1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #include <linux/module.h>
15 #include <linux/errno.h>
16 #include <linux/poll.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/slab.h>
22 #include <linux/ipmi.h>
23 #include <linux/ipmi_smi.h>
24 #include <linux/notifier.h>
25 #include <linux/init.h>
26 #include <linux/proc_fs.h>
27 #include <linux/rcupdate.h>
28 #include <linux/interrupt.h>
29 #include <linux/moduleparam.h>
30 #include <linux/workqueue.h>
31 #include <linux/uuid.h>
32 #include <linux/nospec.h>
33 #include <linux/vmalloc.h>
34
35 #define PFX "IPMI message handler: "
36
37 #define IPMI_DRIVER_VERSION "39.2"
38
39 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
40 static int ipmi_init_msghandler(void);
41 static void smi_recv_tasklet(unsigned long);
42 static void handle_new_recv_msgs(struct ipmi_smi *intf);
43 static void need_waiter(struct ipmi_smi *intf);
44 static int handle_one_recv_msg(struct ipmi_smi *intf,
45 struct ipmi_smi_msg *msg);
46
47 #ifdef DEBUG
ipmi_debug_msg(const char * title,unsigned char * data,unsigned int len)48 static void ipmi_debug_msg(const char *title, unsigned char *data,
49 unsigned int len)
50 {
51 int i, pos;
52 char buf[100];
53
54 pos = snprintf(buf, sizeof(buf), "%s: ", title);
55 for (i = 0; i < len; i++)
56 pos += snprintf(buf + pos, sizeof(buf) - pos,
57 " %2.2x", data[i]);
58 pr_debug("%s\n", buf);
59 }
60 #else
ipmi_debug_msg(const char * title,unsigned char * data,unsigned int len)61 static void ipmi_debug_msg(const char *title, unsigned char *data,
62 unsigned int len)
63 { }
64 #endif
65
66 static bool initialized;
67 static bool drvregistered;
68
69 enum ipmi_panic_event_op {
70 IPMI_SEND_PANIC_EVENT_NONE,
71 IPMI_SEND_PANIC_EVENT,
72 IPMI_SEND_PANIC_EVENT_STRING
73 };
74 #ifdef CONFIG_IPMI_PANIC_STRING
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
76 #elif defined(CONFIG_IPMI_PANIC_EVENT)
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
78 #else
79 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
80 #endif
81 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
82
panic_op_write_handler(const char * val,const struct kernel_param * kp)83 static int panic_op_write_handler(const char *val,
84 const struct kernel_param *kp)
85 {
86 char valcp[16];
87 char *s;
88
89 strncpy(valcp, val, 15);
90 valcp[15] = '\0';
91
92 s = strstrip(valcp);
93
94 if (strcmp(s, "none") == 0)
95 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
96 else if (strcmp(s, "event") == 0)
97 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
98 else if (strcmp(s, "string") == 0)
99 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
100 else
101 return -EINVAL;
102
103 return 0;
104 }
105
panic_op_read_handler(char * buffer,const struct kernel_param * kp)106 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
107 {
108 switch (ipmi_send_panic_event) {
109 case IPMI_SEND_PANIC_EVENT_NONE:
110 strcpy(buffer, "none");
111 break;
112
113 case IPMI_SEND_PANIC_EVENT:
114 strcpy(buffer, "event");
115 break;
116
117 case IPMI_SEND_PANIC_EVENT_STRING:
118 strcpy(buffer, "string");
119 break;
120
121 default:
122 strcpy(buffer, "???");
123 break;
124 }
125
126 return strlen(buffer);
127 }
128
129 static const struct kernel_param_ops panic_op_ops = {
130 .set = panic_op_write_handler,
131 .get = panic_op_read_handler
132 };
133 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
134 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135
136
137 #define MAX_EVENTS_IN_QUEUE 25
138
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 static unsigned long maintenance_mode_timeout_ms = 30000;
141 module_param(maintenance_mode_timeout_ms, ulong, 0644);
142 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
143 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
144
145 /*
146 * Don't let a message sit in a queue forever, always time it with at lest
147 * the max message timer. This is in milliseconds.
148 */
149 #define MAX_MSG_TIMEOUT 60000
150
151 /*
152 * Timeout times below are in milliseconds, and are done off a 1
153 * second timer. So setting the value to 1000 would mean anything
154 * between 0 and 1000ms. So really the only reasonable minimum
155 * setting it 2000ms, which is between 1 and 2 seconds.
156 */
157
158 /* The default timeout for message retries. */
159 static unsigned long default_retry_ms = 2000;
160 module_param(default_retry_ms, ulong, 0644);
161 MODULE_PARM_DESC(default_retry_ms,
162 "The time (milliseconds) between retry sends");
163
164 /* The default timeout for maintenance mode message retries. */
165 static unsigned long default_maintenance_retry_ms = 3000;
166 module_param(default_maintenance_retry_ms, ulong, 0644);
167 MODULE_PARM_DESC(default_maintenance_retry_ms,
168 "The time (milliseconds) between retry sends in maintenance mode");
169
170 /* The default maximum number of retries */
171 static unsigned int default_max_retries = 4;
172 module_param(default_max_retries, uint, 0644);
173 MODULE_PARM_DESC(default_max_retries,
174 "The time (milliseconds) between retry sends in maintenance mode");
175
176 /* Call every ~1000 ms. */
177 #define IPMI_TIMEOUT_TIME 1000
178
179 /* How many jiffies does it take to get to the timeout time. */
180 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
181
182 /*
183 * Request events from the queue every second (this is the number of
184 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
185 * future, IPMI will add a way to know immediately if an event is in
186 * the queue and this silliness can go away.
187 */
188 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
189
190 /* How long should we cache dynamic device IDs? */
191 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
192
193 /*
194 * The main "user" data structure.
195 */
196 struct ipmi_user {
197 struct list_head link;
198
199 /*
200 * Set to NULL when the user is destroyed, a pointer to myself
201 * so srcu_dereference can be used on it.
202 */
203 struct ipmi_user *self;
204 struct srcu_struct release_barrier;
205
206 struct kref refcount;
207
208 /* The upper layer that handles receive messages. */
209 const struct ipmi_user_hndl *handler;
210 void *handler_data;
211
212 /* The interface this user is bound to. */
213 struct ipmi_smi *intf;
214
215 /* Does this interface receive IPMI events? */
216 bool gets_events;
217
218 /* Free must run in process context for RCU cleanup. */
219 struct work_struct remove_work;
220 };
221
222 static struct workqueue_struct *remove_work_wq;
223
acquire_ipmi_user(struct ipmi_user * user,int * index)224 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
225 __acquires(user->release_barrier)
226 {
227 struct ipmi_user *ruser;
228
229 *index = srcu_read_lock(&user->release_barrier);
230 ruser = srcu_dereference(user->self, &user->release_barrier);
231 if (!ruser)
232 srcu_read_unlock(&user->release_barrier, *index);
233 return ruser;
234 }
235
release_ipmi_user(struct ipmi_user * user,int index)236 static void release_ipmi_user(struct ipmi_user *user, int index)
237 {
238 srcu_read_unlock(&user->release_barrier, index);
239 }
240
241 struct cmd_rcvr {
242 struct list_head link;
243
244 struct ipmi_user *user;
245 unsigned char netfn;
246 unsigned char cmd;
247 unsigned int chans;
248
249 /*
250 * This is used to form a linked lised during mass deletion.
251 * Since this is in an RCU list, we cannot use the link above
252 * or change any data until the RCU period completes. So we
253 * use this next variable during mass deletion so we can have
254 * a list and don't have to wait and restart the search on
255 * every individual deletion of a command.
256 */
257 struct cmd_rcvr *next;
258 };
259
260 struct seq_table {
261 unsigned int inuse : 1;
262 unsigned int broadcast : 1;
263
264 unsigned long timeout;
265 unsigned long orig_timeout;
266 unsigned int retries_left;
267
268 /*
269 * To verify on an incoming send message response that this is
270 * the message that the response is for, we keep a sequence id
271 * and increment it every time we send a message.
272 */
273 long seqid;
274
275 /*
276 * This is held so we can properly respond to the message on a
277 * timeout, and it is used to hold the temporary data for
278 * retransmission, too.
279 */
280 struct ipmi_recv_msg *recv_msg;
281 };
282
283 /*
284 * Store the information in a msgid (long) to allow us to find a
285 * sequence table entry from the msgid.
286 */
287 #define STORE_SEQ_IN_MSGID(seq, seqid) \
288 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
289
290 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
291 do { \
292 seq = (((msgid) >> 26) & 0x3f); \
293 seqid = ((msgid) & 0x3ffffff); \
294 } while (0)
295
296 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
297
298 #define IPMI_MAX_CHANNELS 16
299 struct ipmi_channel {
300 unsigned char medium;
301 unsigned char protocol;
302 };
303
304 struct ipmi_channel_set {
305 struct ipmi_channel c[IPMI_MAX_CHANNELS];
306 };
307
308 struct ipmi_my_addrinfo {
309 /*
310 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
311 * but may be changed by the user.
312 */
313 unsigned char address;
314
315 /*
316 * My LUN. This should generally stay the SMS LUN, but just in
317 * case...
318 */
319 unsigned char lun;
320 };
321
322 /*
323 * Note that the product id, manufacturer id, guid, and device id are
324 * immutable in this structure, so dyn_mutex is not required for
325 * accessing those. If those change on a BMC, a new BMC is allocated.
326 */
327 struct bmc_device {
328 struct platform_device pdev;
329 struct list_head intfs; /* Interfaces on this BMC. */
330 struct ipmi_device_id id;
331 struct ipmi_device_id fetch_id;
332 int dyn_id_set;
333 unsigned long dyn_id_expiry;
334 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
335 guid_t guid;
336 guid_t fetch_guid;
337 int dyn_guid_set;
338 struct kref usecount;
339 struct work_struct remove_work;
340 };
341 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
342
343 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
344 struct ipmi_device_id *id,
345 bool *guid_set, guid_t *guid);
346
347 /*
348 * Various statistics for IPMI, these index stats[] in the ipmi_smi
349 * structure.
350 */
351 enum ipmi_stat_indexes {
352 /* Commands we got from the user that were invalid. */
353 IPMI_STAT_sent_invalid_commands = 0,
354
355 /* Commands we sent to the MC. */
356 IPMI_STAT_sent_local_commands,
357
358 /* Responses from the MC that were delivered to a user. */
359 IPMI_STAT_handled_local_responses,
360
361 /* Responses from the MC that were not delivered to a user. */
362 IPMI_STAT_unhandled_local_responses,
363
364 /* Commands we sent out to the IPMB bus. */
365 IPMI_STAT_sent_ipmb_commands,
366
367 /* Commands sent on the IPMB that had errors on the SEND CMD */
368 IPMI_STAT_sent_ipmb_command_errs,
369
370 /* Each retransmit increments this count. */
371 IPMI_STAT_retransmitted_ipmb_commands,
372
373 /*
374 * When a message times out (runs out of retransmits) this is
375 * incremented.
376 */
377 IPMI_STAT_timed_out_ipmb_commands,
378
379 /*
380 * This is like above, but for broadcasts. Broadcasts are
381 * *not* included in the above count (they are expected to
382 * time out).
383 */
384 IPMI_STAT_timed_out_ipmb_broadcasts,
385
386 /* Responses I have sent to the IPMB bus. */
387 IPMI_STAT_sent_ipmb_responses,
388
389 /* The response was delivered to the user. */
390 IPMI_STAT_handled_ipmb_responses,
391
392 /* The response had invalid data in it. */
393 IPMI_STAT_invalid_ipmb_responses,
394
395 /* The response didn't have anyone waiting for it. */
396 IPMI_STAT_unhandled_ipmb_responses,
397
398 /* Commands we sent out to the IPMB bus. */
399 IPMI_STAT_sent_lan_commands,
400
401 /* Commands sent on the IPMB that had errors on the SEND CMD */
402 IPMI_STAT_sent_lan_command_errs,
403
404 /* Each retransmit increments this count. */
405 IPMI_STAT_retransmitted_lan_commands,
406
407 /*
408 * When a message times out (runs out of retransmits) this is
409 * incremented.
410 */
411 IPMI_STAT_timed_out_lan_commands,
412
413 /* Responses I have sent to the IPMB bus. */
414 IPMI_STAT_sent_lan_responses,
415
416 /* The response was delivered to the user. */
417 IPMI_STAT_handled_lan_responses,
418
419 /* The response had invalid data in it. */
420 IPMI_STAT_invalid_lan_responses,
421
422 /* The response didn't have anyone waiting for it. */
423 IPMI_STAT_unhandled_lan_responses,
424
425 /* The command was delivered to the user. */
426 IPMI_STAT_handled_commands,
427
428 /* The command had invalid data in it. */
429 IPMI_STAT_invalid_commands,
430
431 /* The command didn't have anyone waiting for it. */
432 IPMI_STAT_unhandled_commands,
433
434 /* Invalid data in an event. */
435 IPMI_STAT_invalid_events,
436
437 /* Events that were received with the proper format. */
438 IPMI_STAT_events,
439
440 /* Retransmissions on IPMB that failed. */
441 IPMI_STAT_dropped_rexmit_ipmb_commands,
442
443 /* Retransmissions on LAN that failed. */
444 IPMI_STAT_dropped_rexmit_lan_commands,
445
446 /* This *must* remain last, add new values above this. */
447 IPMI_NUM_STATS
448 };
449
450
451 #define IPMI_IPMB_NUM_SEQ 64
452 struct ipmi_smi {
453 struct module *owner;
454
455 /* What interface number are we? */
456 int intf_num;
457
458 struct kref refcount;
459
460 /* Set when the interface is being unregistered. */
461 bool in_shutdown;
462
463 /* Used for a list of interfaces. */
464 struct list_head link;
465
466 /*
467 * The list of upper layers that are using me. seq_lock write
468 * protects this. Read protection is with srcu.
469 */
470 struct list_head users;
471 struct srcu_struct users_srcu;
472
473 /* Used for wake ups at startup. */
474 wait_queue_head_t waitq;
475
476 /*
477 * Prevents the interface from being unregistered when the
478 * interface is used by being looked up through the BMC
479 * structure.
480 */
481 struct mutex bmc_reg_mutex;
482
483 struct bmc_device tmp_bmc;
484 struct bmc_device *bmc;
485 bool bmc_registered;
486 struct list_head bmc_link;
487 char *my_dev_name;
488 bool in_bmc_register; /* Handle recursive situations. Yuck. */
489 struct work_struct bmc_reg_work;
490
491 const struct ipmi_smi_handlers *handlers;
492 void *send_info;
493
494 /* Driver-model device for the system interface. */
495 struct device *si_dev;
496
497 /*
498 * A table of sequence numbers for this interface. We use the
499 * sequence numbers for IPMB messages that go out of the
500 * interface to match them up with their responses. A routine
501 * is called periodically to time the items in this list.
502 */
503 spinlock_t seq_lock;
504 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
505 int curr_seq;
506
507 /*
508 * Messages queued for delivery. If delivery fails (out of memory
509 * for instance), They will stay in here to be processed later in a
510 * periodic timer interrupt. The tasklet is for handling received
511 * messages directly from the handler.
512 */
513 spinlock_t waiting_rcv_msgs_lock;
514 struct list_head waiting_rcv_msgs;
515 atomic_t watchdog_pretimeouts_to_deliver;
516 struct tasklet_struct recv_tasklet;
517
518 spinlock_t xmit_msgs_lock;
519 struct list_head xmit_msgs;
520 struct ipmi_smi_msg *curr_msg;
521 struct list_head hp_xmit_msgs;
522
523 /*
524 * The list of command receivers that are registered for commands
525 * on this interface.
526 */
527 struct mutex cmd_rcvrs_mutex;
528 struct list_head cmd_rcvrs;
529
530 /*
531 * Events that were queues because no one was there to receive
532 * them.
533 */
534 spinlock_t events_lock; /* For dealing with event stuff. */
535 struct list_head waiting_events;
536 unsigned int waiting_events_count; /* How many events in queue? */
537 char delivering_events;
538 char event_msg_printed;
539
540 /* How many users are waiting for events? */
541 atomic_t event_waiters;
542 unsigned int ticks_to_req_ev;
543
544 spinlock_t watch_lock; /* For dealing with watch stuff below. */
545
546 /* How many users are waiting for commands? */
547 unsigned int command_waiters;
548
549 /* How many users are waiting for watchdogs? */
550 unsigned int watchdog_waiters;
551
552 /* How many users are waiting for message responses? */
553 unsigned int response_waiters;
554
555 /*
556 * Tells what the lower layer has last been asked to watch for,
557 * messages and/or watchdogs. Protected by watch_lock.
558 */
559 unsigned int last_watch_mask;
560
561 /*
562 * The event receiver for my BMC, only really used at panic
563 * shutdown as a place to store this.
564 */
565 unsigned char event_receiver;
566 unsigned char event_receiver_lun;
567 unsigned char local_sel_device;
568 unsigned char local_event_generator;
569
570 /* For handling of maintenance mode. */
571 int maintenance_mode;
572 bool maintenance_mode_enable;
573 int auto_maintenance_timeout;
574 spinlock_t maintenance_mode_lock; /* Used in a timer... */
575
576 /*
577 * If we are doing maintenance on something on IPMB, extend
578 * the timeout time to avoid timeouts writing firmware and
579 * such.
580 */
581 int ipmb_maintenance_mode_timeout;
582
583 /*
584 * A cheap hack, if this is non-null and a message to an
585 * interface comes in with a NULL user, call this routine with
586 * it. Note that the message will still be freed by the
587 * caller. This only works on the system interface.
588 *
589 * Protected by bmc_reg_mutex.
590 */
591 void (*null_user_handler)(struct ipmi_smi *intf,
592 struct ipmi_recv_msg *msg);
593
594 /*
595 * When we are scanning the channels for an SMI, this will
596 * tell which channel we are scanning.
597 */
598 int curr_channel;
599
600 /* Channel information */
601 struct ipmi_channel_set *channel_list;
602 unsigned int curr_working_cset; /* First index into the following. */
603 struct ipmi_channel_set wchannels[2];
604 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
605 bool channels_ready;
606
607 atomic_t stats[IPMI_NUM_STATS];
608
609 /*
610 * run_to_completion duplicate of smb_info, smi_info
611 * and ipmi_serial_info structures. Used to decrease numbers of
612 * parameters passed by "low" level IPMI code.
613 */
614 int run_to_completion;
615 };
616 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
617
618 static void __get_guid(struct ipmi_smi *intf);
619 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
620 static int __ipmi_bmc_register(struct ipmi_smi *intf,
621 struct ipmi_device_id *id,
622 bool guid_set, guid_t *guid, int intf_num);
623 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
624
625
626 /**
627 * The driver model view of the IPMI messaging driver.
628 */
629 static struct platform_driver ipmidriver = {
630 .driver = {
631 .name = "ipmi",
632 .bus = &platform_bus_type
633 }
634 };
635 /*
636 * This mutex keeps us from adding the same BMC twice.
637 */
638 static DEFINE_MUTEX(ipmidriver_mutex);
639
640 static LIST_HEAD(ipmi_interfaces);
641 static DEFINE_MUTEX(ipmi_interfaces_mutex);
642 struct srcu_struct ipmi_interfaces_srcu;
643
644 /*
645 * List of watchers that want to know when smi's are added and deleted.
