1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
get_nr_inodes(void)79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
get_nr_inodes_unused(void)88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
get_nr_dirty_inodes(void)97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
no_open(struct inode * inode,struct file * file)117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
inode_init_always(struct super_block * sb,struct inode * inode)130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic64_set(&inode->i_sequence, 0);
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	if (sb->s_xattr)
146 		inode->i_opflags |= IOP_XATTR;
147 	i_uid_write(inode, 0);
148 	i_gid_write(inode, 0);
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 	inode->i_pipe = NULL;
156 	inode->i_bdev = NULL;
157 	inode->i_cdev = NULL;
158 	inode->i_link = NULL;
159 	inode->i_dir_seq = 0;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	inode->i_wb_frn_winner = 0;
165 	inode->i_wb_frn_avg_time = 0;
166 	inode->i_wb_frn_history = 0;
167 #endif
168 
169 	spin_lock_init(&inode->i_lock);
170 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171 
172 	init_rwsem(&inode->i_rwsem);
173 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174 
175 	atomic_set(&inode->i_dio_count, 0);
176 
177 	mapping->a_ops = &empty_aops;
178 	mapping->host = inode;
179 	mapping->flags = 0;
180 	mapping->wb_err = 0;
181 	atomic_set(&mapping->i_mmap_writable, 0);
182 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
183 	mapping->private_data = NULL;
184 	mapping->writeback_index = 0;
185 	inode->i_private = NULL;
186 	inode->i_mapping = mapping;
187 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191 
192 #ifdef CONFIG_FSNOTIFY
193 	inode->i_fsnotify_mask = 0;
194 #endif
195 	inode->i_flctx = NULL;
196 
197 	if (unlikely(security_inode_alloc(inode)))
198 		return -ENOMEM;
199 	this_cpu_inc(nr_inodes);
200 
201 	return 0;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
alloc_inode(struct super_block * sb)205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (!inode)
215 		return NULL;
216 
217 	if (unlikely(inode_init_always(sb, inode))) {
218 		if (inode->i_sb->s_op->destroy_inode)
219 			inode->i_sb->s_op->destroy_inode(inode);
220 		else
221 			kmem_cache_free(inode_cachep, inode);
222 		return NULL;
223 	}
224 
225 	return inode;
226 }
227 
free_inode_nonrcu(struct inode * inode)228 void free_inode_nonrcu(struct inode *inode)
229 {
230 	kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233 
__destroy_inode(struct inode * inode)234 void __destroy_inode(struct inode *inode)
235 {
236 	BUG_ON(inode_has_buffers(inode));
237 	inode_detach_wb(inode);
238 	security_inode_free(inode);
239 	fsnotify_inode_delete(inode);
240 	locks_free_lock_context(inode);
241 	if (!inode->i_nlink) {
242 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 		atomic_long_dec(&inode->i_sb->s_remove_count);
244 	}
245 
246 #ifdef CONFIG_FS_POSIX_ACL
247 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 		posix_acl_release(inode->i_acl);
249 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 		posix_acl_release(inode->i_default_acl);
251 #endif
252 	this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255 
i_callback(struct rcu_head * head)256 static void i_callback(struct rcu_head *head)
257 {
258 	struct inode *inode = container_of(head, struct inode, i_rcu);
259 	kmem_cache_free(inode_cachep, inode);
260 }
261 
destroy_inode(struct inode * inode)262 static void destroy_inode(struct inode *inode)
263 {
264 	BUG_ON(!list_empty(&inode->i_lru));
265 	__destroy_inode(inode);
266 	if (inode->i_sb->s_op->destroy_inode)
267 		inode->i_sb->s_op->destroy_inode(inode);
268 	else
269 		call_rcu(&inode->i_rcu, i_callback);
270 }
271 
272 /**
273  * drop_nlink - directly drop an inode's link count
274  * @inode: inode
275  *
276  * This is a low-level filesystem helper to replace any
277  * direct filesystem manipulation of i_nlink.  In cases
278  * where we are attempting to track writes to the
279  * filesystem, a decrement to zero means an imminent
280  * write when the file is truncated and actually unlinked
281  * on the filesystem.
282  */
drop_nlink(struct inode * inode)283 void drop_nlink(struct inode *inode)
284 {
285 	WARN_ON(inode->i_nlink == 0);
286 	inode->__i_nlink--;
287 	if (!inode->i_nlink)
288 		atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291 
292 /**
293  * clear_nlink - directly zero an inode's link count
294  * @inode: inode
295  *
296  * This is a low-level filesystem helper to replace any
297  * direct filesystem manipulation of i_nlink.  See
298  * drop_nlink() for why we care about i_nlink hitting zero.
299  */
clear_nlink(struct inode * inode)300 void clear_nlink(struct inode *inode)
301 {
302 	if (inode->i_nlink) {
303 		inode->__i_nlink = 0;
304 		atomic_long_inc(&inode->i_sb->s_remove_count);
305 	}
306 }
307 EXPORT_SYMBOL(clear_nlink);
308 
309 /**
310  * set_nlink - directly set an inode's link count
311  * @inode: inode
312  * @nlink: new nlink (should be non-zero)
313  *
314  * This is a low-level filesystem helper to replace any
315  * direct filesystem manipulation of i_nlink.
316  */
set_nlink(struct inode * inode,unsigned int nlink)317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 	if (!nlink) {
320 		clear_nlink(inode);
321 	} else {
322 		/* Yes, some filesystems do change nlink from zero to one */
323 		if (inode->i_nlink == 0)
324 			atomic_long_dec(&inode->i_sb->s_remove_count);
325 
326 		inode->__i_nlink = nlink;
327 	}
328 }
329 EXPORT_SYMBOL(set_nlink);
330 
331 /**
332  * inc_nlink - directly increment an inode's link count
333  * @inode: inode
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.  Currently,
337  * it is only here for parity with dec_nlink().
338  */
inc_nlink(struct inode * inode)339 void inc_nlink(struct inode *inode)
340 {
341 	if (unlikely(inode->i_nlink == 0)) {
342 		WARN_ON(!(inode->i_state & I_LINKABLE));
343 		atomic_long_dec(&inode->i_sb->s_remove_count);
344 	}
345 
346 	inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349 
__address_space_init_once(struct address_space * mapping)350 static void __address_space_init_once(struct address_space *mapping)
351 {
352 	INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 	init_rwsem(&mapping->i_mmap_rwsem);
354 	INIT_LIST_HEAD(&mapping->private_list);
355 	spin_lock_init(&mapping->private_lock);
356 	mapping->i_mmap = RB_ROOT_CACHED;
357 }
358 
address_space_init_once(struct address_space * mapping)359 void address_space_init_once(struct address_space *mapping)
360 {
361 	memset(mapping, 0, sizeof(*mapping));
362 	__address_space_init_once(mapping);
363 }
364 EXPORT_SYMBOL(address_space_init_once);
365 
366 /*
367  * These are initializations that only need to be done
368  * once, because the fields are idempotent across use
369  * of the inode, so let the slab aware of that.
370  */
inode_init_once(struct inode * inode)371 void inode_init_once(struct inode *inode)
372 {
373 	memset(inode, 0, sizeof(*inode));
374 	INIT_HLIST_NODE(&inode->i_hash);
375 	INIT_LIST_HEAD(&inode->i_devices);
376 	INIT_LIST_HEAD(&inode->i_io_list);
377 	INIT_LIST_HEAD(&inode->i_wb_list);
378 	INIT_LIST_HEAD(&inode->i_lru);
379 	__address_space_init_once(&inode->i_data);
380 	i_size_ordered_init(inode);
381 }
382 EXPORT_SYMBOL(inode_init_once);
383 
init_once(void * foo)384 static void init_once(void *foo)
385 {
386 	struct inode *inode = (struct inode *) foo;
387 
388 	inode_init_once(inode);
389 }
390 
391 /*
392  * inode->i_lock must be held
393  */
__iget(struct inode * inode)394 void __iget(struct inode *inode)
395 {
396 	atomic_inc(&inode->i_count);
397 }
398 
399 /*
400  * get additional reference to inode; caller must already hold one.
401  */
ihold(struct inode * inode)402 void ihold(struct inode *inode)
403 {
404 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405 }
406 EXPORT_SYMBOL(ihold);
407 
inode_lru_list_add(struct inode * inode)408 static void inode_lru_list_add(struct inode *inode)
409 {
410 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 		this_cpu_inc(nr_unused);
412 	else
413 		inode->i_state |= I_REFERENCED;
414 }
415 
416 /*
417  * Add inode to LRU if needed (inode is unused and clean).
