1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
10
11 /**
12 * idr_alloc_u32() - Allocate an ID.
13 * @idr: IDR handle.
14 * @ptr: Pointer to be associated with the new ID.
15 * @nextid: Pointer to an ID.
16 * @max: The maximum ID to allocate (inclusive).
17 * @gfp: Memory allocation flags.
18 *
19 * Allocates an unused ID in the range specified by @nextid and @max.
20 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21 * is exclusive. The new ID is assigned to @nextid before the pointer
22 * is inserted into the IDR, so if @nextid points into the object pointed
23 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24 *
25 * The caller should provide their own locking to ensure that two
26 * concurrent modifications to the IDR are not possible. Read-only
27 * accesses to the IDR may be done under the RCU read lock or may
28 * exclude simultaneous writers.
29 *
30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31 * or -ENOSPC if no free IDs could be found. If an error occurred,
32 * @nextid is unchanged.
33 */
idr_alloc_u32(struct idr * idr,void * ptr,u32 * nextid,unsigned long max,gfp_t gfp)34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 unsigned long max, gfp_t gfp)
36 {
37 struct radix_tree_iter iter;
38 void __rcu **slot;
39 unsigned int base = idr->idr_base;
40 unsigned int id = *nextid;
41
42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 return -EINVAL;
44 if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46
47 id = (id < base) ? 0 : id - base;
48 radix_tree_iter_init(&iter, id);
49 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 if (IS_ERR(slot))
51 return PTR_ERR(slot);
52
53 *nextid = iter.index + base;
54 /* there is a memory barrier inside radix_tree_iter_replace() */
55 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57
58 return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61
62 /**
63 * idr_alloc() - Allocate an ID.
64 * @idr: IDR handle.
65 * @ptr: Pointer to be associated with the new ID.
66 * @start: The minimum ID (inclusive).
67 * @end: The maximum ID (exclusive).
68 * @gfp: Memory allocation flags.
69 *
70 * Allocates an unused ID in the range specified by @start and @end. If
71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
72 * callers to use @start + N as @end as long as N is within integer range.
73 *
74 * The caller should provide their own locking to ensure that two
75 * concurrent modifications to the IDR are not possible. Read-only
76 * accesses to the IDR may be done under the RCU read lock or may
77 * exclude simultaneous writers.
78 *
79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80 * or -ENOSPC if no free IDs could be found.
81 */
idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 u32 id = start;
85 int ret;
86
87 if (WARN_ON_ONCE(start < 0))
88 return -EINVAL;
89
90 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 if (ret)
92 return ret;
93
94 return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97
98 /**
99 * idr_alloc_cyclic() - Allocate an ID cyclically.
100 * @idr: IDR handle.
101 * @ptr: Pointer to be associated with the new ID.
102 * @start: The minimum ID (inclusive).
103 * @end: The maximum ID (exclusive).
104 * @gfp: Memory allocation flags.
105 *
106 * Allocates an unused ID in the range specified by @start and @end. If
107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
108 * callers to use @start + N as @end as long as N is within integer range.
109 * The search for an unused ID will start at the last ID allocated and will
110 * wrap around to @start if no free IDs are found before reaching @end.
111 *
112 * The caller should provide their own locking to ensure that two
113 * concurrent modifications to the IDR are not possible. Read-only
114 * accesses to the IDR may be done under the RCU read lock or may
115 * exclude simultaneous writers.
116 *
117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118 * or -ENOSPC if no free IDs could be found.
119 */
idr_alloc_cyclic(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 u32 id = idr->idr_next;
123 int err, max = end > 0 ? end - 1 : INT_MAX;
124
125 if ((int)id < start)
126 id = start;
127
128 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 if ((err == -ENOSPC) && (id > start)) {
130 id = start;
131 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 }
133 if (err)
134 return err;
135
136 idr->idr_next = id + 1;
137 return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140
141 /**
142 * idr_remove() - Remove an ID from the IDR.
143 * @idr: IDR handle.
144 * @id: Pointer ID.
145 *
146 * Removes this ID from the IDR. If the ID was not previously in the IDR,
147 * this function returns %NULL.
148 *
149 * Since this function modifies the IDR, the caller should provide their
150 * own locking to ensure that concurrent modification of the same IDR is
151 * not possible.
152 *
153 * Return: The pointer formerly associated with this ID.
154 */
idr_remove(struct idr * idr,unsigned long id)155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160
161 /**
162 * idr_find() - Return pointer for given ID.
163 * @idr: IDR handle.
164 * @id: Pointer ID.