646 */
647 static LIST_HEAD(smi_watchers);
648 static DEFINE_MUTEX(smi_watchers_mutex);
649
650 #define ipmi_inc_stat(intf, stat) \
651 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
652 #define ipmi_get_stat(intf, stat) \
653 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
654
655 static const char * const addr_src_to_str[] = {
656 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
657 "device-tree", "platform"
658 };
659
ipmi_addr_src_to_str(enum ipmi_addr_src src)660 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
661 {
662 if (src >= SI_LAST)
663 src = 0; /* Invalid */
664 return addr_src_to_str[src];
665 }
666 EXPORT_SYMBOL(ipmi_addr_src_to_str);
667
is_lan_addr(struct ipmi_addr * addr)668 static int is_lan_addr(struct ipmi_addr *addr)
669 {
670 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
671 }
672
is_ipmb_addr(struct ipmi_addr * addr)673 static int is_ipmb_addr(struct ipmi_addr *addr)
674 {
675 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
676 }
677
is_ipmb_bcast_addr(struct ipmi_addr * addr)678 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
679 {
680 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
681 }
682
free_recv_msg_list(struct list_head * q)683 static void free_recv_msg_list(struct list_head *q)
684 {
685 struct ipmi_recv_msg *msg, *msg2;
686
687 list_for_each_entry_safe(msg, msg2, q, link) {
688 list_del(&msg->link);
689 ipmi_free_recv_msg(msg);
690 }
691 }
692
free_smi_msg_list(struct list_head * q)693 static void free_smi_msg_list(struct list_head *q)
694 {
695 struct ipmi_smi_msg *msg, *msg2;
696
697 list_for_each_entry_safe(msg, msg2, q, link) {
698 list_del(&msg->link);
699 ipmi_free_smi_msg(msg);
700 }
701 }
702
clean_up_interface_data(struct ipmi_smi * intf)703 static void clean_up_interface_data(struct ipmi_smi *intf)
704 {
705 int i;
706 struct cmd_rcvr *rcvr, *rcvr2;
707 struct list_head list;
708
709 tasklet_kill(&intf->recv_tasklet);
710
711 free_smi_msg_list(&intf->waiting_rcv_msgs);
712 free_recv_msg_list(&intf->waiting_events);
713
714 /*
715 * Wholesale remove all the entries from the list in the
716 * interface and wait for RCU to know that none are in use.
717 */
718 mutex_lock(&intf->cmd_rcvrs_mutex);
719 INIT_LIST_HEAD(&list);
720 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
721 mutex_unlock(&intf->cmd_rcvrs_mutex);
722
723 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
724 kfree(rcvr);
725
726 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
727 if ((intf->seq_table[i].inuse)
728 && (intf->seq_table[i].recv_msg))
729 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
730 }
731 }
732
intf_free(struct kref * ref)733 static void intf_free(struct kref *ref)
734 {
735 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
736
737 clean_up_interface_data(intf);
738 kfree(intf);
739 }
740
741 struct watcher_entry {
742 int intf_num;
743 struct ipmi_smi *intf;
744 struct list_head link;
745 };
746
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)747 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
748 {
749 struct ipmi_smi *intf;
750 int index, rv;
751
752 /*
753 * Make sure the driver is actually initialized, this handles
754 * problems with initialization order.
755 */
756 rv = ipmi_init_msghandler();
757 if (rv)
758 return rv;
759
760 mutex_lock(&smi_watchers_mutex);
761
762 list_add(&watcher->link, &smi_watchers);
763
764 index = srcu_read_lock(&ipmi_interfaces_srcu);
765 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
766 int intf_num = READ_ONCE(intf->intf_num);
767
768 if (intf_num == -1)
769 continue;
770 watcher->new_smi(intf_num, intf->si_dev);
771 }
772 srcu_read_unlock(&ipmi_interfaces_srcu, index);
773
774 mutex_unlock(&smi_watchers_mutex);
775
776 return 0;
777 }
778 EXPORT_SYMBOL(ipmi_smi_watcher_register);
779
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)780 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
781 {
782 mutex_lock(&smi_watchers_mutex);
783 list_del(&watcher->link);
784 mutex_unlock(&smi_watchers_mutex);
785 return 0;
786 }
787 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
788
789 /*
790 * Must be called with smi_watchers_mutex held.
791 */
792 static void
call_smi_watchers(int i,struct device * dev)793 call_smi_watchers(int i, struct device *dev)
794 {
795 struct ipmi_smi_watcher *w;
796
797 mutex_lock(&smi_watchers_mutex);
798 list_for_each_entry(w, &smi_watchers, link) {
799 if (try_module_get(w->owner)) {
800 w->new_smi(i, dev);
801 module_put(w->owner);
802 }
803 }
804 mutex_unlock(&smi_watchers_mutex);
805 }
806
807 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)808 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
809 {
810 if (addr1->addr_type != addr2->addr_type)
811 return 0;
812
813 if (addr1->channel != addr2->channel)
814 return 0;
815
816 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
817 struct ipmi_system_interface_addr *smi_addr1
818 = (struct ipmi_system_interface_addr *) addr1;
819 struct ipmi_system_interface_addr *smi_addr2
820 = (struct ipmi_system_interface_addr *) addr2;
821 return (smi_addr1->lun == smi_addr2->lun);
822 }
823
824 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
825 struct ipmi_ipmb_addr *ipmb_addr1
826 = (struct ipmi_ipmb_addr *) addr1;
827 struct ipmi_ipmb_addr *ipmb_addr2
828 = (struct ipmi_ipmb_addr *) addr2;
829
830 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
831 && (ipmb_addr1->lun == ipmb_addr2->lun));
832 }
833
834 if (is_lan_addr(addr1)) {
835 struct ipmi_lan_addr *lan_addr1
836 = (struct ipmi_lan_addr *) addr1;
837 struct ipmi_lan_addr *lan_addr2
838 = (struct ipmi_lan_addr *) addr2;
839
840 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
841 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
842 && (lan_addr1->session_handle
843 == lan_addr2->session_handle)
844 && (lan_addr1->lun == lan_addr2->lun));
845 }
846
847 return 1;
848 }
849
ipmi_validate_addr(struct ipmi_addr * addr,int len)850 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
851 {
852 if (len < sizeof(struct ipmi_system_interface_addr))
853 return -EINVAL;
854
855 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
856 if (addr->channel != IPMI_BMC_CHANNEL)
857 return -EINVAL;
858 return 0;
859 }
860
861 if ((addr->channel == IPMI_BMC_CHANNEL)
862 || (addr->channel >= IPMI_MAX_CHANNELS)
863 || (addr->channel < 0))
864 return -EINVAL;
865
866 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
867 if (len < sizeof(struct ipmi_ipmb_addr))
868 return -EINVAL;
869 return 0;
870 }
871
872 if (is_lan_addr(addr)) {
873 if (len < sizeof(struct ipmi_lan_addr))
874 return -EINVAL;
875 return 0;
876 }
877
878 return -EINVAL;
879 }
880 EXPORT_SYMBOL(ipmi_validate_addr);
881
ipmi_addr_length(int addr_type)882 unsigned int ipmi_addr_length(int addr_type)
883 {
884 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
885 return sizeof(struct ipmi_system_interface_addr);
886
887 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
888 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
889 return sizeof(struct ipmi_ipmb_addr);
890
891 if (addr_type == IPMI_LAN_ADDR_TYPE)
892 return sizeof(struct ipmi_lan_addr);
893
894 return 0;
895 }
896 EXPORT_SYMBOL(ipmi_addr_length);
897
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)898 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
899 {
900 int rv = 0;
901
902 if (!msg->user) {
903 /* Special handling for NULL users. */
904 if (intf->null_user_handler) {
905 intf->null_user_handler(intf, msg);
906 } else {
907 /* No handler, so give up. */
908 rv = -EINVAL;
909 }
910 ipmi_free_recv_msg(msg);
911 } else if (!oops_in_progress) {
912 /*
913 * If we are running in the panic context, calling the
914 * receive handler doesn't much meaning and has a deadlock
915 * risk. At this moment, simply skip it in that case.
916 */
917 int index;
918 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
919
920 if (user) {
921 user->handler->ipmi_recv_hndl(msg, user->handler_data);
922 release_ipmi_user(user, index);
923 } else {
924 /* User went away, give up. */
925 ipmi_free_recv_msg(msg);
926 rv = -EINVAL;
927 }
928 }
929
930 return rv;
931 }
932
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)933 static void deliver_local_response(struct ipmi_smi *intf,
934 struct ipmi_recv_msg *msg)
935 {
936 if (deliver_response(intf, msg))
937 ipmi_inc_stat(intf, unhandled_local_responses);
938 else
939 ipmi_inc_stat(intf, handled_local_responses);
940 }
941
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)942 static void deliver_err_response(struct ipmi_smi *intf,
943 struct ipmi_recv_msg *msg, int err)
944 {
945 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
946 msg->msg_data[0] = err;
947 msg->msg.netfn |= 1; /* Convert to a response. */
948 msg->msg.data_len = 1;
949 msg->msg.data = msg->msg_data;
950 deliver_local_response(intf, msg);
951 }
952
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)953 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
954 {
955 unsigned long iflags;
956
957 if (!intf->handlers->set_need_watch)
958 return;
959
960 spin_lock_irqsave(&intf->watch_lock, iflags);
961 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
962 intf->response_waiters++;
963
964 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
965 intf->watchdog_waiters++;
966
967 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
968 intf->command_waiters++;
969
970 if ((intf->last_watch_mask & flags) != flags) {
971 intf->last_watch_mask |= flags;
972 intf->handlers->set_need_watch(intf->send_info,
973 intf->last_watch_mask);
974 }
975 spin_unlock_irqrestore(&intf->watch_lock, iflags);
976 }
977
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)978 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
979 {
980 unsigned long iflags;
981
982 if (!intf->handlers->set_need_watch)
983 return;
984
985 spin_lock_irqsave(&intf->watch_lock, iflags);
986 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
987 intf->response_waiters--;
988
989 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
990 intf->watchdog_waiters--;
991
992 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
993 intf->command_waiters--;
994
995 flags = 0;
996 if (intf->response_waiters)
997 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
998 if (intf->watchdog_waiters)
999 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1000 if (intf->command_waiters)
1001 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1002
1003 if (intf->last_watch_mask != flags) {
1004 intf->last_watch_mask = flags;
1005 intf->handlers->set_need_watch(intf->send_info,
1006 intf->last_watch_mask);
1007 }
1008 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1009 }
1010
1011 /*
1012 * Find the next sequence number not being used and add the given
1013 * message with the given timeout to the sequence table. This must be
1014 * called with the interface's seq_lock held.
1015 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1016 static int intf_next_seq(struct ipmi_smi *intf,
1017 struct ipmi_recv_msg *recv_msg,
1018 unsigned long timeout,
1019 int retries,
1020 int broadcast,
1021 unsigned char *seq,
1022 long *seqid)
1023 {
1024 int rv = 0;
1025 unsigned int i;
1026
1027 if (timeout == 0)
1028 timeout = default_retry_ms;
1029 if (retries < 0)
1030 retries = default_max_retries;
1031
1032 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1033 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1034 if (!intf->seq_table[i].inuse)
1035 break;
1036 }
1037
1038 if (!intf->seq_table[i].inuse) {
1039 intf->seq_table[i].recv_msg = recv_msg;
1040
1041 /*
1042 * Start with the maximum timeout, when the send response
1043 * comes in we will start the real timer.
1044 */
1045 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1046 intf->seq_table[i].orig_timeout = timeout;
1047 intf->seq_table[i].retries_left = retries;
1048 intf->seq_table[i].broadcast = broadcast;
1049 intf->seq_table[i].inuse = 1;
1050 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1051 *seq = i;
1052 *seqid = intf->seq_table[i].seqid;
1053 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1054 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1055 need_waiter(intf);
1056 } else {
1057 rv = -EAGAIN;
1058 }
1059
1060 return rv;
1061 }
1062
1063 /*
1064 * Return the receive message for the given sequence number and
1065 * release the sequence number so it can be reused. Some other data
1066 * is passed in to be sure the message matches up correctly (to help
1067 * guard against message coming in after their timeout and the
1068 * sequence number being reused).
1069 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1070 static int intf_find_seq(struct ipmi_smi *intf,
1071 unsigned char seq,
1072 short channel,
1073 unsigned char cmd,
1074 unsigned char netfn,
1075 struct ipmi_addr *addr,
1076 struct ipmi_recv_msg **recv_msg)
1077 {
1078 int rv = -ENODEV;
1079 unsigned long flags;
1080
1081 if (seq >= IPMI_IPMB_NUM_SEQ)
1082 return -EINVAL;
1083
1084 spin_lock_irqsave(&intf->seq_lock, flags);
1085 if (intf->seq_table[seq].inuse) {
1086 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1087
1088 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1089 && (msg->msg.netfn == netfn)
1090 && (ipmi_addr_equal(addr, &msg->addr))) {
1091 *recv_msg = msg;
1092 intf->seq_table[seq].inuse = 0;
1093 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1094 rv = 0;
1095 }
1096 }
1097 spin_unlock_irqrestore(&intf->seq_lock, flags);
1098
1099 return rv;
1100 }
1101
1102
1103 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1104 static int intf_start_seq_timer(struct ipmi_smi *intf,
1105 long msgid)
1106 {
1107 int rv = -ENODEV;
1108 unsigned long flags;
1109 unsigned char seq;
1110 unsigned long seqid;
1111
1112
1113 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1114
1115 spin_lock_irqsave(&intf->seq_lock, flags);
1116 /*
1117 * We do this verification because the user can be deleted
1118 * while a message is outstanding.
1119 */
1120 if ((intf->seq_table[seq].inuse)
1121 && (intf->seq_table[seq].seqid == seqid)) {
1122 struct seq_table *ent = &intf->seq_table[seq];
1123 ent->timeout = ent->orig_timeout;
1124 rv = 0;
1125 }
1126 spin_unlock_irqrestore(&intf->seq_lock, flags);
1127
1128 return rv;
1129 }
1130
1131 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1132 static int intf_err_seq(struct ipmi_smi *intf,
1133 long msgid,
1134 unsigned int err)
1135 {
1136 int rv = -ENODEV;
1137 unsigned long flags;
1138 unsigned char seq;
1139 unsigned long seqid;
1140 struct ipmi_recv_msg *msg = NULL;
1141
1142
1143 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1144
1145 spin_lock_irqsave(&intf->seq_lock, flags);
1146 /*
1147 * We do this verification because the user can be deleted
1148 * while a message is outstanding.
1149 */
1150 if ((intf->seq_table[seq].inuse)
1151 && (intf->seq_table[seq].seqid == seqid)) {
1152 struct seq_table *ent = &intf->seq_table[seq];
1153
1154 ent->inuse = 0;
1155 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1156 msg = ent->recv_msg;
1157 rv = 0;
1158 }
1159 spin_unlock_irqrestore(&intf->seq_lock, flags);
1160
1161 if (msg)
1162 deliver_err_response(intf, msg, err);
1163
1164 return rv;
1165 }
1166
free_user_work(struct work_struct * work)1167 static void free_user_work(struct work_struct *work)
1168 {
1169 struct ipmi_user *user = container_of(work, struct ipmi_user,
1170 remove_work);
1171
1172 cleanup_srcu_struct(&user->release_barrier);
1173 vfree(user);
1174 }
1175
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1176 int ipmi_create_user(unsigned int if_num,
1177 const struct ipmi_user_hndl *handler,
1178 void *handler_data,
1179 struct ipmi_user **user)
1180 {
1181 unsigned long flags;
1182 struct ipmi_user *new_user;
1183 int rv, index;
1184 struct ipmi_smi *intf;
1185
1186 /*
1187 * There is no module usecount here, because it's not
1188 * required. Since this can only be used by and called from
1189 * other modules, they will implicitly use this module, and
1190 * thus this can't be removed unless the other modules are
1191 * removed.
1192 */
1193
1194 if (handler == NULL)
1195 return -EINVAL;
1196
1197 /*
1198 * Make sure the driver is actually initialized, this handles
1199 * problems with initialization order.
1200 */
1201 rv = ipmi_init_msghandler();
1202 if (rv)
1203 return rv;
1204
1205 new_user = vzalloc(sizeof(*new_user));
1206 if (!new_user)
1207 return -ENOMEM;
1208
1209 index = srcu_read_lock(&ipmi_interfaces_srcu);
1210 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1211 if (intf->intf_num == if_num)
1212 goto found;
1213 }
1214 /* Not found, return an error */
1215 rv = -EINVAL;
1216 goto out_kfree;
1217
1218 found:
1219 INIT_WORK(&new_user->remove_work, free_user_work);
1220
1221 rv = init_srcu_struct(&new_user->release_barrier);
1222 if (rv)
1223 goto out_kfree;
1224
1225 if (!try_module_get(intf->owner)) {
1226 rv = -ENODEV;
1227 goto out_kfree;
1228 }
1229
1230 /* Note that each existing user holds a refcount to the interface. */
1231 kref_get(&intf->refcount);
1232
1233 kref_init(&new_user->refcount);
1234 new_user->handler = handler;
1235 new_user->handler_data = handler_data;
1236 new_user->intf = intf;
1237 new_user->gets_events = false;
1238
1239 rcu_assign_pointer(new_user->self, new_user);
1240 spin_lock_irqsave(&intf->seq_lock, flags);
1241 list_add_rcu(&new_user->link, &intf->users);
1242 spin_unlock_irqrestore(&intf->seq_lock, flags);
1243 if (handler->ipmi_watchdog_pretimeout)
1244 /* User wants pretimeouts, so make sure to watch for them. */
1245 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1246 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1247 *user = new_user;
1248 return 0;
1249
1250 out_kfree:
1251 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1252 vfree(new_user);
1253 return rv;
1254 }
1255 EXPORT_SYMBOL(ipmi_create_user);
1256
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1257 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1258 {
1259 int rv, index;
1260 struct ipmi_smi *intf;
1261
1262 index = srcu_read_lock(&ipmi_interfaces_srcu);
1263 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1264 if (intf->intf_num == if_num)
1265 goto found;
1266 }
1267 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1268
1269 /* Not found, return an error */
1270 return -EINVAL;
1271
1272 found:
1273 if (!intf->handlers->get_smi_info)
1274 rv = -ENOTTY;
1275 else
1276 rv = intf->handlers->get_smi_info(intf->send_info, data);
1277 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1278
1279 return rv;
1280 }
1281 EXPORT_SYMBOL(ipmi_get_smi_info);
1282
free_user(struct kref * ref)1283 static void free_user(struct kref *ref)
1284 {
1285 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1286
1287 /* SRCU cleanup must happen in task context. */
1288 queue_work(remove_work_wq, &user->remove_work);
1289 }
1290
_ipmi_destroy_user(struct ipmi_user * user)1291 static void _ipmi_destroy_user(struct ipmi_user *user)
1292 {
1293 struct ipmi_smi *intf = user->intf;
1294 int i;
1295 unsigned long flags;
1296 struct cmd_rcvr *rcvr;
1297 struct cmd_rcvr *rcvrs = NULL;
1298 struct module *owner;
1299
1300 if (!acquire_ipmi_user(user, &i)) {
1301 /*
1302 * The user has already been cleaned up, just make sure
1303 * nothing is using it and return.
1304 */
1305 synchronize_srcu(&user->release_barrier);
1306 return;
1307 }
1308
1309 rcu_assign_pointer(user->self, NULL);
1310 release_ipmi_user(user, i);
1311
1312 synchronize_srcu(&user->release_barrier);
1313
1314 if (user->handler->shutdown)
1315 user->handler->shutdown(user->handler_data);
1316
1317 if (user->handler->ipmi_watchdog_pretimeout)
1318 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1319
1320 if (user->gets_events)
1321 atomic_dec(&intf->event_waiters);
1322
1323 /* Remove the user from the interface's sequence table. */
1324 spin_lock_irqsave(&intf->seq_lock, flags);
1325 list_del_rcu(&user->link);
1326
1327 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1328 if (intf->seq_table[i].inuse
1329 && (intf->seq_table[i].recv_msg->user == user)) {
1330 intf->seq_table[i].inuse = 0;
1331 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1332 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1333 }
1334 }
1335 spin_unlock_irqrestore(&intf->seq_lock, flags);
1336
1337 /*
1338 * Remove the user from the command receiver's table. First
1339 * we build a list of everything (not using the standard link,
1340 * since other things may be using it till we do
1341 * synchronize_srcu()) then free everything in that list.
