1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 #include <linux/vmalloc.h>
39 
chunk_size(const struct gen_pool_chunk * chunk)40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41 {
42 	return chunk->end_addr - chunk->start_addr + 1;
43 }
44 
set_bits_ll(unsigned long * addr,unsigned long mask_to_set)45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
46 {
47 	unsigned long val, nval;
48 
49 	nval = *addr;
50 	do {
51 		val = nval;
52 		if (val & mask_to_set)
53 			return -EBUSY;
54 		cpu_relax();
55 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
56 
57 	return 0;
58 }
59 
clear_bits_ll(unsigned long * addr,unsigned long mask_to_clear)60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
61 {
62 	unsigned long val, nval;
63 
64 	nval = *addr;
65 	do {
66 		val = nval;
67 		if ((val & mask_to_clear) != mask_to_clear)
68 			return -EBUSY;
69 		cpu_relax();
70 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
71 
72 	return 0;
73 }
74 
75 /*
76  * bitmap_set_ll - set the specified number of bits at the specified position
77  * @map: pointer to a bitmap
78  * @start: a bit position in @map
79  * @nr: number of bits to set
80  *
81  * Set @nr bits start from @start in @map lock-lessly. Several users
82  * can set/clear the same bitmap simultaneously without lock. If two
83  * users set the same bit, one user will return remain bits, otherwise
84  * return 0.
85  */
bitmap_set_ll(unsigned long * map,unsigned long start,unsigned long nr)86 static int bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
87 {
88 	unsigned long *p = map + BIT_WORD(start);
89 	const unsigned long size = start + nr;
90 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92 
93 	while (nr >= bits_to_set) {
94 		if (set_bits_ll(p, mask_to_set))
95 			return nr;
96 		nr -= bits_to_set;
97 		bits_to_set = BITS_PER_LONG;
98 		mask_to_set = ~0UL;
99 		p++;
100 	}
101 	if (nr) {
102 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103 		if (set_bits_ll(p, mask_to_set))
104 			return nr;
105 	}
106 
107 	return 0;
108 }
109 
110 /*
111  * bitmap_clear_ll - clear the specified number of bits at the specified position
112  * @map: pointer to a bitmap
113  * @start: a bit position in @map
114  * @nr: number of bits to set
115  *
116  * Clear @nr bits start from @start in @map lock-lessly. Several users
117  * can set/clear the same bitmap simultaneously without lock. If two
118  * users clear the same bit, one user will return remain bits,
119  * otherwise return 0.
120  */
121 static unsigned long
bitmap_clear_ll(unsigned long * map,unsigned long start,unsigned long nr)122 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
123 {
124 	unsigned long *p = map + BIT_WORD(start);
125 	const unsigned long size = start + nr;
126 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
127 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
128 
129 	while (nr >= bits_to_clear) {
130 		if (clear_bits_ll(p, mask_to_clear))
131 			return nr;
132 		nr -= bits_to_clear;
133 		bits_to_clear = BITS_PER_LONG;
134 		mask_to_clear = ~0UL;
135 		p++;
136 	}
137 	if (nr) {
138 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
139 		if (clear_bits_ll(p, mask_to_clear))
140 			return nr;
141 	}
142 
143 	return 0;
144 }
145 
146 /**
147  * gen_pool_create - create a new special memory pool
148  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
149  * @nid: node id of the node the pool structure should be allocated on, or -1
150  *
151  * Create a new special memory pool that can be used to manage special purpose
152  * memory not managed by the regular kmalloc/kfree interface.
153  */
gen_pool_create(int min_alloc_order,int nid)154 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
155 {
156 	struct gen_pool *pool;
157 
158 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
159 	if (pool != NULL) {
160 		spin_lock_init(&pool->lock);
161 		INIT_LIST_HEAD(&pool->chunks);
162 		pool->min_alloc_order = min_alloc_order;
163 		pool->algo = gen_pool_first_fit;
164 		pool->data = NULL;
165 		pool->name = NULL;
166 	}
167 	return pool;
168 }
169 EXPORT_SYMBOL(gen_pool_create);
170 
171 /**
172  * gen_pool_add_virt - add a new chunk of special memory to the pool
173  * @pool: pool to add new memory chunk to
174  * @virt: virtual starting address of memory chunk to add to pool
175  * @phys: physical starting address of memory chunk to add to pool
176  * @size: size in bytes of the memory chunk to add to pool
177  * @nid: node id of the node the chunk structure and bitmap should be
178  *       allocated on, or -1
179  *
180  * Add a new chunk of special memory to the specified pool.
