1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
29 #include <linux/mm.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
39 
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
43 
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
46 
47 #include "irq-gic-common.h"
48 
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
52 
53 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
54 
55 static u32 lpi_id_bits;
56 
57 /*
58  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59  * deal with (one configuration byte per interrupt). PENDBASE has to
60  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61  */
62 #define LPI_NRBITS		lpi_id_bits
63 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65 
66 #define LPI_PROP_DEFAULT_PRIO	0xa0
67 
68 /*
69  * Collection structure - just an ID, and a redistributor address to
70  * ping. We use one per CPU as a bag of interrupts assigned to this
71  * CPU.
72  */
73 struct its_collection {
74 	u64			target_address;
75 	u16			col_id;
76 };
77 
78 /*
79  * The ITS_BASER structure - contains memory information, cached
80  * value of BASER register configuration and ITS page size.
81  */
82 struct its_baser {
83 	void		*base;
84 	u64		val;
85 	u32		order;
86 	u32		psz;
87 };
88 
89 struct its_device;
90 
91 /*
92  * The ITS structure - contains most of the infrastructure, with the
93  * top-level MSI domain, the command queue, the collections, and the
94  * list of devices writing to it.
95  *
96  * dev_alloc_lock has to be taken for device allocations, while the
97  * spinlock must be taken to parse data structures such as the device
98  * list.
99  */
100 struct its_node {
101 	raw_spinlock_t		lock;
102 	struct mutex		dev_alloc_lock;
103 	struct list_head	entry;
104 	void __iomem		*base;
105 	phys_addr_t		phys_base;
106 	struct its_cmd_block	*cmd_base;
107 	struct its_cmd_block	*cmd_write;
108 	struct its_baser	tables[GITS_BASER_NR_REGS];
109 	struct its_collection	*collections;
110 	struct fwnode_handle	*fwnode_handle;
111 	u64			(*get_msi_base)(struct its_device *its_dev);
112 	u64			cbaser_save;
113 	u32			ctlr_save;
114 	struct list_head	its_device_list;
115 	u64			flags;
116 	unsigned long		list_nr;
117 	u32			ite_size;
118 	u32			device_ids;
119 	int			numa_node;
120 	unsigned int		msi_domain_flags;
121 	u32			pre_its_base; /* for Socionext Synquacer */
122 	bool			is_v4;
123 	int			vlpi_redist_offset;
124 };
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS	(16)
130 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
131 
132 /* Convert page order to size in bytes */
133 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
134 
135 struct event_lpi_map {
136 	unsigned long		*lpi_map;
137 	u16			*col_map;
138 	irq_hw_number_t		lpi_base;
139 	int			nr_lpis;
140 	struct mutex		vlpi_lock;
141 	struct its_vm		*vm;
142 	struct its_vlpi_map	*vlpi_maps;
143 	int			nr_vlpis;
144 };
145 
146 /*
147  * The ITS view of a device - belongs to an ITS, owns an interrupt
148  * translation table, and a list of interrupts.  If it some of its
149  * LPIs are injected into a guest (GICv4), the event_map.vm field
150  * indicates which one.
151  */
152 struct its_device {
153 	struct list_head	entry;
154 	struct its_node		*its;
155 	struct event_lpi_map	event_map;
156 	void			*itt;
157 	u32			nr_ites;
158 	u32			device_id;
159 	bool			shared;
160 };
161 
162 static struct {
163 	raw_spinlock_t		lock;
164 	struct its_device	*dev;
165 	struct its_vpe		**vpes;
166 	int			next_victim;
167 } vpe_proxy;
168 
169 static LIST_HEAD(its_nodes);
170 static DEFINE_RAW_SPINLOCK(its_lock);
171 static struct rdists *gic_rdists;
172 static struct irq_domain *its_parent;
173 
174 static unsigned long its_list_map;
175 static u16 vmovp_seq_num;
176 static DEFINE_RAW_SPINLOCK(vmovp_lock);
177 
178 static DEFINE_IDA(its_vpeid_ida);
179 
180 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
181 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
182 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
183 
get_its_list(struct its_vm * vm)184 static u16 get_its_list(struct its_vm *vm)
185 {
186 	struct its_node *its;
187 	unsigned long its_list = 0;
188 
189 	list_for_each_entry(its, &its_nodes, entry) {
190 		if (!its->is_v4)
191 			continue;
192 
193 		if (vm->vlpi_count[its->list_nr])
194 			__set_bit(its->list_nr, &its_list);
195 	}
196 
197 	return (u16)its_list;
198 }
199 
dev_event_to_col(struct its_device * its_dev,u32 event)200 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
201 					       u32 event)
202 {
203 	struct its_node *its = its_dev->its;
204 
205 	return its->collections + its_dev->event_map.col_map[event];
206 }
207 
valid_col(struct its_collection * col)208 static struct its_collection *valid_col(struct its_collection *col)
209 {
210 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
211 		return NULL;
212 
213 	return col;
214 }
215 
valid_vpe(struct its_node * its,struct its_vpe * vpe)216 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
217 {
218 	if (valid_col(its->collections + vpe->col_idx))
219 		return vpe;
220 
221 	return NULL;
222 }
223 
224 /*
225  * ITS command descriptors - parameters to be encoded in a command
226  * block.
227  */
228 struct its_cmd_desc {
229 	union {
230 		struct {
231 			struct its_device *dev;
232 			u32 event_id;
233 		} its_inv_cmd;
234 
235 		struct {
236 			struct its_device *dev;
237 			u32 event_id;
238 		} its_clear_cmd;
239 
240 		struct {
241 			struct its_device *dev;
242 			u32 event_id;
243 		} its_int_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			int valid;
248 		} its_mapd_cmd;
249 
250 		struct {
251 			struct its_collection *col;
252 			int valid;
253 		} its_mapc_cmd;
254 
255 		struct {
256 			struct its_device *dev;
257 			u32 phys_id;
258 			u32 event_id;
259 		} its_mapti_cmd;
260 
261 		struct {
262 			struct its_device *dev;
263 			struct its_collection *col;
264 			u32 event_id;
265 		} its_movi_cmd;
266 
267 		struct {
268 			struct its_device *dev;
269 			u32 event_id;
270 		} its_discard_cmd;
271 
272 		struct {
273 			struct its_collection *col;
274 		} its_invall_cmd;
275 
276 		struct {
277 			struct its_vpe *vpe;
278 		} its_vinvall_cmd;
279 
280 		struct {
281 			struct its_vpe *vpe;
282 			struct its_collection *col;
283 			bool valid;
284 		} its_vmapp_cmd;
285 
286 		struct {
287 			struct its_vpe *vpe;
288 			struct its_device *dev;
289 			u32 virt_id;
290 			u32 event_id;
291 			bool db_enabled;
292 		} its_vmapti_cmd;
293 
294 		struct {
295 			struct its_vpe *vpe;
296 			struct its_device *dev;
297 			u32 event_id;
298 			bool db_enabled;
299 		} its_vmovi_cmd;
300 
301 		struct {
302 			struct its_vpe *vpe;
303 			struct its_collection *col;
304 			u16 seq_num;
305 			u16 its_list;
306 		} its_vmovp_cmd;
307 	};
308 };
309 
310 /*
311  * The ITS command block, which is what the ITS actually parses.
312  */
313 struct its_cmd_block {
314 	u64	raw_cmd[4];
315 };
316 
317 #define ITS_CMD_QUEUE_SZ		SZ_64K
318 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
319 
320 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
321 						    struct its_cmd_block *,
322 						    struct its_cmd_desc *);
323 
324 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
325 					      struct its_cmd_block *,
326 					      struct its_cmd_desc *);
327 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)328 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
329 {
330 	u64 mask = GENMASK_ULL(h, l);
331 	*raw_cmd &= ~mask;
332 	*raw_cmd |= (val << l) & mask;
333 }
334 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)335 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
336 {
337 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
338 }
339 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)340 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
341 {
342 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
343 }
344 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)345 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
346 {
347 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
348 }
349 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)350 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
351 {
352 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
353 }
354 
its_encode_size(struct its_cmd_block * cmd,u8 size)355 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
356 {
357 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
358 }
359 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)360 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
361 {
362 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
363 }
364 
its_encode_valid(struct its_cmd_block * cmd,int valid)365 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
366 {
367 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
368 }
369 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)370 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
371 {
372 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
373 }
374 
its_encode_collection(struct its_cmd_block * cmd,u16 col)375 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
376 {
377 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
378 }
379 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)380 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
381 {
382 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
383 }
384 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)385 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
386 {
387 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
388 }
389 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)390 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
391 {
392 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
393 }
394 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)395 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
396 {
397 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
398 }
399 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)400 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
401 {
402 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
403 }
404 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)405 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
406 {
407 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
408 }
409 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)410 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
411 {
412 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
413 }
414 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)415 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
416 {
417 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
418 }
419 
its_fixup_cmd(struct its_cmd_block * cmd)420 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
421 {
422 	/* Let's fixup BE commands */
423 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
424 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
425 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
426 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
427 }
428 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)429 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
430 						 struct its_cmd_block *cmd,
431 						 struct its_cmd_desc *desc)
432 {
433 	unsigned long itt_addr;
434 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
435 
436 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
437 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
438 
439 	its_encode_cmd(cmd, GITS_CMD_MAPD);
440 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
441 	its_encode_size(cmd, size - 1);
442 	its_encode_itt(cmd, itt_addr);
443 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
444 
445 	its_fixup_cmd(cmd);
446 
447 	return NULL;
448 }
449 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)450 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
451 						 struct its_cmd_block *cmd,
452 						 struct its_cmd_desc *desc)
453 {
454 	its_encode_cmd(cmd, GITS_CMD_MAPC);
455 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
456 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
457 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
458 
459 	its_fixup_cmd(cmd);
460 
461 	return desc->its_mapc_cmd.col;
462 }
463 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)464 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
465 						  struct its_cmd_block *cmd,
466 						  struct its_cmd_desc *desc)
467 {
468 	struct its_collection *col;
469 
470 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
471 			       desc->its_mapti_cmd.event_id);
472 
473 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
474 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
475 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
476 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
477 	its_encode_collection(cmd, col->col_id);
478 
479 	its_fixup_cmd(cmd);
480 
481 	return valid_col(col);
482 }
483 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)484 static struct its_collection *its_build_movi_cmd(struct its_node *its,
485 						 struct its_cmd_block *cmd,
486 						 struct its_cmd_desc *desc)
487 {
488 	struct its_collection *col;
489 
490 	col = dev_event_to_col(desc->its_movi_cmd.dev,
491 			       desc->its_movi_cmd.event_id);
492 
493 	its_encode_cmd(cmd, GITS_CMD_MOVI);
494 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
495 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
496 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
497 
498 	its_fixup_cmd(cmd);
499 
500 	return valid_col(col);
501 }
502 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)503 static struct its_collection *its_build_discard_cmd(struct its_node *its,
504 						    struct its_cmd_block *cmd,
505 						    struct its_cmd_desc *desc)
506 {
507 	struct its_collection *col;
508 
509 	col = dev_event_to_col(desc->its_discard_cmd.dev,
510 			       desc->its_discard_cmd.event_id);
511 
512 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
513 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
514 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
515 
516 	its_fixup_cmd(cmd);
517 
518 	return valid_col(col);
519 }
520 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)521 static struct its_collection *its_build_inv_cmd(struct its_node *its,
522 						struct its_cmd_block *cmd,
523 						struct its_cmd_desc *desc)
524 {
525 	struct its_collection *col;
526 
527 	col = dev_event_to_col(desc->its_inv_cmd.dev,
528 			       desc->its_inv_cmd.event_id);
529 
530 	its_encode_cmd(cmd, GITS_CMD_INV);
531 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
532 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
533 
534 	its_fixup_cmd(cmd);
535 
536 	return valid_col(col);
537 }
538 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)539 static struct its_collection *its_build_int_cmd(struct its_node *its,
540 						struct its_cmd_block *cmd,
541 						struct its_cmd_desc *desc)
542 {
543 	struct its_collection *col;
544 
545 	col = dev_event_to_col(desc->its_int_cmd.dev,
546 			       desc->its_int_cmd.event_id);
547 
548 	its_encode_cmd(cmd, GITS_CMD_INT);
549 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
550 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
551 
552 	its_fixup_cmd(cmd);
553 
554 	return valid_col(col);
555 }
556 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)557 static struct its_collection *its_build_clear_cmd(struct its_node *its,
558 						  struct its_cmd_block *cmd,
559 						  struct its_cmd_desc *desc)
560 {
561 	struct its_collection *col;
562 
563 	col = dev_event_to_col(desc->its_clear_cmd.dev,
564 			       desc->its_clear_cmd.event_id);
565 
566 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
567 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
568 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
569 
570 	its_fixup_cmd(cmd);
571 
572 	return valid_col(col);
573 }
574 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)575 static struct its_collection *its_build_invall_cmd(struct its_node *its,
576 						   struct its_cmd_block *cmd,
577 						   struct its_cmd_desc *desc)
578 {
579 	its_encode_cmd(cmd, GITS_CMD_INVALL);
580 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
581 
582 	its_fixup_cmd(cmd);
583 
584 	return desc->its_invall_cmd.col;
585 }
586 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)587 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
588 					     struct its_cmd_block *cmd,
589 					     struct its_cmd_desc *desc)
590 {
591 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
592 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
593 
594 	its_fixup_cmd(cmd);
595 
596 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
597 }
598 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)599 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
600 					   struct its_cmd_block *cmd,
601 					   struct its_cmd_desc *desc)
602 {
603 	unsigned long vpt_addr;
604 	u64 target;
605 
606 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
607 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
608 
609 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
610 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
611 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
612 	its_encode_target(cmd, target);
613 	its_encode_vpt_addr(cmd, vpt_addr);
614 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
615 
616 	its_fixup_cmd(cmd);
617 
618 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
619 }
620 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)621 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
622 					    struct its_cmd_block *cmd,
623 					    struct its_cmd_desc *desc)
624 {
625 	u32 db;
626 
627 	if (desc->its_vmapti_cmd.db_enabled)
628 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
629 	else
630 		db = 1023;
631 
632 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
633 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
634 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
635 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
636 	its_encode_db_phys_id(cmd, db);
637 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
638 
639 	its_fixup_cmd(cmd);
640 
641 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
642 }
643 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)644 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
645 					   struct its_cmd_block *cmd,
646 					   struct its_cmd_desc *desc)
647 {
648 	u32 db;
649 
650 	if (desc->its_vmovi_cmd.db_enabled)
651 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
652 	else
653 		db = 1023;
654 
655 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
656 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
657 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
658 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
659 	its_encode_db_phys_id(cmd, db);
660 	its_encode_db_valid(cmd, true);
661 
662 	its_fixup_cmd(cmd);
663 
664 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
665 }
666 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)667 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
668 					   struct its_cmd_block *cmd,
669 					   struct its_cmd_desc *desc)
670 {
671 	u64 target;
672 
673 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
674 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
675 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
676 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
677 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
678 	its_encode_target(cmd, target);
679 
680 	its_fixup_cmd(cmd);
681 
682 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
683 }
684 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)685 static u64 its_cmd_ptr_to_offset(struct its_node *its,
686 				 struct its_cmd_block *ptr)
687 {
688 	return (ptr - its->cmd_base) * sizeof(*ptr);
689 }
690 
its_queue_full(struct its_node * its)691 static int its_queue_full(struct its_node *its)
692 {
693 	int widx;
694 	int ridx;
695 
696 	widx = its->cmd_write - its->cmd_base;
697 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
698 
699 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
700 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
701 		return 1;
702 
703 	return 0;
704 }
705 
its_allocate_entry(struct its_node * its)706 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
707 {
708 	struct its_cmd_block *cmd;
709 	u32 count = 1000000;	/* 1s! */
710 
711 	while (its_queue_full(its)) {
712 		count--;
713 		if (!count) {
714 			pr_err_ratelimited("ITS queue not draining\n");
715 			return NULL;
716 		}
717 		cpu_relax();
718 		udelay(1);
719 	}
720 
721 	cmd = its->cmd_write++;
722 
723 	/* Handle queue wrapping */
724 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
725 		its->cmd_write = its->cmd_base;
726 
727 	/* Clear command  */
728 	cmd->raw_cmd[0] = 0;
729 	cmd->raw_cmd[1] = 0;
730 	cmd->raw_cmd[2] = 0;
731 	cmd->raw_cmd[3] = 0;
732 
733 	return cmd;
734 }
735 
its_post_commands(struct its_node * its)736 static struct its_cmd_block *its_post_commands(struct its_node *its)
737 {
738 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
739 
740 	writel_relaxed(wr, its->base + GITS_CWRITER);
741 
742 	return its->cmd_write;
743 }
744 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)745 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
746 {
747 	/*
748 	 * Make sure the commands written to memory are observable by
749 	 * the ITS.