418  *
419  * Needs inode->i_lock held.
420  */
inode_add_lru(struct inode * inode)421 void inode_add_lru(struct inode *inode)
422 {
423 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 				I_FREEING | I_WILL_FREE)) &&
425 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 		inode_lru_list_add(inode);
427 }
428 
429 
inode_lru_list_del(struct inode * inode)430 static void inode_lru_list_del(struct inode *inode)
431 {
432 
433 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 		this_cpu_dec(nr_unused);
435 }
436 
437 /**
438  * inode_sb_list_add - add inode to the superblock list of inodes
439  * @inode: inode to add
440  */
inode_sb_list_add(struct inode * inode)441 void inode_sb_list_add(struct inode *inode)
442 {
443 	spin_lock(&inode->i_sb->s_inode_list_lock);
444 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 	spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
448 
inode_sb_list_del(struct inode * inode)449 static inline void inode_sb_list_del(struct inode *inode)
450 {
451 	if (!list_empty(&inode->i_sb_list)) {
452 		spin_lock(&inode->i_sb->s_inode_list_lock);
453 		list_del_init(&inode->i_sb_list);
454 		spin_unlock(&inode->i_sb->s_inode_list_lock);
455 	}
456 }
457 
hash(struct super_block * sb,unsigned long hashval)458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
459 {
460 	unsigned long tmp;
461 
462 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 			L1_CACHE_BYTES;
464 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 	return tmp & i_hash_mask;
466 }
467 
468 /**
469  *	__insert_inode_hash - hash an inode
470  *	@inode: unhashed inode
471  *	@hashval: unsigned long value used to locate this object in the
472  *		inode_hashtable.
473  *
474  *	Add an inode to the inode hash for this superblock.
475  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477 {
478 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479 
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_add_head(&inode->i_hash, b);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__insert_inode_hash);
487 
488 /**
489  *	__remove_inode_hash - remove an inode from the hash
490  *	@inode: inode to unhash
491  *
492  *	Remove an inode from the superblock.
493  */
__remove_inode_hash(struct inode * inode)494 void __remove_inode_hash(struct inode *inode)
495 {
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_del_init(&inode->i_hash);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__remove_inode_hash);
503 
clear_inode(struct inode * inode)504 void clear_inode(struct inode *inode)
505 {
506 	/*
507 	 * We have to cycle the i_pages lock here because reclaim can be in the
508 	 * process of removing the last page (in __delete_from_page_cache())
509 	 * and we must not free the mapping under it.
510 	 */
511 	xa_lock_irq(&inode->i_data.i_pages);
512 	BUG_ON(inode->i_data.nrpages);
513 	BUG_ON(inode->i_data.nrexceptional);
514 	xa_unlock_irq(&inode->i_data.i_pages);
515 	BUG_ON(!list_empty(&inode->i_data.private_list));
516 	BUG_ON(!(inode->i_state & I_FREEING));
517 	BUG_ON(inode->i_state & I_CLEAR);
518 	BUG_ON(!list_empty(&inode->i_wb_list));
519 	/* don't need i_lock here, no concurrent mods to i_state */
520 	inode->i_state = I_FREEING | I_CLEAR;
521 }
522 EXPORT_SYMBOL(clear_inode);
523 
524 /*
525  * Free the inode passed in, removing it from the lists it is still connected
526  * to. We remove any pages still attached to the inode and wait for any IO that
527  * is still in progress before finally destroying the inode.
528  *
529  * An inode must already be marked I_FREEING so that we avoid the inode being
530  * moved back onto lists if we race with other code that manipulates the lists
531  * (e.g. writeback_single_inode). The caller is responsible for setting this.
532  *
533  * An inode must already be removed from the LRU list before being evicted from
534  * the cache. This should occur atomically with setting the I_FREEING state
535  * flag, so no inodes here should ever be on the LRU when being evicted.
536  */
evict(struct inode * inode)537 static void evict(struct inode *inode)
538 {
539 	const struct super_operations *op = inode->i_sb->s_op;
540 
541 	BUG_ON(!(inode->i_state & I_FREEING));
542 	BUG_ON(!list_empty(&inode->i_lru));
543 
544 	if (!list_empty(&inode->i_io_list))
545 		inode_io_list_del(inode);
546 
547 	inode_sb_list_del(inode);
548 
549 	/*
550 	 * Wait for flusher thread to be done with the inode so that filesystem
551 	 * does not start destroying it while writeback is still running. Since
552 	 * the inode has I_FREEING set, flusher thread won't start new work on
553 	 * the inode.  We just have to wait for running writeback to finish.
554 	 */
555 	inode_wait_for_writeback(inode);
556 
557 	if (op->evict_inode) {
558 		op->evict_inode(inode);
559 	} else {
560 		truncate_inode_pages_final(&inode->i_data);
561 		clear_inode(inode);
562 	}
563 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 		bd_forget(inode);
565 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 		cd_forget(inode);
567 
568 	remove_inode_hash(inode);
569 
570 	spin_lock(&inode->i_lock);
571 	wake_up_bit(&inode->i_state, __I_NEW);
572 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 	spin_unlock(&inode->i_lock);
574 
575 	destroy_inode(inode);
576 }
577 
578 /*
579  * dispose_list - dispose of the contents of a local list
580  * @head: the head of the list to free
581  *
582  * Dispose-list gets a local list with local inodes in it, so it doesn't
583  * need to worry about list corruption and SMP locks.
584  */
dispose_list(struct list_head * head)585 static void dispose_list(struct list_head *head)
586 {
587 	while (!list_empty(head)) {
588 		struct inode *inode;
589 
590 		inode = list_first_entry(head, struct inode, i_lru);
591 		list_del_init(&inode->i_lru);
592 
593 		evict(inode);
594 		cond_resched();
595 	}
596 }
597 
598 /**
599  * evict_inodes	- evict all evictable inodes for a superblock
600  * @sb:		superblock to operate on
601  *
602  * Make sure that no inodes with zero refcount are retained.  This is
603  * called by superblock shutdown after having SB_ACTIVE flag removed,
604  * so any inode reaching zero refcount during or after that call will
605  * be immediately evicted.
606  */
evict_inodes(struct super_block * sb)607 void evict_inodes(struct super_block *sb)
608 {
609 	struct inode *inode, *next;
610 	LIST_HEAD(dispose);
611 
612 again:
613 	spin_lock(&sb->s_inode_list_lock);
614 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 		if (atomic_read(&inode->i_count))
616 			continue;
617 
618 		spin_lock(&inode->i_lock);
619 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 			spin_unlock(&inode->i_lock);
621 			continue;
622 		}
623 
624 		inode->i_state |= I_FREEING;
625 		inode_lru_list_del(inode);
626 		spin_unlock(&inode->i_lock);
627 		list_add(&inode->i_lru, &dispose);
628 
629 		/*
630 		 * We can have a ton of inodes to evict at unmount time given
631 		 * enough memory, check to see if we need to go to sleep for a
632 		 * bit so we don't livelock.
633 		 */
634 		if (need_resched()) {
635 			spin_unlock(&sb->s_inode_list_lock);
636 			cond_resched();
637 			dispose_list(&dispose);
638 			goto again;
639 		}
640 	}
641 	spin_unlock(&sb->s_inode_list_lock);
642 
643 	dispose_list(&dispose);
644 }
645 EXPORT_SYMBOL_GPL(evict_inodes);
646 
647 /**
648  * invalidate_inodes	- attempt to free all inodes on a superblock
649  * @sb:		superblock to operate on
650  * @kill_dirty: flag to guide handling of dirty inodes
651  *
652  * Attempts to free all inodes for a given superblock.  If there were any
653  * busy inodes return a non-zero value, else zero.
654  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655  * them as busy.
