1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 #include <linux/sched/signal.h>
26 
27 #include "gfs2.h"
28 #include "incore.h"
29 #include "bmap.h"
30 #include "glock.h"
31 #include "inode.h"
32 #include "log.h"
33 #include "meta_io.h"
34 #include "quota.h"
35 #include "trans.h"
36 #include "rgrp.h"
37 #include "super.h"
38 #include "util.h"
39 #include "glops.h"
40 #include "aops.h"
41 
42 
gfs2_page_add_databufs(struct gfs2_inode * ip,struct page * page,unsigned int from,unsigned int len)43 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
44 			    unsigned int from, unsigned int len)
45 {
46 	struct buffer_head *head = page_buffers(page);
47 	unsigned int bsize = head->b_size;
48 	struct buffer_head *bh;
49 	unsigned int to = from + len;
50 	unsigned int start, end;
51 
52 	for (bh = head, start = 0; bh != head || !start;
53 	     bh = bh->b_this_page, start = end) {
54 		end = start + bsize;
55 		if (end <= from)
56 			continue;
57 		if (start >= to)
58 			break;
59 		set_buffer_uptodate(bh);
60 		gfs2_trans_add_data(ip->i_gl, bh);
61 	}
62 }
63 
64 /**
65  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
66  * @inode: The inode
67  * @lblock: The block number to look up
68  * @bh_result: The buffer head to return the result in
69  * @create: Non-zero if we may add block to the file
70  *
71  * Returns: errno
72  */
73 
gfs2_get_block_noalloc(struct inode * inode,sector_t lblock,struct buffer_head * bh_result,int create)74 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
75 				  struct buffer_head *bh_result, int create)
76 {
77 	int error;
78 
79 	error = gfs2_block_map(inode, lblock, bh_result, 0);
80 	if (error)
81 		return error;
82 	if (!buffer_mapped(bh_result))
83 		return -EIO;
84 	return 0;
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
gfs2_writepage_common(struct page * page,struct writeback_control * wbc)95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
gfs2_writepage(struct page * page,struct writeback_control * wbc)130 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
131 {
132 	int ret;
133 
134 	ret = gfs2_writepage_common(page, wbc);
135 	if (ret <= 0)
136 		return ret;
137 
138 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
139 }
140 
141 /* This is the same as calling block_write_full_page, but it also
142  * writes pages outside of i_size
143  */
gfs2_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)144 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
145 				struct writeback_control *wbc)
146 {
147 	struct inode * const inode = page->mapping->host;
148 	loff_t i_size = i_size_read(inode);
149 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
150 	unsigned offset;
151 
152 	/*
153 	 * The page straddles i_size.  It must be zeroed out on each and every
154 	 * writepage invocation because it may be mmapped.  "A file is mapped
155 	 * in multiples of the page size.  For a file that is not a multiple of
156 	 * the  page size, the remaining memory is zeroed when mapped, and
157 	 * writes to that region are not written out to the file."
158 	 */
159 	offset = i_size & (PAGE_SIZE-1);
160 	if (page->index == end_index && offset)
161 		zero_user_segment(page, offset, PAGE_SIZE);
162 
163 	return __block_write_full_page(inode, page, get_block, wbc,
164 				       end_buffer_async_write);
165 }
166 
167 /**
168  * __gfs2_jdata_writepage - The core of jdata writepage
169  * @page: The page to write
170  * @wbc: The writeback control
171  *
172  * This is shared between writepage and writepages and implements the
173  * core of the writepage operation. If a transaction is required then
174  * PageChecked will have been set and the transaction will have
175  * already been started before this is called.
