1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 #include <linux/sched/signal.h>
26
27 #include "gfs2.h"
28 #include "incore.h"
29 #include "bmap.h"
30 #include "glock.h"
31 #include "inode.h"
32 #include "log.h"
33 #include "meta_io.h"
34 #include "quota.h"
35 #include "trans.h"
36 #include "rgrp.h"
37 #include "super.h"
38 #include "util.h"
39 #include "glops.h"
40 #include "aops.h"
41
42
gfs2_page_add_databufs(struct gfs2_inode * ip,struct page * page,unsigned int from,unsigned int len)43 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
44 unsigned int from, unsigned int len)
45 {
46 struct buffer_head *head = page_buffers(page);
47 unsigned int bsize = head->b_size;
48 struct buffer_head *bh;
49 unsigned int to = from + len;
50 unsigned int start, end;
51
52 for (bh = head, start = 0; bh != head || !start;
53 bh = bh->b_this_page, start = end) {
54 end = start + bsize;
55 if (end <= from)
56 continue;
57 if (start >= to)
58 break;
59 set_buffer_uptodate(bh);
60 gfs2_trans_add_data(ip->i_gl, bh);
61 }
62 }
63
64 /**
65 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
66 * @inode: The inode
67 * @lblock: The block number to look up
68 * @bh_result: The buffer head to return the result in
69 * @create: Non-zero if we may add block to the file
70 *
71 * Returns: errno
72 */
73
gfs2_get_block_noalloc(struct inode * inode,sector_t lblock,struct buffer_head * bh_result,int create)74 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
75 struct buffer_head *bh_result, int create)
76 {
77 int error;
78
79 error = gfs2_block_map(inode, lblock, bh_result, 0);
80 if (error)
81 return error;
82 if (!buffer_mapped(bh_result))
83 return -EIO;
84 return 0;
85 }
86
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
91 *
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93 */
94
gfs2_writepage_common(struct page * page,struct writeback_control * wbc)95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
97 {
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_SHIFT;
103 unsigned offset;
104
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
113 goto out;
114 }
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
121 }
122
123 /**
124 * gfs2_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
127 *
128 */
129
gfs2_writepage(struct page * page,struct writeback_control * wbc)130 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
131 {
132 int ret;
133
134 ret = gfs2_writepage_common(page, wbc);
135 if (ret <= 0)
136 return ret;
137
138 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
139 }
140
141 /* This is the same as calling block_write_full_page, but it also
142 * writes pages outside of i_size
143 */
gfs2_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)144 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
145 struct writeback_control *wbc)
146 {
147 struct inode * const inode = page->mapping->host;
148 loff_t i_size = i_size_read(inode);
149 const pgoff_t end_index = i_size >> PAGE_SHIFT;
150 unsigned offset;
151
152 /*
153 * The page straddles i_size. It must be zeroed out on each and every
154 * writepage invocation because it may be mmapped. "A file is mapped
155 * in multiples of the page size. For a file that is not a multiple of
156 * the page size, the remaining memory is zeroed when mapped, and
157 * writes to that region are not written out to the file."
158 */
159 offset = i_size & (PAGE_SIZE-1);
160 if (page->index == end_index && offset)
161 zero_user_segment(page, offset, PAGE_SIZE);
162
163 return __block_write_full_page(inode, page, get_block, wbc,
164 end_buffer_async_write);
165 }
166
167 /**
168 * __gfs2_jdata_writepage - The core of jdata writepage
169 * @page: The page to write
170 * @wbc: The writeback control
171 *
172 * This is shared between writepage and writepages and implements the
173 * core of the writepage operation. If a transaction is required then
174 * PageChecked will have been set and the transaction will have
175 * already been started before this is called.
