1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74 
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103 
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106 
107 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)108 void __jbd2_debug(int level, const char *file, const char *func,
109 		  unsigned int line, const char *fmt, ...)
110 {
111 	struct va_format vaf;
112 	va_list args;
113 
114 	if (level > jbd2_journal_enable_debug)
115 		return;
116 	va_start(args, fmt);
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124 
125 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 	if (!jbd2_journal_has_csum_v2or3_feature(j))
129 		return 1;
130 
131 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 	__u32 csum;
137 	__be32 old_csum;
138 
139 	old_csum = sb->s_checksum;
140 	sb->s_checksum = 0;
141 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 	sb->s_checksum = old_csum;
143 
144 	return cpu_to_be32(csum);
145 }
146 
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 	if (!jbd2_journal_has_csum_v2or3(j))
150 		return 1;
151 
152 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154 
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 	if (!jbd2_journal_has_csum_v2or3(j))
158 		return;
159 
160 	sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162 
163 /*
164  * Helper function used to manage commit timeouts
165  */
166 
commit_timeout(struct timer_list * t)167 static void commit_timeout(struct timer_list *t)
168 {
169 	journal_t *journal = from_timer(journal, t, j_commit_timer);
170 
171 	wake_up_process(journal->j_task);
172 }
173 
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189 
kjournald2(void * arg)190 static int kjournald2(void *arg)
191 {
192 	journal_t *journal = arg;
193 	transaction_t *transaction;
194 
195 	/*
196 	 * Set up an interval timer which can be used to trigger a commit wakeup
197 	 * after the commit interval expires
198 	 */
199 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * Make sure that no allocations from this kernel thread will ever
209 	 * recurse to the fs layer because we are responsible for the
210 	 * transaction commit and any fs involvement might get stuck waiting for
211 	 * the trasn. commit.
212 	 */
213 	memalloc_nofs_save();
214 
215 	/*
216 	 * And now, wait forever for commit wakeup events.
217 	 */
218 	write_lock(&journal->j_state_lock);
219 
220 loop:
221 	if (journal->j_flags & JBD2_UNMOUNT)
222 		goto end_loop;
223 
224 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
225 		journal->j_commit_sequence, journal->j_commit_request);
226 
227 	if (journal->j_commit_sequence != journal->j_commit_request) {
228 		jbd_debug(1, "OK, requests differ\n");
229 		write_unlock(&journal->j_state_lock);
230 		del_timer_sync(&journal->j_commit_timer);
231 		jbd2_journal_commit_transaction(journal);
232 		write_lock(&journal->j_state_lock);
233 		goto loop;
234 	}
235 
236 	wake_up(&journal->j_wait_done_commit);
237 	if (freezing(current)) {
238 		/*
239 		 * The simpler the better. Flushing journal isn't a
240 		 * good idea, because that depends on threads that may
241 		 * be already stopped.
242 		 */
243 		jbd_debug(1, "Now suspending kjournald2\n");
244 		write_unlock(&journal->j_state_lock);
245 		try_to_freeze();
246 		write_lock(&journal->j_state_lock);
247 	} else {
248 		/*
249 		 * We assume on resume that commits are already there,
250 		 * so we don't sleep
251 		 */
252 		DEFINE_WAIT(wait);
253 		int should_sleep = 1;
254 
255 		prepare_to_wait(&journal->j_wait_commit, &wait,
256 				TASK_INTERRUPTIBLE);
257 		if (journal->j_commit_sequence != journal->j_commit_request)
258 			should_sleep = 0;
259 		transaction = journal->j_running_transaction;
260 		if (transaction && time_after_eq(jiffies,
261 						transaction->t_expires))
262 			should_sleep = 0;
263 		if (journal->j_flags & JBD2_UNMOUNT)
264 			should_sleep = 0;
265 		if (should_sleep) {
266 			write_unlock(&journal->j_state_lock);
267 			schedule();
268 			write_lock(&journal->j_state_lock);
269 		}
270 		finish_wait(&journal->j_wait_commit, &wait);
271 	}
272 
273 	jbd_debug(1, "kjournald2 wakes\n");
274 
275 	/*
276 	 * Were we woken up by a commit wakeup event?