176  */
177 
__gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)178 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 	struct inode *inode = page->mapping->host;
181 	struct gfs2_inode *ip = GFS2_I(inode);
182 
183 	if (PageChecked(page)) {
184 		ClearPageChecked(page);
185 		if (!page_has_buffers(page)) {
186 			create_empty_buffers(page, inode->i_sb->s_blocksize,
187 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
188 		}
189 		gfs2_page_add_databufs(ip, page, 0, PAGE_SIZE);
190 	}
191 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
192 }
193 
194 /**
195  * gfs2_jdata_writepage - Write complete page
196  * @page: Page to write
197  * @wbc: The writeback control
198  *
199  * Returns: errno
200  *
201  */
202 
gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)203 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
204 {
205 	struct inode *inode = page->mapping->host;
206 	struct gfs2_inode *ip = GFS2_I(inode);
207 	struct gfs2_sbd *sdp = GFS2_SB(inode);
208 	int ret;
209 
210 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
211 		goto out;
212 	if (PageChecked(page) || current->journal_info)
213 		goto out_ignore;
214 	ret = __gfs2_jdata_writepage(page, wbc);
215 	return ret;
216 
217 out_ignore:
218 	redirty_page_for_writepage(wbc, page);
219 out:
220 	unlock_page(page);
221 	return 0;
222 }
223 
224 /**
225  * gfs2_writepages - Write a bunch of dirty pages back to disk
226  * @mapping: The mapping to write
227  * @wbc: Write-back control
228  *
229  * Used for both ordered and writeback modes.
230  */
gfs2_writepages(struct address_space * mapping,struct writeback_control * wbc)231 static int gfs2_writepages(struct address_space *mapping,
232 			   struct writeback_control *wbc)
233 {
234 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
235 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
236 
237 	/*
238 	 * Even if we didn't write any pages here, we might still be holding
239 	 * dirty pages in the ail. We forcibly flush the ail because we don't
240 	 * want balance_dirty_pages() to loop indefinitely trying to write out
241 	 * pages held in the ail that it can't find.
242 	 */
243 	if (ret == 0)
244 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
245 
246 	return ret;
247 }
248 
249 /**
250  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
251  * @mapping: The mapping
252  * @wbc: The writeback control
253  * @pvec: The vector of pages
254  * @nr_pages: The number of pages to write
255  * @done_index: Page index
256  *
257  * Returns: non-zero if loop should terminate, zero otherwise
258  */
259 
gfs2_write_jdata_pagevec(struct address_space * mapping,struct writeback_control * wbc,struct pagevec * pvec,int nr_pages,pgoff_t * done_index)260 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
261 				    struct writeback_control *wbc,
262 				    struct pagevec *pvec,
263 				    int nr_pages,
264 				    pgoff_t *done_index)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
269 	int i;
270 	int ret;
271 
272 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 	if (ret < 0)
274 		return ret;
275 
276 	for(i = 0; i < nr_pages; i++) {
277 		struct page *page = pvec->pages[i];
278 
279 		*done_index = page->index;
280 
281 		lock_page(page);
282 
283 		if (unlikely(page->mapping != mapping)) {
284 continue_unlock:
285 			unlock_page(page);
286 			continue;
287 		}
288 
289 		if (!PageDirty(page)) {
290 			/* someone wrote it for us */
291 			goto continue_unlock;
292 		}
293 
294 		if (PageWriteback(page)) {
295 			if (wbc->sync_mode != WB_SYNC_NONE)
296 				wait_on_page_writeback(page);
297 			else
298 				goto continue_unlock;
299 		}
300 
301 		BUG_ON(PageWriteback(page));
302 		if (!clear_page_dirty_for_io(page))
303 			goto continue_unlock;
304 
305 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
306 
307 		ret = __gfs2_jdata_writepage(page, wbc);
308 		if (unlikely(ret)) {
309 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
310 				unlock_page(page);
311 				ret = 0;
312 			} else {
313 
314 				/*
315 				 * done_index is set past this page,
316 				 * so media errors will not choke
317 				 * background writeout for the entire
318 				 * file. This has consequences for
319 				 * range_cyclic semantics (ie. it may
320 				 * not be suitable for data integrity
321 				 * writeout).
