1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8 
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
10 
11 /**
12  * idr_alloc_u32() - Allocate an ID.
13  * @idr: IDR handle.
14  * @ptr: Pointer to be associated with the new ID.
15  * @nextid: Pointer to an ID.
16  * @max: The maximum ID to allocate (inclusive).
17  * @gfp: Memory allocation flags.
18  *
19  * Allocates an unused ID in the range specified by @nextid and @max.
20  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21  * is exclusive.  The new ID is assigned to @nextid before the pointer
22  * is inserted into the IDR, so if @nextid points into the object pointed
23  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24  *
25  * The caller should provide their own locking to ensure that two
26  * concurrent modifications to the IDR are not possible.  Read-only
27  * accesses to the IDR may be done under the RCU read lock or may
28  * exclude simultaneous writers.
29  *
30  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31  * or -ENOSPC if no free IDs could be found.  If an error occurred,
32  * @nextid is unchanged.
33  */
idr_alloc_u32(struct idr * idr,void * ptr,u32 * nextid,unsigned long max,gfp_t gfp)34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 			unsigned long max, gfp_t gfp)
36 {
37 	struct radix_tree_iter iter;
38 	void __rcu **slot;
39 	unsigned int base = idr->idr_base;
40 	unsigned int id = *nextid;
41 
42 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 		return -EINVAL;
44 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46 
47 	id = (id < base) ? 0 : id - base;
48 	radix_tree_iter_init(&iter, id);
49 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 	if (IS_ERR(slot))
51 		return PTR_ERR(slot);
52 
53 	*nextid = iter.index + base;
54 	/* there is a memory barrier inside radix_tree_iter_replace() */
55 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57 
58 	return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61 
62 /**
63  * idr_alloc() - Allocate an ID.
64  * @idr: IDR handle.
65  * @ptr: Pointer to be associated with the new ID.
66  * @start: The minimum ID (inclusive).
67  * @end: The maximum ID (exclusive).
68  * @gfp: Memory allocation flags.
69  *
70  * Allocates an unused ID in the range specified by @start and @end.  If
71  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
72  * callers to use @start + N as @end as long as N is within integer range.
73  *
74  * The caller should provide their own locking to ensure that two
75  * concurrent modifications to the IDR are not possible.  Read-only
76  * accesses to the IDR may be done under the RCU read lock or may
77  * exclude simultaneous writers.
78  *
79  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80  * or -ENOSPC if no free IDs could be found.
81  */
idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 	u32 id = start;
85 	int ret;
86 
87 	if (WARN_ON_ONCE(start < 0))
88 		return -EINVAL;
89 
90 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 	if (ret)
92 		return ret;
93 
94 	return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97 
98 /**
99  * idr_alloc_cyclic() - Allocate an ID cyclically.
100  * @idr: IDR handle.
101  * @ptr: Pointer to be associated with the new ID.
102  * @start: The minimum ID (inclusive).
103  * @end: The maximum ID (exclusive).
104  * @gfp: Memory allocation flags.
105  *
106  * Allocates an unused ID in the range specified by @start and @end.  If
107  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
108  * callers to use @start + N as @end as long as N is within integer range.
109  * The search for an unused ID will start at the last ID allocated and will
110  * wrap around to @start if no free IDs are found before reaching @end.
111  *
112  * The caller should provide their own locking to ensure that two
113  * concurrent modifications to the IDR are not possible.  Read-only
114  * accesses to the IDR may be done under the RCU read lock or may
115  * exclude simultaneous writers.
116  *
117  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118  * or -ENOSPC if no free IDs could be found.
119  */
idr_alloc_cyclic(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 	u32 id = idr->idr_next;
123 	int err, max = end > 0 ? end - 1 : INT_MAX;
124 
125 	if ((int)id < start)
126 		id = start;
127 
128 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	if ((err == -ENOSPC) && (id > start)) {
130 		id = start;
131 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 	}
133 	if (err)
134 		return err;
135 
136 	idr->idr_next = id + 1;
137 	return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140 
141 /**
142  * idr_remove() - Remove an ID from the IDR.
143  * @idr: IDR handle.
144  * @id: Pointer ID.
145  *
146  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
147  * this function returns %NULL.
148  *
149  * Since this function modifies the IDR, the caller should provide their
150  * own locking to ensure that concurrent modification of the same IDR is
151  * not possible.
152  *
153  * Return: The pointer formerly associated with this ID.
154  */
idr_remove(struct idr * idr,unsigned long id)155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160 
161 /**
162  * idr_find() - Return pointer for given ID.
163  * @idr: IDR handle.
164  * @id: Pointer ID.