1342 */
1343 mutex_lock(&intf->cmd_rcvrs_mutex);
1344 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1345 if (rcvr->user == user) {
1346 list_del_rcu(&rcvr->link);
1347 rcvr->next = rcvrs;
1348 rcvrs = rcvr;
1349 }
1350 }
1351 mutex_unlock(&intf->cmd_rcvrs_mutex);
1352 synchronize_rcu();
1353 while (rcvrs) {
1354 rcvr = rcvrs;
1355 rcvrs = rcvr->next;
1356 kfree(rcvr);
1357 }
1358
1359 owner = intf->owner;
1360 kref_put(&intf->refcount, intf_free);
1361 module_put(owner);
1362 }
1363
ipmi_destroy_user(struct ipmi_user * user)1364 int ipmi_destroy_user(struct ipmi_user *user)
1365 {
1366 _ipmi_destroy_user(user);
1367
1368 kref_put(&user->refcount, free_user);
1369
1370 return 0;
1371 }
1372 EXPORT_SYMBOL(ipmi_destroy_user);
1373
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1374 int ipmi_get_version(struct ipmi_user *user,
1375 unsigned char *major,
1376 unsigned char *minor)
1377 {
1378 struct ipmi_device_id id;
1379 int rv, index;
1380
1381 user = acquire_ipmi_user(user, &index);
1382 if (!user)
1383 return -ENODEV;
1384
1385 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1386 if (!rv) {
1387 *major = ipmi_version_major(&id);
1388 *minor = ipmi_version_minor(&id);
1389 }
1390 release_ipmi_user(user, index);
1391
1392 return rv;
1393 }
1394 EXPORT_SYMBOL(ipmi_get_version);
1395
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1396 int ipmi_set_my_address(struct ipmi_user *user,
1397 unsigned int channel,
1398 unsigned char address)
1399 {
1400 int index, rv = 0;
1401
1402 user = acquire_ipmi_user(user, &index);
1403 if (!user)
1404 return -ENODEV;
1405
1406 if (channel >= IPMI_MAX_CHANNELS) {
1407 rv = -EINVAL;
1408 } else {
1409 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1410 user->intf->addrinfo[channel].address = address;
1411 }
1412 release_ipmi_user(user, index);
1413
1414 return rv;
1415 }
1416 EXPORT_SYMBOL(ipmi_set_my_address);
1417
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1418 int ipmi_get_my_address(struct ipmi_user *user,
1419 unsigned int channel,
1420 unsigned char *address)
1421 {
1422 int index, rv = 0;
1423
1424 user = acquire_ipmi_user(user, &index);
1425 if (!user)
1426 return -ENODEV;
1427
1428 if (channel >= IPMI_MAX_CHANNELS) {
1429 rv = -EINVAL;
1430 } else {
1431 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1432 *address = user->intf->addrinfo[channel].address;
1433 }
1434 release_ipmi_user(user, index);
1435
1436 return rv;
1437 }
1438 EXPORT_SYMBOL(ipmi_get_my_address);
1439
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1440 int ipmi_set_my_LUN(struct ipmi_user *user,
1441 unsigned int channel,
1442 unsigned char LUN)
1443 {
1444 int index, rv = 0;
1445
1446 user = acquire_ipmi_user(user, &index);
1447 if (!user)
1448 return -ENODEV;
1449
1450 if (channel >= IPMI_MAX_CHANNELS) {
1451 rv = -EINVAL;
1452 } else {
1453 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1454 user->intf->addrinfo[channel].lun = LUN & 0x3;
1455 }
1456 release_ipmi_user(user, index);
1457
1458 return rv;
1459 }
1460 EXPORT_SYMBOL(ipmi_set_my_LUN);
1461
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1462 int ipmi_get_my_LUN(struct ipmi_user *user,
1463 unsigned int channel,
1464 unsigned char *address)
1465 {
1466 int index, rv = 0;
1467
1468 user = acquire_ipmi_user(user, &index);
1469 if (!user)
1470 return -ENODEV;
1471
1472 if (channel >= IPMI_MAX_CHANNELS) {
1473 rv = -EINVAL;
1474 } else {
1475 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1476 *address = user->intf->addrinfo[channel].lun;
1477 }
1478 release_ipmi_user(user, index);
1479
1480 return rv;
1481 }
1482 EXPORT_SYMBOL(ipmi_get_my_LUN);
1483
ipmi_get_maintenance_mode(struct ipmi_user * user)1484 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1485 {
1486 int mode, index;
1487 unsigned long flags;
1488
1489 user = acquire_ipmi_user(user, &index);
1490 if (!user)
1491 return -ENODEV;
1492
1493 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1494 mode = user->intf->maintenance_mode;
1495 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1496 release_ipmi_user(user, index);
1497
1498 return mode;
1499 }
1500 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1501
maintenance_mode_update(struct ipmi_smi * intf)1502 static void maintenance_mode_update(struct ipmi_smi *intf)
1503 {
1504 if (intf->handlers->set_maintenance_mode)
1505 intf->handlers->set_maintenance_mode(
1506 intf->send_info, intf->maintenance_mode_enable);
1507 }
1508
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1509 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1510 {
1511 int rv = 0, index;
1512 unsigned long flags;
1513 struct ipmi_smi *intf = user->intf;
1514
1515 user = acquire_ipmi_user(user, &index);
1516 if (!user)
1517 return -ENODEV;
1518
1519 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1520 if (intf->maintenance_mode != mode) {
1521 switch (mode) {
1522 case IPMI_MAINTENANCE_MODE_AUTO:
1523 intf->maintenance_mode_enable
1524 = (intf->auto_maintenance_timeout > 0);
1525 break;
1526
1527 case IPMI_MAINTENANCE_MODE_OFF:
1528 intf->maintenance_mode_enable = false;
1529 break;
1530
1531 case IPMI_MAINTENANCE_MODE_ON:
1532 intf->maintenance_mode_enable = true;
1533 break;
1534
1535 default:
1536 rv = -EINVAL;
1537 goto out_unlock;
1538 }
1539 intf->maintenance_mode = mode;
1540
1541 maintenance_mode_update(intf);
1542 }
1543 out_unlock:
1544 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1545 release_ipmi_user(user, index);
1546
1547 return rv;
1548 }
1549 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1550
ipmi_set_gets_events(struct ipmi_user * user,bool val)1551 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1552 {
1553 unsigned long flags;
1554 struct ipmi_smi *intf = user->intf;
1555 struct ipmi_recv_msg *msg, *msg2;
1556 struct list_head msgs;
1557 int index;
1558
1559 user = acquire_ipmi_user(user, &index);
1560 if (!user)
1561 return -ENODEV;
1562
1563 INIT_LIST_HEAD(&msgs);
1564
1565 spin_lock_irqsave(&intf->events_lock, flags);
1566 if (user->gets_events == val)
1567 goto out;
1568
1569 user->gets_events = val;
1570
1571 if (val) {
1572 if (atomic_inc_return(&intf->event_waiters) == 1)
1573 need_waiter(intf);
1574 } else {
1575 atomic_dec(&intf->event_waiters);
1576 }
1577
1578 if (intf->delivering_events)
1579 /*
1580 * Another thread is delivering events for this, so
1581 * let it handle any new events.
1582 */
1583 goto out;
1584
1585 /* Deliver any queued events. */
1586 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1587 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1588 list_move_tail(&msg->link, &msgs);
1589 intf->waiting_events_count = 0;
1590 if (intf->event_msg_printed) {
1591 dev_warn(intf->si_dev,
1592 PFX "Event queue no longer full\n");
1593 intf->event_msg_printed = 0;
1594 }
1595
1596 intf->delivering_events = 1;
1597 spin_unlock_irqrestore(&intf->events_lock, flags);
1598
1599 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1600 msg->user = user;
1601 kref_get(&user->refcount);
1602 deliver_local_response(intf, msg);
1603 }
1604
1605 spin_lock_irqsave(&intf->events_lock, flags);
1606 intf->delivering_events = 0;
1607 }
1608
1609 out:
1610 spin_unlock_irqrestore(&intf->events_lock, flags);
1611 release_ipmi_user(user, index);
1612
1613 return 0;
1614 }
1615 EXPORT_SYMBOL(ipmi_set_gets_events);
1616
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1617 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1618 unsigned char netfn,
1619 unsigned char cmd,
1620 unsigned char chan)
1621 {
1622 struct cmd_rcvr *rcvr;
1623
1624 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1625 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1626 && (rcvr->chans & (1 << chan)))
1627 return rcvr;
1628 }
1629 return NULL;
1630 }
1631
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1632 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1633 unsigned char netfn,
1634 unsigned char cmd,
1635 unsigned int chans)
1636 {
1637 struct cmd_rcvr *rcvr;
1638
1639 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1640 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1641 && (rcvr->chans & chans))
1642 return 0;
1643 }
1644 return 1;
1645 }
1646
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1647 int ipmi_register_for_cmd(struct ipmi_user *user,
1648 unsigned char netfn,
1649 unsigned char cmd,
1650 unsigned int chans)
1651 {
1652 struct ipmi_smi *intf = user->intf;
1653 struct cmd_rcvr *rcvr;
1654 int rv = 0, index;
1655
1656 user = acquire_ipmi_user(user, &index);
1657 if (!user)
1658 return -ENODEV;
1659
1660 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1661 if (!rcvr) {
1662 rv = -ENOMEM;
1663 goto out_release;
1664 }
1665 rcvr->cmd = cmd;
1666 rcvr->netfn = netfn;
1667 rcvr->chans = chans;
1668 rcvr->user = user;
1669
1670 mutex_lock(&intf->cmd_rcvrs_mutex);
1671 /* Make sure the command/netfn is not already registered. */
1672 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1673 rv = -EBUSY;
1674 goto out_unlock;
1675 }
1676
1677 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1678
1679 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1680
1681 out_unlock:
1682 mutex_unlock(&intf->cmd_rcvrs_mutex);
1683 if (rv)
1684 kfree(rcvr);
1685 out_release:
1686 release_ipmi_user(user, index);
1687
1688 return rv;
1689 }
1690 EXPORT_SYMBOL(ipmi_register_for_cmd);
1691
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1692 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1693 unsigned char netfn,
1694 unsigned char cmd,
1695 unsigned int chans)
1696 {
1697 struct ipmi_smi *intf = user->intf;
1698 struct cmd_rcvr *rcvr;
1699 struct cmd_rcvr *rcvrs = NULL;
1700 int i, rv = -ENOENT, index;
1701
1702 user = acquire_ipmi_user(user, &index);
1703 if (!user)
1704 return -ENODEV;
1705
1706 mutex_lock(&intf->cmd_rcvrs_mutex);
1707 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1708 if (((1 << i) & chans) == 0)
1709 continue;
1710 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1711 if (rcvr == NULL)
1712 continue;
1713 if (rcvr->user == user) {
1714 rv = 0;
1715 rcvr->chans &= ~chans;
1716 if (rcvr->chans == 0) {
1717 list_del_rcu(&rcvr->link);
1718 rcvr->next = rcvrs;
1719 rcvrs = rcvr;
1720 }
1721 }
1722 }
1723 mutex_unlock(&intf->cmd_rcvrs_mutex);
1724 synchronize_rcu();
1725 release_ipmi_user(user, index);
1726 while (rcvrs) {
1727 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1728 rcvr = rcvrs;
1729 rcvrs = rcvr->next;
1730 kfree(rcvr);
1731 }
1732
1733 return rv;
1734 }
1735 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1736
1737 static unsigned char
ipmb_checksum(unsigned char * data,int size)1738 ipmb_checksum(unsigned char *data, int size)
1739 {
1740 unsigned char csum = 0;
1741
1742 for (; size > 0; size--, data++)
1743 csum += *data;
1744
1745 return -csum;
1746 }
1747
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1748 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1749 struct kernel_ipmi_msg *msg,
1750 struct ipmi_ipmb_addr *ipmb_addr,
1751 long msgid,
1752 unsigned char ipmb_seq,
1753 int broadcast,
1754 unsigned char source_address,
1755 unsigned char source_lun)
1756 {
1757 int i = broadcast;
1758
1759 /* Format the IPMB header data. */
1760 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1761 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1762 smi_msg->data[2] = ipmb_addr->channel;
1763 if (broadcast)
1764 smi_msg->data[3] = 0;
1765 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1766 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1767 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1768 smi_msg->data[i+6] = source_address;
1769 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1770 smi_msg->data[i+8] = msg->cmd;
1771
1772 /* Now tack on the data to the message. */
1773 if (msg->data_len > 0)
1774 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1775 smi_msg->data_size = msg->data_len + 9;
1776
1777 /* Now calculate the checksum and tack it on. */
1778 smi_msg->data[i+smi_msg->data_size]
1779 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1780
1781 /*
1782 * Add on the checksum size and the offset from the
1783 * broadcast.
1784 */
1785 smi_msg->data_size += 1 + i;
1786
1787 smi_msg->msgid = msgid;
1788 }
1789
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1790 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1791 struct kernel_ipmi_msg *msg,
1792 struct ipmi_lan_addr *lan_addr,
1793 long msgid,
1794 unsigned char ipmb_seq,
1795 unsigned char source_lun)
1796 {
1797 /* Format the IPMB header data. */
1798 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1799 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1800 smi_msg->data[2] = lan_addr->channel;
1801 smi_msg->data[3] = lan_addr->session_handle;
1802 smi_msg->data[4] = lan_addr->remote_SWID;
1803 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1804 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1805 smi_msg->data[7] = lan_addr->local_SWID;
1806 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1807 smi_msg->data[9] = msg->cmd;
1808
1809 /* Now tack on the data to the message. */
1810 if (msg->data_len > 0)
1811 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1812 smi_msg->data_size = msg->data_len + 10;
1813
1814 /* Now calculate the checksum and tack it on. */
1815 smi_msg->data[smi_msg->data_size]
1816 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1817
1818 /*
1819 * Add on the checksum size and the offset from the
1820 * broadcast.
1821 */
1822 smi_msg->data_size += 1;
1823
1824 smi_msg->msgid = msgid;
1825 }
1826
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1827 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1828 struct ipmi_smi_msg *smi_msg,
1829 int priority)
1830 {
1831 if (intf->curr_msg) {
1832 if (priority > 0)
1833 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1834 else
1835 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1836 smi_msg = NULL;
1837 } else {
1838 intf->curr_msg = smi_msg;
1839 }
1840
1841 return smi_msg;
1842 }
1843
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1844 static void smi_send(struct ipmi_smi *intf,
1845 const struct ipmi_smi_handlers *handlers,
1846 struct ipmi_smi_msg *smi_msg, int priority)
1847 {
1848 int run_to_completion = intf->run_to_completion;
1849 unsigned long flags = 0;
1850
1851 if (!run_to_completion)
1852 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1853 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1854
1855 if (!run_to_completion)
1856 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1857
1858 if (smi_msg)
1859 handlers->sender(intf->send_info, smi_msg);
1860 }
1861
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1862 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1863 {
1864 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1865 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1866 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1867 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1868 }
1869
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1870 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1871 struct ipmi_addr *addr,
1872 long msgid,
1873 struct kernel_ipmi_msg *msg,
1874 struct ipmi_smi_msg *smi_msg,
1875 struct ipmi_recv_msg *recv_msg,
1876 int retries,
1877 unsigned int retry_time_ms)
1878 {
1879 struct ipmi_system_interface_addr *smi_addr;
1880
1881 if (msg->netfn & 1)
1882 /* Responses are not allowed to the SMI. */
1883 return -EINVAL;
1884
1885 smi_addr = (struct ipmi_system_interface_addr *) addr;
1886 if (smi_addr->lun > 3) {
1887 ipmi_inc_stat(intf, sent_invalid_commands);
1888 return -EINVAL;
1889 }
1890
1891 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1892
1893 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1894 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1895 || (msg->cmd == IPMI_GET_MSG_CMD)
1896 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1897 /*
1898 * We don't let the user do these, since we manage
1899 * the sequence numbers.
1900 */
1901 ipmi_inc_stat(intf, sent_invalid_commands);
1902 return -EINVAL;
1903 }
1904
1905 if (is_maintenance_mode_cmd(msg)) {
1906 unsigned long flags;
1907
1908 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1909 intf->auto_maintenance_timeout
1910 = maintenance_mode_timeout_ms;
1911 if (!intf->maintenance_mode
1912 && !intf->maintenance_mode_enable) {
1913 intf->maintenance_mode_enable = true;
1914 maintenance_mode_update(intf);
1915 }
1916 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1917 flags);
1918 }
1919
1920 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1921 ipmi_inc_stat(intf, sent_invalid_commands);
1922 return -EMSGSIZE;
1923 }
1924
1925 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1926 smi_msg->data[1] = msg->cmd;
1927 smi_msg->msgid = msgid;
1928 smi_msg->user_data = recv_msg;
1929 if (msg->data_len > 0)
1930 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1931 smi_msg->data_size = msg->data_len + 2;
1932 ipmi_inc_stat(intf, sent_local_commands);
1933
1934 return 0;
1935 }
1936
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1937 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1938 struct ipmi_addr *addr,
1939 long msgid,
1940 struct kernel_ipmi_msg *msg,
1941 struct ipmi_smi_msg *smi_msg,
1942 struct ipmi_recv_msg *recv_msg,
1943 unsigned char source_address,
1944 unsigned char source_lun,
1945 int retries,
1946 unsigned int retry_time_ms)
1947 {
1948 struct ipmi_ipmb_addr *ipmb_addr;
1949 unsigned char ipmb_seq;
1950 long seqid;
1951 int broadcast = 0;
1952 struct ipmi_channel *chans;
1953 int rv = 0;
1954
1955 if (addr->channel >= IPMI_MAX_CHANNELS) {
1956 ipmi_inc_stat(intf, sent_invalid_commands);
1957 return -EINVAL;
1958 }
1959
1960 chans = READ_ONCE(intf->channel_list)->c;
1961
1962 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1963 ipmi_inc_stat(intf, sent_invalid_commands);
1964 return -EINVAL;
1965 }
1966
1967 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1968 /*
1969 * Broadcasts add a zero at the beginning of the
1970 * message, but otherwise is the same as an IPMB
1971 * address.
1972 */
1973 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1974 broadcast = 1;
1975 retries = 0; /* Don't retry broadcasts. */
1976 }
1977
1978 /*
1979 * 9 for the header and 1 for the checksum, plus
1980 * possibly one for the broadcast.
1981 */
1982 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1983 ipmi_inc_stat(intf, sent_invalid_commands);
1984 return -EMSGSIZE;
1985 }
1986
1987 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1988 if (ipmb_addr->lun > 3) {
1989 ipmi_inc_stat(intf, sent_invalid_commands);
1990 return -EINVAL;
1991 }
1992
1993 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1994
1995 if (recv_msg->msg.netfn & 0x1) {
1996 /*
1997 * It's a response, so use the user's sequence
1998 * from msgid.
1999 */
2000 ipmi_inc_stat(intf, sent_ipmb_responses);
2001 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2002 msgid, broadcast,
2003 source_address, source_lun);
2004
2005 /*
2006 * Save the receive message so we can use it
2007 * to deliver the response.
