1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
fscrypt_enqueue_decrypt_work(struct work_struct * work)54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 	queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59 
60 /**
61  * fscrypt_release_ctx() - Releases an encryption context
62  * @ctx: The encryption context to release.
63  *
64  * If the encryption context was allocated from the pre-allocated pool, returns
65  * it to that pool. Else, frees it.
66  *
67  * If there's a bounce page in the context, this frees that.
68  */
fscrypt_release_ctx(struct fscrypt_ctx * ctx)69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 	unsigned long flags;
72 
73 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 		ctx->w.bounce_page = NULL;
76 	}
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 	}
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87 
88 /**
89  * fscrypt_get_ctx() - Gets an encryption context
90  * @inode:       The inode for which we are doing the crypto
91  * @gfp_flags:   The gfp flag for memory allocation
92  *
93  * Allocates and initializes an encryption context.
94  *
95  * Return: An allocated and initialized encryption context on success; error
96  * value or NULL otherwise.
97  */
fscrypt_get_ctx(const struct inode * inode,gfp_t gfp_flags)98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
99 {
100 	struct fscrypt_ctx *ctx = NULL;
101 	struct fscrypt_info *ci = inode->i_crypt_info;
102 	unsigned long flags;
103 
104 	if (ci == NULL)
105 		return ERR_PTR(-ENOKEY);
106 
107 	/*
108 	 * We first try getting the ctx from a free list because in
109 	 * the common case the ctx will have an allocated and
110 	 * initialized crypto tfm, so it's probably a worthwhile
111 	 * optimization. For the bounce page, we first try getting it
112 	 * from the kernel allocator because that's just about as fast
113 	 * as getting it from a list and because a cache of free pages
114 	 * should generally be a "last resort" option for a filesystem
115 	 * to be able to do its job.
116 	 */
117 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 					struct fscrypt_ctx, free_list);
120 	if (ctx)
121 		list_del(&ctx->free_list);
122 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 	if (!ctx) {
124 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 		if (!ctx)
126 			return ERR_PTR(-ENOMEM);
127 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 	} else {
129 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 	}
131 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 	return ctx;
133 }
134 EXPORT_SYMBOL(fscrypt_get_ctx);
135 
fscrypt_do_page_crypto(const struct inode * inode,fscrypt_direction_t rw,u64 lblk_num,struct page * src_page,struct page * dest_page,unsigned int len,unsigned int offs,gfp_t gfp_flags)136 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
137 			   u64 lblk_num, struct page *src_page,
138 			   struct page *dest_page, unsigned int len,
139 			   unsigned int offs, gfp_t gfp_flags)
140 {
141 	struct {
142 		__le64 index;
143 		u8 padding[FS_IV_SIZE - sizeof(__le64)];
144 	} iv;
145 	struct skcipher_request *req = NULL;
146 	DECLARE_CRYPTO_WAIT(wait);
147 	struct scatterlist dst, src;
148 	struct fscrypt_info *ci = inode->i_crypt_info;
149 	struct crypto_skcipher *tfm = ci->ci_ctfm;
150 	int res = 0;
151 
152 	if (WARN_ON_ONCE(len <= 0))
153 		return -EINVAL;
154 	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
155 		return -EINVAL;
156 
157 	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
158 	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
159 	iv.index = cpu_to_le64(lblk_num);
160 	memset(iv.padding, 0, sizeof(iv.padding));
161 
162 	if (ci->ci_essiv_tfm != NULL) {
163 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
164 					  (u8 *)&iv);
165 	}
166 
167 	req = skcipher_request_alloc(tfm, gfp_flags);
168 	if (!req)
169 		return -ENOMEM;
170 
171 	skcipher_request_set_callback(
172 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173 		crypto_req_done, &wait);
174 
175 	sg_init_table(&dst, 1);
176 	sg_set_page(&dst, dest_page, len, offs);
177 	sg_init_table(&src, 1);
178 	sg_set_page(&src, src_page, len, offs);
179 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
180 	if (rw == FS_DECRYPT)
181 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
182 	else
183 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
184 	skcipher_request_free(req);
185 	if (res) {
186 		fscrypt_err(inode->i_sb,
187 			    "%scryption failed for inode %lu, block %llu: %d",
188 			    (rw == FS_DECRYPT ? "de" : "en"),
189 			    inode->i_ino, lblk_num, res);
190 		return res;
191 	}
192 	return 0;
193 }
194 
fscrypt_alloc_bounce_page(struct fscrypt_ctx * ctx,gfp_t gfp_flags)195 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
196 				       gfp_t gfp_flags)
197 {
198 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
199 	if (ctx->w.bounce_page == NULL)
200 		return ERR_PTR(-ENOMEM);
201 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
202 	return ctx->w.bounce_page;
203 }
204 
205 /**
206  * fscypt_encrypt_page() - Encrypts a page
207  * @inode:     The inode for which the encryption should take place
208  * @page:      The page to encrypt. Must be locked for bounce-page
209  *             encryption.
210  * @len:       Length of data to encrypt in @page and encrypted
211  *             data in returned page.