176 */
177
__gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)178 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 struct inode *inode = page->mapping->host;
181 struct gfs2_inode *ip = GFS2_I(inode);
182
183 if (PageChecked(page)) {
184 ClearPageChecked(page);
185 if (!page_has_buffers(page)) {
186 create_empty_buffers(page, inode->i_sb->s_blocksize,
187 BIT(BH_Dirty)|BIT(BH_Uptodate));
188 }
189 gfs2_page_add_databufs(ip, page, 0, PAGE_SIZE);
190 }
191 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
192 }
193
194 /**
195 * gfs2_jdata_writepage - Write complete page
196 * @page: Page to write
197 * @wbc: The writeback control
198 *
199 * Returns: errno
200 *
201 */
202
gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)203 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
204 {
205 struct inode *inode = page->mapping->host;
206 struct gfs2_inode *ip = GFS2_I(inode);
207 struct gfs2_sbd *sdp = GFS2_SB(inode);
208 int ret;
209
210 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
211 goto out;
212 if (PageChecked(page) || current->journal_info)
213 goto out_ignore;
214 ret = __gfs2_jdata_writepage(page, wbc);
215 return ret;
216
217 out_ignore:
218 redirty_page_for_writepage(wbc, page);
219 out:
220 unlock_page(page);
221 return 0;
222 }
223
224 /**
225 * gfs2_writepages - Write a bunch of dirty pages back to disk
226 * @mapping: The mapping to write
227 * @wbc: Write-back control
228 *
229 * Used for both ordered and writeback modes.
230 */
gfs2_writepages(struct address_space * mapping,struct writeback_control * wbc)231 static int gfs2_writepages(struct address_space *mapping,
232 struct writeback_control *wbc)
233 {
234 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
235 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
236
237 /*
238 * Even if we didn't write any pages here, we might still be holding
239 * dirty pages in the ail. We forcibly flush the ail because we don't
240 * want balance_dirty_pages() to loop indefinitely trying to write out
241 * pages held in the ail that it can't find.
242 */
243 if (ret == 0)
244 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
245
246 return ret;
247 }
248
249 /**
250 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
251 * @mapping: The mapping
252 * @wbc: The writeback control
253 * @pvec: The vector of pages
254 * @nr_pages: The number of pages to write
255 * @done_index: Page index
256 *
257 * Returns: non-zero if loop should terminate, zero otherwise
258 */
259
gfs2_write_jdata_pagevec(struct address_space * mapping,struct writeback_control * wbc,struct pagevec * pvec,int nr_pages,pgoff_t * done_index)260 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
261 struct writeback_control *wbc,
262 struct pagevec *pvec,
263 int nr_pages,
264 pgoff_t *done_index)
265 {
266 struct inode *inode = mapping->host;
267 struct gfs2_sbd *sdp = GFS2_SB(inode);
268 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
269 int i;
270 int ret;
271
272 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 if (ret < 0)
274 return ret;
275
276 for(i = 0; i < nr_pages; i++) {
277 struct page *page = pvec->pages[i];
278
279 *done_index = page->index;
280
281 lock_page(page);
282
283 if (unlikely(page->mapping != mapping)) {
284 continue_unlock:
285 unlock_page(page);
286 continue;
287 }
288
289 if (!PageDirty(page)) {
290 /* someone wrote it for us */
291 goto continue_unlock;
292 }
293
294 if (PageWriteback(page)) {
295 if (wbc->sync_mode != WB_SYNC_NONE)
296 wait_on_page_writeback(page);
297 else
298 goto continue_unlock;
299 }
300
301 BUG_ON(PageWriteback(page));
302 if (!clear_page_dirty_for_io(page))
303 goto continue_unlock;
304
305 trace_wbc_writepage(wbc, inode_to_bdi(inode));
306
307 ret = __gfs2_jdata_writepage(page, wbc);
308 if (unlikely(ret)) {
309 if (ret == AOP_WRITEPAGE_ACTIVATE) {
310 unlock_page(page);
311 ret = 0;
312 } else {
313
314 /*
315 * done_index is set past this page,
316 * so media errors will not choke
317 * background writeout for the entire
318 * file. This has consequences for
319 * range_cyclic semantics (ie. it may
320 * not be suitable for data integrity
321 * writeout).