656  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)657 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658 {
659 	int busy = 0;
660 	struct inode *inode, *next;
661 	LIST_HEAD(dispose);
662 
663 again:
664 	spin_lock(&sb->s_inode_list_lock);
665 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
666 		spin_lock(&inode->i_lock);
667 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
668 			spin_unlock(&inode->i_lock);
669 			continue;
670 		}
671 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
672 			spin_unlock(&inode->i_lock);
673 			busy = 1;
674 			continue;
675 		}
676 		if (atomic_read(&inode->i_count)) {
677 			spin_unlock(&inode->i_lock);
678 			busy = 1;
679 			continue;
680 		}
681 
682 		inode->i_state |= I_FREEING;
683 		inode_lru_list_del(inode);
684 		spin_unlock(&inode->i_lock);
685 		list_add(&inode->i_lru, &dispose);
686 		if (need_resched()) {
687 			spin_unlock(&sb->s_inode_list_lock);
688 			cond_resched();
689 			dispose_list(&dispose);
690 			goto again;
691 		}
692 	}
693 	spin_unlock(&sb->s_inode_list_lock);
694 
695 	dispose_list(&dispose);
696 
697 	return busy;
698 }
699 
700 /*
701  * Isolate the inode from the LRU in preparation for freeing it.
702  *
703  * Any inodes which are pinned purely because of attached pagecache have their
704  * pagecache removed.  If the inode has metadata buffers attached to
705  * mapping->private_list then try to remove them.
706  *
707  * If the inode has the I_REFERENCED flag set, then it means that it has been
708  * used recently - the flag is set in iput_final(). When we encounter such an
709  * inode, clear the flag and move it to the back of the LRU so it gets another
710  * pass through the LRU before it gets reclaimed. This is necessary because of
711  * the fact we are doing lazy LRU updates to minimise lock contention so the
712  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
713  * with this flag set because they are the inodes that are out of order.
714  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)715 static enum lru_status inode_lru_isolate(struct list_head *item,
716 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
717 {
718 	struct list_head *freeable = arg;
719 	struct inode	*inode = container_of(item, struct inode, i_lru);
720 
721 	/*
722 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
723 	 * If we fail to get the lock, just skip it.
724 	 */
725 	if (!spin_trylock(&inode->i_lock))
726 		return LRU_SKIP;
727 
728 	/*
729 	 * Referenced or dirty inodes are still in use. Give them another pass
730 	 * through the LRU as we canot reclaim them now.
731 	 */
732 	if (atomic_read(&inode->i_count) ||
733 	    (inode->i_state & ~I_REFERENCED)) {
734 		list_lru_isolate(lru, &inode->i_lru);
735 		spin_unlock(&inode->i_lock);
736 		this_cpu_dec(nr_unused);
737 		return LRU_REMOVED;
738 	}
739 
740 	/* recently referenced inodes get one more pass */
741 	if (inode->i_state & I_REFERENCED) {
742 		inode->i_state &= ~I_REFERENCED;
743 		spin_unlock(&inode->i_lock);
744 		return LRU_ROTATE;
745 	}
746 
747 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
748 		__iget(inode);
749 		spin_unlock(&inode->i_lock);
750 		spin_unlock(lru_lock);
751 		if (remove_inode_buffers(inode)) {
752 			unsigned long reap;
753 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
754 			if (current_is_kswapd())
755 				__count_vm_events(KSWAPD_INODESTEAL, reap);
756 			else
757 				__count_vm_events(PGINODESTEAL, reap);
758 			if (current->reclaim_state)
759 				current->reclaim_state->reclaimed_slab += reap;
760 		}
761 		iput(inode);
762 		spin_lock(lru_lock);
763 		return LRU_RETRY;
764 	}
765 
766 	WARN_ON(inode->i_state & I_NEW);
767 	inode->i_state |= I_FREEING;
768 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
769 	spin_unlock(&inode->i_lock);
770 
771 	this_cpu_dec(nr_unused);
772 	return LRU_REMOVED;
773 }
774 
775 /*
776  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
777  * This is called from the superblock shrinker function with a number of inodes
778  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
779  * then are freed outside inode_lock by dispose_list().
780  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)781 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
782 {
783 	LIST_HEAD(freeable);
784 	long freed;
785 
786 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
787 				     inode_lru_isolate, &freeable);
788 	dispose_list(&freeable);
789 	return freed;
790 }
791 
792 static void __wait_on_freeing_inode(struct inode *inode);
793 /*
794  * Called with the inode lock held.
795  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)796 static struct inode *find_inode(struct super_block *sb,
797 				struct hlist_head *head,
798 				int (*test)(struct inode *, void *),
799 				void *data)
800 {
801 	struct inode *inode = NULL;
802 
803 repeat:
804 	hlist_for_each_entry(inode, head, i_hash) {
805 		if (inode->i_sb != sb)
806 			continue;
807 		if (!test(inode, data))
808 			continue;
809 		spin_lock(&inode->i_lock);
810 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
811 			__wait_on_freeing_inode(inode);
812 			goto repeat;
813 		}
814 		if (unlikely(inode->i_state & I_CREATING)) {
815 			spin_unlock(&inode->i_lock);
816 			return ERR_PTR(-ESTALE);
817 		}
818 		__iget(inode);
819 		spin_unlock(&inode->i_lock);
820 		return inode;
821 	}
822 	return NULL;
823 }
824 
825 /*
826  * find_inode_fast is the fast path version of find_inode, see the comment at
827  * iget_locked for details.
828  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)829 static struct inode *find_inode_fast(struct super_block *sb,
830 				struct hlist_head *head, unsigned long ino)
831 {
832 	struct inode *inode = NULL;
833 
834 repeat:
835 	hlist_for_each_entry(inode, head, i_hash) {
836 		if (inode->i_ino != ino)
837 			continue;
838 		if (inode->i_sb != sb)
839 			continue;
840 		spin_lock(&inode->i_lock);
841 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
842 			__wait_on_freeing_inode(inode);
843 			goto repeat;
844 		}
845 		if (unlikely(inode->i_state & I_CREATING)) {
846 			spin_unlock(&inode->i_lock);
847 			return ERR_PTR(-ESTALE);
848 		}
849 		__iget(inode);
850 		spin_unlock(&inode->i_lock);
851 		return inode;
852 	}
853 	return NULL;
854 }
855 
856 /*
857  * Each cpu owns a range of LAST_INO_BATCH numbers.
858  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
859  * to renew the exhausted range.
860  *
861  * This does not significantly increase overflow rate because every CPU can
862  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
863  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
864  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
865  * overflow rate by 2x, which does not seem too significant.
866  *
867  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
868  * error if st_ino won't fit in target struct field. Use 32bit counter
869  * here to attempt to avoid that.
870  */
871 #define LAST_INO_BATCH 1024
872 static DEFINE_PER_CPU(unsigned int, last_ino);
873 
get_next_ino(void)874 unsigned int get_next_ino(void)
875 {
876 	unsigned int *p = &get_cpu_var(last_ino);
877 	unsigned int res = *p;
878 
879 #ifdef CONFIG_SMP
880 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
881 		static atomic_t shared_last_ino;
882 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
883 
884 		res = next - LAST_INO_BATCH;
885 	}
886 #endif
887 
888 	res++;
889 	/* get_next_ino should not provide a 0 inode number */
890 	if (unlikely(!res))
891 		res++;
892 	*p = res;
893 	put_cpu_var(last_ino);
894 	return res;
895 }
896 EXPORT_SYMBOL(get_next_ino);
897 
898 /**
899  *	new_inode_pseudo 	- obtain an inode
900  *	@sb: superblock
901  *
902  *	Allocates a new inode for given superblock.
903  *	Inode wont be chained in superblock s_inodes list
904  *	This means :
905  *	- fs can't be unmount
906  *	- quotas, fsnotify, writeback can't work
907  */
new_inode_pseudo(struct super_block * sb)908 struct inode *new_inode_pseudo(struct super_block *sb)
909 {
910 	struct inode *inode = alloc_inode(sb);
911 
912 	if (inode) {
913 		spin_lock(&inode->i_lock);
914 		inode->i_state = 0;
915 		spin_unlock(&inode->i_lock);
916 		INIT_LIST_HEAD(&inode->i_sb_list);
917 	}
918 	return inode;
919 }
920 
921 /**
922  *	new_inode 	- obtain an inode
923  *	@sb: superblock
924  *
925  *	Allocates a new inode for given superblock. The default gfp_mask
926  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
927  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
928  *	for the page cache are not reclaimable or migratable,
929  *	mapping_set_gfp_mask() must be called with suitable flags on the
930  *	newly created inode's mapping
931  *
932  */
new_inode(struct super_block * sb)933 struct inode *new_inode(struct super_block *sb)
934 {
935 	struct inode *inode;
936 
937 	spin_lock_prefetch(&sb->s_inode_list_lock);
938 
939 	inode = new_inode_pseudo(sb);
940 	if (inode)
941 		inode_sb_list_add(inode);
942 	return inode;
943 }
944 EXPORT_SYMBOL(new_inode);
945 
946 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)947 void lockdep_annotate_inode_mutex_key(struct inode *inode)
948 {
949 	if (S_ISDIR(inode->i_mode)) {
950 		struct file_system_type *type = inode->i_sb->s_type;
951 
952 		/* Set new key only if filesystem hasn't already changed it */
953 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
954 			/*
955 			 * ensure nobody is actually holding i_mutex
956 			 */
957 			// mutex_destroy(&inode->i_mutex);
958 			init_rwsem(&inode->i_rwsem);
959 			lockdep_set_class(&inode->i_rwsem,
960 					  &type->i_mutex_dir_key);
961 		}
962 	}
963 }
964 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
965 #endif
966 
967 /**
968  * unlock_new_inode - clear the I_NEW state and wake up any waiters
969  * @inode:	new inode to unlock
970  *
971  * Called when the inode is fully initialised to clear the new state of the
972  * inode and wake up anyone waiting for the inode to finish initialisation.