181  *
182  * Returns 0 on success or a -ve errno on failure.
183  */
gen_pool_add_virt(struct gen_pool * pool,unsigned long virt,phys_addr_t phys,size_t size,int nid)184 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 		 size_t size, int nid)
186 {
187 	struct gen_pool_chunk *chunk;
188 	unsigned long nbits = size >> pool->min_alloc_order;
189 	unsigned long nbytes = sizeof(struct gen_pool_chunk) +
190 				BITS_TO_LONGS(nbits) * sizeof(long);
191 
192 	chunk = vzalloc_node(nbytes, nid);
193 	if (unlikely(chunk == NULL))
194 		return -ENOMEM;
195 
196 	chunk->phys_addr = phys;
197 	chunk->start_addr = virt;
198 	chunk->end_addr = virt + size - 1;
199 	atomic_long_set(&chunk->avail, size);
200 
201 	spin_lock(&pool->lock);
202 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
203 	spin_unlock(&pool->lock);
204 
205 	return 0;
206 }
207 EXPORT_SYMBOL(gen_pool_add_virt);
208 
209 /**
210  * gen_pool_virt_to_phys - return the physical address of memory
211  * @pool: pool to allocate from
212  * @addr: starting address of memory
213  *
214  * Returns the physical address on success, or -1 on error.
215  */
gen_pool_virt_to_phys(struct gen_pool * pool,unsigned long addr)216 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
217 {
218 	struct gen_pool_chunk *chunk;
219 	phys_addr_t paddr = -1;
220 
221 	rcu_read_lock();
222 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
223 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
224 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
225 			break;
226 		}
227 	}
228 	rcu_read_unlock();
229 
230 	return paddr;
231 }
232 EXPORT_SYMBOL(gen_pool_virt_to_phys);
233 
234 /**
235  * gen_pool_destroy - destroy a special memory pool
236  * @pool: pool to destroy
237  *
238  * Destroy the specified special memory pool. Verifies that there are no
239  * outstanding allocations.
240  */
gen_pool_destroy(struct gen_pool * pool)241 void gen_pool_destroy(struct gen_pool *pool)
242 {
243 	struct list_head *_chunk, *_next_chunk;
244 	struct gen_pool_chunk *chunk;
245 	int order = pool->min_alloc_order;
246 	unsigned long bit, end_bit;
247 
248 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
249 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
250 		list_del(&chunk->next_chunk);
251 
252 		end_bit = chunk_size(chunk) >> order;
253 		bit = find_next_bit(chunk->bits, end_bit, 0);
254 		BUG_ON(bit < end_bit);
255 
256 		vfree(chunk);
257 	}
258 	kfree_const(pool->name);
259 	kfree(pool);
260 }
261 EXPORT_SYMBOL(gen_pool_destroy);
262 
263 /**
264  * gen_pool_alloc - allocate special memory from the pool
265  * @pool: pool to allocate from
266  * @size: number of bytes to allocate from the pool
267  *
268  * Allocate the requested number of bytes from the specified pool.
269  * Uses the pool allocation function (with first-fit algorithm by default).
270  * Can not be used in NMI handler on architectures without
271  * NMI-safe cmpxchg implementation.
272  */
gen_pool_alloc(struct gen_pool * pool,size_t size)273 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
274 {
275 	return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
276 }
277 EXPORT_SYMBOL(gen_pool_alloc);
278 
279 /**
280  * gen_pool_alloc_algo - allocate special memory from the pool
281  * @pool: pool to allocate from
282  * @size: number of bytes to allocate from the pool
283  * @algo: algorithm passed from caller
284  * @data: data passed to algorithm
285  *
286  * Allocate the requested number of bytes from the specified pool.
287  * Uses the pool allocation function (with first-fit algorithm by default).