165 *
166 * Looks up the pointer associated with this ID. A %NULL pointer may
167 * indicate that @id is not allocated or that the %NULL pointer was
168 * associated with this ID.
169 *
170 * This function can be called under rcu_read_lock(), given that the leaf
171 * pointers lifetimes are correctly managed.
172 *
173 * Return: The pointer associated with this ID.
174 */
idr_find(const struct idr * idr,unsigned long id)175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180
181 /**
182 * idr_for_each() - Iterate through all stored pointers.
183 * @idr: IDR handle.
184 * @fn: Function to be called for each pointer.
185 * @data: Data passed to callback function.
186 *
187 * The callback function will be called for each entry in @idr, passing
188 * the ID, the entry and @data.
189 *
190 * If @fn returns anything other than %0, the iteration stops and that
191 * value is returned from this function.
192 *
193 * idr_for_each() can be called concurrently with idr_alloc() and
194 * idr_remove() if protected by RCU. Newly added entries may not be
195 * seen and deleted entries may be seen, but adding and removing entries
196 * will not cause other entries to be skipped, nor spurious ones to be seen.
197 */
idr_for_each(const struct idr * idr,int (* fn)(int id,void * p,void * data),void * data)198 int idr_for_each(const struct idr *idr,
199 int (*fn)(int id, void *p, void *data), void *data)
200 {
201 struct radix_tree_iter iter;
202 void __rcu **slot;
203 int base = idr->idr_base;
204
205 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 int ret;
207 unsigned long id = iter.index + base;
208
209 if (WARN_ON_ONCE(id > INT_MAX))
210 break;
211 ret = fn(id, rcu_dereference_raw(*slot), data);
212 if (ret)
213 return ret;
214 }
215
216 return 0;
217 }
218 EXPORT_SYMBOL(idr_for_each);
219
220 /**
221 * idr_get_next_ul() - Find next populated entry.
222 * @idr: IDR handle.
223 * @nextid: Pointer to an ID.
224 *
225 * Returns the next populated entry in the tree with an ID greater than
226 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
227 * to the ID of the found value. To use in a loop, the value pointed to by
228 * nextid must be incremented by the user.
229 */
idr_get_next_ul(struct idr * idr,unsigned long * nextid)230 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
231 {
232 struct radix_tree_iter iter;
233 void __rcu **slot;
234 void *entry = NULL;
235 unsigned long base = idr->idr_base;
236 unsigned long id = *nextid;
237
238 id = (id < base) ? 0 : id - base;
239 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
240 entry = rcu_dereference_raw(*slot);
241 if (!entry)
242 continue;
243 if (!radix_tree_deref_retry(entry))
244 break;
245 if (slot != (void *)&idr->idr_rt.rnode &&
246 entry != (void *)RADIX_TREE_INTERNAL_NODE)
247 break;
248 slot = radix_tree_iter_retry(&iter);
249 }
250 if (!slot)
251 return NULL;
252
253 *nextid = iter.index + base;
254 return entry;
255 }
256 EXPORT_SYMBOL(idr_get_next_ul);
257
258 /**
259 * idr_get_next() - Find next populated entry.
260 * @idr: IDR handle.
261 * @nextid: Pointer to an ID.
262 *
263 * Returns the next populated entry in the tree with an ID greater than
264 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
265 * to the ID of the found value. To use in a loop, the value pointed to by
266 * nextid must be incremented by the user.
267 */
idr_get_next(struct idr * idr,int * nextid)268 void *idr_get_next(struct idr *idr, int *nextid)
269 {
270 unsigned long id = *nextid;
271 void *entry = idr_get_next_ul(idr, &id);
272
273 if (WARN_ON_ONCE(id > INT_MAX))
274 return NULL;
275 *nextid = id;
276 return entry;
277 }
278 EXPORT_SYMBOL(idr_get_next);
279
280 /**
281 * idr_replace() - replace pointer for given ID.
282 * @idr: IDR handle.
283 * @ptr: New pointer to associate with the ID.
284 * @id: ID to change.
285 *
286 * Replace the pointer registered with an ID and return the old value.
287 * This function can be called under the RCU read lock concurrently with
288 * idr_alloc() and idr_remove() (as long as the ID being removed is not
289 * the one being replaced!).
290 *
291 * Returns: the old value on success. %-ENOENT indicates that @id was not
292 * found. %-EINVAL indicates that @ptr was not valid.