322 				 */
323 				*done_index = page->index + 1;
324 				ret = 1;
325 				break;
326 			}
327 		}
328 
329 		/*
330 		 * We stop writing back only if we are not doing
331 		 * integrity sync. In case of integrity sync we have to
332 		 * keep going until we have written all the pages
333 		 * we tagged for writeback prior to entering this loop.
334 		 */
335 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
336 			ret = 1;
337 			break;
338 		}
339 
340 	}
341 	gfs2_trans_end(sdp);
342 	return ret;
343 }
344 
345 /**
346  * gfs2_write_cache_jdata - Like write_cache_pages but different
347  * @mapping: The mapping to write
348  * @wbc: The writeback control
349  *
350  * The reason that we use our own function here is that we need to
351  * start transactions before we grab page locks. This allows us
352  * to get the ordering right.
353  */
354 
gfs2_write_cache_jdata(struct address_space * mapping,struct writeback_control * wbc)355 static int gfs2_write_cache_jdata(struct address_space *mapping,
356 				  struct writeback_control *wbc)
357 {
358 	int ret = 0;
359 	int done = 0;
360 	struct pagevec pvec;
361 	int nr_pages;
362 	pgoff_t writeback_index;
363 	pgoff_t index;
364 	pgoff_t end;
365 	pgoff_t done_index;
366 	int cycled;
367 	int range_whole = 0;
368 	int tag;
369 
370 	pagevec_init(&pvec);
371 	if (wbc->range_cyclic) {
372 		writeback_index = mapping->writeback_index; /* prev offset */
373 		index = writeback_index;
374 		if (index == 0)
375 			cycled = 1;
376 		else
377 			cycled = 0;
378 		end = -1;
379 	} else {
380 		index = wbc->range_start >> PAGE_SHIFT;
381 		end = wbc->range_end >> PAGE_SHIFT;
382 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
383 			range_whole = 1;
384 		cycled = 1; /* ignore range_cyclic tests */
385 	}
386 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
387 		tag = PAGECACHE_TAG_TOWRITE;
388 	else
389 		tag = PAGECACHE_TAG_DIRTY;
390 
391 retry:
392 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
393 		tag_pages_for_writeback(mapping, index, end);
394 	done_index = index;
395 	while (!done && (index <= end)) {
396 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
397 				tag);
398 		if (nr_pages == 0)
399 			break;
400 
401 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
402 		if (ret)
403 			done = 1;
404 		if (ret > 0)
405 			ret = 0;
406 		pagevec_release(&pvec);
407 		cond_resched();
408 	}
409 
410 	if (!cycled && !done) {
411 		/*
412 		 * range_cyclic:
413 		 * We hit the last page and there is more work to be done: wrap
414 		 * back to the start of the file
415 		 */
416 		cycled = 1;
417 		index = 0;
418 		end = writeback_index - 1;
419 		goto retry;
420 	}
421 
422 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
423 		mapping->writeback_index = done_index;
424 
425 	return ret;
426 }
427 
428 
429 /**
430  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
431  * @mapping: The mapping to write
432  * @wbc: The writeback control
433  *
434  */
435 
gfs2_jdata_writepages(struct address_space * mapping,struct writeback_control * wbc)436 static int gfs2_jdata_writepages(struct address_space *mapping,
437 				 struct writeback_control *wbc)
438 {
439 	struct gfs2_inode *ip = GFS2_I(mapping->host);
440 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
441 	int ret;
442 
443 	ret = gfs2_write_cache_jdata(mapping, wbc);
444 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
445 		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
446 			       GFS2_LFC_JDATA_WPAGES);
447 		ret = gfs2_write_cache_jdata(mapping, wbc);
448 	}
449 	return ret;
450 }
451 
452 /**
453  * stuffed_readpage - Fill in a Linux page with stuffed file data
454  * @ip: the inode
455  * @page: the page
456  *
457  * Returns: errno
458  */
459 
stuffed_readpage(struct gfs2_inode * ip,struct page * page)460 int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
461 {
462 	struct buffer_head *dibh;
463 	u64 dsize = i_size_read(&ip->i_inode);
464 	void *kaddr;
465 	int error;
466 
467 	/*
468 	 * Due to the order of unstuffing files and ->fault(), we can be
469 	 * asked for a zero page in the case of a stuffed file being extended,
470 	 * so we need to supply one here. It doesn't happen often.