288  * Can not be used in NMI handler on architectures without
289  * NMI-safe cmpxchg implementation.
290  */
gen_pool_alloc_algo(struct gen_pool * pool,size_t size,genpool_algo_t algo,void * data)291 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
292 		genpool_algo_t algo, void *data)
293 {
294 	struct gen_pool_chunk *chunk;
295 	unsigned long addr = 0;
296 	int order = pool->min_alloc_order;
297 	unsigned long nbits, start_bit, end_bit, remain;
298 
299 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
300 	BUG_ON(in_nmi());
301 #endif
302 
303 	if (size == 0)
304 		return 0;
305 
306 	nbits = (size + (1UL << order) - 1) >> order;
307 	rcu_read_lock();
308 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
309 		if (size > atomic_long_read(&chunk->avail))
310 			continue;
311 
312 		start_bit = 0;
313 		end_bit = chunk_size(chunk) >> order;
314 retry:
315 		start_bit = algo(chunk->bits, end_bit, start_bit,
316 				 nbits, data, pool, chunk->start_addr);
317 		if (start_bit >= end_bit)
318 			continue;
319 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
320 		if (remain) {
321 			remain = bitmap_clear_ll(chunk->bits, start_bit,
322 						 nbits - remain);
323 			BUG_ON(remain);
324 			goto retry;
325 		}
326 
327 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
328 		size = nbits << order;
329 		atomic_long_sub(size, &chunk->avail);
330 		break;
331 	}
332 	rcu_read_unlock();
333 	return addr;
334 }
335 EXPORT_SYMBOL(gen_pool_alloc_algo);
336 
337 /**
338  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
339  * @pool: pool to allocate from
340  * @size: number of bytes to allocate from the pool
341  * @dma: dma-view physical address return value.  Use NULL if unneeded.
342  *
343  * Allocate the requested number of bytes from the specified pool.
344  * Uses the pool allocation function (with first-fit algorithm by default).
345  * Can not be used in NMI handler on architectures without
346  * NMI-safe cmpxchg implementation.
347  */
gen_pool_dma_alloc(struct gen_pool * pool,size_t size,dma_addr_t * dma)348 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
349 {
350 	unsigned long vaddr;
351 
352 	if (!pool)
353 		return NULL;
354 
355 	vaddr = gen_pool_alloc(pool, size);
356 	if (!vaddr)
357 		return NULL;
358 
359 	if (dma)
360 		*dma = gen_pool_virt_to_phys(pool, vaddr);
361 
362 	return (void *)vaddr;
363 }
364 EXPORT_SYMBOL(gen_pool_dma_alloc);
365 
366 /**
367  * gen_pool_free - free allocated special memory back to the pool
368  * @pool: pool to free to
369  * @addr: starting address of memory to free back to pool
370  * @size: size in bytes of memory to free
371  *
372  * Free previously allocated special memory back to the specified
373  * pool.  Can not be used in NMI handler on architectures without
374  * NMI-safe cmpxchg implementation.
375  */
gen_pool_free(struct gen_pool * pool,unsigned long addr,size_t size)376 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
377 {
378 	struct gen_pool_chunk *chunk;
379 	int order = pool->min_alloc_order;
380 	unsigned long start_bit, nbits, remain;
381 
382 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
383 	BUG_ON(in_nmi());
384 #endif
385 
386 	nbits = (size + (1UL << order) - 1) >> order;
387 	rcu_read_lock();
388 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
389 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
390 			BUG_ON(addr + size - 1 > chunk->end_addr);
391 			start_bit = (addr - chunk->start_addr) >> order;
392 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
393 			BUG_ON(remain);
394 			size = nbits << order;
395 			atomic_long_add(size, &chunk->avail);
396 			rcu_read_unlock();
397 			return;
398 		}
399 	}
400 	rcu_read_unlock();
401 	BUG();
402 }
403 EXPORT_SYMBOL(gen_pool_free);
404 
405 /**
406  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
407  * @pool:	the generic memory pool
408  * @func:	func to call
409  * @data:	additional data used by @func
410  *
411  * Call @func for every chunk of generic memory pool.  The @func is
412  * called with rcu_read_lock held.