750 	 */
751 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
752 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
753 	else
754 		dsb(ishst);
755 }
756 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)757 static int its_wait_for_range_completion(struct its_node *its,
758 					 u64	prev_idx,
759 					 struct its_cmd_block *to)
760 {
761 	u64 rd_idx, to_idx, linear_idx;
762 	u32 count = 1000000;	/* 1s! */
763 
764 	/* Linearize to_idx if the command set has wrapped around */
765 	to_idx = its_cmd_ptr_to_offset(its, to);
766 	if (to_idx < prev_idx)
767 		to_idx += ITS_CMD_QUEUE_SZ;
768 
769 	linear_idx = prev_idx;
770 
771 	while (1) {
772 		s64 delta;
773 
774 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
775 
776 		/*
777 		 * Compute the read pointer progress, taking the
778 		 * potential wrap-around into account.
779 		 */
780 		delta = rd_idx - prev_idx;
781 		if (rd_idx < prev_idx)
782 			delta += ITS_CMD_QUEUE_SZ;
783 
784 		linear_idx += delta;
785 		if (linear_idx >= to_idx)
786 			break;
787 
788 		count--;
789 		if (!count) {
790 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
791 					   to_idx, linear_idx);
792 			return -1;
793 		}
794 		prev_idx = rd_idx;
795 		cpu_relax();
796 		udelay(1);
797 	}
798 
799 	return 0;
800 }
801 
802 /* Warning, macro hell follows */
803 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
804 void name(struct its_node *its,						\
805 	  buildtype builder,						\
806 	  struct its_cmd_desc *desc)					\
807 {									\
808 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
809 	synctype *sync_obj;						\
810 	unsigned long flags;						\
811 	u64 rd_idx;							\
812 									\
813 	raw_spin_lock_irqsave(&its->lock, flags);			\
814 									\
815 	cmd = its_allocate_entry(its);					\
816 	if (!cmd) {		/* We're soooooo screewed... */		\
817 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
818 		return;							\
819 	}								\
820 	sync_obj = builder(its, cmd, desc);				\
821 	its_flush_cmd(its, cmd);					\
822 									\
823 	if (sync_obj) {							\
824 		sync_cmd = its_allocate_entry(its);			\
825 		if (!sync_cmd)						\
826 			goto post;					\
827 									\
828 		buildfn(its, sync_cmd, sync_obj);			\
829 		its_flush_cmd(its, sync_cmd);				\
830 	}								\
831 									\
832 post:									\
833 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
834 	next_cmd = its_post_commands(its);				\
835 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
836 									\
837 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
838 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
839 }
840 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)841 static void its_build_sync_cmd(struct its_node *its,
842 			       struct its_cmd_block *sync_cmd,
843 			       struct its_collection *sync_col)
844 {
845 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
846 	its_encode_target(sync_cmd, sync_col->target_address);
847 
848 	its_fixup_cmd(sync_cmd);
849 }
850 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)851 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
852 			     struct its_collection, its_build_sync_cmd)
853 
854 static void its_build_vsync_cmd(struct its_node *its,
855 				struct its_cmd_block *sync_cmd,
856 				struct its_vpe *sync_vpe)
857 {
858 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
859 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
860 
861 	its_fixup_cmd(sync_cmd);
862 }
863 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)864 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
865 			     struct its_vpe, its_build_vsync_cmd)
866 
867 static void its_send_int(struct its_device *dev, u32 event_id)
868 {
869 	struct its_cmd_desc desc;
870 
871 	desc.its_int_cmd.dev = dev;
872 	desc.its_int_cmd.event_id = event_id;
873 
874 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
875 }
876 
its_send_clear(struct its_device * dev,u32 event_id)877 static void its_send_clear(struct its_device *dev, u32 event_id)
878 {
879 	struct its_cmd_desc desc;
880 
881 	desc.its_clear_cmd.dev = dev;
882 	desc.its_clear_cmd.event_id = event_id;
883 
884 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
885 }
886 
its_send_inv(struct its_device * dev,u32 event_id)887 static void its_send_inv(struct its_device *dev, u32 event_id)
888 {
889 	struct its_cmd_desc desc;
890 
891 	desc.its_inv_cmd.dev = dev;
892 	desc.its_inv_cmd.event_id = event_id;
893 
894 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
895 }
896 
its_send_mapd(struct its_device * dev,int valid)897 static void its_send_mapd(struct its_device *dev, int valid)
898 {
899 	struct its_cmd_desc desc;
900 
901 	desc.its_mapd_cmd.dev = dev;
902 	desc.its_mapd_cmd.valid = !!valid;
903 
904 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
905 }
906 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)907 static void its_send_mapc(struct its_node *its, struct its_collection *col,
908 			  int valid)
909 {
910 	struct its_cmd_desc desc;
911 
912 	desc.its_mapc_cmd.col = col;
913 	desc.its_mapc_cmd.valid = !!valid;
914 
915 	its_send_single_command(its, its_build_mapc_cmd, &desc);
916 }
917 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)918 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
919 {
920 	struct its_cmd_desc desc;
921 
922 	desc.its_mapti_cmd.dev = dev;
923 	desc.its_mapti_cmd.phys_id = irq_id;
924 	desc.its_mapti_cmd.event_id = id;
925 
926 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
927 }
928 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)929 static void its_send_movi(struct its_device *dev,
930 			  struct its_collection *col, u32 id)
931 {
932 	struct its_cmd_desc desc;
933 
934 	desc.its_movi_cmd.dev = dev;
935 	desc.its_movi_cmd.col = col;
936 	desc.its_movi_cmd.event_id = id;
937 
938 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
939 }
940 
its_send_discard(struct its_device * dev,u32 id)941 static void its_send_discard(struct its_device *dev, u32 id)
942 {
943 	struct its_cmd_desc desc;
944 
945 	desc.its_discard_cmd.dev = dev;
946 	desc.its_discard_cmd.event_id = id;
947 
948 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
949 }
950 
its_send_invall(struct its_node * its,struct its_collection * col)951 static void its_send_invall(struct its_node *its, struct its_collection *col)
952 {
953 	struct its_cmd_desc desc;
954 
955 	desc.its_invall_cmd.col = col;
956 
957 	its_send_single_command(its, its_build_invall_cmd, &desc);
958 }
959 
its_send_vmapti(struct its_device * dev,u32 id)960 static void its_send_vmapti(struct its_device *dev, u32 id)
961 {
962 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
963 	struct its_cmd_desc desc;
964 
965 	desc.its_vmapti_cmd.vpe = map->vpe;
966 	desc.its_vmapti_cmd.dev = dev;
967 	desc.its_vmapti_cmd.virt_id = map->vintid;
968 	desc.its_vmapti_cmd.event_id = id;
969 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
970 
971 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
972 }
973 
its_send_vmovi(struct its_device * dev,u32 id)974 static void its_send_vmovi(struct its_device *dev, u32 id)
975 {
976 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
977 	struct its_cmd_desc desc;
978 
979 	desc.its_vmovi_cmd.vpe = map->vpe;
980 	desc.its_vmovi_cmd.dev = dev;
981 	desc.its_vmovi_cmd.event_id = id;
982 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
983 
984 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
985 }
986 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)987 static void its_send_vmapp(struct its_node *its,
988 			   struct its_vpe *vpe, bool valid)
989 {
990 	struct its_cmd_desc desc;
991 
992 	desc.its_vmapp_cmd.vpe = vpe;
993 	desc.its_vmapp_cmd.valid = valid;
994 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
995 
996 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
997 }
998 
its_send_vmovp(struct its_vpe * vpe)999 static void its_send_vmovp(struct its_vpe *vpe)
1000 {
1001 	struct its_cmd_desc desc = {};
1002 	struct its_node *its;
1003 	unsigned long flags;
1004 	int col_id = vpe->col_idx;
1005 
1006 	desc.its_vmovp_cmd.vpe = vpe;
1007 
1008 	if (!its_list_map) {
1009 		its = list_first_entry(&its_nodes, struct its_node, entry);
1010 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1011 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1012 		return;
1013 	}
1014 
1015 	/*
1016 	 * Yet another marvel of the architecture. If using the
1017 	 * its_list "feature", we need to make sure that all ITSs
1018 	 * receive all VMOVP commands in the same order. The only way
1019 	 * to guarantee this is to make vmovp a serialization point.
1020 	 *
1021 	 * Wall <-- Head.
1022 	 */
1023 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1024 
1025 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1026 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1027 
1028 	/* Emit VMOVPs */
1029 	list_for_each_entry(its, &its_nodes, entry) {
1030 		if (!its->is_v4)
1031 			continue;
1032 
1033 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1034 			continue;
1035 
1036 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1037 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1038 	}
1039 
1040 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1041 }
1042 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1043 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1044 {
1045 	struct its_cmd_desc desc;
1046 
1047 	desc.its_vinvall_cmd.vpe = vpe;
1048 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1049 }
1050 
1051 /*
1052  * irqchip functions - assumes MSI, mostly.
1053  */
1054 
its_get_event_id(struct irq_data * d)1055 static inline u32 its_get_event_id(struct irq_data *d)
1056 {
1057 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1058 	return d->hwirq - its_dev->event_map.lpi_base;
1059 }
1060 
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1061 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1062 {
1063 	irq_hw_number_t hwirq;
1064 	struct page *prop_page;
1065 	u8 *cfg;
1066 
1067 	if (irqd_is_forwarded_to_vcpu(d)) {
1068 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1069 		u32 event = its_get_event_id(d);
1070 		struct its_vlpi_map *map;
1071 
1072 		prop_page = its_dev->event_map.vm->vprop_page;
1073 		map = &its_dev->event_map.vlpi_maps[event];
1074 		hwirq = map->vintid;
1075 
1076 		/* Remember the updated property */
1077 		map->properties &= ~clr;
1078 		map->properties |= set | LPI_PROP_GROUP1;
1079 	} else {
1080 		prop_page = gic_rdists->prop_page;
1081 		hwirq = d->hwirq;
1082 	}
1083 
1084 	cfg = page_address(prop_page) + hwirq - 8192;
1085 	*cfg &= ~clr;
1086 	*cfg |= set | LPI_PROP_GROUP1;
1087 
1088 	/*
1089 	 * Make the above write visible to the redistributors.
1090 	 * And yes, we're flushing exactly: One. Single. Byte.
1091 	 * Humpf...