277 	 */
278 	transaction = journal->j_running_transaction;
279 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
280 		journal->j_commit_request = transaction->t_tid;
281 		jbd_debug(1, "woke because of timeout\n");
282 	}
283 	goto loop;
284 
285 end_loop:
286 	del_timer_sync(&journal->j_commit_timer);
287 	journal->j_task = NULL;
288 	wake_up(&journal->j_wait_done_commit);
289 	jbd_debug(1, "Journal thread exiting.\n");
290 	write_unlock(&journal->j_state_lock);
291 	return 0;
292 }
293 
jbd2_journal_start_thread(journal_t * journal)294 static int jbd2_journal_start_thread(journal_t *journal)
295 {
296 	struct task_struct *t;
297 
298 	t = kthread_run(kjournald2, journal, "jbd2/%s",
299 			journal->j_devname);
300 	if (IS_ERR(t))
301 		return PTR_ERR(t);
302 
303 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
304 	return 0;
305 }
306 
journal_kill_thread(journal_t * journal)307 static void journal_kill_thread(journal_t *journal)
308 {
309 	write_lock(&journal->j_state_lock);
310 	journal->j_flags |= JBD2_UNMOUNT;
311 
312 	while (journal->j_task) {
313 		write_unlock(&journal->j_state_lock);
314 		wake_up(&journal->j_wait_commit);
315 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
316 		write_lock(&journal->j_state_lock);
317 	}
318 	write_unlock(&journal->j_state_lock);
319 }
320 
321 /*
322  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
323  *
324  * Writes a metadata buffer to a given disk block.  The actual IO is not
325  * performed but a new buffer_head is constructed which labels the data
326  * to be written with the correct destination disk block.
327  *
328  * Any magic-number escaping which needs to be done will cause a
329  * copy-out here.  If the buffer happens to start with the
330  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
331  * magic number is only written to the log for descripter blocks.  In
332  * this case, we copy the data and replace the first word with 0, and we
333  * return a result code which indicates that this buffer needs to be
334  * marked as an escaped buffer in the corresponding log descriptor
335  * block.  The missing word can then be restored when the block is read
336  * during recovery.
337  *
338  * If the source buffer has already been modified by a new transaction
339  * since we took the last commit snapshot, we use the frozen copy of
340  * that data for IO. If we end up using the existing buffer_head's data
341  * for the write, then we have to make sure nobody modifies it while the
342  * IO is in progress. do_get_write_access() handles this.
343  *
344  * The function returns a pointer to the buffer_head to be used for IO.
345  *
346  *
347  * Return value:
348  *  <0: Error
349  * >=0: Finished OK
350  *
351  * On success:
352  * Bit 0 set == escape performed on the data
353  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
354  */
355 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)356 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
357 				  struct journal_head  *jh_in,
358 				  struct buffer_head **bh_out,
359 				  sector_t blocknr)
360 {
361 	int need_copy_out = 0;
362 	int done_copy_out = 0;
363 	int do_escape = 0;
364 	char *mapped_data;
365 	struct buffer_head *new_bh;
366 	struct page *new_page;
367 	unsigned int new_offset;
368 	struct buffer_head *bh_in = jh2bh(jh_in);
369 	journal_t *journal = transaction->t_journal;
370 
371 	/*
372 	 * The buffer really shouldn't be locked: only the current committing
373 	 * transaction is allowed to write it, so nobody else is allowed
374 	 * to do any IO.
375 	 *
376 	 * akpm: except if we're journalling data, and write() output is
377 	 * also part of a shared mapping, and another thread has
378 	 * decided to launch a writepage() against this buffer.
379 	 */
380 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
381 
382 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
383 
384 	/* keep subsequent assertions sane */
385 	atomic_set(&new_bh->b_count, 1);
386 
387 	jbd_lock_bh_state(bh_in);
388 repeat:
389 	/*
390 	 * If a new transaction has already done a buffer copy-out, then
391 	 * we use that version of the data for the commit.
392 	 */
393 	if (jh_in->b_frozen_data) {
394 		done_copy_out = 1;
395 		new_page = virt_to_page(jh_in->b_frozen_data);
396 		new_offset = offset_in_page(jh_in->b_frozen_data);
397 	} else {
398 		new_page = jh2bh(jh_in)->b_page;
399 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400 	}
401 
402 	mapped_data = kmap_atomic(new_page);
403 	/*
404 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
405 	 * before checking for escaping, as the trigger may modify the magic
406 	 * offset.  If a copy-out happens afterwards, it will have the correct
407 	 * data in the buffer.