322 */
323 *done_index = page->index + 1;
324 ret = 1;
325 break;
326 }
327 }
328
329 /*
330 * We stop writing back only if we are not doing
331 * integrity sync. In case of integrity sync we have to
332 * keep going until we have written all the pages
333 * we tagged for writeback prior to entering this loop.
334 */
335 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
336 ret = 1;
337 break;
338 }
339
340 }
341 gfs2_trans_end(sdp);
342 return ret;
343 }
344
345 /**
346 * gfs2_write_cache_jdata - Like write_cache_pages but different
347 * @mapping: The mapping to write
348 * @wbc: The writeback control
349 *
350 * The reason that we use our own function here is that we need to
351 * start transactions before we grab page locks. This allows us
352 * to get the ordering right.
353 */
354
gfs2_write_cache_jdata(struct address_space * mapping,struct writeback_control * wbc)355 static int gfs2_write_cache_jdata(struct address_space *mapping,
356 struct writeback_control *wbc)
357 {
358 int ret = 0;
359 int done = 0;
360 struct pagevec pvec;
361 int nr_pages;
362 pgoff_t writeback_index;
363 pgoff_t index;
364 pgoff_t end;
365 pgoff_t done_index;
366 int cycled;
367 int range_whole = 0;
368 int tag;
369
370 pagevec_init(&pvec);
371 if (wbc->range_cyclic) {
372 writeback_index = mapping->writeback_index; /* prev offset */
373 index = writeback_index;
374 if (index == 0)
375 cycled = 1;
376 else
377 cycled = 0;
378 end = -1;
379 } else {
380 index = wbc->range_start >> PAGE_SHIFT;
381 end = wbc->range_end >> PAGE_SHIFT;
382 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
383 range_whole = 1;
384 cycled = 1; /* ignore range_cyclic tests */
385 }
386 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
387 tag = PAGECACHE_TAG_TOWRITE;
388 else
389 tag = PAGECACHE_TAG_DIRTY;
390
391 retry:
392 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
393 tag_pages_for_writeback(mapping, index, end);
394 done_index = index;
395 while (!done && (index <= end)) {
396 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
397 tag);
398 if (nr_pages == 0)
399 break;
400
401 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
402 if (ret)
403 done = 1;
404 if (ret > 0)
405 ret = 0;
406 pagevec_release(&pvec);
407 cond_resched();
408 }
409
410 if (!cycled && !done) {
411 /*
412 * range_cyclic:
413 * We hit the last page and there is more work to be done: wrap
414 * back to the start of the file
415 */
416 cycled = 1;
417 index = 0;
418 end = writeback_index - 1;
419 goto retry;
420 }
421
422 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
423 mapping->writeback_index = done_index;
424
425 return ret;
426 }
427
428
429 /**
430 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
431 * @mapping: The mapping to write
432 * @wbc: The writeback control
433 *
434 */
435
gfs2_jdata_writepages(struct address_space * mapping,struct writeback_control * wbc)436 static int gfs2_jdata_writepages(struct address_space *mapping,
437 struct writeback_control *wbc)
438 {
439 struct gfs2_inode *ip = GFS2_I(mapping->host);
440 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
441 int ret;
442
443 ret = gfs2_write_cache_jdata(mapping, wbc);
444 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
445 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
446 GFS2_LFC_JDATA_WPAGES);
447 ret = gfs2_write_cache_jdata(mapping, wbc);
448 }
449 return ret;
450 }
451
452 /**
453 * stuffed_readpage - Fill in a Linux page with stuffed file data
454 * @ip: the inode
455 * @page: the page
456 *
457 * Returns: errno
458 */
459
stuffed_readpage(struct gfs2_inode * ip,struct page * page)460 int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
461 {
462 struct buffer_head *dibh;
463 u64 dsize = i_size_read(&ip->i_inode);
464 void *kaddr;
465 int error;
466
467 /*
468 * Due to the order of unstuffing files and ->fault(), we can be
469 * asked for a zero page in the case of a stuffed file being extended,
470 * so we need to supply one here. It doesn't happen often.