973  */
unlock_new_inode(struct inode * inode)974 void unlock_new_inode(struct inode *inode)
975 {
976 	lockdep_annotate_inode_mutex_key(inode);
977 	spin_lock(&inode->i_lock);
978 	WARN_ON(!(inode->i_state & I_NEW));
979 	inode->i_state &= ~I_NEW & ~I_CREATING;
980 	smp_mb();
981 	wake_up_bit(&inode->i_state, __I_NEW);
982 	spin_unlock(&inode->i_lock);
983 }
984 EXPORT_SYMBOL(unlock_new_inode);
985 
discard_new_inode(struct inode * inode)986 void discard_new_inode(struct inode *inode)
987 {
988 	lockdep_annotate_inode_mutex_key(inode);
989 	spin_lock(&inode->i_lock);
990 	WARN_ON(!(inode->i_state & I_NEW));
991 	inode->i_state &= ~I_NEW;
992 	smp_mb();
993 	wake_up_bit(&inode->i_state, __I_NEW);
994 	spin_unlock(&inode->i_lock);
995 	iput(inode);
996 }
997 EXPORT_SYMBOL(discard_new_inode);
998 
999 /**
1000  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1001  *
1002  * Lock any non-NULL argument that is not a directory.
1003  * Zero, one or two objects may be locked by this function.
1004  *
1005  * @inode1: first inode to lock
1006  * @inode2: second inode to lock
1007  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1008 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1009 {
1010 	if (inode1 > inode2)
1011 		swap(inode1, inode2);
1012 
1013 	if (inode1 && !S_ISDIR(inode1->i_mode))
1014 		inode_lock(inode1);
1015 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1016 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1017 }
1018 EXPORT_SYMBOL(lock_two_nondirectories);
1019 
1020 /**
1021  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1022  * @inode1: first inode to unlock
1023  * @inode2: second inode to unlock
1024  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1025 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1026 {
1027 	if (inode1 && !S_ISDIR(inode1->i_mode))
1028 		inode_unlock(inode1);
1029 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1030 		inode_unlock(inode2);
1031 }
1032 EXPORT_SYMBOL(unlock_two_nondirectories);
1033 
1034 /**
1035  * inode_insert5 - obtain an inode from a mounted file system
1036  * @inode:	pre-allocated inode to use for insert to cache
1037  * @hashval:	hash value (usually inode number) to get
1038  * @test:	callback used for comparisons between inodes
1039  * @set:	callback used to initialize a new struct inode
1040  * @data:	opaque data pointer to pass to @test and @set
1041  *
1042  * Search for the inode specified by @hashval and @data in the inode cache,
1043  * and if present it is return it with an increased reference count. This is
1044  * a variant of iget5_locked() for callers that don't want to fail on memory
1045  * allocation of inode.
1046  *
1047  * If the inode is not in cache, insert the pre-allocated inode to cache and
1048  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1049  * to fill it in before unlocking it via unlock_new_inode().
1050  *
1051  * Note both @test and @set are called with the inode_hash_lock held, so can't
1052  * sleep.
1053  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1054 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1055 			    int (*test)(struct inode *, void *),
1056 			    int (*set)(struct inode *, void *), void *data)
1057 {
1058 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1059 	struct inode *old;
1060 	bool creating = inode->i_state & I_CREATING;
1061 
1062 again:
1063 	spin_lock(&inode_hash_lock);
1064 	old = find_inode(inode->i_sb, head, test, data);
1065 	if (unlikely(old)) {
1066 		/*
1067 		 * Uhhuh, somebody else created the same inode under us.
1068 		 * Use the old inode instead of the preallocated one.
1069 		 */
1070 		spin_unlock(&inode_hash_lock);
1071 		if (IS_ERR(old))
1072 			return NULL;
1073 		wait_on_inode(old);
1074 		if (unlikely(inode_unhashed(old))) {
1075 			iput(old);
1076 			goto again;
1077 		}
1078 		return old;
1079 	}
1080 
1081 	if (set && unlikely(set(inode, data))) {
1082 		inode = NULL;
1083 		goto unlock;
1084 	}
1085 
1086 	/*
1087 	 * Return the locked inode with I_NEW set, the
1088 	 * caller is responsible for filling in the contents
1089 	 */
1090 	spin_lock(&inode->i_lock);
1091 	inode->i_state |= I_NEW;
1092 	hlist_add_head(&inode->i_hash, head);
1093 	spin_unlock(&inode->i_lock);
1094 	if (!creating)
1095 		inode_sb_list_add(inode);
1096 unlock:
1097 	spin_unlock(&inode_hash_lock);
1098 
1099 	return inode;
1100 }
1101 EXPORT_SYMBOL(inode_insert5);
1102 
1103 /**
1104  * iget5_locked - obtain an inode from a mounted file system
1105  * @sb:		super block of file system
1106  * @hashval:	hash value (usually inode number) to get
1107  * @test:	callback used for comparisons between inodes
1108  * @set:	callback used to initialize a new struct inode
1109  * @data:	opaque data pointer to pass to @test and @set
1110  *
1111  * Search for the inode specified by @hashval and @data in the inode cache,
1112  * and if present it is return it with an increased reference count. This is
1113  * a generalized version of iget_locked() for file systems where the inode
1114  * number is not sufficient for unique identification of an inode.
1115  *
1116  * If the inode is not in cache, allocate a new inode and return it locked,
1117  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1118  * before unlocking it via unlock_new_inode().
1119  *
1120  * Note both @test and @set are called with the inode_hash_lock held, so can't
1121  * sleep.
1122  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1123 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1124 		int (*test)(struct inode *, void *),
1125 		int (*set)(struct inode *, void *), void *data)
1126 {
1127 	struct inode *inode = ilookup5(sb, hashval, test, data);
1128 
1129 	if (!inode) {
1130 		struct inode *new = alloc_inode(sb);
1131 
1132 		if (new) {
1133 			new->i_state = 0;
1134 			inode = inode_insert5(new, hashval, test, set, data);
1135 			if (unlikely(inode != new))
1136 				destroy_inode(new);
1137 		}
1138 	}
1139 	return inode;
1140 }
1141 EXPORT_SYMBOL(iget5_locked);
1142 
1143 /**
1144  * iget_locked - obtain an inode from a mounted file system
1145  * @sb:		super block of file system
1146  * @ino:	inode number to get
1147  *
1148  * Search for the inode specified by @ino in the inode cache and if present
1149  * return it with an increased reference count. This is for file systems
1150  * where the inode number is sufficient for unique identification of an inode.
1151  *
1152  * If the inode is not in cache, allocate a new inode and return it locked,
1153  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1154  * before unlocking it via unlock_new_inode().