2008 */
2009 smi_msg->user_data = recv_msg;
2010 } else {
2011 /* It's a command, so get a sequence for it. */
2012 unsigned long flags;
2013
2014 spin_lock_irqsave(&intf->seq_lock, flags);
2015
2016 if (is_maintenance_mode_cmd(msg))
2017 intf->ipmb_maintenance_mode_timeout =
2018 maintenance_mode_timeout_ms;
2019
2020 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2021 /* Different default in maintenance mode */
2022 retry_time_ms = default_maintenance_retry_ms;
2023
2024 /*
2025 * Create a sequence number with a 1 second
2026 * timeout and 4 retries.
2027 */
2028 rv = intf_next_seq(intf,
2029 recv_msg,
2030 retry_time_ms,
2031 retries,
2032 broadcast,
2033 &ipmb_seq,
2034 &seqid);
2035 if (rv)
2036 /*
2037 * We have used up all the sequence numbers,
2038 * probably, so abort.
2039 */
2040 goto out_err;
2041
2042 ipmi_inc_stat(intf, sent_ipmb_commands);
2043
2044 /*
2045 * Store the sequence number in the message,
2046 * so that when the send message response
2047 * comes back we can start the timer.
2048 */
2049 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2050 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2051 ipmb_seq, broadcast,
2052 source_address, source_lun);
2053
2054 /*
2055 * Copy the message into the recv message data, so we
2056 * can retransmit it later if necessary.
2057 */
2058 memcpy(recv_msg->msg_data, smi_msg->data,
2059 smi_msg->data_size);
2060 recv_msg->msg.data = recv_msg->msg_data;
2061 recv_msg->msg.data_len = smi_msg->data_size;
2062
2063 /*
2064 * We don't unlock until here, because we need
2065 * to copy the completed message into the
2066 * recv_msg before we release the lock.
2067 * Otherwise, race conditions may bite us. I
2068 * know that's pretty paranoid, but I prefer
2069 * to be correct.
2070 */
2071 out_err:
2072 spin_unlock_irqrestore(&intf->seq_lock, flags);
2073 }
2074
2075 return rv;
2076 }
2077
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2078 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2079 struct ipmi_addr *addr,
2080 long msgid,
2081 struct kernel_ipmi_msg *msg,
2082 struct ipmi_smi_msg *smi_msg,
2083 struct ipmi_recv_msg *recv_msg,
2084 unsigned char source_lun,
2085 int retries,
2086 unsigned int retry_time_ms)
2087 {
2088 struct ipmi_lan_addr *lan_addr;
2089 unsigned char ipmb_seq;
2090 long seqid;
2091 struct ipmi_channel *chans;
2092 int rv = 0;
2093
2094 if (addr->channel >= IPMI_MAX_CHANNELS) {
2095 ipmi_inc_stat(intf, sent_invalid_commands);
2096 return -EINVAL;
2097 }
2098
2099 chans = READ_ONCE(intf->channel_list)->c;
2100
2101 if ((chans[addr->channel].medium
2102 != IPMI_CHANNEL_MEDIUM_8023LAN)
2103 && (chans[addr->channel].medium
2104 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2105 ipmi_inc_stat(intf, sent_invalid_commands);
2106 return -EINVAL;
2107 }
2108
2109 /* 11 for the header and 1 for the checksum. */
2110 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2111 ipmi_inc_stat(intf, sent_invalid_commands);
2112 return -EMSGSIZE;
2113 }
2114
2115 lan_addr = (struct ipmi_lan_addr *) addr;
2116 if (lan_addr->lun > 3) {
2117 ipmi_inc_stat(intf, sent_invalid_commands);
2118 return -EINVAL;
2119 }
2120
2121 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2122
2123 if (recv_msg->msg.netfn & 0x1) {
2124 /*
2125 * It's a response, so use the user's sequence
2126 * from msgid.
2127 */
2128 ipmi_inc_stat(intf, sent_lan_responses);
2129 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2130 msgid, source_lun);
2131
2132 /*
2133 * Save the receive message so we can use it
2134 * to deliver the response.
2135 */
2136 smi_msg->user_data = recv_msg;
2137 } else {
2138 /* It's a command, so get a sequence for it. */
2139 unsigned long flags;
2140
2141 spin_lock_irqsave(&intf->seq_lock, flags);
2142
2143 /*
2144 * Create a sequence number with a 1 second
2145 * timeout and 4 retries.
2146 */
2147 rv = intf_next_seq(intf,
2148 recv_msg,
2149 retry_time_ms,
2150 retries,
2151 0,
2152 &ipmb_seq,
2153 &seqid);
2154 if (rv)
2155 /*
2156 * We have used up all the sequence numbers,
2157 * probably, so abort.
2158 */
2159 goto out_err;
2160
2161 ipmi_inc_stat(intf, sent_lan_commands);
2162
2163 /*
2164 * Store the sequence number in the message,
2165 * so that when the send message response
2166 * comes back we can start the timer.
2167 */
2168 format_lan_msg(smi_msg, msg, lan_addr,
2169 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2170 ipmb_seq, source_lun);
2171
2172 /*
2173 * Copy the message into the recv message data, so we
2174 * can retransmit it later if necessary.
2175 */
2176 memcpy(recv_msg->msg_data, smi_msg->data,
2177 smi_msg->data_size);
2178 recv_msg->msg.data = recv_msg->msg_data;
2179 recv_msg->msg.data_len = smi_msg->data_size;
2180
2181 /*
2182 * We don't unlock until here, because we need
2183 * to copy the completed message into the
2184 * recv_msg before we release the lock.
2185 * Otherwise, race conditions may bite us. I
2186 * know that's pretty paranoid, but I prefer
2187 * to be correct.
2188 */
2189 out_err:
2190 spin_unlock_irqrestore(&intf->seq_lock, flags);
2191 }
2192
2193 return rv;
2194 }
2195
2196 /*
2197 * Separate from ipmi_request so that the user does not have to be
2198 * supplied in certain circumstances (mainly at panic time). If
2199 * messages are supplied, they will be freed, even if an error
2200 * occurs.
2201 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2202 static int i_ipmi_request(struct ipmi_user *user,
2203 struct ipmi_smi *intf,
2204 struct ipmi_addr *addr,
2205 long msgid,
2206 struct kernel_ipmi_msg *msg,
2207 void *user_msg_data,
2208 void *supplied_smi,
2209 struct ipmi_recv_msg *supplied_recv,
2210 int priority,
2211 unsigned char source_address,
2212 unsigned char source_lun,
2213 int retries,
2214 unsigned int retry_time_ms)
2215 {
2216 struct ipmi_smi_msg *smi_msg;
2217 struct ipmi_recv_msg *recv_msg;
2218 int rv = 0;
2219
2220 if (supplied_recv)
2221 recv_msg = supplied_recv;
2222 else {
2223 recv_msg = ipmi_alloc_recv_msg();
2224 if (recv_msg == NULL) {
2225 rv = -ENOMEM;
2226 goto out;
2227 }
2228 }
2229 recv_msg->user_msg_data = user_msg_data;
2230
2231 if (supplied_smi)
2232 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2233 else {
2234 smi_msg = ipmi_alloc_smi_msg();
2235 if (smi_msg == NULL) {
2236 ipmi_free_recv_msg(recv_msg);
2237 rv = -ENOMEM;
2238 goto out;
2239 }
2240 }
2241
2242 rcu_read_lock();
2243 if (intf->in_shutdown) {
2244 rv = -ENODEV;
2245 goto out_err;
2246 }
2247
2248 recv_msg->user = user;
2249 if (user)
2250 /* The put happens when the message is freed. */
2251 kref_get(&user->refcount);
2252 recv_msg->msgid = msgid;
2253 /*
2254 * Store the message to send in the receive message so timeout
2255 * responses can get the proper response data.
2256 */
2257 recv_msg->msg = *msg;
2258
2259 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2260 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2261 recv_msg, retries, retry_time_ms);
2262 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2263 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2264 source_address, source_lun,
2265 retries, retry_time_ms);
2266 } else if (is_lan_addr(addr)) {
2267 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2268 source_lun, retries, retry_time_ms);
2269 } else {
2270 /* Unknown address type. */
2271 ipmi_inc_stat(intf, sent_invalid_commands);
2272 rv = -EINVAL;
2273 }
2274
2275 if (rv) {
2276 out_err:
2277 ipmi_free_smi_msg(smi_msg);
2278 ipmi_free_recv_msg(recv_msg);
2279 } else {
2280 ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2281
2282 smi_send(intf, intf->handlers, smi_msg, priority);
2283 }
2284 rcu_read_unlock();
2285
2286 out:
2287 return rv;
2288 }
2289
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2290 static int check_addr(struct ipmi_smi *intf,
2291 struct ipmi_addr *addr,
2292 unsigned char *saddr,
2293 unsigned char *lun)
2294 {
2295 if (addr->channel >= IPMI_MAX_CHANNELS)
2296 return -EINVAL;
2297 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2298 *lun = intf->addrinfo[addr->channel].lun;
2299 *saddr = intf->addrinfo[addr->channel].address;
2300 return 0;
2301 }
2302
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2303 int ipmi_request_settime(struct ipmi_user *user,
2304 struct ipmi_addr *addr,
2305 long msgid,
2306 struct kernel_ipmi_msg *msg,
2307 void *user_msg_data,
2308 int priority,
2309 int retries,
2310 unsigned int retry_time_ms)
2311 {
2312 unsigned char saddr = 0, lun = 0;
2313 int rv, index;
2314
2315 if (!user)
2316 return -EINVAL;
2317
2318 user = acquire_ipmi_user(user, &index);
2319 if (!user)
2320 return -ENODEV;
2321
2322 rv = check_addr(user->intf, addr, &saddr, &lun);
2323 if (!rv)
2324 rv = i_ipmi_request(user,
2325 user->intf,
2326 addr,
2327 msgid,
2328 msg,
2329 user_msg_data,
2330 NULL, NULL,
2331 priority,
2332 saddr,
2333 lun,
2334 retries,
2335 retry_time_ms);
2336
2337 release_ipmi_user(user, index);
2338 return rv;
2339 }
2340 EXPORT_SYMBOL(ipmi_request_settime);
2341
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2342 int ipmi_request_supply_msgs(struct ipmi_user *user,
2343 struct ipmi_addr *addr,
2344 long msgid,
2345 struct kernel_ipmi_msg *msg,
2346 void *user_msg_data,
2347 void *supplied_smi,
2348 struct ipmi_recv_msg *supplied_recv,
2349 int priority)
2350 {
2351 unsigned char saddr = 0, lun = 0;
2352 int rv, index;
2353
2354 if (!user)
2355 return -EINVAL;
2356
2357 user = acquire_ipmi_user(user, &index);
2358 if (!user)
2359 return -ENODEV;
2360
2361 rv = check_addr(user->intf, addr, &saddr, &lun);
2362 if (!rv)
2363 rv = i_ipmi_request(user,
2364 user->intf,
2365 addr,
2366 msgid,
2367 msg,
2368 user_msg_data,
2369 supplied_smi,
2370 supplied_recv,
2371 priority,
2372 saddr,
2373 lun,
2374 -1, 0);
2375
2376 release_ipmi_user(user, index);
2377 return rv;
2378 }
2379 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2380
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2381 static void bmc_device_id_handler(struct ipmi_smi *intf,
2382 struct ipmi_recv_msg *msg)
2383 {
2384 int rv;
2385
2386 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2387 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2388 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2389 dev_warn(intf->si_dev,
2390 PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2391 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2392 return;
2393 }
2394
2395 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2396 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2397 if (rv) {
2398 dev_warn(intf->si_dev,
2399 PFX "device id demangle failed: %d\n", rv);
2400 intf->bmc->dyn_id_set = 0;
2401 } else {
2402 /*
2403 * Make sure the id data is available before setting
2404 * dyn_id_set.
2405 */
2406 smp_wmb();
2407 intf->bmc->dyn_id_set = 1;
2408 }
2409
2410 wake_up(&intf->waitq);
2411 }
2412
2413 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2414 send_get_device_id_cmd(struct ipmi_smi *intf)
2415 {
2416 struct ipmi_system_interface_addr si;
2417 struct kernel_ipmi_msg msg;
2418
2419 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2420 si.channel = IPMI_BMC_CHANNEL;
2421 si.lun = 0;
2422
2423 msg.netfn = IPMI_NETFN_APP_REQUEST;
2424 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2425 msg.data = NULL;
2426 msg.data_len = 0;
2427
2428 return i_ipmi_request(NULL,
2429 intf,
2430 (struct ipmi_addr *) &si,
2431 0,
2432 &msg,
2433 intf,
2434 NULL,
2435 NULL,
2436 0,
2437 intf->addrinfo[0].address,
2438 intf->addrinfo[0].lun,
2439 -1, 0);
2440 }
2441
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2442 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2443 {
2444 int rv;
2445
2446 bmc->dyn_id_set = 2;
2447
2448 intf->null_user_handler = bmc_device_id_handler;
2449
2450 rv = send_get_device_id_cmd(intf);
2451 if (rv)
2452 return rv;
2453
2454 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2455
2456 if (!bmc->dyn_id_set)
2457 rv = -EIO; /* Something went wrong in the fetch. */
2458
2459 /* dyn_id_set makes the id data available. */
2460 smp_rmb();
2461
2462 intf->null_user_handler = NULL;
2463
2464 return rv;
2465 }
2466
2467 /*
2468 * Fetch the device id for the bmc/interface. You must pass in either
2469 * bmc or intf, this code will get the other one. If the data has
2470 * been recently fetched, this will just use the cached data. Otherwise
2471 * it will run a new fetch.
2472 *
2473 * Except for the first time this is called (in ipmi_add_smi()),
2474 * this will always return good data;
2475 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2476 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2477 struct ipmi_device_id *id,
2478 bool *guid_set, guid_t *guid, int intf_num)
2479 {
2480 int rv = 0;
2481 int prev_dyn_id_set, prev_guid_set;
2482 bool intf_set = intf != NULL;
2483
2484 if (!intf) {
2485 mutex_lock(&bmc->dyn_mutex);
2486 retry_bmc_lock:
2487 if (list_empty(&bmc->intfs)) {
2488 mutex_unlock(&bmc->dyn_mutex);
2489 return -ENOENT;
2490 }
2491 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2492 bmc_link);
2493 kref_get(&intf->refcount);
2494 mutex_unlock(&bmc->dyn_mutex);
2495 mutex_lock(&intf->bmc_reg_mutex);
2496 mutex_lock(&bmc->dyn_mutex);
2497 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2498 bmc_link)) {
2499 mutex_unlock(&intf->bmc_reg_mutex);
2500 kref_put(&intf->refcount, intf_free);
2501 goto retry_bmc_lock;
2502 }
2503 } else {
2504 mutex_lock(&intf->bmc_reg_mutex);
2505 bmc = intf->bmc;
2506 mutex_lock(&bmc->dyn_mutex);
2507 kref_get(&intf->refcount);
2508 }
2509
2510 /* If we have a valid and current ID, just return that. */
2511 if (intf->in_bmc_register ||
2512 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2513 goto out_noprocessing;
2514
2515 prev_guid_set = bmc->dyn_guid_set;
2516 __get_guid(intf);
2517
2518 prev_dyn_id_set = bmc->dyn_id_set;
2519 rv = __get_device_id(intf, bmc);
2520 if (rv)
2521 goto out;
2522
2523 /*
2524 * The guid, device id, manufacturer id, and product id should
2525 * not change on a BMC. If it does we have to do some dancing.
2526 */
2527 if (!intf->bmc_registered
2528 || (!prev_guid_set && bmc->dyn_guid_set)
2529 || (!prev_dyn_id_set && bmc->dyn_id_set)
2530 || (prev_guid_set && bmc->dyn_guid_set
2531 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2532 || bmc->id.device_id != bmc->fetch_id.device_id
2533 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2534 || bmc->id.product_id != bmc->fetch_id.product_id) {
2535 struct ipmi_device_id id = bmc->fetch_id;
2536 int guid_set = bmc->dyn_guid_set;
2537 guid_t guid;
2538
2539 guid = bmc->fetch_guid;
2540 mutex_unlock(&bmc->dyn_mutex);
2541
2542 __ipmi_bmc_unregister(intf);
2543 /* Fill in the temporary BMC for good measure. */
2544 intf->bmc->id = id;
2545 intf->bmc->dyn_guid_set = guid_set;
2546 intf->bmc->guid = guid;
2547 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2548 need_waiter(intf); /* Retry later on an error. */
2549 else
2550 __scan_channels(intf, &id);
2551
2552
2553 if (!intf_set) {
2554 /*
2555 * We weren't given the interface on the
2556 * command line, so restart the operation on
2557 * the next interface for the BMC.
2558 */
2559 mutex_unlock(&intf->bmc_reg_mutex);
2560 mutex_lock(&bmc->dyn_mutex);
2561 goto retry_bmc_lock;
2562 }
2563
2564 /* We have a new BMC, set it up. */
2565 bmc = intf->bmc;
2566 mutex_lock(&bmc->dyn_mutex);
2567 goto out_noprocessing;
2568 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2569 /* Version info changes, scan the channels again. */
2570 __scan_channels(intf, &bmc->fetch_id);
2571
2572 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2573
2574 out:
2575 if (rv && prev_dyn_id_set) {
2576 rv = 0; /* Ignore failures if we have previous data. */
2577 bmc->dyn_id_set = prev_dyn_id_set;
2578 }
2579 if (!rv) {
2580 bmc->id = bmc->fetch_id;
2581 if (bmc->dyn_guid_set)
2582 bmc->guid = bmc->fetch_guid;
2583 else if (prev_guid_set)
2584 /*
2585 * The guid used to be valid and it failed to fetch,
2586 * just use the cached value.