471 */
472 if (unlikely(page->index)) {
473 zero_user(page, 0, PAGE_SIZE);
474 SetPageUptodate(page);
475 return 0;
476 }
477
478 error = gfs2_meta_inode_buffer(ip, &dibh);
479 if (error)
480 return error;
481
482 kaddr = kmap_atomic(page);
483 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
484 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
485 kunmap_atomic(kaddr);
486 flush_dcache_page(page);
487 brelse(dibh);
488 SetPageUptodate(page);
489
490 return 0;
491 }
492
493
494 /**
495 * __gfs2_readpage - readpage
496 * @file: The file to read a page for
497 * @page: The page to read
498 *
499 * This is the core of gfs2's readpage. It's used by the internal file
500 * reading code as in that case we already hold the glock. Also it's
501 * called by gfs2_readpage() once the required lock has been granted.
502 */
503
__gfs2_readpage(void * file,struct page * page)504 static int __gfs2_readpage(void *file, struct page *page)
505 {
506 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
507 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
508
509 int error;
510
511 if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
512 !page_has_buffers(page)) {
513 error = iomap_readpage(page, &gfs2_iomap_ops);
514 } else if (gfs2_is_stuffed(ip)) {
515 error = stuffed_readpage(ip, page);
516 unlock_page(page);
517 } else {
518 error = mpage_readpage(page, gfs2_block_map);
519 }
520
521 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
522 return -EIO;
523
524 return error;
525 }
526
527 /**
528 * gfs2_readpage - read a page of a file
529 * @file: The file to read
530 * @page: The page of the file
531 *
532 * This deals with the locking required. We have to unlock and
533 * relock the page in order to get the locking in the right
534 * order.
535 */
536
gfs2_readpage(struct file * file,struct page * page)537 static int gfs2_readpage(struct file *file, struct page *page)
538 {
539 struct address_space *mapping = page->mapping;
540 struct gfs2_inode *ip = GFS2_I(mapping->host);
541 struct gfs2_holder gh;
542 int error;
543
544 unlock_page(page);
545 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
546 error = gfs2_glock_nq(&gh);
547 if (unlikely(error))
548 goto out;
549 error = AOP_TRUNCATED_PAGE;
550 lock_page(page);
551 if (page->mapping == mapping && !PageUptodate(page))
552 error = __gfs2_readpage(file, page);
553 else
554 unlock_page(page);
555 gfs2_glock_dq(&gh);
556 out:
557 gfs2_holder_uninit(&gh);
558 if (error && error != AOP_TRUNCATED_PAGE)
559 lock_page(page);
560 return error;
561 }
562
563 /**
564 * gfs2_internal_read - read an internal file
565 * @ip: The gfs2 inode
566 * @buf: The buffer to fill
567 * @pos: The file position
568 * @size: The amount to read
569 *
570 */
571
gfs2_internal_read(struct gfs2_inode * ip,char * buf,loff_t * pos,unsigned size)572 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
573 unsigned size)
574 {
575 struct address_space *mapping = ip->i_inode.i_mapping;
576 unsigned long index = *pos / PAGE_SIZE;
577 unsigned offset = *pos & (PAGE_SIZE - 1);
578 unsigned copied = 0;
579 unsigned amt;
580 struct page *page;
581 void *p;
582
583 do {
584 amt = size - copied;
585 if (offset + size > PAGE_SIZE)
586 amt = PAGE_SIZE - offset;
587 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
588 if (IS_ERR(page))
589 return PTR_ERR(page);
590 p = kmap_atomic(page);
591 memcpy(buf + copied, p + offset, amt);
592 kunmap_atomic(p);
593 put_page(page);
594 copied += amt;
595 index++;
596 offset = 0;
597 } while(copied < size);
598 (*pos) += size;
599 return size;
600 }
601
602 /**
603 * gfs2_readpages - Read a bunch of pages at once
604 * @file: The file to read from
605 * @mapping: Address space info
606 * @pages: List of pages to read
607 * @nr_pages: Number of pages to read
608 *
609 * Some notes:
610 * 1. This is only for readahead, so we can simply ignore any things
611 * which are slightly inconvenient (such as locking conflicts between
612 * the page lock and the glock) and return having done no I/O. Its
613 * obviously not something we'd want to do on too regular a basis.