471 	 */
472 	if (unlikely(page->index)) {
473 		zero_user(page, 0, PAGE_SIZE);
474 		SetPageUptodate(page);
475 		return 0;
476 	}
477 
478 	error = gfs2_meta_inode_buffer(ip, &dibh);
479 	if (error)
480 		return error;
481 
482 	kaddr = kmap_atomic(page);
483 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
484 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
485 	kunmap_atomic(kaddr);
486 	flush_dcache_page(page);
487 	brelse(dibh);
488 	SetPageUptodate(page);
489 
490 	return 0;
491 }
492 
493 
494 /**
495  * __gfs2_readpage - readpage
496  * @file: The file to read a page for
497  * @page: The page to read
498  *
499  * This is the core of gfs2's readpage. It's used by the internal file
500  * reading code as in that case we already hold the glock. Also it's
501  * called by gfs2_readpage() once the required lock has been granted.
502  */
503 
__gfs2_readpage(void * file,struct page * page)504 static int __gfs2_readpage(void *file, struct page *page)
505 {
506 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
507 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
508 
509 	int error;
510 
511 	if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
512 	    !page_has_buffers(page)) {
513 		error = iomap_readpage(page, &gfs2_iomap_ops);
514 	} else if (gfs2_is_stuffed(ip)) {
515 		error = stuffed_readpage(ip, page);
516 		unlock_page(page);
517 	} else {
518 		error = mpage_readpage(page, gfs2_block_map);
519 	}
520 
521 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
522 		return -EIO;
523 
524 	return error;
525 }
526 
527 /**
528  * gfs2_readpage - read a page of a file
529  * @file: The file to read
530  * @page: The page of the file
531  *
532  * This deals with the locking required. We have to unlock and
533  * relock the page in order to get the locking in the right
534  * order.
535  */
536 
gfs2_readpage(struct file * file,struct page * page)537 static int gfs2_readpage(struct file *file, struct page *page)
538 {
539 	struct address_space *mapping = page->mapping;
540 	struct gfs2_inode *ip = GFS2_I(mapping->host);
541 	struct gfs2_holder gh;
542 	int error;
543 
544 	unlock_page(page);
545 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
546 	error = gfs2_glock_nq(&gh);
547 	if (unlikely(error))
548 		goto out;
549 	error = AOP_TRUNCATED_PAGE;
550 	lock_page(page);
551 	if (page->mapping == mapping && !PageUptodate(page))
552 		error = __gfs2_readpage(file, page);
553 	else
554 		unlock_page(page);
555 	gfs2_glock_dq(&gh);
556 out:
557 	gfs2_holder_uninit(&gh);
558 	if (error && error != AOP_TRUNCATED_PAGE)
559 		lock_page(page);
560 	return error;
561 }
562 
563 /**
564  * gfs2_internal_read - read an internal file
565  * @ip: The gfs2 inode
566  * @buf: The buffer to fill
567  * @pos: The file position
568  * @size: The amount to read
569  *
570  */
571 
gfs2_internal_read(struct gfs2_inode * ip,char * buf,loff_t * pos,unsigned size)572 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
573                        unsigned size)
574 {
575 	struct address_space *mapping = ip->i_inode.i_mapping;
576 	unsigned long index = *pos / PAGE_SIZE;
577 	unsigned offset = *pos & (PAGE_SIZE - 1);
578 	unsigned copied = 0;
579 	unsigned amt;
580 	struct page *page;
581 	void *p;
582 
583 	do {
584 		amt = size - copied;
585 		if (offset + size > PAGE_SIZE)
586 			amt = PAGE_SIZE - offset;
587 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
588 		if (IS_ERR(page))
589 			return PTR_ERR(page);
590 		p = kmap_atomic(page);
591 		memcpy(buf + copied, p + offset, amt);
592 		kunmap_atomic(p);
593 		put_page(page);
594 		copied += amt;
595 		index++;
596 		offset = 0;
597 	} while(copied < size);
598 	(*pos) += size;
599 	return size;
600 }
601 
602 /**
603  * gfs2_readpages - Read a bunch of pages at once
604  * @file: The file to read from
605  * @mapping: Address space info
606  * @pages: List of pages to read
607  * @nr_pages: Number of pages to read
608  *
609  * Some notes:
610  * 1. This is only for readahead, so we can simply ignore any things
611  *    which are slightly inconvenient (such as locking conflicts between
612  *    the page lock and the glock) and return having done no I/O. Its
613  *    obviously not something we'd want to do on too regular a basis.