2587 */
2588 bmc->dyn_guid_set = prev_guid_set;
2589 }
2590 out_noprocessing:
2591 if (!rv) {
2592 if (id)
2593 *id = bmc->id;
2594
2595 if (guid_set)
2596 *guid_set = bmc->dyn_guid_set;
2597
2598 if (guid && bmc->dyn_guid_set)
2599 *guid = bmc->guid;
2600 }
2601
2602 mutex_unlock(&bmc->dyn_mutex);
2603 mutex_unlock(&intf->bmc_reg_mutex);
2604
2605 kref_put(&intf->refcount, intf_free);
2606 return rv;
2607 }
2608
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2609 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2610 struct ipmi_device_id *id,
2611 bool *guid_set, guid_t *guid)
2612 {
2613 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2614 }
2615
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2616 static ssize_t device_id_show(struct device *dev,
2617 struct device_attribute *attr,
2618 char *buf)
2619 {
2620 struct bmc_device *bmc = to_bmc_device(dev);
2621 struct ipmi_device_id id;
2622 int rv;
2623
2624 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2625 if (rv)
2626 return rv;
2627
2628 return snprintf(buf, 10, "%u\n", id.device_id);
2629 }
2630 static DEVICE_ATTR_RO(device_id);
2631
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2632 static ssize_t provides_device_sdrs_show(struct device *dev,
2633 struct device_attribute *attr,
2634 char *buf)
2635 {
2636 struct bmc_device *bmc = to_bmc_device(dev);
2637 struct ipmi_device_id id;
2638 int rv;
2639
2640 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2641 if (rv)
2642 return rv;
2643
2644 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2645 }
2646 static DEVICE_ATTR_RO(provides_device_sdrs);
2647
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2648 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2649 char *buf)
2650 {
2651 struct bmc_device *bmc = to_bmc_device(dev);
2652 struct ipmi_device_id id;
2653 int rv;
2654
2655 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2656 if (rv)
2657 return rv;
2658
2659 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2660 }
2661 static DEVICE_ATTR_RO(revision);
2662
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2663 static ssize_t firmware_revision_show(struct device *dev,
2664 struct device_attribute *attr,
2665 char *buf)
2666 {
2667 struct bmc_device *bmc = to_bmc_device(dev);
2668 struct ipmi_device_id id;
2669 int rv;
2670
2671 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2672 if (rv)
2673 return rv;
2674
2675 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2676 id.firmware_revision_2);
2677 }
2678 static DEVICE_ATTR_RO(firmware_revision);
2679
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2680 static ssize_t ipmi_version_show(struct device *dev,
2681 struct device_attribute *attr,
2682 char *buf)
2683 {
2684 struct bmc_device *bmc = to_bmc_device(dev);
2685 struct ipmi_device_id id;
2686 int rv;
2687
2688 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2689 if (rv)
2690 return rv;
2691
2692 return snprintf(buf, 20, "%u.%u\n",
2693 ipmi_version_major(&id),
2694 ipmi_version_minor(&id));
2695 }
2696 static DEVICE_ATTR_RO(ipmi_version);
2697
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2698 static ssize_t add_dev_support_show(struct device *dev,
2699 struct device_attribute *attr,
2700 char *buf)
2701 {
2702 struct bmc_device *bmc = to_bmc_device(dev);
2703 struct ipmi_device_id id;
2704 int rv;
2705
2706 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2707 if (rv)
2708 return rv;
2709
2710 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2711 }
2712 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2713 NULL);
2714
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2715 static ssize_t manufacturer_id_show(struct device *dev,
2716 struct device_attribute *attr,
2717 char *buf)
2718 {
2719 struct bmc_device *bmc = to_bmc_device(dev);
2720 struct ipmi_device_id id;
2721 int rv;
2722
2723 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2724 if (rv)
2725 return rv;
2726
2727 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2728 }
2729 static DEVICE_ATTR_RO(manufacturer_id);
2730
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2731 static ssize_t product_id_show(struct device *dev,
2732 struct device_attribute *attr,
2733 char *buf)
2734 {
2735 struct bmc_device *bmc = to_bmc_device(dev);
2736 struct ipmi_device_id id;
2737 int rv;
2738
2739 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2740 if (rv)
2741 return rv;
2742
2743 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2744 }
2745 static DEVICE_ATTR_RO(product_id);
2746
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2747 static ssize_t aux_firmware_rev_show(struct device *dev,
2748 struct device_attribute *attr,
2749 char *buf)
2750 {
2751 struct bmc_device *bmc = to_bmc_device(dev);
2752 struct ipmi_device_id id;
2753 int rv;
2754
2755 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2756 if (rv)
2757 return rv;
2758
2759 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2760 id.aux_firmware_revision[3],
2761 id.aux_firmware_revision[2],
2762 id.aux_firmware_revision[1],
2763 id.aux_firmware_revision[0]);
2764 }
2765 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2766
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2767 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2768 char *buf)
2769 {
2770 struct bmc_device *bmc = to_bmc_device(dev);
2771 bool guid_set;
2772 guid_t guid;
2773 int rv;
2774
2775 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2776 if (rv)
2777 return rv;
2778 if (!guid_set)
2779 return -ENOENT;
2780
2781 return snprintf(buf, 38, "%pUl\n", guid.b);
2782 }
2783 static DEVICE_ATTR_RO(guid);
2784
2785 static struct attribute *bmc_dev_attrs[] = {
2786 &dev_attr_device_id.attr,
2787 &dev_attr_provides_device_sdrs.attr,
2788 &dev_attr_revision.attr,
2789 &dev_attr_firmware_revision.attr,
2790 &dev_attr_ipmi_version.attr,
2791 &dev_attr_additional_device_support.attr,
2792 &dev_attr_manufacturer_id.attr,
2793 &dev_attr_product_id.attr,
2794 &dev_attr_aux_firmware_revision.attr,
2795 &dev_attr_guid.attr,
2796 NULL
2797 };
2798
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2799 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2800 struct attribute *attr, int idx)
2801 {
2802 struct device *dev = kobj_to_dev(kobj);
2803 struct bmc_device *bmc = to_bmc_device(dev);
2804 umode_t mode = attr->mode;
2805 int rv;
2806
2807 if (attr == &dev_attr_aux_firmware_revision.attr) {
2808 struct ipmi_device_id id;
2809
2810 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2811 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2812 }
2813 if (attr == &dev_attr_guid.attr) {
2814 bool guid_set;
2815
2816 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2817 return (!rv && guid_set) ? mode : 0;
2818 }
2819 return mode;
2820 }
2821
2822 static const struct attribute_group bmc_dev_attr_group = {
2823 .attrs = bmc_dev_attrs,
2824 .is_visible = bmc_dev_attr_is_visible,
2825 };
2826
2827 static const struct attribute_group *bmc_dev_attr_groups[] = {
2828 &bmc_dev_attr_group,
2829 NULL
2830 };
2831
2832 static const struct device_type bmc_device_type = {
2833 .groups = bmc_dev_attr_groups,
2834 };
2835
__find_bmc_guid(struct device * dev,void * data)2836 static int __find_bmc_guid(struct device *dev, void *data)
2837 {
2838 guid_t *guid = data;
2839 struct bmc_device *bmc;
2840 int rv;
2841
2842 if (dev->type != &bmc_device_type)
2843 return 0;
2844
2845 bmc = to_bmc_device(dev);
2846 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2847 if (rv)
2848 rv = kref_get_unless_zero(&bmc->usecount);
2849 return rv;
2850 }
2851
2852 /*
2853 * Returns with the bmc's usecount incremented, if it is non-NULL.
2854 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2855 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2856 guid_t *guid)
2857 {
2858 struct device *dev;
2859 struct bmc_device *bmc = NULL;
2860
2861 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2862 if (dev) {
2863 bmc = to_bmc_device(dev);
2864 put_device(dev);
2865 }
2866 return bmc;
2867 }
2868
2869 struct prod_dev_id {
2870 unsigned int product_id;
2871 unsigned char device_id;
2872 };
2873
__find_bmc_prod_dev_id(struct device * dev,void * data)2874 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2875 {
2876 struct prod_dev_id *cid = data;
2877 struct bmc_device *bmc;
2878 int rv;
2879
2880 if (dev->type != &bmc_device_type)
2881 return 0;
2882
2883 bmc = to_bmc_device(dev);
2884 rv = (bmc->id.product_id == cid->product_id
2885 && bmc->id.device_id == cid->device_id);
2886 if (rv)
2887 rv = kref_get_unless_zero(&bmc->usecount);
2888 return rv;
2889 }
2890
2891 /*
2892 * Returns with the bmc's usecount incremented, if it is non-NULL.
2893 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2894 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2895 struct device_driver *drv,
2896 unsigned int product_id, unsigned char device_id)
2897 {
2898 struct prod_dev_id id = {
2899 .product_id = product_id,
2900 .device_id = device_id,
2901 };
2902 struct device *dev;
2903 struct bmc_device *bmc = NULL;
2904
2905 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2906 if (dev) {
2907 bmc = to_bmc_device(dev);
2908 put_device(dev);
2909 }
2910 return bmc;
2911 }
2912
2913 static DEFINE_IDA(ipmi_bmc_ida);
2914
2915 static void
release_bmc_device(struct device * dev)2916 release_bmc_device(struct device *dev)
2917 {
2918 kfree(to_bmc_device(dev));
2919 }
2920
cleanup_bmc_work(struct work_struct * work)2921 static void cleanup_bmc_work(struct work_struct *work)
2922 {
2923 struct bmc_device *bmc = container_of(work, struct bmc_device,
2924 remove_work);
2925 int id = bmc->pdev.id; /* Unregister overwrites id */
2926
2927 platform_device_unregister(&bmc->pdev);
2928 ida_simple_remove(&ipmi_bmc_ida, id);
2929 }
2930
2931 static void
cleanup_bmc_device(struct kref * ref)2932 cleanup_bmc_device(struct kref *ref)
2933 {
2934 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2935
2936 /*
2937 * Remove the platform device in a work queue to avoid issues
2938 * with removing the device attributes while reading a device
2939 * attribute.
2940 */
2941 queue_work(remove_work_wq, &bmc->remove_work);
2942 }
2943
2944 /*
2945 * Must be called with intf->bmc_reg_mutex held.
2946 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)2947 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2948 {
2949 struct bmc_device *bmc = intf->bmc;
2950
2951 if (!intf->bmc_registered)
2952 return;
2953
2954 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2955 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2956 kfree(intf->my_dev_name);
2957 intf->my_dev_name = NULL;
2958
2959 mutex_lock(&bmc->dyn_mutex);
2960 list_del(&intf->bmc_link);
2961 mutex_unlock(&bmc->dyn_mutex);
2962 intf->bmc = &intf->tmp_bmc;
2963 kref_put(&bmc->usecount, cleanup_bmc_device);
2964 intf->bmc_registered = false;
2965 }
2966
ipmi_bmc_unregister(struct ipmi_smi * intf)2967 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2968 {
2969 mutex_lock(&intf->bmc_reg_mutex);
2970 __ipmi_bmc_unregister(intf);
2971 mutex_unlock(&intf->bmc_reg_mutex);
2972 }
2973
2974 /*
2975 * Must be called with intf->bmc_reg_mutex held.
2976 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)2977 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2978 struct ipmi_device_id *id,
2979 bool guid_set, guid_t *guid, int intf_num)
2980 {
2981 int rv;
2982 struct bmc_device *bmc;
2983 struct bmc_device *old_bmc;
2984
2985 /*
2986 * platform_device_register() can cause bmc_reg_mutex to
2987 * be claimed because of the is_visible functions of
2988 * the attributes. Eliminate possible recursion and
2989 * release the lock.
2990 */
2991 intf->in_bmc_register = true;
2992 mutex_unlock(&intf->bmc_reg_mutex);
2993
2994 /*
2995 * Try to find if there is an bmc_device struct
2996 * representing the interfaced BMC already
2997 */
2998 mutex_lock(&ipmidriver_mutex);
2999 if (guid_set)
3000 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3001 else
3002 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3003 id->product_id,
3004 id->device_id);
3005
3006 /*
3007 * If there is already an bmc_device, free the new one,
3008 * otherwise register the new BMC device
3009 */
3010 if (old_bmc) {
3011 bmc = old_bmc;
3012 /*
3013 * Note: old_bmc already has usecount incremented by
3014 * the BMC find functions.
3015 */
3016 intf->bmc = old_bmc;
3017 mutex_lock(&bmc->dyn_mutex);
3018 list_add_tail(&intf->bmc_link, &bmc->intfs);
3019 mutex_unlock(&bmc->dyn_mutex);
3020
3021 dev_info(intf->si_dev,
3022 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
3023 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3024 bmc->id.manufacturer_id,
3025 bmc->id.product_id,
3026 bmc->id.device_id);
3027 } else {
3028 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3029 if (!bmc) {
3030 rv = -ENOMEM;
3031 goto out;
3032 }
3033 INIT_LIST_HEAD(&bmc->intfs);
3034 mutex_init(&bmc->dyn_mutex);
3035 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3036
3037 bmc->id = *id;
3038 bmc->dyn_id_set = 1;
3039 bmc->dyn_guid_set = guid_set;
3040 bmc->guid = *guid;
3041 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3042
3043 bmc->pdev.name = "ipmi_bmc";
3044
3045 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3046 if (rv < 0) {
3047 kfree(bmc);
3048 goto out;
3049 }
3050
3051 bmc->pdev.dev.driver = &ipmidriver.driver;
3052 bmc->pdev.id = rv;
3053 bmc->pdev.dev.release = release_bmc_device;
3054 bmc->pdev.dev.type = &bmc_device_type;
3055 kref_init(&bmc->usecount);
3056
3057 intf->bmc = bmc;
3058 mutex_lock(&bmc->dyn_mutex);
3059 list_add_tail(&intf->bmc_link, &bmc->intfs);
3060 mutex_unlock(&bmc->dyn_mutex);
3061
3062 rv = platform_device_register(&bmc->pdev);
3063 if (rv) {
3064 dev_err(intf->si_dev,
3065 PFX " Unable to register bmc device: %d\n",
3066 rv);
3067 goto out_list_del;
3068 }
3069
3070 dev_info(intf->si_dev,
3071 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3072 bmc->id.manufacturer_id,
3073 bmc->id.product_id,
3074 bmc->id.device_id);
3075 }
3076
3077 /*
3078 * create symlink from system interface device to bmc device
3079 * and back.
3080 */
3081 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3082 if (rv) {
3083 dev_err(intf->si_dev,
3084 PFX "Unable to create bmc symlink: %d\n", rv);
3085 goto out_put_bmc;
3086 }
3087
3088 if (intf_num == -1)
3089 intf_num = intf->intf_num;
3090 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3091 if (!intf->my_dev_name) {
3092 rv = -ENOMEM;
3093 dev_err(intf->si_dev,
3094 PFX "Unable to allocate link from BMC: %d\n", rv);
3095 goto out_unlink1;
3096 }
3097
3098 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3099 intf->my_dev_name);
3100 if (rv) {
3101 kfree(intf->my_dev_name);
3102 intf->my_dev_name = NULL;
3103 dev_err(intf->si_dev,
3104 PFX "Unable to create symlink to bmc: %d\n", rv);
3105 goto out_free_my_dev_name;
3106 }
3107
3108 intf->bmc_registered = true;
3109
3110 out:
3111 mutex_unlock(&ipmidriver_mutex);
3112 mutex_lock(&intf->bmc_reg_mutex);
3113 intf->in_bmc_register = false;
3114 return rv;
3115
3116
3117 out_free_my_dev_name:
3118 kfree(intf->my_dev_name);
3119 intf->my_dev_name = NULL;
3120
3121 out_unlink1:
3122 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3123
3124 out_put_bmc:
3125 mutex_lock(&bmc->dyn_mutex);
3126 list_del(&intf->bmc_link);
3127 mutex_unlock(&bmc->dyn_mutex);
3128 intf->bmc = &intf->tmp_bmc;
3129 kref_put(&bmc->usecount, cleanup_bmc_device);
3130 goto out;
3131
3132 out_list_del:
3133 mutex_lock(&bmc->dyn_mutex);
3134 list_del(&intf->bmc_link);
3135 mutex_unlock(&bmc->dyn_mutex);
3136 intf->bmc = &intf->tmp_bmc;
3137 put_device(&bmc->pdev.dev);
3138 goto out;
3139 }
3140
3141 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3142 send_guid_cmd(struct ipmi_smi *intf, int chan)
3143 {
3144 struct kernel_ipmi_msg msg;
3145 struct ipmi_system_interface_addr si;
3146
3147 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3148 si.channel = IPMI_BMC_CHANNEL;
3149 si.lun = 0;
3150
3151 msg.netfn = IPMI_NETFN_APP_REQUEST;
3152 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3153 msg.data = NULL;
3154 msg.data_len = 0;
3155 return i_ipmi_request(NULL,
3156 intf,
3157 (struct ipmi_addr *) &si,
3158 0,
3159 &msg,
3160 intf,
3161 NULL,
3162 NULL,
3163 0,
3164 intf->addrinfo[0].address,
3165 intf->addrinfo[0].lun,
3166 -1, 0);
3167 }
3168
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3169 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3170 {
3171 struct bmc_device *bmc = intf->bmc;
3172
3173 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3174 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3175 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3176 /* Not for me */
3177 return;
3178
3179 if (msg->msg.data[0] != 0) {
3180 /* Error from getting the GUID, the BMC doesn't have one. */
3181 bmc->dyn_guid_set = 0;
3182 goto out;
3183 }
3184
3185 if (msg->msg.data_len < 17) {
3186 bmc->dyn_guid_set = 0;
3187 dev_warn(intf->si_dev,
3188 PFX "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
3189 msg->msg.data_len);
3190 goto out;
3191 }
3192
3193 memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3194 /*
3195 * Make sure the guid data is available before setting
3196 * dyn_guid_set.
3197 */
3198 smp_wmb();
3199 bmc->dyn_guid_set = 1;
3200 out:
3201 wake_up(&intf->waitq);
3202 }
3203
__get_guid(struct ipmi_smi * intf)3204 static void __get_guid(struct ipmi_smi *intf)
3205 {
3206 int rv;
3207 struct bmc_device *bmc = intf->bmc;
3208
3209 bmc->dyn_guid_set = 2;
3210 intf->null_user_handler = guid_handler;
3211 rv = send_guid_cmd(intf, 0);
3212 if (rv)
3213 /* Send failed, no GUID available. */
3214 bmc->dyn_guid_set = 0;
3215 else
3216 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3217
3218 /* dyn_guid_set makes the guid data available. */
3219 smp_rmb();
3220
3221 intf->null_user_handler = NULL;
3222 }
3223
3224 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3225 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3226 {
3227 struct kernel_ipmi_msg msg;
3228 unsigned char data[1];
3229 struct ipmi_system_interface_addr si;
3230
3231 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3232 si.channel = IPMI_BMC_CHANNEL;
3233 si.lun = 0;
3234
3235 msg.netfn = IPMI_NETFN_APP_REQUEST;
3236 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3237 msg.data = data;
3238 msg.data_len = 1;
3239 data[0] = chan;
3240 return i_ipmi_request(NULL,
3241 intf,
3242 (struct ipmi_addr *) &si,
3243 0,
3244 &msg,
3245 intf,
3246 NULL,
3247 NULL,
3248 0,
3249 intf->addrinfo[0].address,
3250 intf->addrinfo[0].lun,
3251 -1, 0);
3252 }
3253
3254 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3255 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3256 {
3257 int rv = 0;
3258 int ch;
3259 unsigned int set = intf->curr_working_cset;
3260 struct ipmi_channel *chans;
3261
3262 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3263 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3264 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3265 /* It's the one we want */
3266 if (msg->msg.data[0] != 0) {
3267 /* Got an error from the channel, just go on. */
3268
3269 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3270 /*
3271 * If the MC does not support this
3272 * command, that is legal. We just
3273 * assume it has one IPMB at channel
3274 * zero.
3275 */
3276 intf->wchannels[set].c[0].medium
3277 = IPMI_CHANNEL_MEDIUM_IPMB;
3278 intf->wchannels[set].c[0].protocol
3279 = IPMI_CHANNEL_PROTOCOL_IPMB;
3280
3281 intf->channel_list = intf->wchannels + set;
3282 intf->channels_ready = true;
3283 wake_up(&intf->waitq);
3284 goto out;
3285 }
3286 goto next_channel;
3287 }
3288 if (msg->msg.data_len < 4) {
3289 /* Message not big enough, just go on. */
3290 goto next_channel;
3291 }
3292 ch = intf->curr_channel;
3293 chans = intf->wchannels[set].c;
3294 chans[ch].medium = msg->msg.data[2] & 0x7f;
3295 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3296
3297 next_channel:
3298 intf->curr_channel++;
3299 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3300 intf->channel_list = intf->wchannels + set;
3301 intf->channels_ready = true;
3302 wake_up(&intf->waitq);
3303 } else {
3304 intf->channel_list = intf->wchannels + set;
3305 intf->channels_ready = true;
3306 rv = send_channel_info_cmd(intf, intf->curr_channel);
3307 }
3308
3309 if (rv) {
3310 /* Got an error somehow, just give up. */
3311 dev_warn(intf->si_dev,
3312 PFX "Error sending channel information for channel %d: %d\n",
3313 intf->curr_channel, rv);
3314
3315 intf->channel_list = intf->wchannels + set;
3316 intf->channels_ready = true;
3317 wake_up(&intf->waitq);
3318 }
3319 }
3320 out:
3321 return;
3322 }
3323
3324 /*
3325 * Must be holding intf->bmc_reg_mutex to call this.
3326 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3327 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3328 {
3329 int rv;
3330
3331 if (ipmi_version_major(id) > 1
3332 || (ipmi_version_major(id) == 1
3333 && ipmi_version_minor(id) >= 5)) {
3334 unsigned int set;
3335
3336 /*
3337 * Start scanning the channels to see what is
3338 * available.