614 * Any I/O we ignore at this time will be done via readpage later.
615 * 2. We don't handle stuffed files here we let readpage do the honours.
616 * 3. mpage_readpages() does most of the heavy lifting in the common case.
617 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
618 */
619
gfs2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)620 static int gfs2_readpages(struct file *file, struct address_space *mapping,
621 struct list_head *pages, unsigned nr_pages)
622 {
623 struct inode *inode = mapping->host;
624 struct gfs2_inode *ip = GFS2_I(inode);
625 struct gfs2_sbd *sdp = GFS2_SB(inode);
626 struct gfs2_holder gh;
627 int ret;
628
629 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
630 ret = gfs2_glock_nq(&gh);
631 if (unlikely(ret))
632 goto out_uninit;
633 if (!gfs2_is_stuffed(ip))
634 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
635 gfs2_glock_dq(&gh);
636 out_uninit:
637 gfs2_holder_uninit(&gh);
638 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
639 ret = -EIO;
640 return ret;
641 }
642
643 /**
644 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
645 * @inode: the rindex inode
646 */
adjust_fs_space(struct inode * inode)647 void adjust_fs_space(struct inode *inode)
648 {
649 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
650 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
651 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
652 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
653 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
654 struct buffer_head *m_bh, *l_bh;
655 u64 fs_total, new_free;
656
657 /* Total up the file system space, according to the latest rindex. */
658 fs_total = gfs2_ri_total(sdp);
659 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
660 return;
661
662 spin_lock(&sdp->sd_statfs_spin);
663 gfs2_statfs_change_in(m_sc, m_bh->b_data +
664 sizeof(struct gfs2_dinode));
665 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
666 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
667 else
668 new_free = 0;
669 spin_unlock(&sdp->sd_statfs_spin);
670 fs_warn(sdp, "File system extended by %llu blocks.\n",
671 (unsigned long long)new_free);
672 gfs2_statfs_change(sdp, new_free, new_free, 0);
673
674 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
675 goto out;
676 update_statfs(sdp, m_bh, l_bh);
677 brelse(l_bh);
678 out:
679 brelse(m_bh);
680 }
681
682 /**
683 * gfs2_stuffed_write_end - Write end for stuffed files
684 * @inode: The inode
685 * @dibh: The buffer_head containing the on-disk inode
686 * @pos: The file position
687 * @copied: How much was actually copied by the VFS
688 * @page: The page
689 *
690 * This copies the data from the page into the inode block after
691 * the inode data structure itself.