614  *    Any I/O we ignore at this time will be done via readpage later.
615  * 2. We don't handle stuffed files here we let readpage do the honours.
616  * 3. mpage_readpages() does most of the heavy lifting in the common case.
617  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
618  */
619 
gfs2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)620 static int gfs2_readpages(struct file *file, struct address_space *mapping,
621 			  struct list_head *pages, unsigned nr_pages)
622 {
623 	struct inode *inode = mapping->host;
624 	struct gfs2_inode *ip = GFS2_I(inode);
625 	struct gfs2_sbd *sdp = GFS2_SB(inode);
626 	struct gfs2_holder gh;
627 	int ret;
628 
629 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
630 	ret = gfs2_glock_nq(&gh);
631 	if (unlikely(ret))
632 		goto out_uninit;
633 	if (!gfs2_is_stuffed(ip))
634 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
635 	gfs2_glock_dq(&gh);
636 out_uninit:
637 	gfs2_holder_uninit(&gh);
638 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
639 		ret = -EIO;
640 	return ret;
641 }
642 
643 /**
644  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
645  * @inode: the rindex inode
646  */
adjust_fs_space(struct inode * inode)647 void adjust_fs_space(struct inode *inode)
648 {
649 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
650 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
651 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
652 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
653 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
654 	struct buffer_head *m_bh, *l_bh;
655 	u64 fs_total, new_free;
656 
657 	/* Total up the file system space, according to the latest rindex. */
658 	fs_total = gfs2_ri_total(sdp);
659 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
660 		return;
661 
662 	spin_lock(&sdp->sd_statfs_spin);
663 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
664 			      sizeof(struct gfs2_dinode));
665 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
666 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
667 	else
668 		new_free = 0;
669 	spin_unlock(&sdp->sd_statfs_spin);
670 	fs_warn(sdp, "File system extended by %llu blocks.\n",
671 		(unsigned long long)new_free);
672 	gfs2_statfs_change(sdp, new_free, new_free, 0);
673 
674 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
675 		goto out;
676 	update_statfs(sdp, m_bh, l_bh);
677 	brelse(l_bh);
678 out:
679 	brelse(m_bh);
680 }
681 
682 /**
683  * gfs2_stuffed_write_end - Write end for stuffed files
684  * @inode: The inode
685  * @dibh: The buffer_head containing the on-disk inode
686  * @pos: The file position
687  * @copied: How much was actually copied by the VFS
688  * @page: The page
689  *
690  * This copies the data from the page into the inode block after
691  * the inode data structure itself.