1092 	 */
1093 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1094 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1095 	else
1096 		dsb(ishst);
1097 }
1098 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1099 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1100 {
1101 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1102 
1103 	lpi_write_config(d, clr, set);
1104 	its_send_inv(its_dev, its_get_event_id(d));
1105 }
1106 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1107 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1108 {
1109 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1110 	u32 event = its_get_event_id(d);
1111 
1112 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1113 		return;
1114 
1115 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1116 
1117 	/*
1118 	 * More fun with the architecture:
1119 	 *
1120 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1121 	 * value or to 1023, depending on the enable bit. But that
1122 	 * would be issueing a mapping for an /existing/ DevID+EventID
1123 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1124 	 * to the /same/ vPE, using this opportunity to adjust the
1125 	 * doorbell. Mouahahahaha. We loves it, Precious.
1126 	 */
1127 	its_send_vmovi(its_dev, event);
1128 }
1129 
its_mask_irq(struct irq_data * d)1130 static void its_mask_irq(struct irq_data *d)
1131 {
1132 	if (irqd_is_forwarded_to_vcpu(d))
1133 		its_vlpi_set_doorbell(d, false);
1134 
1135 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1136 }
1137 
its_unmask_irq(struct irq_data * d)1138 static void its_unmask_irq(struct irq_data *d)
1139 {
1140 	if (irqd_is_forwarded_to_vcpu(d))
1141 		its_vlpi_set_doorbell(d, true);
1142 
1143 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1144 }
1145 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1146 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1147 			    bool force)
1148 {
1149 	unsigned int cpu;
1150 	const struct cpumask *cpu_mask = cpu_online_mask;
1151 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1152 	struct its_collection *target_col;
1153 	u32 id = its_get_event_id(d);
1154 
1155 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1156 	if (irqd_is_forwarded_to_vcpu(d))
1157 		return -EINVAL;
1158 
1159        /* lpi cannot be routed to a redistributor that is on a foreign node */
1160 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1161 		if (its_dev->its->numa_node >= 0) {
1162 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1163 			if (!cpumask_intersects(mask_val, cpu_mask))
1164 				return -EINVAL;
1165 		}
1166 	}
1167 
1168 	cpu = cpumask_any_and(mask_val, cpu_mask);
1169 
1170 	if (cpu >= nr_cpu_ids)
1171 		return -EINVAL;
1172 
1173 	/* don't set the affinity when the target cpu is same as current one */
1174 	if (cpu != its_dev->event_map.col_map[id]) {
1175 		target_col = &its_dev->its->collections[cpu];
1176 		its_send_movi(its_dev, target_col, id);
1177 		its_dev->event_map.col_map[id] = cpu;
1178 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1179 	}
1180 
1181 	return IRQ_SET_MASK_OK_DONE;
1182 }
1183 
its_irq_get_msi_base(struct its_device * its_dev)1184 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1185 {
1186 	struct its_node *its = its_dev->its;
1187 
1188 	return its->phys_base + GITS_TRANSLATER;
1189 }
1190 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1191 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1192 {
1193 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1194 	struct its_node *its;
1195 	u64 addr;
1196 
1197 	its = its_dev->its;
1198 	addr = its->get_msi_base(its_dev);
1199 
1200 	msg->address_lo		= lower_32_bits(addr);
1201 	msg->address_hi		= upper_32_bits(addr);
1202 	msg->data		= its_get_event_id(d);
1203 
1204 	iommu_dma_map_msi_msg(d->irq, msg);
1205 }
1206 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1207 static int its_irq_set_irqchip_state(struct irq_data *d,
1208 				     enum irqchip_irq_state which,
1209 				     bool state)
1210 {
1211 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1212 	u32 event = its_get_event_id(d);
1213 
1214 	if (which != IRQCHIP_STATE_PENDING)
1215 		return -EINVAL;
1216 
1217 	if (state)
1218 		its_send_int(its_dev, event);
1219 	else
1220 		its_send_clear(its_dev, event);
1221 
1222 	return 0;
1223 }
1224 
its_map_vm(struct its_node * its,struct its_vm * vm)1225 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1226 {
1227 	unsigned long flags;
1228 
1229 	/* Not using the ITS list? Everything is always mapped. */
1230 	if (!its_list_map)
1231 		return;
1232 
1233 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1234 
1235 	/*
1236 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1237 	 * them mapped now.
1238 	 */
1239 	vm->vlpi_count[its->list_nr]++;
1240 
1241 	if (vm->vlpi_count[its->list_nr] == 1) {
1242 		int i;
1243 
1244 		for (i = 0; i < vm->nr_vpes; i++) {
1245 			struct its_vpe *vpe = vm->vpes[i];
1246 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1247 
1248 			/* Map the VPE to the first possible CPU */
1249 			vpe->col_idx = cpumask_first(cpu_online_mask);
1250 			its_send_vmapp(its, vpe, true);
1251 			its_send_vinvall(its, vpe);
1252 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1253 		}
1254 	}
1255 
1256 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1257 }
1258 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1259 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1260 {
1261 	unsigned long flags;
1262 
1263 	/* Not using the ITS list? Everything is always mapped. */
1264 	if (!its_list_map)
1265 		return;
1266 
1267 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1268 
1269 	if (!--vm->vlpi_count[its->list_nr]) {
1270 		int i;
1271 
1272 		for (i = 0; i < vm->nr_vpes; i++)
1273 			its_send_vmapp(its, vm->vpes[i], false);
1274 	}
1275 
1276 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1277 }
1278 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1279 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1280 {
1281 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1282 	u32 event = its_get_event_id(d);
1283 	int ret = 0;
1284 
1285 	if (!info->map)
1286 		return -EINVAL;
1287 
1288 	mutex_lock(&its_dev->event_map.vlpi_lock);
1289 
1290 	if (!its_dev->event_map.vm) {
1291 		struct its_vlpi_map *maps;
1292 
1293 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1294 			       GFP_KERNEL);
1295 		if (!maps) {
1296 			ret = -ENOMEM;
1297 			goto out;
1298 		}
1299 
1300 		its_dev->event_map.vm = info->map->vm;
1301 		its_dev->event_map.vlpi_maps = maps;
1302 	} else if (its_dev->event_map.vm != info->map->vm) {
1303 		ret = -EINVAL;
1304 		goto out;
1305 	}
1306 
1307 	/* Get our private copy of the mapping information */
1308 	its_dev->event_map.vlpi_maps[event] = *info->map;
1309 
1310 	if (irqd_is_forwarded_to_vcpu(d)) {
1311 		/* Already mapped, move it around */
1312 		its_send_vmovi(its_dev, event);
1313 	} else {
1314 		/* Ensure all the VPEs are mapped on this ITS */
1315 		its_map_vm(its_dev->its, info->map->vm);
1316 
1317 		/*
1318 		 * Flag the interrupt as forwarded so that we can
1319 		 * start poking the virtual property table.
1320 		 */
1321 		irqd_set_forwarded_to_vcpu(d);
1322 
1323 		/* Write out the property to the prop table */
1324 		lpi_write_config(d, 0xff, info->map->properties);
1325 
1326 		/* Drop the physical mapping */
1327 		its_send_discard(its_dev, event);
1328 
1329 		/* and install the virtual one */
1330 		its_send_vmapti(its_dev, event);
1331 
1332 		/* Increment the number of VLPIs */
1333 		its_dev->event_map.nr_vlpis++;
1334 	}
1335 
1336 out:
1337 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1338 	return ret;
1339 }
1340 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1341 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1342 {
1343 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1344 	u32 event = its_get_event_id(d);
1345 	int ret = 0;
1346 
1347 	mutex_lock(&its_dev->event_map.vlpi_lock);
1348 
1349 	if (!its_dev->event_map.vm ||
1350 	    !its_dev->event_map.vlpi_maps[event].vm) {
1351 		ret = -EINVAL;
1352 		goto out;
1353 	}
1354 
1355 	/* Copy our mapping information to the incoming request */
1356 	*info->map = its_dev->event_map.vlpi_maps[event];
1357 
1358 out:
1359 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1360 	return ret;
1361 }
1362 
its_vlpi_unmap(struct irq_data * d)1363 static int its_vlpi_unmap(struct irq_data *d)
1364 {
1365 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1366 	u32 event = its_get_event_id(d);
1367 	int ret = 0;
1368 
1369 	mutex_lock(&its_dev->event_map.vlpi_lock);
1370 
1371 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1372 		ret = -EINVAL;
1373 		goto out;
1374 	}
1375 
1376 	/* Drop the virtual mapping */
1377 	its_send_discard(its_dev, event);
1378 
1379 	/* and restore the physical one */
1380 	irqd_clr_forwarded_to_vcpu(d);
1381 	its_send_mapti(its_dev, d->hwirq, event);
1382 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1383 				    LPI_PROP_ENABLED |
1384 				    LPI_PROP_GROUP1));
1385 
1386 	/* Potentially unmap the VM from this ITS */
1387 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1388 
1389 	/*
1390 	 * Drop the refcount and make the device available again if
1391 	 * this was the last VLPI.
1392 	 */
1393 	if (!--its_dev->event_map.nr_vlpis) {
1394 		its_dev->event_map.vm = NULL;
1395 		kfree(its_dev->event_map.vlpi_maps);
1396 	}
1397 
1398 out:
1399 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1400 	return ret;
1401 }
1402 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1403 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1404 {
1405 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1406 
1407 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1408 		return -EINVAL;
1409 
1410 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1411 		lpi_update_config(d, 0xff, info->config);
1412 	else
1413 		lpi_write_config(d, 0xff, info->config);
1414 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1415 
1416 	return 0;
1417 }
1418 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1419 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1420 {
1421 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1422 	struct its_cmd_info *info = vcpu_info;
1423 
1424 	/* Need a v4 ITS */
1425 	if (!its_dev->its->is_v4)
1426 		return -EINVAL;
1427 
1428 	/* Unmap request? */
1429 	if (!info)
1430 		return its_vlpi_unmap(d);
1431 
1432 	switch (info->cmd_type) {
1433 	case MAP_VLPI:
1434 		return its_vlpi_map(d, info);
1435 
1436 	case GET_VLPI:
1437 		return its_vlpi_get(d, info);
1438 
1439 	case PROP_UPDATE_VLPI:
1440 	case PROP_UPDATE_AND_INV_VLPI:
1441 		return its_vlpi_prop_update(d, info);
1442 
1443 	default:
1444 		return -EINVAL;
1445 	}
1446 }
1447 
1448 static struct irq_chip its_irq_chip = {
1449 	.name			= "ITS",
1450 	.irq_mask		= its_mask_irq,
1451 	.irq_unmask		= its_unmask_irq,
1452 	.irq_eoi		= irq_chip_eoi_parent,
1453 	.irq_set_affinity	= its_set_affinity,
1454 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1455 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1456 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1457 };
1458 
1459 
1460 /*
1461  * How we allocate LPIs:
1462  *
1463  * lpi_range_list contains ranges of LPIs that are to available to
1464  * allocate from. To allocate LPIs, just pick the first range that
1465  * fits the required allocation, and reduce it by the required
1466  * amount. Once empty, remove the range from the list.
1467  *
1468  * To free a range of LPIs, add a free range to the list, sort it and
1469  * merge the result if the new range happens to be adjacent to an
1470  * already free block.
1471  *
1472  * The consequence of the above is that allocation is cost is low, but
1473  * freeing is expensive. We assumes that freeing rarely occurs.
1474  */
1475 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1476 
1477 static DEFINE_MUTEX(lpi_range_lock);
1478 static LIST_HEAD(lpi_range_list);
1479 
1480 struct lpi_range {
1481 	struct list_head	entry;
1482 	u32			base_id;
1483 	u32			span;
1484 };
1485 
mk_lpi_range(u32 base,u32 span)1486 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1487 {
1488 	struct lpi_range *range;
1489 
1490 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1491 	if (range) {
1492 		INIT_LIST_HEAD(&range->entry);
1493 		range->base_id = base;
1494 		range->span = span;
1495 	}
1496 
1497 	return range;
1498 }
1499 
lpi_range_cmp(void * priv,struct list_head * a,struct list_head * b)1500 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1501 {
1502 	struct lpi_range *ra, *rb;
1503 
1504 	ra = container_of(a, struct lpi_range, entry);
1505 	rb = container_of(b, struct lpi_range, entry);
1506 
1507 	return ra->base_id - rb->base_id;
1508 }
1509 
merge_lpi_ranges(void)1510 static void merge_lpi_ranges(void)
1511 {
1512 	struct lpi_range *range, *tmp;
1513 
1514 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1515 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1516 		    (tmp->base_id == (range->base_id + range->span))) {
1517 			tmp->base_id = range->base_id;
1518 			tmp->span += range->span;
1519 			list_del(&range->entry);
1520 			kfree(range);
1521 		}
1522 	}
1523 }
1524 
alloc_lpi_range(u32 nr_lpis,u32 * base)1525 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1526 {
1527 	struct lpi_range *range, *tmp;
1528 	int err = -ENOSPC;
1529 
1530 	mutex_lock(&lpi_range_lock);
1531 
1532 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1533 		if (range->span >= nr_lpis) {
1534 			*base = range->base_id;
1535 			range->base_id += nr_lpis;
1536 			range->span -= nr_lpis;
1537 
1538 			if (range->span == 0) {
1539 				list_del(&range->entry);
1540 				kfree(range);
1541 			}
1542 
1543 			err = 0;
1544 			break;
1545 		}
1546 	}
1547 
1548 	mutex_unlock(&lpi_range_lock);
1549 
1550 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1551 	return err;
1552 }
1553 
free_lpi_range(u32 base,u32 nr_lpis)1554 static int free_lpi_range(u32 base, u32 nr_lpis)
1555 {
1556 	struct lpi_range *new;
1557 	int err = 0;
1558 
1559 	mutex_lock(&lpi_range_lock);
1560 
1561 	new = mk_lpi_range(base, nr_lpis);
1562 	if (!new) {
1563 		err = -ENOMEM;
1564 		goto out;
1565 	}
1566 
1567 	list_add(&new->entry, &lpi_range_list);
1568 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1569 	merge_lpi_ranges();
1570 out:
1571 	mutex_unlock(&lpi_range_lock);
1572 	return err;
1573 }
1574 
its_lpi_init(u32 id_bits)1575 static int __init its_lpi_init(u32 id_bits)
1576 {
1577 	u32 lpis = (1UL << id_bits) - 8192;
1578 	u32 numlpis;
1579 	int err;
1580 
1581 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1582 
1583 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1584 		lpis = numlpis;
1585 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1586 			lpis);
1587 	}
1588 
1589 	/*
1590 	 * Initializing the allocator is just the same as freeing the
1591 	 * full range of LPIs.