413  */
gen_pool_for_each_chunk(struct gen_pool * pool,void (* func)(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data),void * data)414 void gen_pool_for_each_chunk(struct gen_pool *pool,
415 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
416 	void *data)
417 {
418 	struct gen_pool_chunk *chunk;
419 
420 	rcu_read_lock();
421 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
422 		func(pool, chunk, data);
423 	rcu_read_unlock();
424 }
425 EXPORT_SYMBOL(gen_pool_for_each_chunk);
426 
427 /**
428  * addr_in_gen_pool - checks if an address falls within the range of a pool
429  * @pool:	the generic memory pool
430  * @start:	start address
431  * @size:	size of the region
432  *
433  * Check if the range of addresses falls within the specified pool. Returns
434  * true if the entire range is contained in the pool and false otherwise.
435  */
addr_in_gen_pool(struct gen_pool * pool,unsigned long start,size_t size)436 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
437 			size_t size)
438 {
439 	bool found = false;
440 	unsigned long end = start + size - 1;
441 	struct gen_pool_chunk *chunk;
442 
443 	rcu_read_lock();
444 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
445 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
446 			if (end <= chunk->end_addr) {
447 				found = true;
448 				break;
449 			}
450 		}
451 	}
452 	rcu_read_unlock();
453 	return found;
454 }
455 
456 /**
457  * gen_pool_avail - get available free space of the pool
458  * @pool: pool to get available free space
459  *
460  * Return available free space of the specified pool.
461  */
gen_pool_avail(struct gen_pool * pool)462 size_t gen_pool_avail(struct gen_pool *pool)
463 {
464 	struct gen_pool_chunk *chunk;
465 	size_t avail = 0;
466 
467 	rcu_read_lock();
468 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
469 		avail += atomic_long_read(&chunk->avail);
470 	rcu_read_unlock();
471 	return avail;
472 }
473 EXPORT_SYMBOL_GPL(gen_pool_avail);
474 
475 /**
476  * gen_pool_size - get size in bytes of memory managed by the pool
477  * @pool: pool to get size
478  *
479  * Return size in bytes of memory managed by the pool.
480  */
gen_pool_size(struct gen_pool * pool)481 size_t gen_pool_size(struct gen_pool *pool)
482 {
483 	struct gen_pool_chunk *chunk;
484 	size_t size = 0;
485 
486 	rcu_read_lock();
487 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
488 		size += chunk_size(chunk);
489 	rcu_read_unlock();
490 	return size;
491 }
492 EXPORT_SYMBOL_GPL(gen_pool_size);
493 
494 /**
495  * gen_pool_set_algo - set the allocation algorithm
496  * @pool: pool to change allocation algorithm
497  * @algo: custom algorithm function
498  * @data: additional data used by @algo
499  *
500  * Call @algo for each memory allocation in the pool.
501  * If @algo is NULL use gen_pool_first_fit as default
502  * memory allocation function.
503  */
gen_pool_set_algo(struct gen_pool * pool,genpool_algo_t algo,void * data)504 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
505 {
506 	rcu_read_lock();
507 
508 	pool->algo = algo;
509 	if (!pool->algo)
510 		pool->algo = gen_pool_first_fit;
511 
512 	pool->data = data;
513 
514 	rcu_read_unlock();
515 }
516 EXPORT_SYMBOL(gen_pool_set_algo);
517 
518 /**
519  * gen_pool_first_fit - find the first available region
520  * of memory matching the size requirement (no alignment constraint)
521  * @map: The address to base the search on
522  * @size: The bitmap size in bits
523  * @start: The bitnumber to start searching at
524  * @nr: The number of zeroed bits we're looking for
525  * @data: additional data - unused
526  * @pool: pool to find the fit region memory from
527  */
gen_pool_first_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)528 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
529 		unsigned long start, unsigned int nr, void *data,
530 		struct gen_pool *pool, unsigned long start_addr)
531 {
532 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
533 }
534 EXPORT_SYMBOL(gen_pool_first_fit);
535 
536 /**
537  * gen_pool_first_fit_align - find the first available region
538  * of memory matching the size requirement (alignment constraint)
539  * @map: The address to base the search on
540  * @size: The bitmap size in bits
541  * @start: The bitnumber to start searching at
542  * @nr: The number of zeroed bits we're looking for
543  * @data: data for alignment
544  * @pool: pool to get order from
545  */
gen_pool_first_fit_align(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)546 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
547 		unsigned long start, unsigned int nr, void *data,
548 		struct gen_pool *pool, unsigned long start_addr)
549 {
550 	struct genpool_data_align *alignment;