692  *
693  * Returns: copied bytes or errno
694  */
gfs2_stuffed_write_end(struct inode * inode,struct buffer_head * dibh,loff_t pos,unsigned copied,struct page * page)695 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
696 			   loff_t pos, unsigned copied,
697 			   struct page *page)
698 {
699 	struct gfs2_inode *ip = GFS2_I(inode);
700 	u64 to = pos + copied;
701 	void *kaddr;
702 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
703 
704 	BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
705 
706 	kaddr = kmap_atomic(page);
707 	memcpy(buf + pos, kaddr + pos, copied);
708 	flush_dcache_page(page);
709 	kunmap_atomic(kaddr);
710 
711 	WARN_ON(!PageUptodate(page));
712 	unlock_page(page);
713 	put_page(page);
714 
715 	if (copied) {
716 		if (inode->i_size < to)
717 			i_size_write(inode, to);
718 		mark_inode_dirty(inode);
719 	}
720 	return copied;
721 }
722 
723 /**
724  * jdata_set_page_dirty - Page dirtying function
725  * @page: The page to dirty
726  *
727  * Returns: 1 if it dirtyed the page, or 0 otherwise
728  */
729 
jdata_set_page_dirty(struct page * page)730 static int jdata_set_page_dirty(struct page *page)
731 {
732 	SetPageChecked(page);
733 	return __set_page_dirty_buffers(page);
734 }
735 
736 /**
737  * gfs2_bmap - Block map function
738  * @mapping: Address space info
739  * @lblock: The block to map
740  *
741  * Returns: The disk address for the block or 0 on hole or error
742  */
743 
gfs2_bmap(struct address_space * mapping,sector_t lblock)744 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
745 {
746 	struct gfs2_inode *ip = GFS2_I(mapping->host);
747 	struct gfs2_holder i_gh;
748 	sector_t dblock = 0;
749 	int error;
750 
751 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
752 	if (error)
753 		return 0;
754 
755 	if (!gfs2_is_stuffed(ip))
756 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
757 
758 	gfs2_glock_dq_uninit(&i_gh);
759 
760 	return dblock;
761 }
762 
gfs2_discard(struct gfs2_sbd * sdp,struct buffer_head * bh)763 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
764 {
765 	struct gfs2_bufdata *bd;
766 
767 	lock_buffer(bh);
768 	gfs2_log_lock(sdp);
769 	clear_buffer_dirty(bh);
770 	bd = bh->b_private;
771 	if (bd) {
772 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
773 			list_del_init(&bd->bd_list);
774 		else
775 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
776 	}
777 	bh->b_bdev = NULL;
778 	clear_buffer_mapped(bh);
779 	clear_buffer_req(bh);
780 	clear_buffer_new(bh);
781 	gfs2_log_unlock(sdp);
782 	unlock_buffer(bh);
783 }
784 
gfs2_invalidatepage(struct page * page,unsigned int offset,unsigned int length)785 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
786 				unsigned int length)
787 {
788 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
789 	unsigned int stop = offset + length;
790 	int partial_page = (offset || length < PAGE_SIZE);
791 	struct buffer_head *bh, *head;
792 	unsigned long pos = 0;
793 
794 	BUG_ON(!PageLocked(page));
795 	if (!partial_page)
796 		ClearPageChecked(page);
797 	if (!page_has_buffers(page))
798 		goto out;
799 
800 	bh = head = page_buffers(page);
801 	do {
802 		if (pos + bh->b_size > stop)
803 			return;
804 
805 		if (offset <= pos)
806 			gfs2_discard(sdp, bh);
807 		pos += bh->b_size;
808 		bh = bh->b_this_page;
809 	} while (bh != head);
810 out:
811 	if (!partial_page)
812 		try_to_release_page(page, 0);
813 }
814 
815 /**
816  * gfs2_releasepage - free the metadata associated with a page
817  * @page: the page that's being released
818  * @gfp_mask: passed from Linux VFS, ignored by us
819  *
820  * Call try_to_free_buffers() if the buffers in this page can be
821  * released.
822  *
823  * Returns: 0
824  */
825 
gfs2_releasepage(struct page * page,gfp_t gfp_mask)826 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
827 {
828 	struct address_space *mapping = page->mapping;
829 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
830 	struct buffer_head *bh, *head;
831 	struct gfs2_bufdata *bd;
832 
833 	if (!page_has_buffers(page))
834 		return 0;
835 
836 	/*
837 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
838 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
839 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
840 	 *
841 	 * As a workaround, we skip pages that contain dirty buffers below.