1155  */
iget_locked(struct super_block * sb,unsigned long ino)1156 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1157 {
1158 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1159 	struct inode *inode;
1160 again:
1161 	spin_lock(&inode_hash_lock);
1162 	inode = find_inode_fast(sb, head, ino);
1163 	spin_unlock(&inode_hash_lock);
1164 	if (inode) {
1165 		if (IS_ERR(inode))
1166 			return NULL;
1167 		wait_on_inode(inode);
1168 		if (unlikely(inode_unhashed(inode))) {
1169 			iput(inode);
1170 			goto again;
1171 		}
1172 		return inode;
1173 	}
1174 
1175 	inode = alloc_inode(sb);
1176 	if (inode) {
1177 		struct inode *old;
1178 
1179 		spin_lock(&inode_hash_lock);
1180 		/* We released the lock, so.. */
1181 		old = find_inode_fast(sb, head, ino);
1182 		if (!old) {
1183 			inode->i_ino = ino;
1184 			spin_lock(&inode->i_lock);
1185 			inode->i_state = I_NEW;
1186 			hlist_add_head(&inode->i_hash, head);
1187 			spin_unlock(&inode->i_lock);
1188 			inode_sb_list_add(inode);
1189 			spin_unlock(&inode_hash_lock);
1190 
1191 			/* Return the locked inode with I_NEW set, the
1192 			 * caller is responsible for filling in the contents
1193 			 */
1194 			return inode;
1195 		}
1196 
1197 		/*
1198 		 * Uhhuh, somebody else created the same inode under
1199 		 * us. Use the old inode instead of the one we just
1200 		 * allocated.
1201 		 */
1202 		spin_unlock(&inode_hash_lock);
1203 		destroy_inode(inode);
1204 		if (IS_ERR(old))
1205 			return NULL;
1206 		inode = old;
1207 		wait_on_inode(inode);
1208 		if (unlikely(inode_unhashed(inode))) {
1209 			iput(inode);
1210 			goto again;
1211 		}
1212 	}
1213 	return inode;
1214 }
1215 EXPORT_SYMBOL(iget_locked);
1216 
1217 /*
1218  * search the inode cache for a matching inode number.
1219  * If we find one, then the inode number we are trying to
1220  * allocate is not unique and so we should not use it.
1221  *
1222  * Returns 1 if the inode number is unique, 0 if it is not.
1223  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1224 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1225 {
1226 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1227 	struct inode *inode;
1228 
1229 	spin_lock(&inode_hash_lock);
1230 	hlist_for_each_entry(inode, b, i_hash) {
1231 		if (inode->i_ino == ino && inode->i_sb == sb) {
1232 			spin_unlock(&inode_hash_lock);
1233 			return 0;
1234 		}
1235 	}
1236 	spin_unlock(&inode_hash_lock);
1237 
1238 	return 1;
1239 }
1240 
1241 /**
1242  *	iunique - get a unique inode number
1243  *	@sb: superblock
1244  *	@max_reserved: highest reserved inode number
1245  *
1246  *	Obtain an inode number that is unique on the system for a given
1247  *	superblock. This is used by file systems that have no natural
1248  *	permanent inode numbering system. An inode number is returned that
1249  *	is higher than the reserved limit but unique.
1250  *
1251  *	BUGS:
1252  *	With a large number of inodes live on the file system this function
1253  *	currently becomes quite slow.
1254  */
iunique(struct super_block * sb,ino_t max_reserved)1255 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1256 {
1257 	/*
1258 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1259 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1260 	 * here to attempt to avoid that.
1261 	 */
1262 	static DEFINE_SPINLOCK(iunique_lock);
1263 	static unsigned int counter;
1264 	ino_t res;
1265 
1266 	spin_lock(&iunique_lock);
1267 	do {
1268 		if (counter <= max_reserved)
1269 			counter = max_reserved + 1;
1270 		res = counter++;
1271 	} while (!test_inode_iunique(sb, res));
1272 	spin_unlock(&iunique_lock);
1273 
1274 	return res;
1275 }
1276 EXPORT_SYMBOL(iunique);
1277 
igrab(struct inode * inode)1278 struct inode *igrab(struct inode *inode)
1279 {
1280 	spin_lock(&inode->i_lock);
1281 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1282 		__iget(inode);
1283 		spin_unlock(&inode->i_lock);
1284 	} else {
1285 		spin_unlock(&inode->i_lock);
1286 		/*
1287 		 * Handle the case where s_op->clear_inode is not been
1288 		 * called yet, and somebody is calling igrab
1289 		 * while the inode is getting freed.
1290 		 */
1291 		inode = NULL;
1292 	}
1293 	return inode;
1294 }
1295 EXPORT_SYMBOL(igrab);
1296 
1297 /**
1298  * ilookup5_nowait - search for an inode in the inode cache
1299  * @sb:		super block of file system to search
1300  * @hashval:	hash value (usually inode number) to search for
1301  * @test:	callback used for comparisons between inodes
1302  * @data:	opaque data pointer to pass to @test
1303  *
1304  * Search for the inode specified by @hashval and @data in the inode cache.
1305  * If the inode is in the cache, the inode is returned with an incremented
1306  * reference count.
1307  *
1308  * Note: I_NEW is not waited upon so you have to be very careful what you do
1309  * with the returned inode.  You probably should be using ilookup5() instead.
1310  *
1311  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1312  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1313 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1314 		int (*test)(struct inode *, void *), void *data)
1315 {
1316 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1317 	struct inode *inode;
1318 
1319 	spin_lock(&inode_hash_lock);
1320 	inode = find_inode(sb, head, test, data);
1321 	spin_unlock(&inode_hash_lock);
1322 
1323 	return IS_ERR(inode) ? NULL : inode;
1324 }
1325 EXPORT_SYMBOL(ilookup5_nowait);
1326 
1327 /**
1328  * ilookup5 - search for an inode in the inode cache
1329  * @sb:		super block of file system to search
1330  * @hashval:	hash value (usually inode number) to search for
1331  * @test:	callback used for comparisons between inodes
1332  * @data:	opaque data pointer to pass to @test
1333  *
1334  * Search for the inode specified by @hashval and @data in the inode cache,
1335  * and if the inode is in the cache, return the inode with an incremented
1336  * reference count.  Waits on I_NEW before returning the inode.
1337  * returned with an incremented reference count.
1338  *
1339  * This is a generalized version of ilookup() for file systems where the
1340  * inode number is not sufficient for unique identification of an inode.
1341  *
1342  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1343  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1344 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1345 		int (*test)(struct inode *, void *), void *data)
1346 {
1347 	struct inode *inode;
1348 again:
1349 	inode = ilookup5_nowait(sb, hashval, test, data);
1350 	if (inode) {
1351 		wait_on_inode(inode);
1352 		if (unlikely(inode_unhashed(inode))) {
1353 			iput(inode);
1354 			goto again;
1355 		}
1356 	}
1357 	return inode;
1358 }
1359 EXPORT_SYMBOL(ilookup5);
1360 
1361 /**
1362  * ilookup - search for an inode in the inode cache
1363  * @sb:		super block of file system to search
1364  * @ino:	inode number to search for
1365  *
1366  * Search for the inode @ino in the inode cache, and if the inode is in the
1367  * cache, the inode is returned with an incremented reference count.
1368  */
ilookup(struct super_block * sb,unsigned long ino)1369 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1370 {
1371 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1372 	struct inode *inode;
1373 again:
1374 	spin_lock(&inode_hash_lock);
1375 	inode = find_inode_fast(sb, head, ino);
1376 	spin_unlock(&inode_hash_lock);
1377 
1378 	if (inode) {
1379 		if (IS_ERR(inode))
1380 			return NULL;
1381 		wait_on_inode(inode);
1382 		if (unlikely(inode_unhashed(inode))) {
1383 			iput(inode);
1384 			goto again;
1385 		}
1386 	}
1387 	return inode;
1388 }
1389 EXPORT_SYMBOL(ilookup);
1390 
1391 /**
1392  * find_inode_nowait - find an inode in the inode cache
1393  * @sb:		super block of file system to search
1394  * @hashval:	hash value (usually inode number) to search for
1395  * @match:	callback used for comparisons between inodes
1396  * @data:	opaque data pointer to pass to @match
1397  *
1398  * Search for the inode specified by @hashval and @data in the inode
1399  * cache, where the helper function @match will return 0 if the inode
1400  * does not match, 1 if the inode does match, and -1 if the search
1401  * should be stopped.  The @match function must be responsible for
1402  * taking the i_lock spin_lock and checking i_state for an inode being
1403  * freed or being initialized, and incrementing the reference count
1404  * before returning 1.  It also must not sleep, since it is called with
1405  * the inode_hash_lock spinlock held.
1406  *
1407  * This is a even more generalized version of ilookup5() when the
1408  * function must never block --- find_inode() can block in
1409  * __wait_on_freeing_inode() --- or when the caller can not increment
1410  * the reference count because the resulting iput() might cause an
1411  * inode eviction.  The tradeoff is that the @match funtion must be
1412  * very carefully implemented.