165  *
166  * Looks up the pointer associated with this ID.  A %NULL pointer may
167  * indicate that @id is not allocated or that the %NULL pointer was
168  * associated with this ID.
169  *
170  * This function can be called under rcu_read_lock(), given that the leaf
171  * pointers lifetimes are correctly managed.
172  *
173  * Return: The pointer associated with this ID.
174  */
idr_find(const struct idr * idr,unsigned long id)175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180 
181 /**
182  * idr_for_each() - Iterate through all stored pointers.
183  * @idr: IDR handle.
184  * @fn: Function to be called for each pointer.
185  * @data: Data passed to callback function.
186  *
187  * The callback function will be called for each entry in @idr, passing
188  * the ID, the entry and @data.
189  *
190  * If @fn returns anything other than %0, the iteration stops and that
191  * value is returned from this function.
192  *
193  * idr_for_each() can be called concurrently with idr_alloc() and
194  * idr_remove() if protected by RCU.  Newly added entries may not be
195  * seen and deleted entries may be seen, but adding and removing entries
196  * will not cause other entries to be skipped, nor spurious ones to be seen.
197  */
idr_for_each(const struct idr * idr,int (* fn)(int id,void * p,void * data),void * data)198 int idr_for_each(const struct idr *idr,
199 		int (*fn)(int id, void *p, void *data), void *data)
200 {
201 	struct radix_tree_iter iter;
202 	void __rcu **slot;
203 	int base = idr->idr_base;
204 
205 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 		int ret;
207 		unsigned long id = iter.index + base;
208 
209 		if (WARN_ON_ONCE(id > INT_MAX))
210 			break;
211 		ret = fn(id, rcu_dereference_raw(*slot), data);
212 		if (ret)
213 			return ret;
214 	}
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL(idr_for_each);
219 
220 /**
221  * idr_get_next_ul() - Find next populated entry.
222  * @idr: IDR handle.
223  * @nextid: Pointer to an ID.
224  *
225  * Returns the next populated entry in the tree with an ID greater than
226  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
227  * to the ID of the found value.  To use in a loop, the value pointed to by
228  * nextid must be incremented by the user.
229  */
idr_get_next_ul(struct idr * idr,unsigned long * nextid)230 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
231 {
232 	struct radix_tree_iter iter;
233 	void __rcu **slot;
234 	void *entry = NULL;
235 	unsigned long base = idr->idr_base;
236 	unsigned long id = *nextid;
237 
238 	id = (id < base) ? 0 : id - base;
239 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
240 		entry = rcu_dereference_raw(*slot);
241 		if (!entry)
242 			continue;
243 		if (!radix_tree_deref_retry(entry))
244 			break;
245 		if (slot != (void *)&idr->idr_rt.rnode &&
246 				entry != (void *)RADIX_TREE_INTERNAL_NODE)
247 			break;
248 		slot = radix_tree_iter_retry(&iter);
249 	}
250 	if (!slot)
251 		return NULL;
252 
253 	*nextid = iter.index + base;
254 	return entry;
255 }
256 EXPORT_SYMBOL(idr_get_next_ul);
257 
258 /**
259  * idr_get_next() - Find next populated entry.
260  * @idr: IDR handle.
261  * @nextid: Pointer to an ID.
262  *
263  * Returns the next populated entry in the tree with an ID greater than
264  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
265  * to the ID of the found value.  To use in a loop, the value pointed to by
266  * nextid must be incremented by the user.
267  */
idr_get_next(struct idr * idr,int * nextid)268 void *idr_get_next(struct idr *idr, int *nextid)
269 {
270 	unsigned long id = *nextid;
271 	void *entry = idr_get_next_ul(idr, &id);
272 
273 	if (WARN_ON_ONCE(id > INT_MAX))
274 		return NULL;
275 	*nextid = id;
276 	return entry;
277 }
278 EXPORT_SYMBOL(idr_get_next);
279 
280 /**
281  * idr_replace() - replace pointer for given ID.
282  * @idr: IDR handle.
283  * @ptr: New pointer to associate with the ID.
284  * @id: ID to change.
285  *
286  * Replace the pointer registered with an ID and return the old value.
287  * This function can be called under the RCU read lock concurrently with
288  * idr_alloc() and idr_remove() (as long as the ID being removed is not
289  * the one being replaced!).
290  *
291  * Returns: the old value on success.  %-ENOENT indicates that @id was not
292  * found.  %-EINVAL indicates that @ptr was not valid.