692 *
693 * Returns: copied bytes or errno
694 */
gfs2_stuffed_write_end(struct inode * inode,struct buffer_head * dibh,loff_t pos,unsigned copied,struct page * page)695 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
696 loff_t pos, unsigned copied,
697 struct page *page)
698 {
699 struct gfs2_inode *ip = GFS2_I(inode);
700 u64 to = pos + copied;
701 void *kaddr;
702 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
703
704 BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
705
706 kaddr = kmap_atomic(page);
707 memcpy(buf + pos, kaddr + pos, copied);
708 flush_dcache_page(page);
709 kunmap_atomic(kaddr);
710
711 WARN_ON(!PageUptodate(page));
712 unlock_page(page);
713 put_page(page);
714
715 if (copied) {
716 if (inode->i_size < to)
717 i_size_write(inode, to);
718 mark_inode_dirty(inode);
719 }
720 return copied;
721 }
722
723 /**
724 * jdata_set_page_dirty - Page dirtying function
725 * @page: The page to dirty
726 *
727 * Returns: 1 if it dirtyed the page, or 0 otherwise
728 */
729
jdata_set_page_dirty(struct page * page)730 static int jdata_set_page_dirty(struct page *page)
731 {
732 SetPageChecked(page);
733 return __set_page_dirty_buffers(page);
734 }
735
736 /**
737 * gfs2_bmap - Block map function
738 * @mapping: Address space info
739 * @lblock: The block to map
740 *
741 * Returns: The disk address for the block or 0 on hole or error
742 */
743
gfs2_bmap(struct address_space * mapping,sector_t lblock)744 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
745 {
746 struct gfs2_inode *ip = GFS2_I(mapping->host);
747 struct gfs2_holder i_gh;
748 sector_t dblock = 0;
749 int error;
750
751 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
752 if (error)
753 return 0;
754
755 if (!gfs2_is_stuffed(ip))
756 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
757
758 gfs2_glock_dq_uninit(&i_gh);
759
760 return dblock;
761 }
762
gfs2_discard(struct gfs2_sbd * sdp,struct buffer_head * bh)763 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
764 {
765 struct gfs2_bufdata *bd;
766
767 lock_buffer(bh);
768 gfs2_log_lock(sdp);
769 clear_buffer_dirty(bh);
770 bd = bh->b_private;
771 if (bd) {
772 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
773 list_del_init(&bd->bd_list);
774 else
775 gfs2_remove_from_journal(bh, REMOVE_JDATA);
776 }
777 bh->b_bdev = NULL;
778 clear_buffer_mapped(bh);
779 clear_buffer_req(bh);
780 clear_buffer_new(bh);
781 gfs2_log_unlock(sdp);
782 unlock_buffer(bh);
783 }
784
gfs2_invalidatepage(struct page * page,unsigned int offset,unsigned int length)785 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
786 unsigned int length)
787 {
788 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
789 unsigned int stop = offset + length;
790 int partial_page = (offset || length < PAGE_SIZE);
791 struct buffer_head *bh, *head;
792 unsigned long pos = 0;
793
794 BUG_ON(!PageLocked(page));
795 if (!partial_page)
796 ClearPageChecked(page);
797 if (!page_has_buffers(page))
798 goto out;
799
800 bh = head = page_buffers(page);
801 do {
802 if (pos + bh->b_size > stop)
803 return;
804
805 if (offset <= pos)
806 gfs2_discard(sdp, bh);
807 pos += bh->b_size;
808 bh = bh->b_this_page;
809 } while (bh != head);
810 out:
811 if (!partial_page)
812 try_to_release_page(page, 0);
813 }
814
815 /**
816 * gfs2_releasepage - free the metadata associated with a page
817 * @page: the page that's being released
818 * @gfp_mask: passed from Linux VFS, ignored by us
819 *
820 * Call try_to_free_buffers() if the buffers in this page can be
821 * released.
822 *
823 * Returns: 0
824 */
825
gfs2_releasepage(struct page * page,gfp_t gfp_mask)826 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
827 {
828 struct address_space *mapping = page->mapping;
829 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
830 struct buffer_head *bh, *head;
831 struct gfs2_bufdata *bd;
832
833 if (!page_has_buffers(page))
834 return 0;
835
836 /*
837 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
838 * clean pages might not have had the dirty bit cleared. Thus, it can
839 * send actual dirty pages to ->releasepage() via shrink_active_list().
840 *
841 * As a workaround, we skip pages that contain dirty buffers below.