3339 */
3340 set = !intf->curr_working_cset;
3341 intf->curr_working_cset = set;
3342 memset(&intf->wchannels[set], 0,
3343 sizeof(struct ipmi_channel_set));
3344
3345 intf->null_user_handler = channel_handler;
3346 intf->curr_channel = 0;
3347 rv = send_channel_info_cmd(intf, 0);
3348 if (rv) {
3349 dev_warn(intf->si_dev,
3350 "Error sending channel information for channel 0, %d\n",
3351 rv);
3352 return -EIO;
3353 }
3354
3355 /* Wait for the channel info to be read. */
3356 wait_event(intf->waitq, intf->channels_ready);
3357 intf->null_user_handler = NULL;
3358 } else {
3359 unsigned int set = intf->curr_working_cset;
3360
3361 /* Assume a single IPMB channel at zero. */
3362 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3363 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3364 intf->channel_list = intf->wchannels + set;
3365 intf->channels_ready = true;
3366 }
3367
3368 return 0;
3369 }
3370
ipmi_poll(struct ipmi_smi * intf)3371 static void ipmi_poll(struct ipmi_smi *intf)
3372 {
3373 if (intf->handlers->poll)
3374 intf->handlers->poll(intf->send_info);
3375 /* In case something came in */
3376 handle_new_recv_msgs(intf);
3377 }
3378
ipmi_poll_interface(struct ipmi_user * user)3379 void ipmi_poll_interface(struct ipmi_user *user)
3380 {
3381 ipmi_poll(user->intf);
3382 }
3383 EXPORT_SYMBOL(ipmi_poll_interface);
3384
redo_bmc_reg(struct work_struct * work)3385 static void redo_bmc_reg(struct work_struct *work)
3386 {
3387 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3388 bmc_reg_work);
3389
3390 if (!intf->in_shutdown)
3391 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3392
3393 kref_put(&intf->refcount, intf_free);
3394 }
3395
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3396 int ipmi_add_smi(struct module *owner,
3397 const struct ipmi_smi_handlers *handlers,
3398 void *send_info,
3399 struct device *si_dev,
3400 unsigned char slave_addr)
3401 {
3402 int i, j;
3403 int rv;
3404 struct ipmi_smi *intf, *tintf;
3405 struct list_head *link;
3406 struct ipmi_device_id id;
3407
3408 /*
3409 * Make sure the driver is actually initialized, this handles
3410 * problems with initialization order.
3411 */
3412 rv = ipmi_init_msghandler();
3413 if (rv)
3414 return rv;
3415
3416 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3417 if (!intf)
3418 return -ENOMEM;
3419
3420 rv = init_srcu_struct(&intf->users_srcu);
3421 if (rv) {
3422 kfree(intf);
3423 return rv;
3424 }
3425
3426 intf->owner = owner;
3427 intf->bmc = &intf->tmp_bmc;
3428 INIT_LIST_HEAD(&intf->bmc->intfs);
3429 mutex_init(&intf->bmc->dyn_mutex);
3430 INIT_LIST_HEAD(&intf->bmc_link);
3431 mutex_init(&intf->bmc_reg_mutex);
3432 intf->intf_num = -1; /* Mark it invalid for now. */
3433 kref_init(&intf->refcount);
3434 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3435 intf->si_dev = si_dev;
3436 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3437 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3438 intf->addrinfo[j].lun = 2;
3439 }
3440 if (slave_addr != 0)
3441 intf->addrinfo[0].address = slave_addr;
3442 INIT_LIST_HEAD(&intf->users);
3443 intf->handlers = handlers;
3444 intf->send_info = send_info;
3445 spin_lock_init(&intf->seq_lock);
3446 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3447 intf->seq_table[j].inuse = 0;
3448 intf->seq_table[j].seqid = 0;
3449 }
3450 intf->curr_seq = 0;
3451 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3452 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3453 tasklet_init(&intf->recv_tasklet,
3454 smi_recv_tasklet,
3455 (unsigned long) intf);
3456 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3457 spin_lock_init(&intf->xmit_msgs_lock);
3458 INIT_LIST_HEAD(&intf->xmit_msgs);
3459 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3460 spin_lock_init(&intf->events_lock);
3461 spin_lock_init(&intf->watch_lock);
3462 atomic_set(&intf->event_waiters, 0);
3463 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3464 INIT_LIST_HEAD(&intf->waiting_events);
3465 intf->waiting_events_count = 0;
3466 mutex_init(&intf->cmd_rcvrs_mutex);
3467 spin_lock_init(&intf->maintenance_mode_lock);
3468 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3469 init_waitqueue_head(&intf->waitq);
3470 for (i = 0; i < IPMI_NUM_STATS; i++)
3471 atomic_set(&intf->stats[i], 0);
3472
3473 mutex_lock(&ipmi_interfaces_mutex);
3474 /* Look for a hole in the numbers. */
3475 i = 0;
3476 link = &ipmi_interfaces;
3477 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3478 if (tintf->intf_num != i) {
3479 link = &tintf->link;
3480 break;
3481 }
3482 i++;
3483 }
3484 /* Add the new interface in numeric order. */
3485 if (i == 0)
3486 list_add_rcu(&intf->link, &ipmi_interfaces);
3487 else
3488 list_add_tail_rcu(&intf->link, link);
3489
3490 rv = handlers->start_processing(send_info, intf);
3491 if (rv)
3492 goto out_err;
3493
3494 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3495 if (rv) {
3496 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3497 goto out_err_started;
3498 }
3499
3500 mutex_lock(&intf->bmc_reg_mutex);
3501 rv = __scan_channels(intf, &id);
3502 mutex_unlock(&intf->bmc_reg_mutex);
3503 if (rv)
3504 goto out_err_bmc_reg;
3505
3506 /*
3507 * Keep memory order straight for RCU readers. Make
3508 * sure everything else is committed to memory before
3509 * setting intf_num to mark the interface valid.
3510 */
3511 smp_wmb();
3512 intf->intf_num = i;
3513 mutex_unlock(&ipmi_interfaces_mutex);
3514
3515 /* After this point the interface is legal to use. */
3516 call_smi_watchers(i, intf->si_dev);
3517
3518 return 0;
3519
3520 out_err_bmc_reg:
3521 ipmi_bmc_unregister(intf);
3522 out_err_started:
3523 if (intf->handlers->shutdown)
3524 intf->handlers->shutdown(intf->send_info);
3525 out_err:
3526 list_del_rcu(&intf->link);
3527 mutex_unlock(&ipmi_interfaces_mutex);
3528 synchronize_srcu(&ipmi_interfaces_srcu);
3529 cleanup_srcu_struct(&intf->users_srcu);
3530 kref_put(&intf->refcount, intf_free);
3531
3532 return rv;
3533 }
3534 EXPORT_SYMBOL(ipmi_add_smi);
3535
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3536 static void deliver_smi_err_response(struct ipmi_smi *intf,
3537 struct ipmi_smi_msg *msg,
3538 unsigned char err)
3539 {
3540 int rv;
3541 msg->rsp[0] = msg->data[0] | 4;
3542 msg->rsp[1] = msg->data[1];
3543 msg->rsp[2] = err;
3544 msg->rsp_size = 3;
3545
3546 /* This will never requeue, but it may ask us to free the message. */
3547 rv = handle_one_recv_msg(intf, msg);
3548 if (rv == 0)
3549 ipmi_free_smi_msg(msg);
3550 }
3551
cleanup_smi_msgs(struct ipmi_smi * intf)3552 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3553 {
3554 int i;
3555 struct seq_table *ent;
3556 struct ipmi_smi_msg *msg;
3557 struct list_head *entry;
3558 struct list_head tmplist;
3559
3560 /* Clear out our transmit queues and hold the messages. */
3561 INIT_LIST_HEAD(&tmplist);
3562 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3563 list_splice_tail(&intf->xmit_msgs, &tmplist);
3564
3565 /* Current message first, to preserve order */
3566 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3567 /* Wait for the message to clear out. */
3568 schedule_timeout(1);
3569 }
3570
3571 /* No need for locks, the interface is down. */
3572
3573 /*
3574 * Return errors for all pending messages in queue and in the
3575 * tables waiting for remote responses.
3576 */
3577 while (!list_empty(&tmplist)) {
3578 entry = tmplist.next;
3579 list_del(entry);
3580 msg = list_entry(entry, struct ipmi_smi_msg, link);
3581 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3582 }
3583
3584 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3585 ent = &intf->seq_table[i];
3586 if (!ent->inuse)
3587 continue;
3588 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3589 }
3590 }
3591
ipmi_unregister_smi(struct ipmi_smi * intf)3592 void ipmi_unregister_smi(struct ipmi_smi *intf)
3593 {
3594 struct ipmi_smi_watcher *w;
3595 int intf_num = intf->intf_num, index;
3596
3597 mutex_lock(&ipmi_interfaces_mutex);
3598 intf->intf_num = -1;
3599 intf->in_shutdown = true;
3600 list_del_rcu(&intf->link);
3601 mutex_unlock(&ipmi_interfaces_mutex);
3602 synchronize_srcu(&ipmi_interfaces_srcu);
3603
3604 /* At this point no users can be added to the interface. */
3605
3606 /*
3607 * Call all the watcher interfaces to tell them that
3608 * an interface is going away.
3609 */
3610 mutex_lock(&smi_watchers_mutex);
3611 list_for_each_entry(w, &smi_watchers, link)
3612 w->smi_gone(intf_num);
3613 mutex_unlock(&smi_watchers_mutex);
3614
3615 index = srcu_read_lock(&intf->users_srcu);
3616 while (!list_empty(&intf->users)) {
3617 struct ipmi_user *user =
3618 container_of(list_next_rcu(&intf->users),
3619 struct ipmi_user, link);
3620
3621 _ipmi_destroy_user(user);
3622 }
3623 srcu_read_unlock(&intf->users_srcu, index);
3624
3625 if (intf->handlers->shutdown)
3626 intf->handlers->shutdown(intf->send_info);
3627
3628 cleanup_smi_msgs(intf);
3629
3630 ipmi_bmc_unregister(intf);
3631
3632 cleanup_srcu_struct(&intf->users_srcu);
3633 kref_put(&intf->refcount, intf_free);
3634 }
3635 EXPORT_SYMBOL(ipmi_unregister_smi);
3636
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3637 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3638 struct ipmi_smi_msg *msg)
3639 {
3640 struct ipmi_ipmb_addr ipmb_addr;
3641 struct ipmi_recv_msg *recv_msg;
3642
3643 /*
3644 * This is 11, not 10, because the response must contain a
3645 * completion code.
3646 */
3647 if (msg->rsp_size < 11) {
3648 /* Message not big enough, just ignore it. */
3649 ipmi_inc_stat(intf, invalid_ipmb_responses);
3650 return 0;
3651 }
3652
3653 if (msg->rsp[2] != 0) {
3654 /* An error getting the response, just ignore it. */
3655 return 0;
3656 }
3657
3658 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3659 ipmb_addr.slave_addr = msg->rsp[6];
3660 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3661 ipmb_addr.lun = msg->rsp[7] & 3;
3662
3663 /*
3664 * It's a response from a remote entity. Look up the sequence
3665 * number and handle the response.
3666 */
3667 if (intf_find_seq(intf,
3668 msg->rsp[7] >> 2,
3669 msg->rsp[3] & 0x0f,
3670 msg->rsp[8],
3671 (msg->rsp[4] >> 2) & (~1),
3672 (struct ipmi_addr *) &ipmb_addr,
3673 &recv_msg)) {
3674 /*
3675 * We were unable to find the sequence number,
3676 * so just nuke the message.
3677 */
3678 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3679 return 0;
3680 }
3681
3682 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3683 /*
3684 * The other fields matched, so no need to set them, except
3685 * for netfn, which needs to be the response that was
3686 * returned, not the request value.
3687 */
3688 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3689 recv_msg->msg.data = recv_msg->msg_data;
3690 recv_msg->msg.data_len = msg->rsp_size - 10;
3691 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3692 if (deliver_response(intf, recv_msg))
3693 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3694 else
3695 ipmi_inc_stat(intf, handled_ipmb_responses);
3696
3697 return 0;
3698 }
3699
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3700 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3701 struct ipmi_smi_msg *msg)
3702 {
3703 struct cmd_rcvr *rcvr;
3704 int rv = 0;
3705 unsigned char netfn;
3706 unsigned char cmd;
3707 unsigned char chan;
3708 struct ipmi_user *user = NULL;
3709 struct ipmi_ipmb_addr *ipmb_addr;
3710 struct ipmi_recv_msg *recv_msg;
3711
3712 if (msg->rsp_size < 10) {
3713 /* Message not big enough, just ignore it. */
3714 ipmi_inc_stat(intf, invalid_commands);
3715 return 0;
3716 }
3717
3718 if (msg->rsp[2] != 0) {
3719 /* An error getting the response, just ignore it. */
3720 return 0;
3721 }
3722
3723 netfn = msg->rsp[4] >> 2;
3724 cmd = msg->rsp[8];
3725 chan = msg->rsp[3] & 0xf;
3726
3727 rcu_read_lock();
3728 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3729 if (rcvr) {
3730 user = rcvr->user;
3731 kref_get(&user->refcount);
3732 } else
3733 user = NULL;
3734 rcu_read_unlock();
3735
3736 if (user == NULL) {
3737 /* We didn't find a user, deliver an error response. */
3738 ipmi_inc_stat(intf, unhandled_commands);
3739
3740 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3741 msg->data[1] = IPMI_SEND_MSG_CMD;
3742 msg->data[2] = msg->rsp[3];
3743 msg->data[3] = msg->rsp[6];
3744 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3745 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3746 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3747 /* rqseq/lun */
3748 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3749 msg->data[8] = msg->rsp[8]; /* cmd */
3750 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3751 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3752 msg->data_size = 11;
3753
3754 ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3755
3756 rcu_read_lock();
3757 if (!intf->in_shutdown) {
3758 smi_send(intf, intf->handlers, msg, 0);
3759 /*
3760 * We used the message, so return the value
3761 * that causes it to not be freed or
3762 * queued.
3763 */
3764 rv = -1;
3765 }
3766 rcu_read_unlock();
3767 } else {
3768 recv_msg = ipmi_alloc_recv_msg();
3769 if (!recv_msg) {
3770 /*
3771 * We couldn't allocate memory for the
3772 * message, so requeue it for handling
3773 * later.
3774 */
3775 rv = 1;
3776 kref_put(&user->refcount, free_user);
3777 } else {
3778 /* Extract the source address from the data. */
3779 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3780 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3781 ipmb_addr->slave_addr = msg->rsp[6];
3782 ipmb_addr->lun = msg->rsp[7] & 3;
3783 ipmb_addr->channel = msg->rsp[3] & 0xf;
3784
3785 /*
3786 * Extract the rest of the message information
3787 * from the IPMB header.
3788 */
3789 recv_msg->user = user;
3790 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3791 recv_msg->msgid = msg->rsp[7] >> 2;
3792 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3793 recv_msg->msg.cmd = msg->rsp[8];
3794 recv_msg->msg.data = recv_msg->msg_data;
3795
3796 /*
3797 * We chop off 10, not 9 bytes because the checksum
3798 * at the end also needs to be removed.
3799 */
3800 recv_msg->msg.data_len = msg->rsp_size - 10;
3801 memcpy(recv_msg->msg_data, &msg->rsp[9],
3802 msg->rsp_size - 10);
3803 if (deliver_response(intf, recv_msg))
3804 ipmi_inc_stat(intf, unhandled_commands);
3805 else
3806 ipmi_inc_stat(intf, handled_commands);
3807 }
3808 }
3809
3810 return rv;
3811 }
3812
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3813 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3814 struct ipmi_smi_msg *msg)
3815 {
3816 struct ipmi_lan_addr lan_addr;
3817 struct ipmi_recv_msg *recv_msg;
3818
3819
3820 /*
3821 * This is 13, not 12, because the response must contain a
3822 * completion code.
3823 */
3824 if (msg->rsp_size < 13) {
3825 /* Message not big enough, just ignore it. */
3826 ipmi_inc_stat(intf, invalid_lan_responses);
3827 return 0;
3828 }
3829
3830 if (msg->rsp[2] != 0) {
3831 /* An error getting the response, just ignore it. */
3832 return 0;
3833 }
3834
3835 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3836 lan_addr.session_handle = msg->rsp[4];
3837 lan_addr.remote_SWID = msg->rsp[8];
3838 lan_addr.local_SWID = msg->rsp[5];
3839 lan_addr.channel = msg->rsp[3] & 0x0f;
3840 lan_addr.privilege = msg->rsp[3] >> 4;
3841 lan_addr.lun = msg->rsp[9] & 3;
3842
3843 /*
3844 * It's a response from a remote entity. Look up the sequence
3845 * number and handle the response.
3846 */
3847 if (intf_find_seq(intf,
3848 msg->rsp[9] >> 2,
3849 msg->rsp[3] & 0x0f,
3850 msg->rsp[10],
3851 (msg->rsp[6] >> 2) & (~1),
3852 (struct ipmi_addr *) &lan_addr,
3853 &recv_msg)) {
3854 /*
3855 * We were unable to find the sequence number,
3856 * so just nuke the message.
3857 */
3858 ipmi_inc_stat(intf, unhandled_lan_responses);
3859 return 0;
3860 }
3861
3862 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3863 /*
3864 * The other fields matched, so no need to set them, except
3865 * for netfn, which needs to be the response that was
3866 * returned, not the request value.
3867 */
3868 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3869 recv_msg->msg.data = recv_msg->msg_data;
3870 recv_msg->msg.data_len = msg->rsp_size - 12;
3871 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3872 if (deliver_response(intf, recv_msg))
3873 ipmi_inc_stat(intf, unhandled_lan_responses);
3874 else
3875 ipmi_inc_stat(intf, handled_lan_responses);
3876
3877 return 0;
3878 }
3879
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3880 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3881 struct ipmi_smi_msg *msg)
3882 {
3883 struct cmd_rcvr *rcvr;
3884 int rv = 0;
3885 unsigned char netfn;
3886 unsigned char cmd;
3887 unsigned char chan;
3888 struct ipmi_user *user = NULL;
3889 struct ipmi_lan_addr *lan_addr;
3890 struct ipmi_recv_msg *recv_msg;
3891
3892 if (msg->rsp_size < 12) {
3893 /* Message not big enough, just ignore it. */
3894 ipmi_inc_stat(intf, invalid_commands);
3895 return 0;
3896 }
3897
3898 if (msg->rsp[2] != 0) {
3899 /* An error getting the response, just ignore it. */
3900 return 0;
3901 }
3902
3903 netfn = msg->rsp[6] >> 2;
3904 cmd = msg->rsp[10];
3905 chan = msg->rsp[3] & 0xf;
3906
3907 rcu_read_lock();
3908 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3909 if (rcvr) {
3910 user = rcvr->user;
3911 kref_get(&user->refcount);
3912 } else
3913 user = NULL;
3914 rcu_read_unlock();
3915
3916 if (user == NULL) {
3917 /* We didn't find a user, just give up. */
3918 ipmi_inc_stat(intf, unhandled_commands);
3919
3920 /*
3921 * Don't do anything with these messages, just allow
3922 * them to be freed.
3923 */
3924 rv = 0;
3925 } else {
3926 recv_msg = ipmi_alloc_recv_msg();
3927 if (!recv_msg) {
3928 /*
3929 * We couldn't allocate memory for the
3930 * message, so requeue it for handling later.