1413  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1414 struct inode *find_inode_nowait(struct super_block *sb,
1415 				unsigned long hashval,
1416 				int (*match)(struct inode *, unsigned long,
1417 					     void *),
1418 				void *data)
1419 {
1420 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1421 	struct inode *inode, *ret_inode = NULL;
1422 	int mval;
1423 
1424 	spin_lock(&inode_hash_lock);
1425 	hlist_for_each_entry(inode, head, i_hash) {
1426 		if (inode->i_sb != sb)
1427 			continue;
1428 		mval = match(inode, hashval, data);
1429 		if (mval == 0)
1430 			continue;
1431 		if (mval == 1)
1432 			ret_inode = inode;
1433 		goto out;
1434 	}
1435 out:
1436 	spin_unlock(&inode_hash_lock);
1437 	return ret_inode;
1438 }
1439 EXPORT_SYMBOL(find_inode_nowait);
1440 
insert_inode_locked(struct inode * inode)1441 int insert_inode_locked(struct inode *inode)
1442 {
1443 	struct super_block *sb = inode->i_sb;
1444 	ino_t ino = inode->i_ino;
1445 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1446 
1447 	while (1) {
1448 		struct inode *old = NULL;
1449 		spin_lock(&inode_hash_lock);
1450 		hlist_for_each_entry(old, head, i_hash) {
1451 			if (old->i_ino != ino)
1452 				continue;
1453 			if (old->i_sb != sb)
1454 				continue;
1455 			spin_lock(&old->i_lock);
1456 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1457 				spin_unlock(&old->i_lock);
1458 				continue;
1459 			}
1460 			break;
1461 		}
1462 		if (likely(!old)) {
1463 			spin_lock(&inode->i_lock);
1464 			inode->i_state |= I_NEW | I_CREATING;
1465 			hlist_add_head(&inode->i_hash, head);
1466 			spin_unlock(&inode->i_lock);
1467 			spin_unlock(&inode_hash_lock);
1468 			return 0;
1469 		}
1470 		if (unlikely(old->i_state & I_CREATING)) {
1471 			spin_unlock(&old->i_lock);
1472 			spin_unlock(&inode_hash_lock);
1473 			return -EBUSY;
1474 		}
1475 		__iget(old);
1476 		spin_unlock(&old->i_lock);
1477 		spin_unlock(&inode_hash_lock);
1478 		wait_on_inode(old);
1479 		if (unlikely(!inode_unhashed(old))) {
1480 			iput(old);
1481 			return -EBUSY;
1482 		}
1483 		iput(old);
1484 	}
1485 }
1486 EXPORT_SYMBOL(insert_inode_locked);
1487 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1488 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1489 		int (*test)(struct inode *, void *), void *data)
1490 {
1491 	struct inode *old;
1492 
1493 	inode->i_state |= I_CREATING;
1494 	old = inode_insert5(inode, hashval, test, NULL, data);
1495 
1496 	if (old != inode) {
1497 		iput(old);
1498 		return -EBUSY;
1499 	}
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL(insert_inode_locked4);
1503 
1504 
generic_delete_inode(struct inode * inode)1505 int generic_delete_inode(struct inode *inode)
1506 {
1507 	return 1;
1508 }
1509 EXPORT_SYMBOL(generic_delete_inode);
1510 
1511 /*
1512  * Called when we're dropping the last reference
1513  * to an inode.
1514  *
1515  * Call the FS "drop_inode()" function, defaulting to
1516  * the legacy UNIX filesystem behaviour.  If it tells
1517  * us to evict inode, do so.  Otherwise, retain inode
1518  * in cache if fs is alive, sync and evict if fs is
1519  * shutting down.
1520  */
iput_final(struct inode * inode)1521 static void iput_final(struct inode *inode)
1522 {
1523 	struct super_block *sb = inode->i_sb;
1524 	const struct super_operations *op = inode->i_sb->s_op;
1525 	int drop;
1526 
1527 	WARN_ON(inode->i_state & I_NEW);
1528 
1529 	if (op->drop_inode)
1530 		drop = op->drop_inode(inode);
1531 	else
1532 		drop = generic_drop_inode(inode);
1533 
1534 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1535 		inode_add_lru(inode);
1536 		spin_unlock(&inode->i_lock);
1537 		return;
1538 	}
1539 
1540 	if (!drop) {
1541 		inode->i_state |= I_WILL_FREE;
1542 		spin_unlock(&inode->i_lock);
1543 		write_inode_now(inode, 1);
1544 		spin_lock(&inode->i_lock);
1545 		WARN_ON(inode->i_state & I_NEW);
1546 		inode->i_state &= ~I_WILL_FREE;
1547 	}
1548 
1549 	inode->i_state |= I_FREEING;
1550 	if (!list_empty(&inode->i_lru))
1551 		inode_lru_list_del(inode);
1552 	spin_unlock(&inode->i_lock);
1553 
1554 	evict(inode);
1555 }
1556 
1557 /**
1558  *	iput	- put an inode
1559  *	@inode: inode to put
1560  *
1561  *	Puts an inode, dropping its usage count. If the inode use count hits
1562  *	zero, the inode is then freed and may also be destroyed.
1563  *
1564  *	Consequently, iput() can sleep.
1565  */
iput(struct inode * inode)1566 void iput(struct inode *inode)
1567 {
1568 	if (!inode)
1569 		return;
1570 	BUG_ON(inode->i_state & I_CLEAR);
1571 retry:
1572 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1573 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1574 			atomic_inc(&inode->i_count);
1575 			spin_unlock(&inode->i_lock);
1576 			trace_writeback_lazytime_iput(inode);
1577 			mark_inode_dirty_sync(inode);
1578 			goto retry;
1579 		}
1580 		iput_final(inode);
1581 	}
1582 }
1583 EXPORT_SYMBOL(iput);
1584 
1585 /**
1586  *	bmap	- find a block number in a file
1587  *	@inode: inode of file
1588  *	@block: block to find
1589  *
1590  *	Returns the block number on the device holding the inode that
1591  *	is the disk block number for the block of the file requested.
1592  *	That is, asked for block 4 of inode 1 the function will return the
1593  *	disk block relative to the disk start that holds that block of the
1594  *	file.
1595  */
bmap(struct inode * inode,sector_t block)1596 sector_t bmap(struct inode *inode, sector_t block)
1597 {
1598 	sector_t res = 0;
1599 	if (inode->i_mapping->a_ops->bmap)
1600 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1601 	return res;
1602 }
1603 EXPORT_SYMBOL(bmap);
1604 
1605 /*
1606  * With relative atime, only update atime if the previous atime is
1607  * earlier than either the ctime or mtime or if at least a day has
1608  * passed since the last atime update.
1609  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1610 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1611 			     struct timespec now)
1612 {
1613 
1614 	if (!(mnt->mnt_flags & MNT_RELATIME))
1615 		return 1;
1616 	/*
1617 	 * Is mtime younger than atime? If yes, update atime:
1618 	 */
1619 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1620 		return 1;
1621 	/*
1622 	 * Is ctime younger than atime? If yes, update atime:
1623 	 */
1624 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1625 		return 1;
1626 
1627 	/*
1628 	 * Is the previous atime value older than a day? If yes,
1629 	 * update atime:
1630 	 */
1631 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1632 		return 1;
1633 	/*
1634 	 * Good, we can skip the atime update:
1635 	 */
1636 	return 0;
1637 }
1638 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1639 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1640 {
1641 	int iflags = I_DIRTY_TIME;
1642 	bool dirty = false;
1643 
1644 	if (flags & S_ATIME)
1645 		inode->i_atime = *time;
1646 	if (flags & S_VERSION)
1647 		dirty = inode_maybe_inc_iversion(inode, false);
1648 	if (flags & S_CTIME)
1649 		inode->i_ctime = *time;
1650 	if (flags & S_MTIME)
1651 		inode->i_mtime = *time;
1652 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1653 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1654 		dirty = true;
1655 
1656 	if (dirty)
1657 		iflags |= I_DIRTY_SYNC;
1658 	__mark_inode_dirty(inode, iflags);
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL(generic_update_time);
1662 
1663 /*
1664  * This does the actual work of updating an inodes time or version.  Must have
1665  * had called mnt_want_write() before calling this.
