2986
2987 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2988 return -EIO;
2989
2990 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2991 return -EINVAL;
2992
2993 if (!inode_trylock(inode)) {
2994 if (iocb->ki_flags & IOCB_NOWAIT)
2995 return -EAGAIN;
2996 inode_lock(inode);
2997 }
2998
2999 ret = generic_write_checks(iocb, from);
3000 if (ret > 0) {
3001 bool preallocated = false;
3002 size_t target_size = 0;
3003 int err;
3004
3005 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3006 set_inode_flag(inode, FI_NO_PREALLOC);
3007
3008 if ((iocb->ki_flags & IOCB_NOWAIT) &&
3009 (iocb->ki_flags & IOCB_DIRECT)) {
3010 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3011 iov_iter_count(from)) ||
3012 f2fs_has_inline_data(inode) ||
3013 f2fs_force_buffered_io(inode, WRITE)) {
3014 clear_inode_flag(inode,
3015 FI_NO_PREALLOC);
3016 inode_unlock(inode);
3017 return -EAGAIN;
3018 }
3019
3020 } else {
3021 preallocated = true;
3022 target_size = iocb->ki_pos + iov_iter_count(from);
3023
3024 err = f2fs_preallocate_blocks(iocb, from);
3025 if (err) {
3026 clear_inode_flag(inode, FI_NO_PREALLOC);
3027 inode_unlock(inode);
3028 return err;
3029 }
3030 }
3031 ret = __generic_file_write_iter(iocb, from);
3032 clear_inode_flag(inode, FI_NO_PREALLOC);
3033
3034 /* if we couldn't write data, we should deallocate blocks. */
3035 if (preallocated && i_size_read(inode) < target_size)
3036 f2fs_truncate(inode);
3037
3038 if (ret > 0)
3039 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3040 }
3041 inode_unlock(inode);
3042
3043 if (ret > 0)
3044 ret = generic_write_sync(iocb, ret);
3045 return ret;
3046 }
3047
3048 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3049 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3050 {
3051 switch (cmd) {
3052 case F2FS_IOC32_GETFLAGS:
3053 cmd = F2FS_IOC_GETFLAGS;
3054 break;
3055 case F2FS_IOC32_SETFLAGS:
3056 cmd = F2FS_IOC_SETFLAGS;
3057 break;
3058 case F2FS_IOC32_GETVERSION:
3059 cmd = F2FS_IOC_GETVERSION;
3060 break;
3061 case F2FS_IOC_START_ATOMIC_WRITE:
3062 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3063 case F2FS_IOC_START_VOLATILE_WRITE:
3064 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3065 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3066 case F2FS_IOC_SHUTDOWN:
3067 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3068 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3069 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3070 case F2FS_IOC_GARBAGE_COLLECT:
3071 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3072 case F2FS_IOC_WRITE_CHECKPOINT:
3073 case F2FS_IOC_DEFRAGMENT:
3074 case F2FS_IOC_MOVE_RANGE:
3075 case F2FS_IOC_FLUSH_DEVICE:
3076 case F2FS_IOC_GET_FEATURES:
3077 case F2FS_IOC_FSGETXATTR:
3078 case F2FS_IOC_FSSETXATTR:
3079 case F2FS_IOC_GET_PIN_FILE:
3080 case F2FS_IOC_SET_PIN_FILE:
3081 case F2FS_IOC_PRECACHE_EXTENTS:
3082 break;
3083 default:
3084 return -ENOIOCTLCMD;
3085 }
3086 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3087 }
3088 #endif
3089
3090 const struct file_operations f2fs_file_operations = {
3091 .llseek = f2fs_llseek,
3092 .read_iter = generic_file_read_iter,
3093 .write_iter = f2fs_file_write_iter,
3094 .open = f2fs_file_open,
3095 .release = f2fs_release_file,
3096 .mmap = f2fs_file_mmap,
3097 .flush = f2fs_file_flush,
3098 .fsync = f2fs_sync_file,
3099 .fallocate = f2fs_fallocate,
3100 .unlocked_ioctl = f2fs_ioctl,
3101 #ifdef CONFIG_COMPAT
3102 .compat_ioctl = f2fs_compat_ioctl,
3103 #endif
3104 .splice_read = generic_file_splice_read,
3105 .splice_write = iter_file_splice_write,
3106 };
3107