842 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
843 	 * on dirty buffers like we used to here again.
844 	 */
845 
846 	gfs2_log_lock(sdp);
847 	spin_lock(&sdp->sd_ail_lock);
848 	head = bh = page_buffers(page);
849 	do {
850 		if (atomic_read(&bh->b_count))
851 			goto cannot_release;
852 		bd = bh->b_private;
853 		if (bd && bd->bd_tr)
854 			goto cannot_release;
855 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
856 			goto cannot_release;
857 		bh = bh->b_this_page;
858 	} while(bh != head);
859 	spin_unlock(&sdp->sd_ail_lock);
860 
861 	head = bh = page_buffers(page);
862 	do {
863 		bd = bh->b_private;
864 		if (bd) {
865 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
866 			if (!list_empty(&bd->bd_list))
867 				list_del_init(&bd->bd_list);
868 			bd->bd_bh = NULL;
869 			bh->b_private = NULL;
870 			kmem_cache_free(gfs2_bufdata_cachep, bd);
871 		}
872 
873 		bh = bh->b_this_page;
874 	} while (bh != head);
875 	gfs2_log_unlock(sdp);
876 
877 	return try_to_free_buffers(page);
878 
879 cannot_release:
880 	spin_unlock(&sdp->sd_ail_lock);
881 	gfs2_log_unlock(sdp);
882 	return 0;
883 }
884 
885 static const struct address_space_operations gfs2_writeback_aops = {
886 	.writepage = gfs2_writepage,
887 	.writepages = gfs2_writepages,
888 	.readpage = gfs2_readpage,
889 	.readpages = gfs2_readpages,
890 	.bmap = gfs2_bmap,
891 	.invalidatepage = gfs2_invalidatepage,
892 	.releasepage = gfs2_releasepage,
893 	.direct_IO = noop_direct_IO,
894 	.migratepage = buffer_migrate_page,
895 	.is_partially_uptodate = block_is_partially_uptodate,
896 	.error_remove_page = generic_error_remove_page,
897 };
898 
899 static const struct address_space_operations gfs2_ordered_aops = {
900 	.writepage = gfs2_writepage,
901 	.writepages = gfs2_writepages,
902 	.readpage = gfs2_readpage,
903 	.readpages = gfs2_readpages,
904 	.set_page_dirty = __set_page_dirty_buffers,
905 	.bmap = gfs2_bmap,
906 	.invalidatepage = gfs2_invalidatepage,
907 	.releasepage = gfs2_releasepage,
908 	.direct_IO = noop_direct_IO,
909 	.migratepage = buffer_migrate_page,
910 	.is_partially_uptodate = block_is_partially_uptodate,
911 	.error_remove_page = generic_error_remove_page,
912 };
913 
914 static const struct address_space_operations gfs2_jdata_aops = {
915 	.writepage = gfs2_jdata_writepage,
916 	.writepages = gfs2_jdata_writepages,
917 	.readpage = gfs2_readpage,
918 	.readpages = gfs2_readpages,
919 	.set_page_dirty = jdata_set_page_dirty,
920 	.bmap = gfs2_bmap,
921 	.invalidatepage = gfs2_invalidatepage,
922 	.releasepage = gfs2_releasepage,
923 	.is_partially_uptodate = block_is_partially_uptodate,
924 	.error_remove_page = generic_error_remove_page,
925 };
926 
gfs2_set_aops(struct inode * inode)927 void gfs2_set_aops(struct inode *inode)
928 {
929 	struct gfs2_inode *ip = GFS2_I(inode);
930 
931 	if (gfs2_is_writeback(ip))
932 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
933 	else if (gfs2_is_ordered(ip))
934 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
935 	else if (gfs2_is_jdata(ip))
936 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
937 	else
938 		BUG();
939 }
940 
941