1666  */
update_time(struct inode * inode,struct timespec64 * time,int flags)1667 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1668 {
1669 	int (*update_time)(struct inode *, struct timespec64 *, int);
1670 
1671 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1672 		generic_update_time;
1673 
1674 	return update_time(inode, time, flags);
1675 }
1676 
1677 /**
1678  *	touch_atime	-	update the access time
1679  *	@path: the &struct path to update
1680  *	@inode: inode to update
1681  *
1682  *	Update the accessed time on an inode and mark it for writeback.
1683  *	This function automatically handles read only file systems and media,
1684  *	as well as the "noatime" flag and inode specific "noatime" markers.
1685  */
atime_needs_update(const struct path * path,struct inode * inode)1686 bool atime_needs_update(const struct path *path, struct inode *inode)
1687 {
1688 	struct vfsmount *mnt = path->mnt;
1689 	struct timespec64 now;
1690 
1691 	if (inode->i_flags & S_NOATIME)
1692 		return false;
1693 
1694 	/* Atime updates will likely cause i_uid and i_gid to be written
1695 	 * back improprely if their true value is unknown to the vfs.
1696 	 */
1697 	if (HAS_UNMAPPED_ID(inode))
1698 		return false;
1699 
1700 	if (IS_NOATIME(inode))
1701 		return false;
1702 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1703 		return false;
1704 
1705 	if (mnt->mnt_flags & MNT_NOATIME)
1706 		return false;
1707 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1708 		return false;
1709 
1710 	now = current_time(inode);
1711 
1712 	if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now)))
1713 		return false;
1714 
1715 	if (timespec64_equal(&inode->i_atime, &now))
1716 		return false;
1717 
1718 	return true;
1719 }
1720 
touch_atime(const struct path * path)1721 void touch_atime(const struct path *path)
1722 {
1723 	struct vfsmount *mnt = path->mnt;
1724 	struct inode *inode = d_inode(path->dentry);
1725 	struct timespec64 now;
1726 
1727 	if (!atime_needs_update(path, inode))
1728 		return;
1729 
1730 	if (!sb_start_write_trylock(inode->i_sb))
1731 		return;
1732 
1733 	if (__mnt_want_write(mnt) != 0)
1734 		goto skip_update;
1735 	/*
1736 	 * File systems can error out when updating inodes if they need to
1737 	 * allocate new space to modify an inode (such is the case for
1738 	 * Btrfs), but since we touch atime while walking down the path we
1739 	 * really don't care if we failed to update the atime of the file,
1740 	 * so just ignore the return value.
1741 	 * We may also fail on filesystems that have the ability to make parts
1742 	 * of the fs read only, e.g. subvolumes in Btrfs.
1743 	 */
1744 	now = current_time(inode);
1745 	update_time(inode, &now, S_ATIME);
1746 	__mnt_drop_write(mnt);
1747 skip_update:
1748 	sb_end_write(inode->i_sb);
1749 }
1750 EXPORT_SYMBOL(touch_atime);
1751 
1752 /*
1753  * The logic we want is
1754  *
1755  *	if suid or (sgid and xgrp)
1756  *		remove privs
1757  */
should_remove_suid(struct dentry * dentry)1758 int should_remove_suid(struct dentry *dentry)
1759 {
1760 	umode_t mode = d_inode(dentry)->i_mode;
1761 	int kill = 0;
1762 
1763 	/* suid always must be killed */
1764 	if (unlikely(mode & S_ISUID))
1765 		kill = ATTR_KILL_SUID;
1766 
1767 	/*
1768 	 * sgid without any exec bits is just a mandatory locking mark; leave
1769 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1770 	 */
1771 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1772 		kill |= ATTR_KILL_SGID;
1773 
1774 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1775 		return kill;
1776 
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(should_remove_suid);
1780 
1781 /*
1782  * Return mask of changes for notify_change() that need to be done as a
1783  * response to write or truncate. Return 0 if nothing has to be changed.
1784  * Negative value on error (change should be denied).
1785  */
dentry_needs_remove_privs(struct dentry * dentry)1786 int dentry_needs_remove_privs(struct dentry *dentry)
1787 {
1788 	struct inode *inode = d_inode(dentry);
1789 	int mask = 0;
1790 	int ret;
1791 
1792 	if (IS_NOSEC(inode))
1793 		return 0;
1794 
1795 	mask = should_remove_suid(dentry);
1796 	ret = security_inode_need_killpriv(dentry);
1797 	if (ret < 0)
1798 		return ret;
1799 	if (ret)
1800 		mask |= ATTR_KILL_PRIV;
1801 	return mask;
1802 }
1803 
__remove_privs(struct dentry * dentry,int kill)1804 static int __remove_privs(struct dentry *dentry, int kill)
1805 {
1806 	struct iattr newattrs;
1807 
1808 	newattrs.ia_valid = ATTR_FORCE | kill;
1809 	/*
1810 	 * Note we call this on write, so notify_change will not
1811 	 * encounter any conflicting delegations:
1812 	 */
1813 	return notify_change(dentry, &newattrs, NULL);
1814 }
1815 
1816 /*
1817  * Remove special file priviledges (suid, capabilities) when file is written
1818  * to or truncated.
1819  */
file_remove_privs(struct file * file)1820 int file_remove_privs(struct file *file)
1821 {
1822 	struct dentry *dentry = file_dentry(file);
1823 	struct inode *inode = file_inode(file);
1824 	int kill;
1825 	int error = 0;
1826 
1827 	/*
1828 	 * Fast path for nothing security related.
1829 	 * As well for non-regular files, e.g. blkdev inodes.
1830 	 * For example, blkdev_write_iter() might get here
1831 	 * trying to remove privs which it is not allowed to.
1832 	 */
1833 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1834 		return 0;
1835 
1836 	kill = dentry_needs_remove_privs(dentry);
1837 	if (kill < 0)
1838 		return kill;
1839 	if (kill)
1840 		error = __remove_privs(dentry, kill);
1841 	if (!error)
1842 		inode_has_no_xattr(inode);
1843 
1844 	return error;
1845 }
1846 EXPORT_SYMBOL(file_remove_privs);
1847 
1848 /**
1849  *	file_update_time	-	update mtime and ctime time
1850  *	@file: file accessed
1851  *
1852  *	Update the mtime and ctime members of an inode and mark the inode
1853  *	for writeback.  Note that this function is meant exclusively for
1854  *	usage in the file write path of filesystems, and filesystems may
1855  *	choose to explicitly ignore update via this function with the
1856  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1857  *	timestamps are handled by the server.  This can return an error for
1858  *	file systems who need to allocate space in order to update an inode.
1859  */
1860 
file_update_time(struct file * file)1861 int file_update_time(struct file *file)
1862 {
1863 	struct inode *inode = file_inode(file);
1864 	struct timespec64 now;
1865 	int sync_it = 0;
1866 	int ret;
1867 
1868 	/* First try to exhaust all avenues to not sync */
1869 	if (IS_NOCMTIME(inode))
1870 		return 0;
1871 
1872 	now = current_time(inode);
1873 	if (!timespec64_equal(&inode->i_mtime, &now))
1874 		sync_it = S_MTIME;
1875 
1876 	if (!timespec64_equal(&inode->i_ctime, &now))
1877 		sync_it |= S_CTIME;
1878 
1879 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1880 		sync_it |= S_VERSION;
1881 
1882 	if (!sync_it)
1883 		return 0;
1884 
1885 	/* Finally allowed to write? Takes lock. */
1886 	if (__mnt_want_write_file(file))
1887 		return 0;
1888 
1889 	ret = update_time(inode, &now, sync_it);
1890 	__mnt_drop_write_file(file);
1891 
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(file_update_time);
1895 
inode_needs_sync(struct inode * inode)1896 int inode_needs_sync(struct inode *inode)
1897 {
1898 	if (IS_SYNC(inode))
1899 		return 1;
1900 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1901 		return 1;
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL(inode_needs_sync);
1905 
1906 /*
1907  * If we try to find an inode in the inode hash while it is being
1908  * deleted, we have to wait until the filesystem completes its
1909  * deletion before reporting that it isn't found.  This function waits
1910  * until the deletion _might_ have completed.  Callers are responsible
1911  * to recheck inode state.
1912  *
1913  * It doesn't matter if I_NEW is not set initially, a call to
1914  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1915  * will DTRT.