212  * @offs:      Offset of data within @page and returned
213  *             page holding encrypted data.
214  * @lblk_num:  Logical block number. This must be unique for multiple
215  *             calls with same inode, except when overwriting
216  *             previously written data.
217  * @gfp_flags: The gfp flag for memory allocation
218  *
219  * Encrypts @page using the ctx encryption context. Performs encryption
220  * either in-place or into a newly allocated bounce page.
221  * Called on the page write path.
222  *
223  * Bounce page allocation is the default.
224  * In this case, the contents of @page are encrypted and stored in an
225  * allocated bounce page. @page has to be locked and the caller must call
226  * fscrypt_restore_control_page() on the returned ciphertext page to
227  * release the bounce buffer and the encryption context.
228  *
229  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
230  * fscrypt_operations. Here, the input-page is returned with its content
231  * encrypted.
232  *
233  * Return: A page with the encrypted content on success. Else, an
234  * error value or NULL.
235  */
fscrypt_encrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)236 struct page *fscrypt_encrypt_page(const struct inode *inode,
237 				struct page *page,
238 				unsigned int len,
239 				unsigned int offs,
240 				u64 lblk_num, gfp_t gfp_flags)
241 
242 {
243 	struct fscrypt_ctx *ctx;
244 	struct page *ciphertext_page = page;
245 	int err;
246 
247 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
248 		/* with inplace-encryption we just encrypt the page */
249 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
250 					     ciphertext_page, len, offs,
251 					     gfp_flags);
252 		if (err)
253 			return ERR_PTR(err);
254 
255 		return ciphertext_page;
256 	}
257 
258 	if (WARN_ON_ONCE(!PageLocked(page)))
259 		return ERR_PTR(-EINVAL);
260 
261 	ctx = fscrypt_get_ctx(inode, gfp_flags);
262 	if (IS_ERR(ctx))
263 		return (struct page *)ctx;
264 
265 	/* The encryption operation will require a bounce page. */
266 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
267 	if (IS_ERR(ciphertext_page))
268 		goto errout;
269 
270 	ctx->w.control_page = page;
271 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
272 				     page, ciphertext_page, len, offs,
273 				     gfp_flags);
274 	if (err) {
275 		ciphertext_page = ERR_PTR(err);
276 		goto errout;
277 	}
278 	SetPagePrivate(ciphertext_page);
279 	set_page_private(ciphertext_page, (unsigned long)ctx);
280 	lock_page(ciphertext_page);
281 	return ciphertext_page;
282 
283 errout:
284 	fscrypt_release_ctx(ctx);
285 	return ciphertext_page;
286 }
287 EXPORT_SYMBOL(fscrypt_encrypt_page);
288 
289 /**
290  * fscrypt_decrypt_page() - Decrypts a page in-place
291  * @inode:     The corresponding inode for the page to decrypt.
292  * @page:      The page to decrypt. Must be locked in case
293  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
294  * @len:       Number of bytes in @page to be decrypted.
295  * @offs:      Start of data in @page.
296  * @lblk_num:  Logical block number.
297  *
298  * Decrypts page in-place using the ctx encryption context.
299  *
300  * Called from the read completion callback.
301  *
302  * Return: Zero on success, non-zero otherwise.
303  */
fscrypt_decrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)304 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
305 			unsigned int len, unsigned int offs, u64 lblk_num)
306 {
307 	if (WARN_ON_ONCE(!PageLocked(page) &&
308 			 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
309 		return -EINVAL;
310 
311 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
312 				      len, offs, GFP_NOFS);
313 }
314 EXPORT_SYMBOL(fscrypt_decrypt_page);
315 
316 /*
317  * Validate dentries in encrypted directories to make sure we aren't potentially
318  * caching stale dentries after a key has been added.
319  */
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)320 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
321 {
322 	struct dentry *dir;
323 	int err;
324 	int valid;
325 
326 	/*
327 	 * Plaintext names are always valid, since fscrypt doesn't support
328 	 * reverting to ciphertext names without evicting the directory's inode
329 	 * -- which implies eviction of the dentries in the directory.
330 	 */
331 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
332 		return 1;
333 
334 	/*
335 	 * Ciphertext name; valid if the directory's key is still unavailable.
336 	 *
337 	 * Although fscrypt forbids rename() on ciphertext names, we still must
338 	 * use dget_parent() here rather than use ->d_parent directly.  That's
339 	 * because a corrupted fs image may contain directory hard links, which
340 	 * the VFS handles by moving the directory's dentry tree in the dcache
341 	 * each time ->lookup() finds the directory and it already has a dentry
342 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
343 	 * a reference to some ->d_parent to prevent it from being freed.