1592 	 */
1593 	err = free_lpi_range(8192, lpis);
1594 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1595 	return err;
1596 }
1597 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)1598 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1599 {
1600 	unsigned long *bitmap = NULL;
1601 	int err = 0;
1602 
1603 	do {
1604 		err = alloc_lpi_range(nr_irqs, base);
1605 		if (!err)
1606 			break;
1607 
1608 		nr_irqs /= 2;
1609 	} while (nr_irqs > 0);
1610 
1611 	if (!nr_irqs)
1612 		err = -ENOSPC;
1613 
1614 	if (err)
1615 		goto out;
1616 
1617 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1618 	if (!bitmap)
1619 		goto out;
1620 
1621 	*nr_ids = nr_irqs;
1622 
1623 out:
1624 	if (!bitmap)
1625 		*base = *nr_ids = 0;
1626 
1627 	return bitmap;
1628 }
1629 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)1630 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1631 {
1632 	WARN_ON(free_lpi_range(base, nr_ids));
1633 	kfree(bitmap);
1634 }
1635 
its_allocate_prop_table(gfp_t gfp_flags)1636 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1637 {
1638 	struct page *prop_page;
1639 
1640 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1641 	if (!prop_page)
1642 		return NULL;
1643 
1644 	/* Priority 0xa0, Group-1, disabled */
1645 	memset(page_address(prop_page),
1646 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1647 	       LPI_PROPBASE_SZ);
1648 
1649 	/* Make sure the GIC will observe the written configuration */
1650 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1651 
1652 	return prop_page;
1653 }
1654 
its_free_prop_table(struct page * prop_page)1655 static void its_free_prop_table(struct page *prop_page)
1656 {
1657 	free_pages((unsigned long)page_address(prop_page),
1658 		   get_order(LPI_PROPBASE_SZ));
1659 }
1660 
its_alloc_lpi_tables(void)1661 static int __init its_alloc_lpi_tables(void)
1662 {
1663 	phys_addr_t paddr;
1664 
1665 	lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1666 				ITS_MAX_LPI_NRBITS);
1667 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1668 	if (!gic_rdists->prop_page) {
1669 		pr_err("Failed to allocate PROPBASE\n");
1670 		return -ENOMEM;
1671 	}
1672 
1673 	paddr = page_to_phys(gic_rdists->prop_page);
1674 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1675 
1676 	return its_lpi_init(lpi_id_bits);
1677 }
1678 
1679 static const char *its_base_type_string[] = {
1680 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1681 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1682 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1683 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1684 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1685 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1686 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1687 };
1688 
its_read_baser(struct its_node * its,struct its_baser * baser)1689 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1690 {
1691 	u32 idx = baser - its->tables;
1692 
1693 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1694 }
1695 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)1696 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1697 			    u64 val)
1698 {
1699 	u32 idx = baser - its->tables;
1700 
1701 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1702 	baser->val = its_read_baser(its, baser);
1703 }
1704 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 psz,u32 order,bool indirect)1705 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1706 			   u64 cache, u64 shr, u32 psz, u32 order,
1707 			   bool indirect)
1708 {
1709 	u64 val = its_read_baser(its, baser);
1710 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1711 	u64 type = GITS_BASER_TYPE(val);
1712 	u64 baser_phys, tmp;
1713 	u32 alloc_pages;
1714 	void *base;
1715 
1716 retry_alloc_baser:
1717 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1718 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1719 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1720 			&its->phys_base, its_base_type_string[type],
1721 			alloc_pages, GITS_BASER_PAGES_MAX);
1722 		alloc_pages = GITS_BASER_PAGES_MAX;
1723 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1724 	}
1725 
1726 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1727 	if (!base)
1728 		return -ENOMEM;
1729 
1730 	baser_phys = virt_to_phys(base);
1731 
1732 	/* Check if the physical address of the memory is above 48bits */
1733 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1734 
1735 		/* 52bit PA is supported only when PageSize=64K */
1736 		if (psz != SZ_64K) {
1737 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1738 			free_pages((unsigned long)base, order);
1739 			return -ENXIO;
1740 		}
1741 
1742 		/* Convert 52bit PA to 48bit field */
1743 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1744 	}
1745 
1746 retry_baser:
1747 	val = (baser_phys					 |
1748 		(type << GITS_BASER_TYPE_SHIFT)			 |
1749 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1750 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1751 		cache						 |
1752 		shr						 |
1753 		GITS_BASER_VALID);
1754 
1755 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1756 
1757 	switch (psz) {
1758 	case SZ_4K:
1759 		val |= GITS_BASER_PAGE_SIZE_4K;
1760 		break;
1761 	case SZ_16K:
1762 		val |= GITS_BASER_PAGE_SIZE_16K;
1763 		break;
1764 	case SZ_64K:
1765 		val |= GITS_BASER_PAGE_SIZE_64K;
1766 		break;
1767 	}
1768 
1769 	its_write_baser(its, baser, val);
1770 	tmp = baser->val;
1771 
1772 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1773 		/*
1774 		 * Shareability didn't stick. Just use
1775 		 * whatever the read reported, which is likely
1776 		 * to be the only thing this redistributor
1777 		 * supports. If that's zero, make it
1778 		 * non-cacheable as well.
1779 		 */
1780 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1781 		if (!shr) {
1782 			cache = GITS_BASER_nC;
1783 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1784 		}
1785 		goto retry_baser;
1786 	}
1787 
1788 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1789 		/*
1790 		 * Page size didn't stick. Let's try a smaller
1791 		 * size and retry. If we reach 4K, then
1792 		 * something is horribly wrong...
1793 		 */
1794 		free_pages((unsigned long)base, order);
1795 		baser->base = NULL;
1796 
1797 		switch (psz) {
1798 		case SZ_16K:
1799 			psz = SZ_4K;
1800 			goto retry_alloc_baser;
1801 		case SZ_64K:
1802 			psz = SZ_16K;
1803 			goto retry_alloc_baser;
1804 		}
1805 	}
1806 
1807 	if (val != tmp) {
1808 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1809 		       &its->phys_base, its_base_type_string[type],
1810 		       val, tmp);
1811 		free_pages((unsigned long)base, order);
1812 		return -ENXIO;
1813 	}
1814 
1815 	baser->order = order;
1816 	baser->base = base;
1817 	baser->psz = psz;
1818 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1819 
1820 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1821 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1822 		its_base_type_string[type],
1823 		(unsigned long)virt_to_phys(base),
1824 		indirect ? "indirect" : "flat", (int)esz,
1825 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1826 
1827 	return 0;
1828 }
1829 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 psz,u32 * order,u32 ids)1830 static bool its_parse_indirect_baser(struct its_node *its,
1831 				     struct its_baser *baser,
1832 				     u32 psz, u32 *order, u32 ids)
1833 {
1834 	u64 tmp = its_read_baser(its, baser);
1835 	u64 type = GITS_BASER_TYPE(tmp);
1836 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1837 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1838 	u32 new_order = *order;
1839 	bool indirect = false;
1840 
1841 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1842 	if ((esz << ids) > (psz * 2)) {
1843 		/*
1844 		 * Find out whether hw supports a single or two-level table by
1845 		 * table by reading bit at offset '62' after writing '1' to it.
1846 		 */
1847 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1848 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1849 
1850 		if (indirect) {
1851 			/*
1852 			 * The size of the lvl2 table is equal to ITS page size
1853 			 * which is 'psz'. For computing lvl1 table size,
1854 			 * subtract ID bits that sparse lvl2 table from 'ids'
1855 			 * which is reported by ITS hardware times lvl1 table
1856 			 * entry size.
1857 			 */
1858 			ids -= ilog2(psz / (int)esz);
1859 			esz = GITS_LVL1_ENTRY_SIZE;
1860 		}
1861 	}
1862 
1863 	/*
1864 	 * Allocate as many entries as required to fit the
1865 	 * range of device IDs that the ITS can grok... The ID
1866 	 * space being incredibly sparse, this results in a
1867 	 * massive waste of memory if two-level device table
1868 	 * feature is not supported by hardware.
1869 	 */
1870 	new_order = max_t(u32, get_order(esz << ids), new_order);
1871 	if (new_order >= MAX_ORDER) {
1872 		new_order = MAX_ORDER - 1;
1873 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1874 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1875 			&its->phys_base, its_base_type_string[type],
1876 			its->device_ids, ids);
1877 	}
1878 
1879 	*order = new_order;
1880 
1881 	return indirect;
1882 }
1883 
its_free_tables(struct its_node * its)1884 static void its_free_tables(struct its_node *its)
1885 {
1886 	int i;
1887 
1888 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1889 		if (its->tables[i].base) {
1890 			free_pages((unsigned long)its->tables[i].base,
1891 				   its->tables[i].order);
1892 			its->tables[i].base = NULL;
1893 		}
1894 	}
1895 }
1896 
its_alloc_tables(struct its_node * its)1897 static int its_alloc_tables(struct its_node *its)
1898 {
1899 	u64 shr = GITS_BASER_InnerShareable;
1900 	u64 cache = GITS_BASER_RaWaWb;
1901 	u32 psz = SZ_64K;
1902 	int err, i;
1903 
1904 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1905 		/* erratum 24313: ignore memory access type */
1906 		cache = GITS_BASER_nCnB;
1907 
1908 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1909 		struct its_baser *baser = its->tables + i;
1910 		u64 val = its_read_baser(its, baser);
1911 		u64 type = GITS_BASER_TYPE(val);
1912 		u32 order = get_order(psz);
1913 		bool indirect = false;
1914 
1915 		switch (type) {
1916 		case GITS_BASER_TYPE_NONE:
1917 			continue;
1918 
1919 		case GITS_BASER_TYPE_DEVICE:
1920 			indirect = its_parse_indirect_baser(its, baser,
1921 							    psz, &order,
1922 							    its->device_ids);
1923 			break;
1924 
1925 		case GITS_BASER_TYPE_VCPU:
1926 			indirect = its_parse_indirect_baser(its, baser,
1927 							    psz, &order,
1928 							    ITS_MAX_VPEID_BITS);
1929 			break;
1930 		}
1931 
1932 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1933 		if (err < 0) {
1934 			its_free_tables(its);
1935 			return err;
1936 		}
1937 
1938 		/* Update settings which will be used for next BASERn */
1939 		psz = baser->psz;
1940 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1941 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
its_alloc_collections(struct its_node * its)1947 static int its_alloc_collections(struct its_node *its)
1948 {
1949 	int i;
1950 
1951 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1952 				   GFP_KERNEL);
1953 	if (!its->collections)
1954 		return -ENOMEM;
1955 
1956 	for (i = 0; i < nr_cpu_ids; i++)
1957 		its->collections[i].target_address = ~0ULL;
1958 
1959 	return 0;
1960 }
1961 
its_allocate_pending_table(gfp_t gfp_flags)1962 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1963 {
1964 	struct page *pend_page;
1965 	/*
1966 	 * The pending pages have to be at least 64kB aligned,
1967 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1968 	 */
1969 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1970 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1971 	if (!pend_page)
1972 		return NULL;
1973 
1974 	/* Make sure the GIC will observe the zero-ed page */
1975 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1976 
1977 	return pend_page;
1978 }
1979 
its_free_pending_table(struct page * pt)1980 static void its_free_pending_table(struct page *pt)
1981 {
1982 	free_pages((unsigned long)page_address(pt),
1983 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1984 }
1985 
its_clear_vpend_valid(void __iomem * vlpi_base)1986 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
1987 {
1988 	u32 count = 1000000;	/* 1s! */
1989 	bool clean;
1990 	u64 val;
1991 
1992 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
1993 	val &= ~GICR_VPENDBASER_Valid;
1994 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
1995 
1996 	do {
1997 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
1998 		clean = !(val & GICR_VPENDBASER_Dirty);
1999 		if (!clean) {
2000 			count--;
2001 			cpu_relax();
2002 			udelay(1);
2003 		}
2004 	} while (!clean && count);
2005 
2006 	return val;
2007 }
2008 
its_cpu_init_lpis(void)2009 static void its_cpu_init_lpis(void)
2010 {
2011 	void __iomem *rbase = gic_data_rdist_rd_base();
2012 	struct page *pend_page;
2013 	u64 val, tmp;
2014 
2015 	/* If we didn't allocate the pending table yet, do it now */
2016 	pend_page = gic_data_rdist()->pend_page;
2017 	if (!pend_page) {
2018 		phys_addr_t paddr;
2019 
2020 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2021 		if (!pend_page) {
2022 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
2023 			       smp_processor_id());
2024 			return;
2025 		}
2026 
2027 		paddr = page_to_phys(pend_page);
2028 		pr_info("CPU%d: using LPI pending table @%pa\n",
2029 			smp_processor_id(), &paddr);
2030 		gic_data_rdist()->pend_page = pend_page;
2031 	}
2032 
2033 	/* set PROPBASE */
2034 	val = (page_to_phys(gic_rdists->prop_page) |
2035 	       GICR_PROPBASER_InnerShareable |
2036 	       GICR_PROPBASER_RaWaWb |
2037 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2038 
2039 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2040 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2041 
2042 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2043 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2044 			/*
2045 			 * The HW reports non-shareable, we must
2046 			 * remove the cacheability attributes as
2047 			 * well.