1916  */
__wait_on_freeing_inode(struct inode * inode)1917 static void __wait_on_freeing_inode(struct inode *inode)
1918 {
1919 	wait_queue_head_t *wq;
1920 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1921 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1922 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1923 	spin_unlock(&inode->i_lock);
1924 	spin_unlock(&inode_hash_lock);
1925 	schedule();
1926 	finish_wait(wq, &wait.wq_entry);
1927 	spin_lock(&inode_hash_lock);
1928 }
1929 
1930 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1931 static int __init set_ihash_entries(char *str)
1932 {
1933 	if (!str)
1934 		return 0;
1935 	ihash_entries = simple_strtoul(str, &str, 0);
1936 	return 1;
1937 }
1938 __setup("ihash_entries=", set_ihash_entries);
1939 
1940 /*
1941  * Initialize the waitqueues and inode hash table.
1942  */
inode_init_early(void)1943 void __init inode_init_early(void)
1944 {
1945 	/* If hashes are distributed across NUMA nodes, defer
1946 	 * hash allocation until vmalloc space is available.
1947 	 */
1948 	if (hashdist)
1949 		return;
1950 
1951 	inode_hashtable =
1952 		alloc_large_system_hash("Inode-cache",
1953 					sizeof(struct hlist_head),
1954 					ihash_entries,
1955 					14,
1956 					HASH_EARLY | HASH_ZERO,
1957 					&i_hash_shift,
1958 					&i_hash_mask,
1959 					0,
1960 					0);
1961 }
1962 
inode_init(void)1963 void __init inode_init(void)
1964 {
1965 	/* inode slab cache */
1966 	inode_cachep = kmem_cache_create("inode_cache",
1967 					 sizeof(struct inode),
1968 					 0,
1969 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1970 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1971 					 init_once);
1972 
1973 	/* Hash may have been set up in inode_init_early */
1974 	if (!hashdist)
1975 		return;
1976 
1977 	inode_hashtable =
1978 		alloc_large_system_hash("Inode-cache",
1979 					sizeof(struct hlist_head),
1980 					ihash_entries,
1981 					14,
1982 					HASH_ZERO,
1983 					&i_hash_shift,
1984 					&i_hash_mask,
1985 					0,
1986 					0);
1987 }
1988 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1989 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1990 {
1991 	inode->i_mode = mode;
1992 	if (S_ISCHR(mode)) {
1993 		inode->i_fop = &def_chr_fops;
1994 		inode->i_rdev = rdev;
1995 	} else if (S_ISBLK(mode)) {
1996 		inode->i_fop = &def_blk_fops;
1997 		inode->i_rdev = rdev;
1998 	} else if (S_ISFIFO(mode))
1999 		inode->i_fop = &pipefifo_fops;
2000 	else if (S_ISSOCK(mode))
2001 		;	/* leave it no_open_fops */
2002 	else
2003 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2004 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2005 				  inode->i_ino);
2006 }
2007 EXPORT_SYMBOL(init_special_inode);
2008 
2009 /**
2010  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2011  * @inode: New inode
2012  * @dir: Directory inode
2013  * @mode: mode of the new inode
2014  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2015 void inode_init_owner(struct inode *inode, const struct inode *dir,
2016 			umode_t mode)
2017 {
2018 	inode->i_uid = current_fsuid();
2019 	if (dir && dir->i_mode & S_ISGID) {
2020 		inode->i_gid = dir->i_gid;
2021 
2022 		/* Directories are special, and always inherit S_ISGID */
2023 		if (S_ISDIR(mode))
2024 			mode |= S_ISGID;
2025 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2026 			 !in_group_p(inode->i_gid) &&
2027 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2028 			mode &= ~S_ISGID;
2029 	} else
2030 		inode->i_gid = current_fsgid();
2031 	inode->i_mode = mode;
2032 }
2033 EXPORT_SYMBOL(inode_init_owner);
2034 
2035 /**
2036  * inode_owner_or_capable - check current task permissions to inode
2037  * @inode: inode being checked
2038  *
2039  * Return true if current either has CAP_FOWNER in a namespace with the
2040  * inode owner uid mapped, or owns the file.
2041  */
inode_owner_or_capable(const struct inode * inode)2042 bool inode_owner_or_capable(const struct inode *inode)
2043 {
2044 	struct user_namespace *ns;
2045 
2046 	if (uid_eq(current_fsuid(), inode->i_uid))
2047 		return true;
2048 
2049 	ns = current_user_ns();
2050 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2051 		return true;
2052 	return false;
2053 }
2054 EXPORT_SYMBOL(inode_owner_or_capable);
2055 
2056 /*
2057  * Direct i/o helper functions
2058  */
__inode_dio_wait(struct inode * inode)2059 static void __inode_dio_wait(struct inode *inode)
2060 {
2061 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2062 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2063 
2064 	do {
2065 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2066 		if (atomic_read(&inode->i_dio_count))
2067 			schedule();
2068 	} while (atomic_read(&inode->i_dio_count));
2069 	finish_wait(wq, &q.wq_entry);
2070 }
2071 
2072 /**
2073  * inode_dio_wait - wait for outstanding DIO requests to finish
2074  * @inode: inode to wait for
2075  *
2076  * Waits for all pending direct I/O requests to finish so that we can
2077  * proceed with a truncate or equivalent operation.
2078  *
2079  * Must be called under a lock that serializes taking new references
2080  * to i_dio_count, usually by inode->i_mutex.
2081  */
inode_dio_wait(struct inode * inode)2082 void inode_dio_wait(struct inode *inode)
2083 {
2084 	if (atomic_read(&inode->i_dio_count))
2085 		__inode_dio_wait(inode);
2086 }
2087 EXPORT_SYMBOL(inode_dio_wait);
2088 
2089 /*
2090  * inode_set_flags - atomically set some inode flags
2091  *
2092  * Note: the caller should be holding i_mutex, or else be sure that
2093  * they have exclusive access to the inode structure (i.e., while the
2094  * inode is being instantiated).  The reason for the cmpxchg() loop
2095  * --- which wouldn't be necessary if all code paths which modify
2096  * i_flags actually followed this rule, is that there is at least one
2097  * code path which doesn't today so we use cmpxchg() out of an abundance
2098  * of caution.
2099  *
2100  * In the long run, i_mutex is overkill, and we should probably look
2101  * at using the i_lock spinlock to protect i_flags, and then make sure
2102  * it is so documented in include/linux/fs.h and that all code follows
2103  * the locking convention!!
2104  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2105 void inode_set_flags(struct inode *inode, unsigned int flags,
2106 		     unsigned int mask)
2107 {
2108 	unsigned int old_flags, new_flags;
2109 
2110 	WARN_ON_ONCE(flags & ~mask);
2111 	do {
2112 		old_flags = READ_ONCE(inode->i_flags);
2113 		new_flags = (old_flags & ~mask) | flags;
2114 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2115 				  new_flags) != old_flags));
2116 }
2117 EXPORT_SYMBOL(inode_set_flags);
2118 
inode_nohighmem(struct inode * inode)2119 void inode_nohighmem(struct inode *inode)
2120 {
2121 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2122 }
2123 EXPORT_SYMBOL(inode_nohighmem);
2124 
2125 /**
2126  * timespec64_trunc - Truncate timespec64 to a granularity
2127  * @t: Timespec64
2128  * @gran: Granularity in ns.
2129  *
2130  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2131  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2132  */
timespec64_trunc(struct timespec64 t,unsigned gran)2133 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2134 {
2135 	/* Avoid division in the common cases 1 ns and 1 s. */
2136 	if (gran == 1) {
2137 		/* nothing */
2138 	} else if (gran == NSEC_PER_SEC) {
2139 		t.tv_nsec = 0;
2140 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2141 		t.tv_nsec -= t.tv_nsec % gran;
2142 	} else {
2143 		WARN(1, "illegal file time granularity: %u", gran);
2144 	}
2145 	return t;
2146 }
2147 EXPORT_SYMBOL(timespec64_trunc);
2148 
2149 /**
2150  * current_time - Return FS time
2151  * @inode: inode.
2152  *
2153  * Return the current time truncated to the time granularity supported by
2154  * the fs.
2155  *
2156  * Note that inode and inode->sb cannot be NULL.
2157  * Otherwise, the function warns and returns time without truncation.
2158  */
current_time(struct inode * inode)2159 struct timespec64 current_time(struct inode *inode)
2160 {
2161 	struct timespec64 now = current_kernel_time64();
2162 
2163 	if (unlikely(!inode->i_sb)) {
2164 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2165 		return now;
2166 	}
2167 
2168 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2169 }
2170 EXPORT_SYMBOL(current_time);
2171