551 	unsigned long align_mask, align_off;
552 	int order;
553 
554 	alignment = data;
555 	order = pool->min_alloc_order;
556 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
557 	align_off = (start_addr & (alignment->align - 1)) >> order;
558 
559 	return bitmap_find_next_zero_area_off(map, size, start, nr,
560 					      align_mask, align_off);
561 }
562 EXPORT_SYMBOL(gen_pool_first_fit_align);
563 
564 /**
565  * gen_pool_fixed_alloc - reserve a specific region
566  * @map: The address to base the search on
567  * @size: The bitmap size in bits
568  * @start: The bitnumber to start searching at
569  * @nr: The number of zeroed bits we're looking for
570  * @data: data for alignment
571  * @pool: pool to get order from
572  */
gen_pool_fixed_alloc(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)573 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
574 		unsigned long start, unsigned int nr, void *data,
575 		struct gen_pool *pool, unsigned long start_addr)
576 {
577 	struct genpool_data_fixed *fixed_data;
578 	int order;
579 	unsigned long offset_bit;
580 	unsigned long start_bit;
581 
582 	fixed_data = data;
583 	order = pool->min_alloc_order;
584 	offset_bit = fixed_data->offset >> order;
585 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
586 		return size;
587 
588 	start_bit = bitmap_find_next_zero_area(map, size,
589 			start + offset_bit, nr, 0);
590 	if (start_bit != offset_bit)
591 		start_bit = size;
592 	return start_bit;
593 }
594 EXPORT_SYMBOL(gen_pool_fixed_alloc);
595 
596 /**
597  * gen_pool_first_fit_order_align - find the first available region
598  * of memory matching the size requirement. The region will be aligned
599  * to the order of the size specified.
600  * @map: The address to base the search on
601  * @size: The bitmap size in bits
602  * @start: The bitnumber to start searching at
603  * @nr: The number of zeroed bits we're looking for
604  * @data: additional data - unused
605  * @pool: pool to find the fit region memory from
606  */
gen_pool_first_fit_order_align(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)607 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
608 		unsigned long size, unsigned long start,
609 		unsigned int nr, void *data, struct gen_pool *pool,
610 		unsigned long start_addr)
611 {
612 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
613 
614 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
615 }
616 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
617 
618 /**
619  * gen_pool_best_fit - find the best fitting region of memory
620  * macthing the size requirement (no alignment constraint)
621  * @map: The address to base the search on
622  * @size: The bitmap size in bits
623  * @start: The bitnumber to start searching at
624  * @nr: The number of zeroed bits we're looking for
625  * @data: additional data - unused
626  * @pool: pool to find the fit region memory from
627  *
628  * Iterate over the bitmap to find the smallest free region
629  * which we can allocate the memory.
630  */
gen_pool_best_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data,struct gen_pool * pool,unsigned long start_addr)631 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
632 		unsigned long start, unsigned int nr, void *data,
633 		struct gen_pool *pool, unsigned long start_addr)
634 {
635 	unsigned long start_bit = size;
636 	unsigned long len = size + 1;
637 	unsigned long index;
638 
639 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
640 
641 	while (index < size) {
642 		unsigned long next_bit = find_next_bit(map, size, index + nr);
643 		if ((next_bit - index) < len) {
644 			len = next_bit - index;
645 			start_bit = index;
646 			if (len == nr)
647 				return start_bit;
648 		}
649 		index = bitmap_find_next_zero_area(map, size,
650 						   next_bit + 1, nr, 0);
651 	}
652 
653 	return start_bit;
654 }
655 EXPORT_SYMBOL(gen_pool_best_fit);
656 
devm_gen_pool_release(struct device * dev,void * res)657 static void devm_gen_pool_release(struct device *dev, void *res)
658 {
659 	gen_pool_destroy(*(struct gen_pool **)res);
660 }
661 
devm_gen_pool_match(struct device * dev,void * res,void * data)662 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
663 {
664 	struct gen_pool **p = res;
665 
666 	/* NULL data matches only a pool without an assigned name */
667 	if (!data && !(*p)->name)
668 		return 1;
669 
670 	if (!data || !(*p)->name)
671 		return 0;
672 
673 	return !strcmp((*p)->name, data);
674 }
675 
676 /**
677  * gen_pool_get - Obtain the gen_pool (if any) for a device
678  * @dev: device to retrieve the gen_pool from
679  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
680  *
681  * Returns the gen_pool for the device if one is present, or NULL.