3931 */
3932 rv = 1;
3933 kref_put(&user->refcount, free_user);
3934 } else {
3935 /* Extract the source address from the data. */
3936 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3937 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3938 lan_addr->session_handle = msg->rsp[4];
3939 lan_addr->remote_SWID = msg->rsp[8];
3940 lan_addr->local_SWID = msg->rsp[5];
3941 lan_addr->lun = msg->rsp[9] & 3;
3942 lan_addr->channel = msg->rsp[3] & 0xf;
3943 lan_addr->privilege = msg->rsp[3] >> 4;
3944
3945 /*
3946 * Extract the rest of the message information
3947 * from the IPMB header.
3948 */
3949 recv_msg->user = user;
3950 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3951 recv_msg->msgid = msg->rsp[9] >> 2;
3952 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3953 recv_msg->msg.cmd = msg->rsp[10];
3954 recv_msg->msg.data = recv_msg->msg_data;
3955
3956 /*
3957 * We chop off 12, not 11 bytes because the checksum
3958 * at the end also needs to be removed.
3959 */
3960 recv_msg->msg.data_len = msg->rsp_size - 12;
3961 memcpy(recv_msg->msg_data, &msg->rsp[11],
3962 msg->rsp_size - 12);
3963 if (deliver_response(intf, recv_msg))
3964 ipmi_inc_stat(intf, unhandled_commands);
3965 else
3966 ipmi_inc_stat(intf, handled_commands);
3967 }
3968 }
3969
3970 return rv;
3971 }
3972
3973 /*
3974 * This routine will handle "Get Message" command responses with
3975 * channels that use an OEM Medium. The message format belongs to
3976 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3977 * Chapter 22, sections 22.6 and 22.24 for more details.
3978 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3979 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3980 struct ipmi_smi_msg *msg)
3981 {
3982 struct cmd_rcvr *rcvr;
3983 int rv = 0;
3984 unsigned char netfn;
3985 unsigned char cmd;
3986 unsigned char chan;
3987 struct ipmi_user *user = NULL;
3988 struct ipmi_system_interface_addr *smi_addr;
3989 struct ipmi_recv_msg *recv_msg;
3990
3991 /*
3992 * We expect the OEM SW to perform error checking
3993 * so we just do some basic sanity checks
3994 */
3995 if (msg->rsp_size < 4) {
3996 /* Message not big enough, just ignore it. */
3997 ipmi_inc_stat(intf, invalid_commands);
3998 return 0;
3999 }
4000
4001 if (msg->rsp[2] != 0) {
4002 /* An error getting the response, just ignore it. */
4003 return 0;
4004 }
4005
4006 /*
4007 * This is an OEM Message so the OEM needs to know how
4008 * handle the message. We do no interpretation.
4009 */
4010 netfn = msg->rsp[0] >> 2;
4011 cmd = msg->rsp[1];
4012 chan = msg->rsp[3] & 0xf;
4013
4014 rcu_read_lock();
4015 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4016 if (rcvr) {
4017 user = rcvr->user;
4018 kref_get(&user->refcount);
4019 } else
4020 user = NULL;
4021 rcu_read_unlock();
4022
4023 if (user == NULL) {
4024 /* We didn't find a user, just give up. */
4025 ipmi_inc_stat(intf, unhandled_commands);
4026
4027 /*
4028 * Don't do anything with these messages, just allow
4029 * them to be freed.
4030 */
4031
4032 rv = 0;
4033 } else {
4034 recv_msg = ipmi_alloc_recv_msg();
4035 if (!recv_msg) {
4036 /*
4037 * We couldn't allocate memory for the
4038 * message, so requeue it for handling
4039 * later.
4040 */
4041 rv = 1;
4042 kref_put(&user->refcount, free_user);
4043 } else {
4044 /*
4045 * OEM Messages are expected to be delivered via
4046 * the system interface to SMS software. We might
4047 * need to visit this again depending on OEM
4048 * requirements
4049 */
4050 smi_addr = ((struct ipmi_system_interface_addr *)
4051 &recv_msg->addr);
4052 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4053 smi_addr->channel = IPMI_BMC_CHANNEL;
4054 smi_addr->lun = msg->rsp[0] & 3;
4055
4056 recv_msg->user = user;
4057 recv_msg->user_msg_data = NULL;
4058 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4059 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4060 recv_msg->msg.cmd = msg->rsp[1];
4061 recv_msg->msg.data = recv_msg->msg_data;
4062
4063 /*
4064 * The message starts at byte 4 which follows the
4065 * the Channel Byte in the "GET MESSAGE" command
4066 */
4067 recv_msg->msg.data_len = msg->rsp_size - 4;
4068 memcpy(recv_msg->msg_data, &msg->rsp[4],
4069 msg->rsp_size - 4);
4070 if (deliver_response(intf, recv_msg))
4071 ipmi_inc_stat(intf, unhandled_commands);
4072 else
4073 ipmi_inc_stat(intf, handled_commands);
4074 }
4075 }
4076
4077 return rv;
4078 }
4079
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4080 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4081 struct ipmi_smi_msg *msg)
4082 {
4083 struct ipmi_system_interface_addr *smi_addr;
4084
4085 recv_msg->msgid = 0;
4086 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4087 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4088 smi_addr->channel = IPMI_BMC_CHANNEL;
4089 smi_addr->lun = msg->rsp[0] & 3;
4090 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4091 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4092 recv_msg->msg.cmd = msg->rsp[1];
4093 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4094 recv_msg->msg.data = recv_msg->msg_data;
4095 recv_msg->msg.data_len = msg->rsp_size - 3;
4096 }
4097
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4098 static int handle_read_event_rsp(struct ipmi_smi *intf,
4099 struct ipmi_smi_msg *msg)
4100 {
4101 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4102 struct list_head msgs;
4103 struct ipmi_user *user;
4104 int rv = 0, deliver_count = 0, index;
4105 unsigned long flags;
4106
4107 if (msg->rsp_size < 19) {
4108 /* Message is too small to be an IPMB event. */
4109 ipmi_inc_stat(intf, invalid_events);
4110 return 0;
4111 }
4112
4113 if (msg->rsp[2] != 0) {
4114 /* An error getting the event, just ignore it. */
4115 return 0;
4116 }
4117
4118 INIT_LIST_HEAD(&msgs);
4119
4120 spin_lock_irqsave(&intf->events_lock, flags);
4121
4122 ipmi_inc_stat(intf, events);
4123
4124 /*
4125 * Allocate and fill in one message for every user that is
4126 * getting events.
4127 */
4128 index = srcu_read_lock(&intf->users_srcu);
4129 list_for_each_entry_rcu(user, &intf->users, link) {
4130 if (!user->gets_events)
4131 continue;
4132
4133 recv_msg = ipmi_alloc_recv_msg();
4134 if (!recv_msg) {
4135 rcu_read_unlock();
4136 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4137 link) {
4138 list_del(&recv_msg->link);
4139 ipmi_free_recv_msg(recv_msg);
4140 }
4141 /*
4142 * We couldn't allocate memory for the
4143 * message, so requeue it for handling
4144 * later.
4145 */
4146 rv = 1;
4147 goto out;
4148 }
4149
4150 deliver_count++;
4151
4152 copy_event_into_recv_msg(recv_msg, msg);
4153 recv_msg->user = user;
4154 kref_get(&user->refcount);
4155 list_add_tail(&recv_msg->link, &msgs);
4156 }
4157 srcu_read_unlock(&intf->users_srcu, index);
4158
4159 if (deliver_count) {
4160 /* Now deliver all the messages. */
4161 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4162 list_del(&recv_msg->link);
4163 deliver_local_response(intf, recv_msg);
4164 }
4165 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4166 /*
4167 * No one to receive the message, put it in queue if there's
4168 * not already too many things in the queue.
4169 */
4170 recv_msg = ipmi_alloc_recv_msg();
4171 if (!recv_msg) {
4172 /*
4173 * We couldn't allocate memory for the
4174 * message, so requeue it for handling
4175 * later.
4176 */
4177 rv = 1;
4178 goto out;
4179 }
4180
4181 copy_event_into_recv_msg(recv_msg, msg);
4182 list_add_tail(&recv_msg->link, &intf->waiting_events);
4183 intf->waiting_events_count++;
4184 } else if (!intf->event_msg_printed) {
4185 /*
4186 * There's too many things in the queue, discard this
4187 * message.
4188 */
4189 dev_warn(intf->si_dev,
4190 PFX "Event queue full, discarding incoming events\n");
4191 intf->event_msg_printed = 1;
4192 }
4193
4194 out:
4195 spin_unlock_irqrestore(&intf->events_lock, flags);
4196
4197 return rv;
4198 }
4199
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4200 static int handle_bmc_rsp(struct ipmi_smi *intf,
4201 struct ipmi_smi_msg *msg)
4202 {
4203 struct ipmi_recv_msg *recv_msg;
4204 struct ipmi_system_interface_addr *smi_addr;
4205
4206 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4207 if (recv_msg == NULL) {
4208 dev_warn(intf->si_dev,
4209 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n");
4210 return 0;
4211 }
4212
4213 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4214 recv_msg->msgid = msg->msgid;
4215 smi_addr = ((struct ipmi_system_interface_addr *)
4216 &recv_msg->addr);
4217 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4218 smi_addr->channel = IPMI_BMC_CHANNEL;
4219 smi_addr->lun = msg->rsp[0] & 3;
4220 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4221 recv_msg->msg.cmd = msg->rsp[1];
4222 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4223 recv_msg->msg.data = recv_msg->msg_data;
4224 recv_msg->msg.data_len = msg->rsp_size - 2;
4225 deliver_local_response(intf, recv_msg);
4226
4227 return 0;
4228 }
4229
4230 /*
4231 * Handle a received message. Return 1 if the message should be requeued,
4232 * 0 if the message should be freed, or -1 if the message should not
4233 * be freed or requeued.
4234 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4235 static int handle_one_recv_msg(struct ipmi_smi *intf,
4236 struct ipmi_smi_msg *msg)
4237 {
4238 int requeue;
4239 int chan;
4240
4241 ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4242
4243 if ((msg->data_size >= 2)
4244 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4245 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4246 && (msg->user_data == NULL)) {
4247
4248 if (intf->in_shutdown)
4249 goto free_msg;
4250
4251 /*
4252 * This is the local response to a command send, start
4253 * the timer for these. The user_data will not be
4254 * NULL if this is a response send, and we will let
4255 * response sends just go through.
4256 */
4257
4258 /*
4259 * Check for errors, if we get certain errors (ones
4260 * that mean basically we can try again later), we
4261 * ignore them and start the timer. Otherwise we
4262 * report the error immediately.
4263 */
4264 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4265 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4266 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4267 && (msg->rsp[2] != IPMI_BUS_ERR)
4268 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4269 int ch = msg->rsp[3] & 0xf;
4270 struct ipmi_channel *chans;
4271
4272 /* Got an error sending the message, handle it. */
4273
4274 chans = READ_ONCE(intf->channel_list)->c;
4275 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4276 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4277 ipmi_inc_stat(intf, sent_lan_command_errs);
4278 else
4279 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4280 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4281 } else
4282 /* The message was sent, start the timer. */
4283 intf_start_seq_timer(intf, msg->msgid);
4284 free_msg:
4285 requeue = 0;
4286 goto out;
4287
4288 } else if (msg->rsp_size < 2) {
4289 /* Message is too small to be correct. */
4290 dev_warn(intf->si_dev,
4291 PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
4292 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4293
4294 /* Generate an error response for the message. */
4295 msg->rsp[0] = msg->data[0] | (1 << 2);
4296 msg->rsp[1] = msg->data[1];
4297 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4298 msg->rsp_size = 3;
4299 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4300 || (msg->rsp[1] != msg->data[1])) {
4301 /*
4302 * The NetFN and Command in the response is not even
4303 * marginally correct.
4304 */
4305 dev_warn(intf->si_dev,
4306 PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4307 (msg->data[0] >> 2) | 1, msg->data[1],
4308 msg->rsp[0] >> 2, msg->rsp[1]);
4309
4310 /* Generate an error response for the message. */
4311 msg->rsp[0] = msg->data[0] | (1 << 2);
4312 msg->rsp[1] = msg->data[1];
4313 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4314 msg->rsp_size = 3;
4315 }
4316
4317 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4318 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4319 && (msg->user_data != NULL)) {
4320 /*
4321 * It's a response to a response we sent. For this we
4322 * deliver a send message response to the user.
4323 */
4324 struct ipmi_recv_msg *recv_msg = msg->user_data;
4325
4326 requeue = 0;
4327 if (msg->rsp_size < 2)
4328 /* Message is too small to be correct. */
4329 goto out;
4330
4331 chan = msg->data[2] & 0x0f;
4332 if (chan >= IPMI_MAX_CHANNELS)
4333 /* Invalid channel number */
4334 goto out;
4335
4336 if (!recv_msg)
4337 goto out;
4338
4339 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4340 recv_msg->msg.data = recv_msg->msg_data;
4341 recv_msg->msg.data_len = 1;
4342 recv_msg->msg_data[0] = msg->rsp[2];
4343 deliver_local_response(intf, recv_msg);
4344 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4345 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4346 struct ipmi_channel *chans;
4347
4348 /* It's from the receive queue. */
4349 chan = msg->rsp[3] & 0xf;
4350 if (chan >= IPMI_MAX_CHANNELS) {
4351 /* Invalid channel number */
4352 requeue = 0;
4353 goto out;
4354 }
4355
4356 /*
4357 * We need to make sure the channels have been initialized.
4358 * The channel_handler routine will set the "curr_channel"
4359 * equal to or greater than IPMI_MAX_CHANNELS when all the
4360 * channels for this interface have been initialized.
4361 */
4362 if (!intf->channels_ready) {
4363 requeue = 0; /* Throw the message away */
4364 goto out;
4365 }
4366
4367 chans = READ_ONCE(intf->channel_list)->c;
4368
4369 switch (chans[chan].medium) {
4370 case IPMI_CHANNEL_MEDIUM_IPMB:
4371 if (msg->rsp[4] & 0x04) {
4372 /*
4373 * It's a response, so find the
4374 * requesting message and send it up.
4375 */
4376 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4377 } else {
4378 /*
4379 * It's a command to the SMS from some other
4380 * entity. Handle that.
4381 */
4382 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4383 }
4384 break;
4385
4386 case IPMI_CHANNEL_MEDIUM_8023LAN:
4387 case IPMI_CHANNEL_MEDIUM_ASYNC:
4388 if (msg->rsp[6] & 0x04) {
4389 /*
4390 * It's a response, so find the
4391 * requesting message and send it up.
4392 */
4393 requeue = handle_lan_get_msg_rsp(intf, msg);
4394 } else {
4395 /*
4396 * It's a command to the SMS from some other
4397 * entity. Handle that.
4398 */
4399 requeue = handle_lan_get_msg_cmd(intf, msg);
4400 }
4401 break;
4402
4403 default:
4404 /* Check for OEM Channels. Clients had better
4405 register for these commands. */
4406 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4407 && (chans[chan].medium
4408 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4409 requeue = handle_oem_get_msg_cmd(intf, msg);
4410 } else {
4411 /*
4412 * We don't handle the channel type, so just
4413 * free the message.
4414 */
4415 requeue = 0;
4416 }
4417 }
4418
4419 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4420 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4421 /* It's an asynchronous event. */
4422 requeue = handle_read_event_rsp(intf, msg);
4423 } else {
4424 /* It's a response from the local BMC. */
4425 requeue = handle_bmc_rsp(intf, msg);
4426 }
4427
4428 out:
4429 return requeue;
4430 }
4431
4432 /*
4433 * If there are messages in the queue or pretimeouts, handle them.
4434 */
handle_new_recv_msgs(struct ipmi_smi * intf)4435 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4436 {
4437 struct ipmi_smi_msg *smi_msg;
4438 unsigned long flags = 0;
4439 int rv;
4440 int run_to_completion = intf->run_to_completion;
4441
4442 /* See if any waiting messages need to be processed. */
4443 if (!run_to_completion)
4444 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4445 while (!list_empty(&intf->waiting_rcv_msgs)) {
4446 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4447 struct ipmi_smi_msg, link);
4448 list_del(&smi_msg->link);
4449 if (!run_to_completion)
4450 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4451 flags);
4452 rv = handle_one_recv_msg(intf, smi_msg);
4453 if (!run_to_completion)
4454 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4455 if (rv > 0) {
4456 /*
4457 * To preserve message order, quit if we
4458 * can't handle a message. Add the message
4459 * back at the head, this is safe because this
4460 * tasklet is the only thing that pulls the
4461 * messages.
4462 */
4463 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4464 break;
4465 } else {
4466 if (rv == 0)
4467 /* Message handled */
4468 ipmi_free_smi_msg(smi_msg);
4469 /* If rv < 0, fatal error, del but don't free. */
4470 }
4471 }
4472 if (!run_to_completion)
4473 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4474
4475 /*
4476 * If the pretimout count is non-zero, decrement one from it and
4477 * deliver pretimeouts to all the users.
4478 */
4479 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4480 struct ipmi_user *user;
4481 int index;
4482
4483 index = srcu_read_lock(&intf->users_srcu);
4484 list_for_each_entry_rcu(user, &intf->users, link) {
4485 if (user->handler->ipmi_watchdog_pretimeout)
4486 user->handler->ipmi_watchdog_pretimeout(
4487 user->handler_data);
4488 }
4489 srcu_read_unlock(&intf->users_srcu, index);
4490 }
4491 }
4492
smi_recv_tasklet(unsigned long val)4493 static void smi_recv_tasklet(unsigned long val)
4494 {
4495 unsigned long flags = 0; /* keep us warning-free. */
4496 struct ipmi_smi *intf = (struct ipmi_smi *) val;
4497 int run_to_completion = intf->run_to_completion;
4498 struct ipmi_smi_msg *newmsg = NULL;
4499
4500 /*
4501 * Start the next message if available.
4502 *
4503 * Do this here, not in the actual receiver, because we may deadlock
4504 * because the lower layer is allowed to hold locks while calling
4505 * message delivery.
4506 */
4507
4508 rcu_read_lock();
4509
4510 if (!run_to_completion)
4511 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4512 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4513 struct list_head *entry = NULL;
4514
4515 /* Pick the high priority queue first. */
4516 if (!list_empty(&intf->hp_xmit_msgs))
4517 entry = intf->hp_xmit_msgs.next;
4518 else if (!list_empty(&intf->xmit_msgs))
4519 entry = intf->xmit_msgs.next;
4520
4521 if (entry) {
4522 list_del(entry);
4523 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4524 intf->curr_msg = newmsg;
4525 }
4526 }
4527
4528 if (!run_to_completion)
4529 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4530 if (newmsg)
4531 intf->handlers->sender(intf->send_info, newmsg);
4532
4533 rcu_read_unlock();
4534
4535 handle_new_recv_msgs(intf);
4536 }
4537
4538 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4539 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4540 struct ipmi_smi_msg *msg)
4541 {
4542 unsigned long flags = 0; /* keep us warning-free. */
4543 int run_to_completion = intf->run_to_completion;
4544
4545 /*
4546 * To preserve message order, we keep a queue and deliver from
4547 * a tasklet.
4548 */
4549 if (!run_to_completion)
4550 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4551 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4552 if (!run_to_completion)
4553 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4554 flags);
4555
4556 if (!run_to_completion)
4557 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4558 /*
4559 * We can get an asynchronous event or receive message in addition
4560 * to commands we send.
4561 */
4562 if (msg == intf->curr_msg)
4563 intf->curr_msg = NULL;
4564 if (!run_to_completion)
4565 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4566
4567 if (run_to_completion)
4568 smi_recv_tasklet((unsigned long) intf);
4569 else
4570 tasklet_schedule(&intf->recv_tasklet);
4571 }
4572 EXPORT_SYMBOL(ipmi_smi_msg_received);
4573
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4574 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4575 {
4576 if (intf->in_shutdown)
4577 return;
4578
4579 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4580 tasklet_schedule(&intf->recv_tasklet);
4581 }
4582 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4583
4584 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4585 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4586 unsigned char seq, long seqid)
4587 {
4588 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4589 if (!smi_msg)
4590 /*
4591 * If we can't allocate the message, then just return, we
4592 * get 4 retries, so this should be ok.