408 	 */
409 	if (!done_copy_out)
410 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411 					   jh_in->b_triggers);
412 
413 	/*
414 	 * Check for escaping
415 	 */
416 	if (*((__be32 *)(mapped_data + new_offset)) ==
417 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418 		need_copy_out = 1;
419 		do_escape = 1;
420 	}
421 	kunmap_atomic(mapped_data);
422 
423 	/*
424 	 * Do we need to do a data copy?
425 	 */
426 	if (need_copy_out && !done_copy_out) {
427 		char *tmp;
428 
429 		jbd_unlock_bh_state(bh_in);
430 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431 		if (!tmp) {
432 			brelse(new_bh);
433 			return -ENOMEM;
434 		}
435 		jbd_lock_bh_state(bh_in);
436 		if (jh_in->b_frozen_data) {
437 			jbd2_free(tmp, bh_in->b_size);
438 			goto repeat;
439 		}
440 
441 		jh_in->b_frozen_data = tmp;
442 		mapped_data = kmap_atomic(new_page);
443 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444 		kunmap_atomic(mapped_data);
445 
446 		new_page = virt_to_page(tmp);
447 		new_offset = offset_in_page(tmp);
448 		done_copy_out = 1;
449 
450 		/*
451 		 * This isn't strictly necessary, as we're using frozen
452 		 * data for the escaping, but it keeps consistency with
453 		 * b_frozen_data usage.
454 		 */
455 		jh_in->b_frozen_triggers = jh_in->b_triggers;
456 	}
457 
458 	/*
459 	 * Did we need to do an escaping?  Now we've done all the
460 	 * copying, we can finally do so.
461 	 */
462 	if (do_escape) {
463 		mapped_data = kmap_atomic(new_page);
464 		*((unsigned int *)(mapped_data + new_offset)) = 0;
465 		kunmap_atomic(mapped_data);
466 	}
467 
468 	set_bh_page(new_bh, new_page, new_offset);
469 	new_bh->b_size = bh_in->b_size;
470 	new_bh->b_bdev = journal->j_dev;
471 	new_bh->b_blocknr = blocknr;
472 	new_bh->b_private = bh_in;
473 	set_buffer_mapped(new_bh);
474 	set_buffer_dirty(new_bh);
475 
476 	*bh_out = new_bh;
477 
478 	/*
479 	 * The to-be-written buffer needs to get moved to the io queue,
480 	 * and the original buffer whose contents we are shadowing or
481 	 * copying is moved to the transaction's shadow queue.
482 	 */
483 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484 	spin_lock(&journal->j_list_lock);
485 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486 	spin_unlock(&journal->j_list_lock);
487 	set_buffer_shadow(bh_in);
488 	jbd_unlock_bh_state(bh_in);
489 
490 	return do_escape | (done_copy_out << 1);
491 }
492 
493 /*
494  * Allocation code for the journal file.  Manage the space left in the
495  * journal, so that we can begin checkpointing when appropriate.
496  */
497 
498 /*
499  * Called with j_state_lock locked for writing.
500  * Returns true if a transaction commit was started.
501  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
503 {
504 	/* Return if the txn has already requested to be committed */
505 	if (journal->j_commit_request == target)
506 		return 0;
507 
508 	/*
509 	 * The only transaction we can possibly wait upon is the
510 	 * currently running transaction (if it exists).  Otherwise,
511 	 * the target tid must be an old one.
512 	 */
513 	if (journal->j_running_transaction &&
514 	    journal->j_running_transaction->t_tid == target) {
515 		/*
516 		 * We want a new commit: OK, mark the request and wakeup the
517 		 * commit thread.  We do _not_ do the commit ourselves.
518 		 */
519 
520 		journal->j_commit_request = target;
521 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522 			  journal->j_commit_request,
523 			  journal->j_commit_sequence);
524 		journal->j_running_transaction->t_requested = jiffies;
525 		wake_up(&journal->j_wait_commit);
526 		return 1;
527 	} else if (!tid_geq(journal->j_commit_request, target))
528 		/* This should never happen, but if it does, preserve
529 		   the evidence before kjournald goes into a loop and
530 		   increments j_commit_sequence beyond all recognition. */
531 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532 			  journal->j_commit_request,
533 			  journal->j_commit_sequence,
534 			  target, journal->j_running_transaction ?