2048 			 */
2049 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2050 				 GICR_PROPBASER_CACHEABILITY_MASK);
2051 			val |= GICR_PROPBASER_nC;
2052 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2053 		}
2054 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2055 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2056 	}
2057 
2058 	/* set PENDBASE */
2059 	val = (page_to_phys(pend_page) |
2060 	       GICR_PENDBASER_InnerShareable |
2061 	       GICR_PENDBASER_RaWaWb);
2062 
2063 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2064 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2065 
2066 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2067 		/*
2068 		 * The HW reports non-shareable, we must remove the
2069 		 * cacheability attributes as well.
2070 		 */
2071 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2072 			 GICR_PENDBASER_CACHEABILITY_MASK);
2073 		val |= GICR_PENDBASER_nC;
2074 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2075 	}
2076 
2077 	/* Enable LPIs */
2078 	val = readl_relaxed(rbase + GICR_CTLR);
2079 	val |= GICR_CTLR_ENABLE_LPIS;
2080 	writel_relaxed(val, rbase + GICR_CTLR);
2081 
2082 	if (gic_rdists->has_vlpis) {
2083 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2084 
2085 		/*
2086 		 * It's possible for CPU to receive VLPIs before it is
2087 		 * sheduled as a vPE, especially for the first CPU, and the
2088 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2089 		 * as out of range and dropped by GIC.
2090 		 * So we initialize IDbits to known value to avoid VLPI drop.
2091 		 */
2092 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2093 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2094 			smp_processor_id(), val);
2095 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2096 
2097 		/*
2098 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2099 		 * ancient programming gets left in and has possibility of
2100 		 * corrupting memory.
2101 		 */
2102 		val = its_clear_vpend_valid(vlpi_base);
2103 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2104 	}
2105 
2106 	/* Make sure the GIC has seen the above */
2107 	dsb(sy);
2108 }
2109 
its_cpu_init_collection(struct its_node * its)2110 static void its_cpu_init_collection(struct its_node *its)
2111 {
2112 	int cpu = smp_processor_id();
2113 	u64 target;
2114 
2115 	/* avoid cross node collections and its mapping */
2116 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2117 		struct device_node *cpu_node;
2118 
2119 		cpu_node = of_get_cpu_node(cpu, NULL);
2120 		if (its->numa_node != NUMA_NO_NODE &&
2121 			its->numa_node != of_node_to_nid(cpu_node))
2122 			return;
2123 	}
2124 
2125 	/*
2126 	 * We now have to bind each collection to its target
2127 	 * redistributor.
2128 	 */
2129 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2130 		/*
2131 		 * This ITS wants the physical address of the
2132 		 * redistributor.
2133 		 */
2134 		target = gic_data_rdist()->phys_base;
2135 	} else {
2136 		/* This ITS wants a linear CPU number. */
2137 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2138 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2139 	}
2140 
2141 	/* Perform collection mapping */
2142 	its->collections[cpu].target_address = target;
2143 	its->collections[cpu].col_id = cpu;
2144 
2145 	its_send_mapc(its, &its->collections[cpu], 1);
2146 	its_send_invall(its, &its->collections[cpu]);
2147 }
2148 
its_cpu_init_collections(void)2149 static void its_cpu_init_collections(void)
2150 {
2151 	struct its_node *its;
2152 
2153 	raw_spin_lock(&its_lock);
2154 
2155 	list_for_each_entry(its, &its_nodes, entry)
2156 		its_cpu_init_collection(its);
2157 
2158 	raw_spin_unlock(&its_lock);
2159 }
2160 
its_find_device(struct its_node * its,u32 dev_id)2161 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2162 {
2163 	struct its_device *its_dev = NULL, *tmp;
2164 	unsigned long flags;
2165 
2166 	raw_spin_lock_irqsave(&its->lock, flags);
2167 
2168 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2169 		if (tmp->device_id == dev_id) {
2170 			its_dev = tmp;
2171 			break;
2172 		}
2173 	}
2174 
2175 	raw_spin_unlock_irqrestore(&its->lock, flags);
2176 
2177 	return its_dev;
2178 }
2179 
its_get_baser(struct its_node * its,u32 type)2180 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2181 {
2182 	int i;
2183 
2184 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2185 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2186 			return &its->tables[i];
2187 	}
2188 
2189 	return NULL;
2190 }
2191 
its_alloc_table_entry(struct its_baser * baser,u32 id)2192 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2193 {
2194 	struct page *page;
2195 	u32 esz, idx;
2196 	__le64 *table;
2197 
2198 	/* Don't allow device id that exceeds single, flat table limit */
2199 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2200 	if (!(baser->val & GITS_BASER_INDIRECT))
2201 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2202 
2203 	/* Compute 1st level table index & check if that exceeds table limit */
2204 	idx = id >> ilog2(baser->psz / esz);
2205 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2206 		return false;
2207 
2208 	table = baser->base;
2209 
2210 	/* Allocate memory for 2nd level table */
2211 	if (!table[idx]) {
2212 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2213 		if (!page)
2214 			return false;
2215 
2216 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2217 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2218 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2219 
2220 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2221 
2222 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2223 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2224 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2225 
2226 		/* Ensure updated table contents are visible to ITS hardware */
2227 		dsb(sy);
2228 	}
2229 
2230 	return true;
2231 }
2232 
its_alloc_device_table(struct its_node * its,u32 dev_id)2233 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2234 {
2235 	struct its_baser *baser;
2236 
2237 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2238 
2239 	/* Don't allow device id that exceeds ITS hardware limit */
2240 	if (!baser)
2241 		return (ilog2(dev_id) < its->device_ids);
2242 
2243 	return its_alloc_table_entry(baser, dev_id);
2244 }
2245 
its_alloc_vpe_table(u32 vpe_id)2246 static bool its_alloc_vpe_table(u32 vpe_id)
2247 {
2248 	struct its_node *its;
2249 
2250 	/*
2251 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2252 	 * could try and only do it on ITSs corresponding to devices
2253 	 * that have interrupts targeted at this VPE, but the
2254 	 * complexity becomes crazy (and you have tons of memory
2255 	 * anyway, right?).
2256 	 */
2257 	list_for_each_entry(its, &its_nodes, entry) {
2258 		struct its_baser *baser;
2259 
2260 		if (!its->is_v4)
2261 			continue;
2262 
2263 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2264 		if (!baser)
2265 			return false;
2266 
2267 		if (!its_alloc_table_entry(baser, vpe_id))
2268 			return false;
2269 	}
2270 
2271 	return true;
2272 }
2273 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)2274 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2275 					    int nvecs, bool alloc_lpis)
2276 {
2277 	struct its_device *dev;
2278 	unsigned long *lpi_map = NULL;
2279 	unsigned long flags;
2280 	u16 *col_map = NULL;
2281 	void *itt;
2282 	int lpi_base;
2283 	int nr_lpis;
2284 	int nr_ites;
2285 	int sz;
2286 
2287 	if (!its_alloc_device_table(its, dev_id))
2288 		return NULL;
2289 
2290 	if (WARN_ON(!is_power_of_2(nvecs)))
2291 		nvecs = roundup_pow_of_two(nvecs);
2292 
2293 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2294 	/*
2295 	 * Even if the device wants a single LPI, the ITT must be
2296 	 * sized as a power of two (and you need at least one bit...).
2297 	 */
2298 	nr_ites = max(2, nvecs);
2299 	sz = nr_ites * its->ite_size;
2300 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2301 	itt = kzalloc(sz, GFP_KERNEL);
2302 	if (alloc_lpis) {
2303 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2304 		if (lpi_map)
2305 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2306 					  GFP_KERNEL);
2307 	} else {
2308 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2309 		nr_lpis = 0;
2310 		lpi_base = 0;
2311 	}
2312 
2313 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2314 		kfree(dev);
2315 		kfree(itt);
2316 		kfree(lpi_map);
2317 		kfree(col_map);
2318 		return NULL;
2319 	}
2320 
2321 	gic_flush_dcache_to_poc(itt, sz);
2322 
2323 	dev->its = its;
2324 	dev->itt = itt;
2325 	dev->nr_ites = nr_ites;
2326 	dev->event_map.lpi_map = lpi_map;
2327 	dev->event_map.col_map = col_map;
2328 	dev->event_map.lpi_base = lpi_base;
2329 	dev->event_map.nr_lpis = nr_lpis;
2330 	mutex_init(&dev->event_map.vlpi_lock);
2331 	dev->device_id = dev_id;
2332 	INIT_LIST_HEAD(&dev->entry);
2333 
2334 	raw_spin_lock_irqsave(&its->lock, flags);
2335 	list_add(&dev->entry, &its->its_device_list);
2336 	raw_spin_unlock_irqrestore(&its->lock, flags);
2337 
2338 	/* Map device to its ITT */
2339 	its_send_mapd(dev, 1);
2340 
2341 	return dev;
2342 }
2343 
its_free_device(struct its_device * its_dev)2344 static void its_free_device(struct its_device *its_dev)
2345 {
2346 	unsigned long flags;
2347 
2348 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2349 	list_del(&its_dev->entry);
2350 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2351 	kfree(its_dev->itt);
2352 	kfree(its_dev);
2353 }
2354 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)2355 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2356 {
2357 	int idx;
2358 
2359 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2360 				      dev->event_map.nr_lpis,
2361 				      get_count_order(nvecs));
2362 	if (idx < 0)
2363 		return -ENOSPC;
2364 
2365 	*hwirq = dev->event_map.lpi_base + idx;
2366 	set_bit(idx, dev->event_map.lpi_map);
2367 
2368 	return 0;
2369 }
2370 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)2371 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2372 			   int nvec, msi_alloc_info_t *info)
2373 {
2374 	struct its_node *its;
2375 	struct its_device *its_dev;
2376 	struct msi_domain_info *msi_info;
2377 	u32 dev_id;
2378 	int err = 0;
2379 
2380 	/*
2381 	 * We ignore "dev" entierely, and rely on the dev_id that has
2382 	 * been passed via the scratchpad. This limits this domain's
2383 	 * usefulness to upper layers that definitely know that they
2384 	 * are built on top of the ITS.
2385 	 */
2386 	dev_id = info->scratchpad[0].ul;
2387 
2388 	msi_info = msi_get_domain_info(domain);
2389 	its = msi_info->data;
2390 
2391 	if (!gic_rdists->has_direct_lpi &&
2392 	    vpe_proxy.dev &&
2393 	    vpe_proxy.dev->its == its &&
2394 	    dev_id == vpe_proxy.dev->device_id) {
2395 		/* Bad luck. Get yourself a better implementation */
2396 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2397 			  dev_id);
2398 		return -EINVAL;
2399 	}
2400 
2401 	mutex_lock(&its->dev_alloc_lock);
2402 	its_dev = its_find_device(its, dev_id);
2403 	if (its_dev) {
2404 		/*
2405 		 * We already have seen this ID, probably through
2406 		 * another alias (PCI bridge of some sort). No need to
2407 		 * create the device.
2408 		 */
2409 		its_dev->shared = true;
2410 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2411 		goto out;
2412 	}
2413 
2414 	its_dev = its_create_device(its, dev_id, nvec, true);
2415 	if (!its_dev) {
2416 		err = -ENOMEM;
2417 		goto out;
2418 	}
2419 
2420 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2421 out:
2422 	mutex_unlock(&its->dev_alloc_lock);
2423 	info->scratchpad[0].ptr = its_dev;
2424 	return err;
2425 }
2426 
2427 static struct msi_domain_ops its_msi_domain_ops = {
2428 	.msi_prepare	= its_msi_prepare,
2429 };
2430 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)2431 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2432 				    unsigned int virq,
2433 				    irq_hw_number_t hwirq)
2434 {
2435 	struct irq_fwspec fwspec;
2436 
2437 	if (irq_domain_get_of_node(domain->parent)) {
2438 		fwspec.fwnode = domain->parent->fwnode;
2439 		fwspec.param_count = 3;
2440 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2441 		fwspec.param[1] = hwirq;
2442 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2443 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2444 		fwspec.fwnode = domain->parent->fwnode;
2445 		fwspec.param_count = 2;
2446 		fwspec.param[0] = hwirq;
2447 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2448 	} else {
2449 		return -EINVAL;
2450 	}
2451 
2452 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2453 }
2454 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)2455 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2456 				unsigned int nr_irqs, void *args)
2457 {
2458 	msi_alloc_info_t *info = args;
2459 	struct its_device *its_dev = info->scratchpad[0].ptr;
2460 	struct irq_data *irqd;
2461 	irq_hw_number_t hwirq;
2462 	int err;
2463 	int i;
2464 
2465 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2466 	if (err)
2467 		return err;
2468 
2469 	for (i = 0; i < nr_irqs; i++) {
2470 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2471 		if (err)
2472 			return err;
2473 
2474 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2475 					      hwirq + i, &its_irq_chip, its_dev);
2476 		irqd = irq_get_irq_data(virq + i);
2477 		irqd_set_single_target(irqd);
2478 		irqd_set_affinity_on_activate(irqd);
2479 		pr_debug("ID:%d pID:%d vID:%d\n",
2480 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2481 			 (int)(hwirq + i), virq + i);
2482 	}
2483 
2484 	return 0;
2485 }
2486 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)2487 static int its_irq_domain_activate(struct irq_domain *domain,
2488 				   struct irq_data *d, bool reserve)
2489 {
2490 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2491 	u32 event = its_get_event_id(d);
2492 	const struct cpumask *cpu_mask = cpu_online_mask;
2493 	int cpu;
2494 
2495 	/* get the cpu_mask of local node */
2496 	if (its_dev->its->numa_node >= 0)
2497 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2498 
2499 	/* Bind the LPI to the first possible CPU */
2500 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2501 	if (cpu >= nr_cpu_ids) {
2502 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2503 			return -EINVAL;
2504 
2505 		cpu = cpumask_first(cpu_online_mask);
2506 	}
2507 
2508 	its_dev->event_map.col_map[event] = cpu;
2509 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2510 
2511 	/* Map the GIC IRQ and event to the device */
2512 	its_send_mapti(its_dev, d->hwirq, event);
2513 	return 0;
2514 }
2515 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)2516 static void its_irq_domain_deactivate(struct irq_domain *domain,
2517 				      struct irq_data *d)
2518 {
2519 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2520 	u32 event = its_get_event_id(d);
2521 
2522 	/* Stop the delivery of interrupts */
2523 	its_send_discard(its_dev, event);
2524 }
2525 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2526 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2527 				unsigned int nr_irqs)
2528 {
2529 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2530 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2531 	struct its_node *its = its_dev->its;
2532 	int i;
2533 
2534 	bitmap_release_region(its_dev->event_map.lpi_map,
2535 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2536 			      get_count_order(nr_irqs));
2537 
2538 	for (i = 0; i < nr_irqs; i++) {
2539 		struct irq_data *data = irq_domain_get_irq_data(domain,
2540 								virq + i);
2541 		/* Nuke the entry in the domain */
2542 		irq_domain_reset_irq_data(data);
2543 	}
2544 
2545 	mutex_lock(&its->dev_alloc_lock);
2546 
2547 	/*
2548 	 * If all interrupts have been freed, start mopping the
2549 	 * floor. This is conditionned on the device not being shared.