293 */
idr_replace(struct idr * idr,void * ptr,unsigned long id)294 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
295 {
296 struct radix_tree_node *node;
297 void __rcu **slot = NULL;
298 void *entry;
299
300 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
301 return ERR_PTR(-EINVAL);
302 id -= idr->idr_base;
303
304 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
305 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
306 return ERR_PTR(-ENOENT);
307
308 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
309
310 return entry;
311 }
312 EXPORT_SYMBOL(idr_replace);
313
314 /**
315 * DOC: IDA description
316 *
317 * The IDA is an ID allocator which does not provide the ability to
318 * associate an ID with a pointer. As such, it only needs to store one
319 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
320 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
321 * then initialise it using ida_init()). To allocate a new ID, call
322 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
323 * To free an ID, call ida_free().
324 *
325 * ida_destroy() can be used to dispose of an IDA without needing to
326 * free the individual IDs in it. You can use ida_is_empty() to find
327 * out whether the IDA has any IDs currently allocated.
328 *
329 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
330 * limitation, it should be quite straightforward to raise the maximum.
331 */
332
333 /*
334 * Developer's notes:
335 *
336 * The IDA uses the functionality provided by the IDR & radix tree to store
337 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
338 * free, unlike the IDR where it means at least one entry is free.
339 *
340 * I considered telling the radix tree that each slot is an order-10 node
341 * and storing the bit numbers in the radix tree, but the radix tree can't
342 * allow a single multiorder entry at index 0, which would significantly
343 * increase memory consumption for the IDA. So instead we divide the index
344 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
345 *
346 * As an optimisation, if there are only a few low bits set in any given
347 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
348 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
349 * directly in the entry. By being really tricksy, we could store
350 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
351 * for 0-3 allocated IDs.
352 *
353 * We allow the radix tree 'exceptional' count to get out of date. Nothing
354 * in the IDA nor the radix tree code checks it. If it becomes important
355 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
356 * calls to radix_tree_iter_replace() which will correct the exceptional
357 * count.
358 *
359 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
360 * equivalent, it will still need locking. Going to RCU lookup would require
361 * using RCU to free bitmaps, and that's not trivial without embedding an
362 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
363 * bitmap, which is excessive.
364 */
365
366 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
367
ida_get_new_above(struct ida * ida,int start)368 static int ida_get_new_above(struct ida *ida, int start)
369 {
370 struct radix_tree_root *root = &ida->ida_rt;
371 void __rcu **slot;
372 struct radix_tree_iter iter;
373 struct ida_bitmap *bitmap;
374 unsigned long index;
375 unsigned bit, ebit;
376 int new;
377
378 index = start / IDA_BITMAP_BITS;
379 bit = start % IDA_BITMAP_BITS;
380 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
381
382 slot = radix_tree_iter_init(&iter, index);
383 for (;;) {
384 if (slot)
385 slot = radix_tree_next_slot(slot, &iter,
386 RADIX_TREE_ITER_TAGGED);
387 if (!slot) {
388 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
389 if (IS_ERR(slot)) {
390 if (slot == ERR_PTR(-ENOMEM))
391 return -EAGAIN;
392 return PTR_ERR(slot);
393 }
394 }
395 if (iter.index > index) {
396 bit = 0;
397 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
398 }
399 new = iter.index * IDA_BITMAP_BITS;
400 bitmap = rcu_dereference_raw(*slot);
401 if (radix_tree_exception(bitmap)) {
402 unsigned long tmp = (unsigned long)bitmap;
403 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
404 if (ebit < BITS_PER_LONG) {
405 tmp |= 1UL << ebit;
406 rcu_assign_pointer(*slot, (void *)tmp);
407 return new + ebit -
408 RADIX_TREE_EXCEPTIONAL_SHIFT;
409 }
410 bitmap = this_cpu_xchg(ida_bitmap, NULL);
411 if (!bitmap)
412 return -EAGAIN;
413 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
414 rcu_assign_pointer(*slot, bitmap);