344 	 */
345 
346 	if (flags & LOOKUP_RCU)
347 		return -ECHILD;
348 
349 	dir = dget_parent(dentry);
350 	err = fscrypt_get_encryption_info(d_inode(dir));
351 	valid = !fscrypt_has_encryption_key(d_inode(dir));
352 	dput(dir);
353 
354 	if (err < 0)
355 		return err;
356 
357 	return valid;
358 }
359 
360 const struct dentry_operations fscrypt_d_ops = {
361 	.d_revalidate = fscrypt_d_revalidate,
362 };
363 
fscrypt_restore_control_page(struct page * page)364 void fscrypt_restore_control_page(struct page *page)
365 {
366 	struct fscrypt_ctx *ctx;
367 
368 	ctx = (struct fscrypt_ctx *)page_private(page);
369 	set_page_private(page, (unsigned long)NULL);
370 	ClearPagePrivate(page);
371 	unlock_page(page);
372 	fscrypt_release_ctx(ctx);
373 }
374 EXPORT_SYMBOL(fscrypt_restore_control_page);
375 
fscrypt_destroy(void)376 static void fscrypt_destroy(void)
377 {
378 	struct fscrypt_ctx *pos, *n;
379 
380 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
381 		kmem_cache_free(fscrypt_ctx_cachep, pos);
382 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
383 	mempool_destroy(fscrypt_bounce_page_pool);
384 	fscrypt_bounce_page_pool = NULL;
385 }
386 
387 /**
388  * fscrypt_initialize() - allocate major buffers for fs encryption.
389  * @cop_flags:  fscrypt operations flags
390  *
391  * We only call this when we start accessing encrypted files, since it
392  * results in memory getting allocated that wouldn't otherwise be used.
393  *
394  * Return: Zero on success, non-zero otherwise.
395  */
fscrypt_initialize(unsigned int cop_flags)396 int fscrypt_initialize(unsigned int cop_flags)
397 {
398 	int i, res = -ENOMEM;
399 
400 	/* No need to allocate a bounce page pool if this FS won't use it. */
401 	if (cop_flags & FS_CFLG_OWN_PAGES)
402 		return 0;
403 
404 	mutex_lock(&fscrypt_init_mutex);
405 	if (fscrypt_bounce_page_pool)
406 		goto already_initialized;
407 
408 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
409 		struct fscrypt_ctx *ctx;
410 
411 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
412 		if (!ctx)
413 			goto fail;
414 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
415 	}
416 
417 	fscrypt_bounce_page_pool =
418 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
419 	if (!fscrypt_bounce_page_pool)
420 		goto fail;
421 
422 already_initialized:
423 	mutex_unlock(&fscrypt_init_mutex);
424 	return 0;
425 fail:
426 	fscrypt_destroy();
427 	mutex_unlock(&fscrypt_init_mutex);
428 	return res;
429 }
430 
fscrypt_msg(struct super_block * sb,const char * level,const char * fmt,...)431 void fscrypt_msg(struct super_block *sb, const char *level,
432 		 const char *fmt, ...)
433 {
434 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
435 				      DEFAULT_RATELIMIT_BURST);
436 	struct va_format vaf;
437 	va_list args;
438 
439 	if (!__ratelimit(&rs))
440 		return;
441 
442 	va_start(args, fmt);
443 	vaf.fmt = fmt;
444 	vaf.va = &args;
445 	if (sb)
446 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
447 	else
448 		printk("%sfscrypt: %pV\n", level, &vaf);
449 	va_end(args);
450 }
451 
452 /**
453  * fscrypt_init() - Set up for fs encryption.
454  */
fscrypt_init(void)455 static int __init fscrypt_init(void)
456 {
457 	/*
458 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
459 	 * even when they happen to complete on the same CPU.  This sacrifices
460 	 * locality, but it's worthwhile since decryption is CPU-intensive.
461 	 *
462 	 * Also use a high-priority workqueue to prioritize decryption work,
463 	 * which blocks reads from completing, over regular application tasks.
464 	 */
465 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
466 						 WQ_UNBOUND | WQ_HIGHPRI,
467 						 num_online_cpus());
468 	if (!fscrypt_read_workqueue)
469 		goto fail;
470 
471 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
472 	if (!fscrypt_ctx_cachep)
473 		goto fail_free_queue;
474 
475 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
476 	if (!fscrypt_info_cachep)
477 		goto fail_free_ctx;
478 
479 	return 0;
480 
481 fail_free_ctx:
482 	kmem_cache_destroy(fscrypt_ctx_cachep);
483 fail_free_queue:
484 	destroy_workqueue(fscrypt_read_workqueue);
485 fail:
486 	return -ENOMEM;
487 }
module_init(fscrypt_init)488 module_init(fscrypt_init)
489 
490 /**
491  * fscrypt_exit() - Shutdown the fs encryption system
492  */
493 static void __exit fscrypt_exit(void)
494 {
495 	fscrypt_destroy();
496 
497 	if (fscrypt_read_workqueue)
498 		destroy_workqueue(fscrypt_read_workqueue);
499 	kmem_cache_destroy(fscrypt_ctx_cachep);
500 	kmem_cache_destroy(fscrypt_info_cachep);
501 
502 	fscrypt_essiv_cleanup();
503 }
504 module_exit(fscrypt_exit);
505 
506 MODULE_LICENSE("GPL");
507