2550 	 */
2551 	if (!its_dev->shared &&
2552 	    bitmap_empty(its_dev->event_map.lpi_map,
2553 			 its_dev->event_map.nr_lpis)) {
2554 		its_lpi_free(its_dev->event_map.lpi_map,
2555 			     its_dev->event_map.lpi_base,
2556 			     its_dev->event_map.nr_lpis);
2557 		kfree(its_dev->event_map.col_map);
2558 
2559 		/* Unmap device/itt */
2560 		its_send_mapd(its_dev, 0);
2561 		its_free_device(its_dev);
2562 	}
2563 
2564 	mutex_unlock(&its->dev_alloc_lock);
2565 
2566 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2567 }
2568 
2569 static const struct irq_domain_ops its_domain_ops = {
2570 	.alloc			= its_irq_domain_alloc,
2571 	.free			= its_irq_domain_free,
2572 	.activate		= its_irq_domain_activate,
2573 	.deactivate		= its_irq_domain_deactivate,
2574 };
2575 
2576 /*
2577  * This is insane.
2578  *
2579  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2580  * likely), the only way to perform an invalidate is to use a fake
2581  * device to issue an INV command, implying that the LPI has first
2582  * been mapped to some event on that device. Since this is not exactly
2583  * cheap, we try to keep that mapping around as long as possible, and
2584  * only issue an UNMAP if we're short on available slots.
2585  *
2586  * Broken by design(tm).
2587  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)2588 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2589 {
2590 	/* Already unmapped? */
2591 	if (vpe->vpe_proxy_event == -1)
2592 		return;
2593 
2594 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2595 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2596 
2597 	/*
2598 	 * We don't track empty slots at all, so let's move the
2599 	 * next_victim pointer if we can quickly reuse that slot
2600 	 * instead of nuking an existing entry. Not clear that this is
2601 	 * always a win though, and this might just generate a ripple
2602 	 * effect... Let's just hope VPEs don't migrate too often.
2603 	 */
2604 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2605 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2606 
2607 	vpe->vpe_proxy_event = -1;
2608 }
2609 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)2610 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2611 {
2612 	if (!gic_rdists->has_direct_lpi) {
2613 		unsigned long flags;
2614 
2615 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2616 		its_vpe_db_proxy_unmap_locked(vpe);
2617 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2618 	}
2619 }
2620 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)2621 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2622 {
2623 	/* Already mapped? */
2624 	if (vpe->vpe_proxy_event != -1)
2625 		return;
2626 
2627 	/* This slot was already allocated. Kick the other VPE out. */
2628 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2629 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2630 
2631 	/* Map the new VPE instead */
2632 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2633 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2634 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2635 
2636 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2637 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2638 }
2639 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)2640 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2641 {
2642 	unsigned long flags;
2643 	struct its_collection *target_col;
2644 
2645 	if (gic_rdists->has_direct_lpi) {
2646 		void __iomem *rdbase;
2647 
2648 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2649 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2650 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2651 			cpu_relax();
2652 
2653 		return;
2654 	}
2655 
2656 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2657 
2658 	its_vpe_db_proxy_map_locked(vpe);
2659 
2660 	target_col = &vpe_proxy.dev->its->collections[to];
2661 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2662 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2663 
2664 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2665 }
2666 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)2667 static int its_vpe_set_affinity(struct irq_data *d,
2668 				const struct cpumask *mask_val,
2669 				bool force)
2670 {
2671 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2672 	int cpu = cpumask_first(mask_val);
2673 
2674 	/*
2675 	 * Changing affinity is mega expensive, so let's be as lazy as
2676 	 * we can and only do it if we really have to. Also, if mapped
2677 	 * into the proxy device, we need to move the doorbell
2678 	 * interrupt to its new location.
2679 	 */
2680 	if (vpe->col_idx != cpu) {
2681 		int from = vpe->col_idx;
2682 
2683 		vpe->col_idx = cpu;
2684 		its_send_vmovp(vpe);
2685 		its_vpe_db_proxy_move(vpe, from, cpu);
2686 	}
2687 
2688 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2689 
2690 	return IRQ_SET_MASK_OK_DONE;
2691 }
2692 
its_vpe_schedule(struct its_vpe * vpe)2693 static void its_vpe_schedule(struct its_vpe *vpe)
2694 {
2695 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2696 	u64 val;
2697 
2698 	/* Schedule the VPE */
2699 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2700 		GENMASK_ULL(51, 12);
2701 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2702 	val |= GICR_VPROPBASER_RaWb;
2703 	val |= GICR_VPROPBASER_InnerShareable;
2704 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2705 
2706 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2707 		GENMASK_ULL(51, 16);
2708 	val |= GICR_VPENDBASER_RaWaWb;
2709 	val |= GICR_VPENDBASER_NonShareable;
2710 	/*
2711 	 * There is no good way of finding out if the pending table is
2712 	 * empty as we can race against the doorbell interrupt very
2713 	 * easily. So in the end, vpe->pending_last is only an
2714 	 * indication that the vcpu has something pending, not one
2715 	 * that the pending table is empty. A good implementation
2716 	 * would be able to read its coarse map pretty quickly anyway,
2717 	 * making this a tolerable issue.
2718 	 */
2719 	val |= GICR_VPENDBASER_PendingLast;
2720 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2721 	val |= GICR_VPENDBASER_Valid;
2722 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2723 }
2724 
its_vpe_deschedule(struct its_vpe * vpe)2725 static void its_vpe_deschedule(struct its_vpe *vpe)
2726 {
2727 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2728 	u64 val;
2729 
2730 	val = its_clear_vpend_valid(vlpi_base);
2731 
2732 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2733 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2734 		vpe->idai = false;
2735 		vpe->pending_last = true;
2736 	} else {
2737 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2738 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2739 	}
2740 }
2741 
its_vpe_invall(struct its_vpe * vpe)2742 static void its_vpe_invall(struct its_vpe *vpe)
2743 {
2744 	struct its_node *its;
2745 
2746 	list_for_each_entry(its, &its_nodes, entry) {
2747 		if (!its->is_v4)
2748 			continue;
2749 
2750 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2751 			continue;
2752 
2753 		/*
2754 		 * Sending a VINVALL to a single ITS is enough, as all
2755 		 * we need is to reach the redistributors.
2756 		 */
2757 		its_send_vinvall(its, vpe);
2758 		return;
2759 	}
2760 }
2761 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2762 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2763 {
2764 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2765 	struct its_cmd_info *info = vcpu_info;
2766 
2767 	switch (info->cmd_type) {
2768 	case SCHEDULE_VPE:
2769 		its_vpe_schedule(vpe);
2770 		return 0;
2771 
2772 	case DESCHEDULE_VPE:
2773 		its_vpe_deschedule(vpe);
2774 		return 0;
2775 
2776 	case INVALL_VPE:
2777 		its_vpe_invall(vpe);
2778 		return 0;
2779 
2780 	default:
2781 		return -EINVAL;
2782 	}
2783 }
2784 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))2785 static void its_vpe_send_cmd(struct its_vpe *vpe,
2786 			     void (*cmd)(struct its_device *, u32))
2787 {
2788 	unsigned long flags;
2789 
2790 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2791 
2792 	its_vpe_db_proxy_map_locked(vpe);
2793 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2794 
2795 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2796 }
2797 
its_vpe_send_inv(struct irq_data * d)2798 static void its_vpe_send_inv(struct irq_data *d)
2799 {
2800 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2801 
2802 	if (gic_rdists->has_direct_lpi) {
2803 		void __iomem *rdbase;
2804 
2805 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2806 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2807 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2808 			cpu_relax();
2809 	} else {
2810 		its_vpe_send_cmd(vpe, its_send_inv);
2811 	}
2812 }
2813 
its_vpe_mask_irq(struct irq_data * d)2814 static void its_vpe_mask_irq(struct irq_data *d)
2815 {
2816 	/*
2817 	 * We need to unmask the LPI, which is described by the parent
2818 	 * irq_data. Instead of calling into the parent (which won't
2819 	 * exactly do the right thing, let's simply use the
2820 	 * parent_data pointer. Yes, I'm naughty.
2821 	 */
2822 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2823 	its_vpe_send_inv(d);
2824 }
2825 
its_vpe_unmask_irq(struct irq_data * d)2826 static void its_vpe_unmask_irq(struct irq_data *d)
2827 {
2828 	/* Same hack as above... */
2829 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2830 	its_vpe_send_inv(d);
2831 }
2832 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)2833 static int its_vpe_set_irqchip_state(struct irq_data *d,
2834 				     enum irqchip_irq_state which,
2835 				     bool state)
2836 {
2837 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2838 
2839 	if (which != IRQCHIP_STATE_PENDING)
2840 		return -EINVAL;
2841 
2842 	if (gic_rdists->has_direct_lpi) {
2843 		void __iomem *rdbase;
2844 
2845 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2846 		if (state) {
2847 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2848 		} else {
2849 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2850 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2851 				cpu_relax();
2852 		}
2853 	} else {
2854 		if (state)
2855 			its_vpe_send_cmd(vpe, its_send_int);
2856 		else
2857 			its_vpe_send_cmd(vpe, its_send_clear);
2858 	}
2859 
2860 	return 0;
2861 }
2862 
its_vpe_retrigger(struct irq_data * d)2863 static int its_vpe_retrigger(struct irq_data *d)
2864 {
2865 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
2866 }
2867 
2868 static struct irq_chip its_vpe_irq_chip = {
2869 	.name			= "GICv4-vpe",
2870 	.irq_mask		= its_vpe_mask_irq,
2871 	.irq_unmask		= its_vpe_unmask_irq,
2872 	.irq_eoi		= irq_chip_eoi_parent,
2873 	.irq_set_affinity	= its_vpe_set_affinity,
2874 	.irq_retrigger		= its_vpe_retrigger,
2875 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2876 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2877 };
2878 
its_vpe_id_alloc(void)2879 static int its_vpe_id_alloc(void)
2880 {
2881 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2882 }
2883 
its_vpe_id_free(u16 id)2884 static void its_vpe_id_free(u16 id)
2885 {
2886 	ida_simple_remove(&its_vpeid_ida, id);
2887 }
2888 
its_vpe_init(struct its_vpe * vpe)2889 static int its_vpe_init(struct its_vpe *vpe)
2890 {
2891 	struct page *vpt_page;
2892 	int vpe_id;
2893 
2894 	/* Allocate vpe_id */
2895 	vpe_id = its_vpe_id_alloc();
2896 	if (vpe_id < 0)
2897 		return vpe_id;
2898 
2899 	/* Allocate VPT */
2900 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2901 	if (!vpt_page) {
2902 		its_vpe_id_free(vpe_id);
2903 		return -ENOMEM;
2904 	}
2905 
2906 	if (!its_alloc_vpe_table(vpe_id)) {
2907 		its_vpe_id_free(vpe_id);
2908 		its_free_pending_table(vpt_page);
2909 		return -ENOMEM;
2910 	}
2911 
2912 	vpe->vpe_id = vpe_id;
2913 	vpe->vpt_page = vpt_page;
2914 	vpe->vpe_proxy_event = -1;
2915 
2916 	return 0;
2917 }
2918 
its_vpe_teardown(struct its_vpe * vpe)2919 static void its_vpe_teardown(struct its_vpe *vpe)
2920 {
2921 	its_vpe_db_proxy_unmap(vpe);
2922 	its_vpe_id_free(vpe->vpe_id);
2923 	its_free_pending_table(vpe->vpt_page);
2924 }
2925 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2926 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2927 				    unsigned int virq,
2928 				    unsigned int nr_irqs)
2929 {
2930 	struct its_vm *vm = domain->host_data;
2931 	int i;
2932 
2933 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2934 
2935 	for (i = 0; i < nr_irqs; i++) {
2936 		struct irq_data *data = irq_domain_get_irq_data(domain,
2937 								virq + i);
2938 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2939 
2940 		BUG_ON(vm != vpe->its_vm);
2941 
2942 		clear_bit(data->hwirq, vm->db_bitmap);
2943 		its_vpe_teardown(vpe);
2944 		irq_domain_reset_irq_data(data);
2945 	}
2946 
2947 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2948 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2949 		its_free_prop_table(vm->vprop_page);
2950 	}
2951 }
2952 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)2953 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2954 				    unsigned int nr_irqs, void *args)
2955 {
2956 	struct its_vm *vm = args;
2957 	unsigned long *bitmap;
2958 	struct page *vprop_page;
2959 	int base, nr_ids, i, err = 0;
2960 
2961 	BUG_ON(!vm);
2962 
2963 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
2964 	if (!bitmap)
2965 		return -ENOMEM;
2966 
2967 	if (nr_ids < nr_irqs) {
2968 		its_lpi_free(bitmap, base, nr_ids);
2969 		return -ENOMEM;
2970 	}
2971 
2972 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2973 	if (!vprop_page) {
2974 		its_lpi_free(bitmap, base, nr_ids);
2975 		return -ENOMEM;
2976 	}
2977 
2978 	vm->db_bitmap = bitmap;
2979 	vm->db_lpi_base = base;
2980 	vm->nr_db_lpis = nr_ids;
2981 	vm->vprop_page = vprop_page;
2982 
2983 	for (i = 0; i < nr_irqs; i++) {
2984 		vm->vpes[i]->vpe_db_lpi = base + i;
2985 		err = its_vpe_init(vm->vpes[i]);
2986 		if (err)
2987 			break;
2988 		err = its_irq_gic_domain_alloc(domain, virq + i,
2989 					       vm->vpes[i]->vpe_db_lpi);
2990 		if (err)
2991 			break;
2992 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2993 					      &its_vpe_irq_chip, vm->vpes[i]);
2994 		set_bit(i, bitmap);
2995 	}
2996 
2997 	if (err) {
2998 		if (i > 0)
2999 			its_vpe_irq_domain_free(domain, virq, i);
3000 
3001 		its_lpi_free(bitmap, base, nr_ids);
3002 		its_free_prop_table(vprop_page);
3003 	}
3004 
3005 	return err;
3006 }
3007 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3008 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3009 				       struct irq_data *d, bool reserve)
3010 {
3011 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3012 	struct its_node *its;
3013 
3014 	/* If we use the list map, we issue VMAPP on demand... */
3015 	if (its_list_map)
3016 		return 0;
3017 
3018 	/* Map the VPE to the first possible CPU */
3019 	vpe->col_idx = cpumask_first(cpu_online_mask);
3020 
3021 	list_for_each_entry(its, &its_nodes, entry) {
3022 		if (!its->is_v4)
3023 			continue;
3024 
3025 		its_send_vmapp(its, vpe, true);
3026 		its_send_vinvall(its, vpe);
3027 	}
3028 
3029 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3030 
3031 	return 0;
3032 }
3033 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3034 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3035 					  struct irq_data *d)
3036 {
3037 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3038 	struct its_node *its;
3039 
3040 	/*
3041 	 * If we use the list map, we unmap the VPE once no VLPIs are
3042 	 * associated with the VM.