293  */
idr_replace(struct idr * idr,void * ptr,unsigned long id)294 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
295 {
296 	struct radix_tree_node *node;
297 	void __rcu **slot = NULL;
298 	void *entry;
299 
300 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
301 		return ERR_PTR(-EINVAL);
302 	id -= idr->idr_base;
303 
304 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
305 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
306 		return ERR_PTR(-ENOENT);
307 
308 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
309 
310 	return entry;
311 }
312 EXPORT_SYMBOL(idr_replace);
313 
314 /**
315  * DOC: IDA description
316  *
317  * The IDA is an ID allocator which does not provide the ability to
318  * associate an ID with a pointer.  As such, it only needs to store one
319  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
320  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
321  * then initialise it using ida_init()).  To allocate a new ID, call
322  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
323  * To free an ID, call ida_free().
324  *
325  * ida_destroy() can be used to dispose of an IDA without needing to
326  * free the individual IDs in it.  You can use ida_is_empty() to find
327  * out whether the IDA has any IDs currently allocated.
328  *
329  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
330  * limitation, it should be quite straightforward to raise the maximum.
331  */
332 
333 /*
334  * Developer's notes:
335  *
336  * The IDA uses the functionality provided by the IDR & radix tree to store
337  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
338  * free, unlike the IDR where it means at least one entry is free.
339  *
340  * I considered telling the radix tree that each slot is an order-10 node
341  * and storing the bit numbers in the radix tree, but the radix tree can't
342  * allow a single multiorder entry at index 0, which would significantly
343  * increase memory consumption for the IDA.  So instead we divide the index
344  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
345  *
346  * As an optimisation, if there are only a few low bits set in any given
347  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
348  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
349  * directly in the entry.  By being really tricksy, we could store
350  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
351  * for 0-3 allocated IDs.
352  *
353  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
354  * in the IDA nor the radix tree code checks it.  If it becomes important
355  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
356  * calls to radix_tree_iter_replace() which will correct the exceptional
357  * count.
358  *
359  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
360  * equivalent, it will still need locking.  Going to RCU lookup would require
361  * using RCU to free bitmaps, and that's not trivial without embedding an
362  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
363  * bitmap, which is excessive.
364  */
365 
366 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
367 
ida_get_new_above(struct ida * ida,int start)368 static int ida_get_new_above(struct ida *ida, int start)
369 {
370 	struct radix_tree_root *root = &ida->ida_rt;
371 	void __rcu **slot;
372 	struct radix_tree_iter iter;
373 	struct ida_bitmap *bitmap;
374 	unsigned long index;
375 	unsigned bit, ebit;
376 	int new;
377 
378 	index = start / IDA_BITMAP_BITS;
379 	bit = start % IDA_BITMAP_BITS;
380 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
381 
382 	slot = radix_tree_iter_init(&iter, index);
383 	for (;;) {
384 		if (slot)
385 			slot = radix_tree_next_slot(slot, &iter,
386 						RADIX_TREE_ITER_TAGGED);
387 		if (!slot) {
388 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
389 			if (IS_ERR(slot)) {
390 				if (slot == ERR_PTR(-ENOMEM))
391 					return -EAGAIN;
392 				return PTR_ERR(slot);
393 			}
394 		}
395 		if (iter.index > index) {
396 			bit = 0;
397 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
398 		}
399 		new = iter.index * IDA_BITMAP_BITS;
400 		bitmap = rcu_dereference_raw(*slot);
401 		if (radix_tree_exception(bitmap)) {
402 			unsigned long tmp = (unsigned long)bitmap;
403 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
404 			if (ebit < BITS_PER_LONG) {
405 				tmp |= 1UL << ebit;
406 				rcu_assign_pointer(*slot, (void *)tmp);
407 				return new + ebit -
408 					RADIX_TREE_EXCEPTIONAL_SHIFT;
409 			}
410 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
411 			if (!bitmap)
412 				return -EAGAIN;
413 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
414 			rcu_assign_pointer(*slot, bitmap);
415 		}
416 
417 		if (bitmap) {