842 * Once ->releasepage isn't called on dirty pages anymore, we can warn
843 * on dirty buffers like we used to here again.
844 */
845
846 gfs2_log_lock(sdp);
847 spin_lock(&sdp->sd_ail_lock);
848 head = bh = page_buffers(page);
849 do {
850 if (atomic_read(&bh->b_count))
851 goto cannot_release;
852 bd = bh->b_private;
853 if (bd && bd->bd_tr)
854 goto cannot_release;
855 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
856 goto cannot_release;
857 bh = bh->b_this_page;
858 } while(bh != head);
859 spin_unlock(&sdp->sd_ail_lock);
860
861 head = bh = page_buffers(page);
862 do {
863 bd = bh->b_private;
864 if (bd) {
865 gfs2_assert_warn(sdp, bd->bd_bh == bh);
866 if (!list_empty(&bd->bd_list))
867 list_del_init(&bd->bd_list);
868 bd->bd_bh = NULL;
869 bh->b_private = NULL;
870 kmem_cache_free(gfs2_bufdata_cachep, bd);
871 }
872
873 bh = bh->b_this_page;
874 } while (bh != head);
875 gfs2_log_unlock(sdp);
876
877 return try_to_free_buffers(page);
878
879 cannot_release:
880 spin_unlock(&sdp->sd_ail_lock);
881 gfs2_log_unlock(sdp);
882 return 0;
883 }
884
885 static const struct address_space_operations gfs2_writeback_aops = {
886 .writepage = gfs2_writepage,
887 .writepages = gfs2_writepages,
888 .readpage = gfs2_readpage,
889 .readpages = gfs2_readpages,
890 .bmap = gfs2_bmap,
891 .invalidatepage = gfs2_invalidatepage,
892 .releasepage = gfs2_releasepage,
893 .direct_IO = noop_direct_IO,
894 .migratepage = buffer_migrate_page,
895 .is_partially_uptodate = block_is_partially_uptodate,
896 .error_remove_page = generic_error_remove_page,
897 };
898
899 static const struct address_space_operations gfs2_ordered_aops = {
900 .writepage = gfs2_writepage,
901 .writepages = gfs2_writepages,
902 .readpage = gfs2_readpage,
903 .readpages = gfs2_readpages,
904 .set_page_dirty = __set_page_dirty_buffers,
905 .bmap = gfs2_bmap,
906 .invalidatepage = gfs2_invalidatepage,
907 .releasepage = gfs2_releasepage,
908 .direct_IO = noop_direct_IO,
909 .migratepage = buffer_migrate_page,
910 .is_partially_uptodate = block_is_partially_uptodate,
911 .error_remove_page = generic_error_remove_page,
912 };
913
914 static const struct address_space_operations gfs2_jdata_aops = {
915 .writepage = gfs2_jdata_writepage,
916 .writepages = gfs2_jdata_writepages,
917 .readpage = gfs2_readpage,
918 .readpages = gfs2_readpages,
919 .set_page_dirty = jdata_set_page_dirty,
920 .bmap = gfs2_bmap,
921 .invalidatepage = gfs2_invalidatepage,
922 .releasepage = gfs2_releasepage,
923 .is_partially_uptodate = block_is_partially_uptodate,
924 .error_remove_page = generic_error_remove_page,
925 };
926
gfs2_set_aops(struct inode * inode)927 void gfs2_set_aops(struct inode *inode)
928 {
929 struct gfs2_inode *ip = GFS2_I(inode);
930
931 if (gfs2_is_writeback(ip))
932 inode->i_mapping->a_ops = &gfs2_writeback_aops;
933 else if (gfs2_is_ordered(ip))
934 inode->i_mapping->a_ops = &gfs2_ordered_aops;
935 else if (gfs2_is_jdata(ip))
936 inode->i_mapping->a_ops = &gfs2_jdata_aops;
937 else
938 BUG();
939 }
940
941