3043 	 */
3044 	if (its_list_map)
3045 		return;
3046 
3047 	list_for_each_entry(its, &its_nodes, entry) {
3048 		if (!its->is_v4)
3049 			continue;
3050 
3051 		its_send_vmapp(its, vpe, false);
3052 	}
3053 }
3054 
3055 static const struct irq_domain_ops its_vpe_domain_ops = {
3056 	.alloc			= its_vpe_irq_domain_alloc,
3057 	.free			= its_vpe_irq_domain_free,
3058 	.activate		= its_vpe_irq_domain_activate,
3059 	.deactivate		= its_vpe_irq_domain_deactivate,
3060 };
3061 
its_force_quiescent(void __iomem * base)3062 static int its_force_quiescent(void __iomem *base)
3063 {
3064 	u32 count = 1000000;	/* 1s */
3065 	u32 val;
3066 
3067 	val = readl_relaxed(base + GITS_CTLR);
3068 	/*
3069 	 * GIC architecture specification requires the ITS to be both
3070 	 * disabled and quiescent for writes to GITS_BASER<n> or
3071 	 * GITS_CBASER to not have UNPREDICTABLE results.
3072 	 */
3073 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3074 		return 0;
3075 
3076 	/* Disable the generation of all interrupts to this ITS */
3077 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3078 	writel_relaxed(val, base + GITS_CTLR);
3079 
3080 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3081 	while (1) {
3082 		val = readl_relaxed(base + GITS_CTLR);
3083 		if (val & GITS_CTLR_QUIESCENT)
3084 			return 0;
3085 
3086 		count--;
3087 		if (!count)
3088 			return -EBUSY;
3089 
3090 		cpu_relax();
3091 		udelay(1);
3092 	}
3093 }
3094 
its_enable_quirk_cavium_22375(void * data)3095 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3096 {
3097 	struct its_node *its = data;
3098 
3099 	/* erratum 22375: only alloc 8MB table size */
3100 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3101 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3102 
3103 	return true;
3104 }
3105 
its_enable_quirk_cavium_23144(void * data)3106 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3107 {
3108 	struct its_node *its = data;
3109 
3110 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3111 
3112 	return true;
3113 }
3114 
its_enable_quirk_qdf2400_e0065(void * data)3115 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3116 {
3117 	struct its_node *its = data;
3118 
3119 	/* On QDF2400, the size of the ITE is 16Bytes */
3120 	its->ite_size = 16;
3121 
3122 	return true;
3123 }
3124 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)3125 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3126 {
3127 	struct its_node *its = its_dev->its;
3128 
3129 	/*
3130 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3131 	 * which maps 32-bit writes targeted at a separate window of
3132 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3133 	 * with device ID taken from bits [device_id_bits + 1:2] of
3134 	 * the window offset.
3135 	 */
3136 	return its->pre_its_base + (its_dev->device_id << 2);
3137 }
3138 
its_enable_quirk_socionext_synquacer(void * data)3139 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3140 {
3141 	struct its_node *its = data;
3142 	u32 pre_its_window[2];
3143 	u32 ids;
3144 
3145 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3146 					   "socionext,synquacer-pre-its",
3147 					   pre_its_window,
3148 					   ARRAY_SIZE(pre_its_window))) {
3149 
3150 		its->pre_its_base = pre_its_window[0];
3151 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3152 
3153 		ids = ilog2(pre_its_window[1]) - 2;
3154 		if (its->device_ids > ids)
3155 			its->device_ids = ids;
3156 
3157 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3158 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3159 		return true;
3160 	}
3161 	return false;
3162 }
3163 
its_enable_quirk_hip07_161600802(void * data)3164 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3165 {
3166 	struct its_node *its = data;
3167 
3168 	/*
3169 	 * Hip07 insists on using the wrong address for the VLPI
3170 	 * page. Trick it into doing the right thing...
3171 	 */
3172 	its->vlpi_redist_offset = SZ_128K;
3173 	return true;
3174 }
3175 
3176 static const struct gic_quirk its_quirks[] = {
3177 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3178 	{
3179 		.desc	= "ITS: Cavium errata 22375, 24313",
3180 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3181 		.mask	= 0xffff0fff,
3182 		.init	= its_enable_quirk_cavium_22375,
3183 	},
3184 #endif
3185 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3186 	{
3187 		.desc	= "ITS: Cavium erratum 23144",
3188 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3189 		.mask	= 0xffff0fff,
3190 		.init	= its_enable_quirk_cavium_23144,
3191 	},
3192 #endif
3193 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3194 	{
3195 		.desc	= "ITS: QDF2400 erratum 0065",
3196 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3197 		.mask	= 0xffffffff,
3198 		.init	= its_enable_quirk_qdf2400_e0065,
3199 	},
3200 #endif
3201 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3202 	{
3203 		/*
3204 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3205 		 * implementation, but with a 'pre-ITS' added that requires
3206 		 * special handling in software.
3207 		 */
3208 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3209 		.iidr	= 0x0001143b,
3210 		.mask	= 0xffffffff,
3211 		.init	= its_enable_quirk_socionext_synquacer,
3212 	},
3213 #endif
3214 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3215 	{
3216 		.desc	= "ITS: Hip07 erratum 161600802",
3217 		.iidr	= 0x00000004,
3218 		.mask	= 0xffffffff,
3219 		.init	= its_enable_quirk_hip07_161600802,
3220 	},
3221 #endif
3222 	{
3223 	}
3224 };
3225 
its_enable_quirks(struct its_node * its)3226 static void its_enable_quirks(struct its_node *its)
3227 {
3228 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3229 
3230 	gic_enable_quirks(iidr, its_quirks, its);
3231 }
3232 
its_save_disable(void)3233 static int its_save_disable(void)
3234 {
3235 	struct its_node *its;
3236 	int err = 0;
3237 
3238 	raw_spin_lock(&its_lock);
3239 	list_for_each_entry(its, &its_nodes, entry) {
3240 		void __iomem *base;
3241 
3242 		base = its->base;
3243 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3244 		err = its_force_quiescent(base);
3245 		if (err) {
3246 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3247 			       &its->phys_base, err);
3248 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3249 			goto err;
3250 		}
3251 
3252 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3253 	}
3254 
3255 err:
3256 	if (err) {
3257 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3258 			void __iomem *base;
3259 
3260 			base = its->base;
3261 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3262 		}
3263 	}
3264 	raw_spin_unlock(&its_lock);
3265 
3266 	return err;
3267 }
3268 
its_restore_enable(void)3269 static void its_restore_enable(void)
3270 {
3271 	struct its_node *its;
3272 	int ret;
3273 
3274 	raw_spin_lock(&its_lock);
3275 	list_for_each_entry(its, &its_nodes, entry) {
3276 		void __iomem *base;
3277 		int i;
3278 
3279 		base = its->base;
3280 
3281 		/*
3282 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3283 		 * don't restore it since writing to CBASER or BASER<n>
3284 		 * registers is undefined according to the GIC v3 ITS
3285 		 * Specification.
3286 		 *
3287 		 * Firmware resuming with the ITS enabled is terminally broken.
3288 		 */
3289 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
3290 		ret = its_force_quiescent(base);
3291 		if (ret) {
3292 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3293 			       &its->phys_base, ret);
3294 			continue;
3295 		}
3296 
3297 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3298 
3299 		/*
3300 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3301 		 * cmd_write line up with it.
3302 		 */
3303 		its->cmd_write = its->cmd_base;
3304 		gits_write_cwriter(0, base + GITS_CWRITER);
3305 
3306 		/* Restore GITS_BASER from the value cache. */
3307 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3308 			struct its_baser *baser = &its->tables[i];
3309 
3310 			if (!(baser->val & GITS_BASER_VALID))
3311 				continue;
3312 
3313 			its_write_baser(its, baser, baser->val);
3314 		}
3315 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3316 
3317 		/*
3318 		 * Reinit the collection if it's stored in the ITS. This is
3319 		 * indicated by the col_id being less than the HCC field.
3320 		 * CID < HCC as specified in the GIC v3 Documentation.
3321 		 */
3322 		if (its->collections[smp_processor_id()].col_id <
3323 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3324 			its_cpu_init_collection(its);
3325 	}
3326 	raw_spin_unlock(&its_lock);
3327 }
3328 
3329 static struct syscore_ops its_syscore_ops = {
3330 	.suspend = its_save_disable,
3331 	.resume = its_restore_enable,
3332 };
3333 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)3334 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3335 {
3336 	struct irq_domain *inner_domain;
3337 	struct msi_domain_info *info;
3338 
3339 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3340 	if (!info)
3341 		return -ENOMEM;
3342 
3343 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3344 	if (!inner_domain) {
3345 		kfree(info);
3346 		return -ENOMEM;
3347 	}
3348 
3349 	inner_domain->parent = its_parent;
3350 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3351 	inner_domain->flags |= its->msi_domain_flags;
3352 	info->ops = &its_msi_domain_ops;
3353 	info->data = its;
3354 	inner_domain->host_data = info;
3355 
3356 	return 0;
3357 }
3358 
its_init_vpe_domain(void)3359 static int its_init_vpe_domain(void)
3360 {
3361 	struct its_node *its;
3362 	u32 devid;
3363 	int entries;
3364 
3365 	if (gic_rdists->has_direct_lpi) {
3366 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3367 		return 0;
3368 	}
3369 
3370 	/* Any ITS will do, even if not v4 */
3371 	its = list_first_entry(&its_nodes, struct its_node, entry);
3372 
3373 	entries = roundup_pow_of_two(nr_cpu_ids);
3374 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3375 				 GFP_KERNEL);
3376 	if (!vpe_proxy.vpes) {
3377 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3378 		return -ENOMEM;
3379 	}
3380 
3381 	/* Use the last possible DevID */
3382 	devid = GENMASK(its->device_ids - 1, 0);
3383 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3384 	if (!vpe_proxy.dev) {
3385 		kfree(vpe_proxy.vpes);
3386 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3387 		return -ENOMEM;
3388 	}
3389 
3390 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3391 
3392 	raw_spin_lock_init(&vpe_proxy.lock);
3393 	vpe_proxy.next_victim = 0;
3394 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3395 		devid, vpe_proxy.dev->nr_ites);
3396 
3397 	return 0;
3398 }
3399 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)3400 static int __init its_compute_its_list_map(struct resource *res,
3401 					   void __iomem *its_base)
3402 {
3403 	int its_number;
3404 	u32 ctlr;
3405 
3406 	/*
3407 	 * This is assumed to be done early enough that we're
3408 	 * guaranteed to be single-threaded, hence no
3409 	 * locking. Should this change, we should address
3410 	 * this.