415 }
416
417 if (bitmap) {
418 bit = find_next_zero_bit(bitmap->bitmap,
419 IDA_BITMAP_BITS, bit);
420 new += bit;
421 if (new < 0)
422 return -ENOSPC;
423 if (bit == IDA_BITMAP_BITS)
424 continue;
425
426 __set_bit(bit, bitmap->bitmap);
427 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
428 radix_tree_iter_tag_clear(root, &iter,
429 IDR_FREE);
430 } else {
431 new += bit;
432 if (new < 0)
433 return -ENOSPC;
434 if (ebit < BITS_PER_LONG) {
435 bitmap = (void *)((1UL << ebit) |
436 RADIX_TREE_EXCEPTIONAL_ENTRY);
437 radix_tree_iter_replace(root, &iter, slot,
438 bitmap);
439 return new;
440 }
441 bitmap = this_cpu_xchg(ida_bitmap, NULL);
442 if (!bitmap)
443 return -EAGAIN;
444 __set_bit(bit, bitmap->bitmap);
445 radix_tree_iter_replace(root, &iter, slot, bitmap);
446 }
447
448 return new;
449 }
450 }
451
ida_remove(struct ida * ida,int id)452 static void ida_remove(struct ida *ida, int id)
453 {
454 unsigned long index = id / IDA_BITMAP_BITS;
455 unsigned offset = id % IDA_BITMAP_BITS;
456 struct ida_bitmap *bitmap;
457 unsigned long *btmp;
458 struct radix_tree_iter iter;
459 void __rcu **slot;
460
461 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
462 if (!slot)
463 goto err;
464
465 bitmap = rcu_dereference_raw(*slot);
466 if (radix_tree_exception(bitmap)) {
467 btmp = (unsigned long *)slot;
468 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
469 if (offset >= BITS_PER_LONG)
470 goto err;
471 } else {
472 btmp = bitmap->bitmap;
473 }
474 if (!test_bit(offset, btmp))
475 goto err;
476
477 __clear_bit(offset, btmp);
478 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
479 if (radix_tree_exception(bitmap)) {
480 if (rcu_dereference_raw(*slot) ==
481 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
482 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
483 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
484 kfree(bitmap);
485 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
486 }
487 return;
488 err:
489 WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
490 }
491
492 /**
493 * ida_destroy() - Free all IDs.
494 * @ida: IDA handle.
495 *
496 * Calling this function frees all IDs and releases all resources used
497 * by an IDA. When this call returns, the IDA is empty and can be reused
498 * or freed. If the IDA is already empty, there is no need to call this
499 * function.
500 *
501 * Context: Any context.
502 */
ida_destroy(struct ida * ida)503 void ida_destroy(struct ida *ida)
504 {
505 unsigned long flags;
506 struct radix_tree_iter iter;
507 void __rcu **slot;
508
509 xa_lock_irqsave(&ida->ida_rt, flags);
510 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
511 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
512 if (!radix_tree_exception(bitmap))
513 kfree(bitmap);
514 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
515 }
516 xa_unlock_irqrestore(&ida->ida_rt, flags);
517 }
518 EXPORT_SYMBOL(ida_destroy);
519
520 /**
521 * ida_alloc_range() - Allocate an unused ID.
522 * @ida: IDA handle.
523 * @min: Lowest ID to allocate.
524 * @max: Highest ID to allocate.
525 * @gfp: Memory allocation flags.
526 *
527 * Allocate an ID between @min and @max, inclusive. The allocated ID will
528 * not exceed %INT_MAX, even if @max is larger.
529 *
530 * Context: Any context.
531 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
532 * or %-ENOSPC if there are no free IDs.
533 */
ida_alloc_range(struct ida * ida,unsigned int min,unsigned int max,gfp_t gfp)534 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
535 gfp_t gfp)
536 {
537 int id = 0;
538 unsigned long flags;
539
540 if ((int)min < 0)
541 return -ENOSPC;
542
543 if ((int)max < 0)
544 max = INT_MAX;
545
546 again:
547 xa_lock_irqsave(&ida->ida_rt, flags);
548 id = ida_get_new_above(ida, min);
549 if (id > (int)max) {
550 ida_remove(ida, id);
551 id = -ENOSPC;
552 }
553 xa_unlock_irqrestore(&ida->ida_rt, flags);
554
555 if (unlikely(id == -EAGAIN)) {
556 if (!ida_pre_get(ida, gfp))
557 return -ENOMEM;
558 goto again;
559 }
560
561 return id;
562 }
563 EXPORT_SYMBOL(ida_alloc_range);
564
565 /**
566 * ida_free() - Release an allocated ID.
567 * @ida: IDA handle.
568 * @id: Previously allocated ID.
569 *
570 * Context: Any context.
571 */
ida_free(struct ida * ida,unsigned int id)572 void ida_free(struct ida *ida, unsigned int id)
573 {
574 unsigned long flags;
575
576 if ((int)id < 0)
577 return;
578
579 xa_lock_irqsave(&ida->ida_rt, flags);
580 ida_remove(ida, id);
581 xa_unlock_irqrestore(&ida->ida_rt, flags);
582 }
583 EXPORT_SYMBOL(ida_free);
584