418 			bit = find_next_zero_bit(bitmap->bitmap,
419 							IDA_BITMAP_BITS, bit);
420 			new += bit;
421 			if (new < 0)
422 				return -ENOSPC;
423 			if (bit == IDA_BITMAP_BITS)
424 				continue;
425 
426 			__set_bit(bit, bitmap->bitmap);
427 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
428 				radix_tree_iter_tag_clear(root, &iter,
429 								IDR_FREE);
430 		} else {
431 			new += bit;
432 			if (new < 0)
433 				return -ENOSPC;
434 			if (ebit < BITS_PER_LONG) {
435 				bitmap = (void *)((1UL << ebit) |
436 						RADIX_TREE_EXCEPTIONAL_ENTRY);
437 				radix_tree_iter_replace(root, &iter, slot,
438 						bitmap);
439 				return new;
440 			}
441 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
442 			if (!bitmap)
443 				return -EAGAIN;
444 			__set_bit(bit, bitmap->bitmap);
445 			radix_tree_iter_replace(root, &iter, slot, bitmap);
446 		}
447 
448 		return new;
449 	}
450 }
451 
ida_remove(struct ida * ida,int id)452 static void ida_remove(struct ida *ida, int id)
453 {
454 	unsigned long index = id / IDA_BITMAP_BITS;
455 	unsigned offset = id % IDA_BITMAP_BITS;
456 	struct ida_bitmap *bitmap;
457 	unsigned long *btmp;
458 	struct radix_tree_iter iter;
459 	void __rcu **slot;
460 
461 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
462 	if (!slot)
463 		goto err;
464 
465 	bitmap = rcu_dereference_raw(*slot);
466 	if (radix_tree_exception(bitmap)) {
467 		btmp = (unsigned long *)slot;
468 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
469 		if (offset >= BITS_PER_LONG)
470 			goto err;
471 	} else {
472 		btmp = bitmap->bitmap;
473 	}
474 	if (!test_bit(offset, btmp))
475 		goto err;
476 
477 	__clear_bit(offset, btmp);
478 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
479 	if (radix_tree_exception(bitmap)) {
480 		if (rcu_dereference_raw(*slot) ==
481 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
482 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
483 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
484 		kfree(bitmap);
485 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
486 	}
487 	return;
488  err:
489 	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
490 }
491 
492 /**
493  * ida_destroy() - Free all IDs.
494  * @ida: IDA handle.
495  *
496  * Calling this function frees all IDs and releases all resources used
497  * by an IDA.  When this call returns, the IDA is empty and can be reused
498  * or freed.  If the IDA is already empty, there is no need to call this
499  * function.
500  *
501  * Context: Any context.
502  */
ida_destroy(struct ida * ida)503 void ida_destroy(struct ida *ida)
504 {
505 	unsigned long flags;
506 	struct radix_tree_iter iter;
507 	void __rcu **slot;
508 
509 	xa_lock_irqsave(&ida->ida_rt, flags);
510 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
511 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
512 		if (!radix_tree_exception(bitmap))
513 			kfree(bitmap);
514 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
515 	}
516 	xa_unlock_irqrestore(&ida->ida_rt, flags);
517 }
518 EXPORT_SYMBOL(ida_destroy);
519 
520 /**
521  * ida_alloc_range() - Allocate an unused ID.
522  * @ida: IDA handle.
523  * @min: Lowest ID to allocate.
524  * @max: Highest ID to allocate.
525  * @gfp: Memory allocation flags.
526  *
527  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
528  * not exceed %INT_MAX, even if @max is larger.
529  *
530  * Context: Any context.
531  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
532  * or %-ENOSPC if there are no free IDs.
533  */
ida_alloc_range(struct ida * ida,unsigned int min,unsigned int max,gfp_t gfp)534 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
535 			gfp_t gfp)
536 {
537 	int id = 0;
538 	unsigned long flags;
539 
540 	if ((int)min < 0)
541 		return -ENOSPC;
542 
543 	if ((int)max < 0)
544 		max = INT_MAX;
545 
546 again:
547 	xa_lock_irqsave(&ida->ida_rt, flags);
548 	id = ida_get_new_above(ida, min);
549 	if (id > (int)max) {
550 		ida_remove(ida, id);
551 		id = -ENOSPC;
552 	}
553 	xa_unlock_irqrestore(&ida->ida_rt, flags);
554 
555 	if (unlikely(id == -EAGAIN)) {
556 		if (!ida_pre_get(ida, gfp))
557 			return -ENOMEM;
558 		goto again;
559 	}
560 
561 	return id;
562 }
563 EXPORT_SYMBOL(ida_alloc_range);
564 
565 /**
566  * ida_free() - Release an allocated ID.
567  * @ida: IDA handle.
568  * @id: Previously allocated ID.
569  *
570  * Context: Any context.
571  */
ida_free(struct ida * ida,unsigned int id)572 void ida_free(struct ida *ida, unsigned int id)
573 {
574 	unsigned long flags;
575 
576 	if ((int)id < 0)
577 		return;
578 
579 	xa_lock_irqsave(&ida->ida_rt, flags);
580 	ida_remove(ida, id);
581 	xa_unlock_irqrestore(&ida->ida_rt, flags);
582 }
583 EXPORT_SYMBOL(ida_free);
584