3411 	 */
3412 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3413 	if (its_number >= GICv4_ITS_LIST_MAX) {
3414 		pr_err("ITS@%pa: No ITSList entry available!\n",
3415 		       &res->start);
3416 		return -EINVAL;
3417 	}
3418 
3419 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3420 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3421 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3422 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3423 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3424 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3425 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3426 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3427 	}
3428 
3429 	if (test_and_set_bit(its_number, &its_list_map)) {
3430 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3431 		       &res->start, its_number);
3432 		return -EINVAL;
3433 	}
3434 
3435 	return its_number;
3436 }
3437 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)3438 static int __init its_probe_one(struct resource *res,
3439 				struct fwnode_handle *handle, int numa_node)
3440 {
3441 	struct its_node *its;
3442 	void __iomem *its_base;
3443 	u32 val, ctlr;
3444 	u64 baser, tmp, typer;
3445 	int err;
3446 
3447 	its_base = ioremap(res->start, resource_size(res));
3448 	if (!its_base) {
3449 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3450 		return -ENOMEM;
3451 	}
3452 
3453 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3454 	if (val != 0x30 && val != 0x40) {
3455 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3456 		err = -ENODEV;
3457 		goto out_unmap;
3458 	}
3459 
3460 	err = its_force_quiescent(its_base);
3461 	if (err) {
3462 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3463 		goto out_unmap;
3464 	}
3465 
3466 	pr_info("ITS %pR\n", res);
3467 
3468 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3469 	if (!its) {
3470 		err = -ENOMEM;
3471 		goto out_unmap;
3472 	}
3473 
3474 	raw_spin_lock_init(&its->lock);
3475 	mutex_init(&its->dev_alloc_lock);
3476 	INIT_LIST_HEAD(&its->entry);
3477 	INIT_LIST_HEAD(&its->its_device_list);
3478 	typer = gic_read_typer(its_base + GITS_TYPER);
3479 	its->base = its_base;
3480 	its->phys_base = res->start;
3481 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3482 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3483 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3484 	if (its->is_v4) {
3485 		if (!(typer & GITS_TYPER_VMOVP)) {
3486 			err = its_compute_its_list_map(res, its_base);
3487 			if (err < 0)
3488 				goto out_free_its;
3489 
3490 			its->list_nr = err;
3491 
3492 			pr_info("ITS@%pa: Using ITS number %d\n",
3493 				&res->start, err);
3494 		} else {
3495 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3496 		}
3497 	}
3498 
3499 	its->numa_node = numa_node;
3500 
3501 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3502 						get_order(ITS_CMD_QUEUE_SZ));
3503 	if (!its->cmd_base) {
3504 		err = -ENOMEM;
3505 		goto out_free_its;
3506 	}
3507 	its->cmd_write = its->cmd_base;
3508 	its->fwnode_handle = handle;
3509 	its->get_msi_base = its_irq_get_msi_base;
3510 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3511 
3512 	its_enable_quirks(its);
3513 
3514 	err = its_alloc_tables(its);
3515 	if (err)
3516 		goto out_free_cmd;
3517 
3518 	err = its_alloc_collections(its);
3519 	if (err)
3520 		goto out_free_tables;
3521 
3522 	baser = (virt_to_phys(its->cmd_base)	|
3523 		 GITS_CBASER_RaWaWb		|
3524 		 GITS_CBASER_InnerShareable	|
3525 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3526 		 GITS_CBASER_VALID);
3527 
3528 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3529 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3530 
3531 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3532 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3533 			/*
3534 			 * The HW reports non-shareable, we must
3535 			 * remove the cacheability attributes as
3536 			 * well.
3537 			 */
3538 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3539 				   GITS_CBASER_CACHEABILITY_MASK);
3540 			baser |= GITS_CBASER_nC;
3541 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3542 		}
3543 		pr_info("ITS: using cache flushing for cmd queue\n");
3544 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3545 	}
3546 
3547 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3548 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3549 	ctlr |= GITS_CTLR_ENABLE;
3550 	if (its->is_v4)
3551 		ctlr |= GITS_CTLR_ImDe;
3552 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3553 
3554 	err = its_init_domain(handle, its);
3555 	if (err)
3556 		goto out_free_tables;
3557 
3558 	raw_spin_lock(&its_lock);
3559 	list_add(&its->entry, &its_nodes);
3560 	raw_spin_unlock(&its_lock);
3561 
3562 	return 0;
3563 
3564 out_free_tables:
3565 	its_free_tables(its);
3566 out_free_cmd:
3567 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3568 out_free_its:
3569 	kfree(its);
3570 out_unmap:
3571 	iounmap(its_base);
3572 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3573 	return err;
3574 }
3575 
gic_rdists_supports_plpis(void)3576 static bool gic_rdists_supports_plpis(void)
3577 {
3578 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3579 }
3580 
redist_disable_lpis(void)3581 static int redist_disable_lpis(void)
3582 {
3583 	void __iomem *rbase = gic_data_rdist_rd_base();
3584 	u64 timeout = USEC_PER_SEC;
3585 	u64 val;
3586 
3587 	/*
3588 	 * If coming via a CPU hotplug event, we don't need to disable
3589 	 * LPIs before trying to re-enable them. They are already
3590 	 * configured and all is well in the world. Detect this case
3591 	 * by checking the allocation of the pending table for the
3592 	 * current CPU.
3593 	 */
3594 	if (gic_data_rdist()->pend_page)
3595 		return 0;
3596 
3597 	if (!gic_rdists_supports_plpis()) {
3598 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3599 		return -ENXIO;
3600 	}
3601 
3602 	val = readl_relaxed(rbase + GICR_CTLR);
3603 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3604 		return 0;
3605 
3606 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3607 		smp_processor_id());
3608 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3609 
3610 	/* Disable LPIs */
3611 	val &= ~GICR_CTLR_ENABLE_LPIS;
3612 	writel_relaxed(val, rbase + GICR_CTLR);
3613 
3614 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3615 	dsb(sy);
3616 
3617 	/*
3618 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3619 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3620 	 * Error out if we time out waiting for RWP to clear.
3621 	 */
3622 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3623 		if (!timeout) {
3624 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3625 			       smp_processor_id());
3626 			return -ETIMEDOUT;
3627 		}
3628 		udelay(1);
3629 		timeout--;
3630 	}
3631 
3632 	/*
3633 	 * After it has been written to 1, it is IMPLEMENTATION
3634 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3635 	 * cleared to 0. Error out if clearing the bit failed.
3636 	 */
3637 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3638 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3639 		return -EBUSY;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
its_cpu_init(void)3645 int its_cpu_init(void)
3646 {
3647 	if (!list_empty(&its_nodes)) {
3648 		int ret;
3649 
3650 		ret = redist_disable_lpis();
3651 		if (ret)
3652 			return ret;
3653 
3654 		its_cpu_init_lpis();
3655 		its_cpu_init_collections();
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 static const struct of_device_id its_device_id[] = {
3662 	{	.compatible	= "arm,gic-v3-its",	},
3663 	{},
3664 };
3665 
its_of_probe(struct device_node * node)3666 static int __init its_of_probe(struct device_node *node)
3667 {
3668 	struct device_node *np;
3669 	struct resource res;
3670 
3671 	for (np = of_find_matching_node(node, its_device_id); np;
3672 	     np = of_find_matching_node(np, its_device_id)) {
3673 		if (!of_device_is_available(np))
3674 			continue;
3675 		if (!of_property_read_bool(np, "msi-controller")) {
3676 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3677 				np);
3678 			continue;
3679 		}
3680 
3681 		if (of_address_to_resource(np, 0, &res)) {
3682 			pr_warn("%pOF: no regs?\n", np);
3683 			continue;
3684 		}
3685 
3686 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3687 	}
3688 	return 0;
3689 }
3690 
3691 #ifdef CONFIG_ACPI
3692 
3693 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3694 
3695 #ifdef CONFIG_ACPI_NUMA
3696 struct its_srat_map {
3697 	/* numa node id */
3698 	u32	numa_node;
3699 	/* GIC ITS ID */
3700 	u32	its_id;
3701 };
3702 
3703 static struct its_srat_map *its_srat_maps __initdata;
3704 static int its_in_srat __initdata;
3705 
acpi_get_its_numa_node(u32 its_id)3706 static int __init acpi_get_its_numa_node(u32 its_id)
3707 {
3708 	int i;
3709 
3710 	for (i = 0; i < its_in_srat; i++) {
3711 		if (its_id == its_srat_maps[i].its_id)
3712 			return its_srat_maps[i].numa_node;
3713 	}
3714 	return NUMA_NO_NODE;
3715 }
3716 
gic_acpi_match_srat_its(struct acpi_subtable_header * header,const unsigned long end)3717 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3718 					  const unsigned long end)
3719 {
3720 	return 0;
3721 }
3722 
gic_acpi_parse_srat_its(struct acpi_subtable_header * header,const unsigned long end)3723 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3724 			 const unsigned long end)
3725 {
3726 	int node;
3727 	struct acpi_srat_gic_its_affinity *its_affinity;
3728 
3729 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3730 	if (!its_affinity)
3731 		return -EINVAL;
3732 
3733 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3734 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3735 			its_affinity->header.length);
3736 		return -EINVAL;
3737 	}
3738 
3739 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3740 
3741 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3742 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3743 		return 0;
3744 	}
3745 
3746 	its_srat_maps[its_in_srat].numa_node = node;
3747 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3748 	its_in_srat++;
3749 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3750 		its_affinity->proximity_domain, its_affinity->its_id, node);
3751 
3752 	return 0;
3753 }
3754 
acpi_table_parse_srat_its(void)3755 static void __init acpi_table_parse_srat_its(void)
3756 {
3757 	int count;
3758 
3759 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3760 			sizeof(struct acpi_table_srat),
3761 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3762 			gic_acpi_match_srat_its, 0);
3763 	if (count <= 0)
3764 		return;
3765 
3766 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3767 				      GFP_KERNEL);
3768 	if (!its_srat_maps) {
3769 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3770 		return;
3771 	}
3772 
3773 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3774 			sizeof(struct acpi_table_srat),
3775 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3776 			gic_acpi_parse_srat_its, 0);
3777 }
3778 
3779 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)3780 static void __init acpi_its_srat_maps_free(void)
3781 {
3782 	kfree(its_srat_maps);
3783 }
3784 #else
acpi_table_parse_srat_its(void)3785 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)3786 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)3787 static void __init acpi_its_srat_maps_free(void) { }
3788 #endif
3789 
gic_acpi_parse_madt_its(struct acpi_subtable_header * header,const unsigned long end)3790 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3791 					  const unsigned long end)
3792 {
3793 	struct acpi_madt_generic_translator *its_entry;
3794 	struct fwnode_handle *dom_handle;
3795 	struct resource res;
3796 	int err;
3797 
3798 	its_entry = (struct acpi_madt_generic_translator *)header;
3799 	memset(&res, 0, sizeof(res));
3800 	res.start = its_entry->base_address;
3801 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3802 	res.flags = IORESOURCE_MEM;
3803 
3804 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3805 	if (!dom_handle) {
3806 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3807 		       &res.start);
3808 		return -ENOMEM;
3809 	}
3810 
3811 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3812 					 dom_handle);
3813 	if (err) {
3814 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3815 		       &res.start, its_entry->translation_id);
3816 		goto dom_err;
3817 	}
3818 
3819 	err = its_probe_one(&res, dom_handle,
3820 			acpi_get_its_numa_node(its_entry->translation_id));
3821 	if (!err)
3822 		return 0;
3823 
3824 	iort_deregister_domain_token(its_entry->translation_id);
3825 dom_err:
3826 	irq_domain_free_fwnode(dom_handle);
3827 	return err;
3828 }
3829 
its_acpi_probe(void)3830 static void __init its_acpi_probe(void)
3831 {
3832 	acpi_table_parse_srat_its();
3833 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3834 			      gic_acpi_parse_madt_its, 0);
3835 	acpi_its_srat_maps_free();
3836 }
3837 #else
its_acpi_probe(void)3838 static void __init its_acpi_probe(void) { }
3839 #endif
3840 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)3841 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3842 		    struct irq_domain *parent_domain)
3843 {
3844 	struct device_node *of_node;
3845 	struct its_node *its;
3846 	bool has_v4 = false;
3847 	int err;
3848 
3849 	its_parent = parent_domain;
3850 	of_node = to_of_node(handle);
3851 	if (of_node)
3852 		its_of_probe(of_node);
3853 	else
3854 		its_acpi_probe();
3855 
3856 	if (list_empty(&its_nodes)) {
3857 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3858 		return -ENXIO;
3859 	}
3860 
3861 	gic_rdists = rdists;
3862 	err = its_alloc_lpi_tables();
3863 	if (err)
3864 		return err;
3865 
3866 	list_for_each_entry(its, &its_nodes, entry)
3867 		has_v4 |= its->is_v4;
3868 
3869 	if (has_v4 & rdists->has_vlpis) {
3870 		if (its_init_vpe_domain() ||
3871 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3872 			rdists->has_vlpis = false;
3873 			pr_err("ITS: Disabling GICv4 support\n");
3874 		}
3875 	}
3876 
3877 	register_syscore_ops(&its_syscore_ops);
3878 
3879 	return 0;
3880 }
3881