682  */
gen_pool_get(struct device * dev,const char * name)683 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
684 {
685 	struct gen_pool **p;
686 
687 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
688 			(void *)name);
689 	if (!p)
690 		return NULL;
691 	return *p;
692 }
693 EXPORT_SYMBOL_GPL(gen_pool_get);
694 
695 /**
696  * devm_gen_pool_create - managed gen_pool_create
697  * @dev: device that provides the gen_pool
698  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
699  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
700  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
701  *
702  * Create a new special memory pool that can be used to manage special purpose
703  * memory not managed by the regular kmalloc/kfree interface. The pool will be
704  * automatically destroyed by the device management code.
705  */
devm_gen_pool_create(struct device * dev,int min_alloc_order,int nid,const char * name)706 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
707 				      int nid, const char *name)
708 {
709 	struct gen_pool **ptr, *pool;
710 	const char *pool_name = NULL;
711 
712 	/* Check that genpool to be created is uniquely addressed on device */
713 	if (gen_pool_get(dev, name))
714 		return ERR_PTR(-EINVAL);
715 
716 	if (name) {
717 		pool_name = kstrdup_const(name, GFP_KERNEL);
718 		if (!pool_name)
719 			return ERR_PTR(-ENOMEM);
720 	}
721 
722 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
723 	if (!ptr)
724 		goto free_pool_name;
725 
726 	pool = gen_pool_create(min_alloc_order, nid);
727 	if (!pool)
728 		goto free_devres;
729 
730 	*ptr = pool;
731 	pool->name = pool_name;
732 	devres_add(dev, ptr);
733 
734 	return pool;
735 
736 free_devres:
737 	devres_free(ptr);
738 free_pool_name:
739 	kfree_const(pool_name);
740 
741 	return ERR_PTR(-ENOMEM);
742 }
743 EXPORT_SYMBOL(devm_gen_pool_create);
744 
745 #ifdef CONFIG_OF
746 /**
747  * of_gen_pool_get - find a pool by phandle property
748  * @np: device node
749  * @propname: property name containing phandle(s)
750  * @index: index into the phandle array
751  *
752  * Returns the pool that contains the chunk starting at the physical
753  * address of the device tree node pointed at by the phandle property,
754  * or NULL if not found.
755  */
of_gen_pool_get(struct device_node * np,const char * propname,int index)756 struct gen_pool *of_gen_pool_get(struct device_node *np,
757 	const char *propname, int index)
758 {
759 	struct platform_device *pdev;
760 	struct device_node *np_pool, *parent;
761 	const char *name = NULL;
762 	struct gen_pool *pool = NULL;
763 
764 	np_pool = of_parse_phandle(np, propname, index);
765 	if (!np_pool)
766 		return NULL;
767 
768 	pdev = of_find_device_by_node(np_pool);
769 	if (!pdev) {
770 		/* Check if named gen_pool is created by parent node device */
771 		parent = of_get_parent(np_pool);
772 		pdev = of_find_device_by_node(parent);
773 		of_node_put(parent);
774 
775 		of_property_read_string(np_pool, "label", &name);
776 		if (!name)
777 			name = np_pool->name;
778 	}
779 	if (pdev)
780 		pool = gen_pool_get(&pdev->dev, name);
781 	of_node_put(np_pool);
782 
783 	return pool;
784 }
785 EXPORT_SYMBOL_GPL(of_gen_pool_get);
786 #endif /* CONFIG_OF */
787