4593 */
4594 return NULL;
4595
4596 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4597 smi_msg->data_size = recv_msg->msg.data_len;
4598 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4599
4600 ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4601
4602 return smi_msg;
4603 }
4604
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4605 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4606 struct list_head *timeouts,
4607 unsigned long timeout_period,
4608 int slot, unsigned long *flags,
4609 bool *need_timer)
4610 {
4611 struct ipmi_recv_msg *msg;
4612
4613 if (intf->in_shutdown)
4614 return;
4615
4616 if (!ent->inuse)
4617 return;
4618
4619 if (timeout_period < ent->timeout) {
4620 ent->timeout -= timeout_period;
4621 *need_timer = true;
4622 return;
4623 }
4624
4625 if (ent->retries_left == 0) {
4626 /* The message has used all its retries. */
4627 ent->inuse = 0;
4628 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4629 msg = ent->recv_msg;
4630 list_add_tail(&msg->link, timeouts);
4631 if (ent->broadcast)
4632 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4633 else if (is_lan_addr(&ent->recv_msg->addr))
4634 ipmi_inc_stat(intf, timed_out_lan_commands);
4635 else
4636 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4637 } else {
4638 struct ipmi_smi_msg *smi_msg;
4639 /* More retries, send again. */
4640
4641 *need_timer = true;
4642
4643 /*
4644 * Start with the max timer, set to normal timer after
4645 * the message is sent.
4646 */
4647 ent->timeout = MAX_MSG_TIMEOUT;
4648 ent->retries_left--;
4649 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4650 ent->seqid);
4651 if (!smi_msg) {
4652 if (is_lan_addr(&ent->recv_msg->addr))
4653 ipmi_inc_stat(intf,
4654 dropped_rexmit_lan_commands);
4655 else
4656 ipmi_inc_stat(intf,
4657 dropped_rexmit_ipmb_commands);
4658 return;
4659 }
4660
4661 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4662
4663 /*
4664 * Send the new message. We send with a zero
4665 * priority. It timed out, I doubt time is that
4666 * critical now, and high priority messages are really
4667 * only for messages to the local MC, which don't get
4668 * resent.
4669 */
4670 if (intf->handlers) {
4671 if (is_lan_addr(&ent->recv_msg->addr))
4672 ipmi_inc_stat(intf,
4673 retransmitted_lan_commands);
4674 else
4675 ipmi_inc_stat(intf,
4676 retransmitted_ipmb_commands);
4677
4678 smi_send(intf, intf->handlers, smi_msg, 0);
4679 } else
4680 ipmi_free_smi_msg(smi_msg);
4681
4682 spin_lock_irqsave(&intf->seq_lock, *flags);
4683 }
4684 }
4685
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)4686 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4687 unsigned long timeout_period)
4688 {
4689 struct list_head timeouts;
4690 struct ipmi_recv_msg *msg, *msg2;
4691 unsigned long flags;
4692 int i;
4693 bool need_timer = false;
4694
4695 if (!intf->bmc_registered) {
4696 kref_get(&intf->refcount);
4697 if (!schedule_work(&intf->bmc_reg_work)) {
4698 kref_put(&intf->refcount, intf_free);
4699 need_timer = true;
4700 }
4701 }
4702
4703 /*
4704 * Go through the seq table and find any messages that
4705 * have timed out, putting them in the timeouts
4706 * list.
4707 */
4708 INIT_LIST_HEAD(&timeouts);
4709 spin_lock_irqsave(&intf->seq_lock, flags);
4710 if (intf->ipmb_maintenance_mode_timeout) {
4711 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4712 intf->ipmb_maintenance_mode_timeout = 0;
4713 else
4714 intf->ipmb_maintenance_mode_timeout -= timeout_period;
4715 }
4716 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4717 check_msg_timeout(intf, &intf->seq_table[i],
4718 &timeouts, timeout_period, i,
4719 &flags, &need_timer);
4720 spin_unlock_irqrestore(&intf->seq_lock, flags);
4721
4722 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4723 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4724
4725 /*
4726 * Maintenance mode handling. Check the timeout
4727 * optimistically before we claim the lock. It may
4728 * mean a timeout gets missed occasionally, but that
4729 * only means the timeout gets extended by one period
4730 * in that case. No big deal, and it avoids the lock
4731 * most of the time.
4732 */
4733 if (intf->auto_maintenance_timeout > 0) {
4734 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4735 if (intf->auto_maintenance_timeout > 0) {
4736 intf->auto_maintenance_timeout
4737 -= timeout_period;
4738 if (!intf->maintenance_mode
4739 && (intf->auto_maintenance_timeout <= 0)) {
4740 intf->maintenance_mode_enable = false;
4741 maintenance_mode_update(intf);
4742 }
4743 }
4744 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4745 flags);
4746 }
4747
4748 tasklet_schedule(&intf->recv_tasklet);
4749
4750 return need_timer;
4751 }
4752
ipmi_request_event(struct ipmi_smi * intf)4753 static void ipmi_request_event(struct ipmi_smi *intf)
4754 {
4755 /* No event requests when in maintenance mode. */
4756 if (intf->maintenance_mode_enable)
4757 return;
4758
4759 if (!intf->in_shutdown)
4760 intf->handlers->request_events(intf->send_info);
4761 }
4762
4763 static struct timer_list ipmi_timer;
4764
4765 static atomic_t stop_operation;
4766
ipmi_timeout(struct timer_list * unused)4767 static void ipmi_timeout(struct timer_list *unused)
4768 {
4769 struct ipmi_smi *intf;
4770 bool need_timer = false;
4771 int index;
4772
4773 if (atomic_read(&stop_operation))
4774 return;
4775
4776 index = srcu_read_lock(&ipmi_interfaces_srcu);
4777 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4778 if (atomic_read(&intf->event_waiters)) {
4779 intf->ticks_to_req_ev--;
4780 if (intf->ticks_to_req_ev == 0) {
4781 ipmi_request_event(intf);
4782 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4783 }
4784 need_timer = true;
4785 }
4786
4787 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4788 }
4789 srcu_read_unlock(&ipmi_interfaces_srcu, index);
4790
4791 if (need_timer)
4792 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4793 }
4794
need_waiter(struct ipmi_smi * intf)4795 static void need_waiter(struct ipmi_smi *intf)
4796 {
4797 /* Racy, but worst case we start the timer twice. */
4798 if (!timer_pending(&ipmi_timer))
4799 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4800 }
4801
4802 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4803 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4804
free_smi_msg(struct ipmi_smi_msg * msg)4805 static void free_smi_msg(struct ipmi_smi_msg *msg)
4806 {
4807 atomic_dec(&smi_msg_inuse_count);
4808 kfree(msg);
4809 }
4810
ipmi_alloc_smi_msg(void)4811 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4812 {
4813 struct ipmi_smi_msg *rv;
4814 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4815 if (rv) {
4816 rv->done = free_smi_msg;
4817 rv->user_data = NULL;
4818 atomic_inc(&smi_msg_inuse_count);
4819 }
4820 return rv;
4821 }
4822 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4823
free_recv_msg(struct ipmi_recv_msg * msg)4824 static void free_recv_msg(struct ipmi_recv_msg *msg)
4825 {
4826 atomic_dec(&recv_msg_inuse_count);
4827 kfree(msg);
4828 }
4829
ipmi_alloc_recv_msg(void)4830 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4831 {
4832 struct ipmi_recv_msg *rv;
4833
4834 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4835 if (rv) {
4836 rv->user = NULL;
4837 rv->done = free_recv_msg;
4838 atomic_inc(&recv_msg_inuse_count);
4839 }
4840 return rv;
4841 }
4842
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4843 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4844 {
4845 if (msg->user)
4846 kref_put(&msg->user->refcount, free_user);
4847 msg->done(msg);
4848 }
4849 EXPORT_SYMBOL(ipmi_free_recv_msg);
4850
4851 static atomic_t panic_done_count = ATOMIC_INIT(0);
4852
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4853 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4854 {
4855 atomic_dec(&panic_done_count);
4856 }
4857
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4858 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4859 {
4860 atomic_dec(&panic_done_count);
4861 }
4862
4863 /*
4864 * Inside a panic, send a message and wait for a response.
4865 */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4866 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4867 struct ipmi_addr *addr,
4868 struct kernel_ipmi_msg *msg)
4869 {
4870 struct ipmi_smi_msg smi_msg;
4871 struct ipmi_recv_msg recv_msg;
4872 int rv;
4873
4874 smi_msg.done = dummy_smi_done_handler;
4875 recv_msg.done = dummy_recv_done_handler;
4876 atomic_add(2, &panic_done_count);
4877 rv = i_ipmi_request(NULL,
4878 intf,
4879 addr,
4880 0,
4881 msg,
4882 intf,
4883 &smi_msg,
4884 &recv_msg,
4885 0,
4886 intf->addrinfo[0].address,
4887 intf->addrinfo[0].lun,
4888 0, 1); /* Don't retry, and don't wait. */
4889 if (rv)
4890 atomic_sub(2, &panic_done_count);
4891 else if (intf->handlers->flush_messages)
4892 intf->handlers->flush_messages(intf->send_info);
4893
4894 while (atomic_read(&panic_done_count) != 0)
4895 ipmi_poll(intf);
4896 }
4897
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4898 static void event_receiver_fetcher(struct ipmi_smi *intf,
4899 struct ipmi_recv_msg *msg)
4900 {
4901 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4902 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4903 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4904 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4905 /* A get event receiver command, save it. */
4906 intf->event_receiver = msg->msg.data[1];
4907 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4908 }
4909 }
4910
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4911 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4912 {
4913 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4914 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4915 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4916 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4917 /*
4918 * A get device id command, save if we are an event
4919 * receiver or generator.
4920 */
4921 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4922 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4923 }
4924 }
4925
send_panic_events(struct ipmi_smi * intf,char * str)4926 static void send_panic_events(struct ipmi_smi *intf, char *str)
4927 {
4928 struct kernel_ipmi_msg msg;
4929 unsigned char data[16];
4930 struct ipmi_system_interface_addr *si;
4931 struct ipmi_addr addr;
4932 char *p = str;
4933 struct ipmi_ipmb_addr *ipmb;
4934 int j;
4935
4936 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4937 return;
4938
4939 si = (struct ipmi_system_interface_addr *) &addr;
4940 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4941 si->channel = IPMI_BMC_CHANNEL;
4942 si->lun = 0;
4943
4944 /* Fill in an event telling that we have failed. */
4945 msg.netfn = 0x04; /* Sensor or Event. */
4946 msg.cmd = 2; /* Platform event command. */
4947 msg.data = data;
4948 msg.data_len = 8;
4949 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4950 data[1] = 0x03; /* This is for IPMI 1.0. */
4951 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4952 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4953 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4954
4955 /*
4956 * Put a few breadcrumbs in. Hopefully later we can add more things
4957 * to make the panic events more useful.
4958 */
4959 if (str) {
4960 data[3] = str[0];
4961 data[6] = str[1];
4962 data[7] = str[2];
4963 }
4964
4965 /* Send the event announcing the panic. */
4966 ipmi_panic_request_and_wait(intf, &addr, &msg);
4967
4968 /*
4969 * On every interface, dump a bunch of OEM event holding the
4970 * string.
4971 */
4972 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4973 return;
4974
4975 /*
4976 * intf_num is used as an marker to tell if the
4977 * interface is valid. Thus we need a read barrier to
4978 * make sure data fetched before checking intf_num
4979 * won't be used.
4980 */
4981 smp_rmb();
4982
4983 /*
4984 * First job here is to figure out where to send the
4985 * OEM events. There's no way in IPMI to send OEM
4986 * events using an event send command, so we have to
4987 * find the SEL to put them in and stick them in
4988 * there.
4989 */
4990
4991 /* Get capabilities from the get device id. */
4992 intf->local_sel_device = 0;
4993 intf->local_event_generator = 0;
4994 intf->event_receiver = 0;
4995
4996 /* Request the device info from the local MC. */
4997 msg.netfn = IPMI_NETFN_APP_REQUEST;
4998 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4999 msg.data = NULL;
5000 msg.data_len = 0;
5001 intf->null_user_handler = device_id_fetcher;
5002 ipmi_panic_request_and_wait(intf, &addr, &msg);
5003
5004 if (intf->local_event_generator) {
5005 /* Request the event receiver from the local MC. */
5006 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5007 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5008 msg.data = NULL;
5009 msg.data_len = 0;
5010 intf->null_user_handler = event_receiver_fetcher;
5011 ipmi_panic_request_and_wait(intf, &addr, &msg);
5012 }
5013 intf->null_user_handler = NULL;
5014
5015 /*
5016 * Validate the event receiver. The low bit must not
5017 * be 1 (it must be a valid IPMB address), it cannot
5018 * be zero, and it must not be my address.
5019 */
5020 if (((intf->event_receiver & 1) == 0)
5021 && (intf->event_receiver != 0)
5022 && (intf->event_receiver != intf->addrinfo[0].address)) {
5023 /*
5024 * The event receiver is valid, send an IPMB
5025 * message.
5026 */
5027 ipmb = (struct ipmi_ipmb_addr *) &addr;
5028 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5029 ipmb->channel = 0; /* FIXME - is this right? */
5030 ipmb->lun = intf->event_receiver_lun;
5031 ipmb->slave_addr = intf->event_receiver;
5032 } else if (intf->local_sel_device) {
5033 /*
5034 * The event receiver was not valid (or was
5035 * me), but I am an SEL device, just dump it
5036 * in my SEL.
5037 */
5038 si = (struct ipmi_system_interface_addr *) &addr;
5039 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5040 si->channel = IPMI_BMC_CHANNEL;
5041 si->lun = 0;
5042 } else
5043 return; /* No where to send the event. */
5044
5045 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5046 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5047 msg.data = data;
5048 msg.data_len = 16;
5049
5050 j = 0;
5051 while (*p) {
5052 int size = strlen(p);
5053
5054 if (size > 11)
5055 size = 11;
5056 data[0] = 0;
5057 data[1] = 0;
5058 data[2] = 0xf0; /* OEM event without timestamp. */
5059 data[3] = intf->addrinfo[0].address;
5060 data[4] = j++; /* sequence # */
5061 /*
5062 * Always give 11 bytes, so strncpy will fill
5063 * it with zeroes for me.
5064 */
5065 strncpy(data+5, p, 11);
5066 p += size;
5067
5068 ipmi_panic_request_and_wait(intf, &addr, &msg);
5069 }
5070 }
5071
5072 static int has_panicked;
5073
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5074 static int panic_event(struct notifier_block *this,
5075 unsigned long event,
5076 void *ptr)
5077 {
5078 struct ipmi_smi *intf;
5079 struct ipmi_user *user;
5080
5081 if (has_panicked)
5082 return NOTIFY_DONE;
5083 has_panicked = 1;
5084
5085 /* For every registered interface, set it to run to completion. */
5086 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5087 if (!intf->handlers || intf->intf_num == -1)
5088 /* Interface is not ready. */
5089 continue;
5090
5091 if (!intf->handlers->poll)
5092 continue;
5093
5094 /*
5095 * If we were interrupted while locking xmit_msgs_lock or
5096 * waiting_rcv_msgs_lock, the corresponding list may be
5097 * corrupted. In this case, drop items on the list for
5098 * the safety.
5099 */
5100 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5101 INIT_LIST_HEAD(&intf->xmit_msgs);
5102 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5103 } else
5104 spin_unlock(&intf->xmit_msgs_lock);
5105
5106 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5107 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5108 else
5109 spin_unlock(&intf->waiting_rcv_msgs_lock);
5110
5111 intf->run_to_completion = 1;
5112 if (intf->handlers->set_run_to_completion)
5113 intf->handlers->set_run_to_completion(intf->send_info,
5114 1);
5115
5116 list_for_each_entry_rcu(user, &intf->users, link) {
5117 if (user->handler->ipmi_panic_handler)
5118 user->handler->ipmi_panic_handler(
5119 user->handler_data);
5120 }
5121
5122 send_panic_events(intf, ptr);
5123 }
5124
5125 return NOTIFY_DONE;
5126 }
5127
5128 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5129 static int ipmi_register_driver(void)
5130 {
5131 int rv;
5132
5133 if (drvregistered)
5134 return 0;
5135
5136 rv = driver_register(&ipmidriver.driver);
5137 if (rv)
5138 pr_err("Could not register IPMI driver\n");
5139 else
5140 drvregistered = true;
5141 return rv;
5142 }
5143
5144 static struct notifier_block panic_block = {
5145 .notifier_call = panic_event,
5146 .next = NULL,
5147 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5148 };
5149
ipmi_init_msghandler(void)5150 static int ipmi_init_msghandler(void)
5151 {
5152 int rv;
5153
5154 mutex_lock(&ipmi_interfaces_mutex);
5155 rv = ipmi_register_driver();
5156 if (rv)
5157 goto out;
5158 if (initialized)
5159 goto out;
5160
5161 rv = init_srcu_struct(&ipmi_interfaces_srcu);
5162 if (rv)
5163 goto out;
5164
5165 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5166 if (!remove_work_wq) {
5167 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5168 rv = -ENOMEM;
5169 goto out_wq;
5170 }
5171
5172 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5173 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5174
5175 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5176
5177 initialized = true;
5178
5179 out_wq:
5180 if (rv)
5181 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5182 out:
5183 mutex_unlock(&ipmi_interfaces_mutex);
5184 return rv;
5185 }
5186
ipmi_init_msghandler_mod(void)5187 static int __init ipmi_init_msghandler_mod(void)
5188 {
5189 int rv;
5190
5191 pr_info("version " IPMI_DRIVER_VERSION "\n");
5192
5193 mutex_lock(&ipmi_interfaces_mutex);
5194 rv = ipmi_register_driver();
5195 mutex_unlock(&ipmi_interfaces_mutex);
5196
5197 return rv;
5198 }
5199
cleanup_ipmi(void)5200 static void __exit cleanup_ipmi(void)
5201 {
5202 int count;
5203
5204 if (initialized) {
5205 destroy_workqueue(remove_work_wq);
5206
5207 atomic_notifier_chain_unregister(&panic_notifier_list,
5208 &panic_block);
5209
5210 /*
5211 * This can't be called if any interfaces exist, so no worry
5212 * about shutting down the interfaces.
5213 */
5214
5215 /*
5216 * Tell the timer to stop, then wait for it to stop. This
5217 * avoids problems with race conditions removing the timer
5218 * here.
5219 */
5220 atomic_inc(&stop_operation);
5221 del_timer_sync(&ipmi_timer);
5222
5223 initialized = false;
5224
5225 /* Check for buffer leaks. */
5226 count = atomic_read(&smi_msg_inuse_count);
5227 if (count != 0)
5228 pr_warn(PFX "SMI message count %d at exit\n", count);
5229 count = atomic_read(&recv_msg_inuse_count);
5230 if (count != 0)
5231 pr_warn(PFX "recv message count %d at exit\n", count);
5232 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5233 }
5234 if (drvregistered)
5235 driver_unregister(&ipmidriver.driver);
5236 }
5237 module_exit(cleanup_ipmi);
5238
5239 module_init(ipmi_init_msghandler_mod);
5240 MODULE_LICENSE("GPL");
5241 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5242 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5243 " interface.");
5244 MODULE_VERSION(IPMI_DRIVER_VERSION);
5245 MODULE_SOFTDEP("post: ipmi_devintf");
5246