535 			  journal->j_running_transaction->t_tid : 0);
536 	return 0;
537 }
538 
jbd2_log_start_commit(journal_t * journal,tid_t tid)539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
540 {
541 	int ret;
542 
543 	write_lock(&journal->j_state_lock);
544 	ret = __jbd2_log_start_commit(journal, tid);
545 	write_unlock(&journal->j_state_lock);
546 	return ret;
547 }
548 
549 /*
550  * Force and wait any uncommitted transactions.  We can only force the running
551  * transaction if we don't have an active handle, otherwise, we will deadlock.
552  * Returns: <0 in case of error,
553  *           0 if nothing to commit,
554  *           1 if transaction was successfully committed.
555  */
__jbd2_journal_force_commit(journal_t * journal)556 static int __jbd2_journal_force_commit(journal_t *journal)
557 {
558 	transaction_t *transaction = NULL;
559 	tid_t tid;
560 	int need_to_start = 0, ret = 0;
561 
562 	read_lock(&journal->j_state_lock);
563 	if (journal->j_running_transaction && !current->journal_info) {
564 		transaction = journal->j_running_transaction;
565 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566 			need_to_start = 1;
567 	} else if (journal->j_committing_transaction)
568 		transaction = journal->j_committing_transaction;
569 
570 	if (!transaction) {
571 		/* Nothing to commit */
572 		read_unlock(&journal->j_state_lock);
573 		return 0;
574 	}
575 	tid = transaction->t_tid;
576 	read_unlock(&journal->j_state_lock);
577 	if (need_to_start)
578 		jbd2_log_start_commit(journal, tid);
579 	ret = jbd2_log_wait_commit(journal, tid);
580 	if (!ret)
581 		ret = 1;
582 
583 	return ret;
584 }
585 
586 /**
587  * Force and wait upon a commit if the calling process is not within
588  * transaction.  This is used for forcing out undo-protected data which contains
589  * bitmaps, when the fs is running out of space.
590  *
591  * @journal: journal to force
592  * Returns true if progress was made.
593  */
jbd2_journal_force_commit_nested(journal_t * journal)594 int jbd2_journal_force_commit_nested(journal_t *journal)
595 {
596 	int ret;
597 
598 	ret = __jbd2_journal_force_commit(journal);
599 	return ret > 0;
600 }
601 
602 /**
603  * int journal_force_commit() - force any uncommitted transactions
604  * @journal: journal to force
605  *
606  * Caller want unconditional commit. We can only force the running transaction
607  * if we don't have an active handle, otherwise, we will deadlock.
608  */
jbd2_journal_force_commit(journal_t * journal)609 int jbd2_journal_force_commit(journal_t *journal)
610 {
611 	int ret;
612 
613 	J_ASSERT(!current->journal_info);
614 	ret = __jbd2_journal_force_commit(journal);
615 	if (ret > 0)
616 		ret = 0;
617 	return ret;
618 }
619 
620 /*
621  * Start a commit of the current running transaction (if any).  Returns true
622  * if a transaction is going to be committed (or is currently already
623  * committing), and fills its tid in at *ptid
624  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
626 {
627 	int ret = 0;
628 
629 	write_lock(&journal->j_state_lock);
630 	if (journal->j_running_transaction) {
631 		tid_t tid = journal->j_running_transaction->t_tid;
632 
633 		__jbd2_log_start_commit(journal, tid);
634 		/* There's a running transaction and we've just made sure
635 		 * it's commit has been scheduled. */
636 		if (ptid)
637 			*ptid = tid;
638 		ret = 1;
639 	} else if (journal->j_committing_transaction) {
640 		/*
641 		 * If commit has been started, then we have to wait for
642 		 * completion of that transaction.
643 		 */
644 		if (ptid)
645 			*ptid = journal->j_committing_transaction->t_tid;
646 		ret = 1;
647 	}
648 	write_unlock(&journal->j_state_lock);
649 	return ret;
650 }
651 
652 /*
653  * Return 1 if a given transaction has not yet sent barrier request
654  * connected with a transaction commit. If 0 is returned, transaction
655  * may or may not have sent the barrier. Used to avoid sending barrier
656  * twice in common cases.
657  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
659 {
660 	int ret = 0;
661 	transaction_t *commit_trans;
662 
663 	if (!(journal->j_flags & JBD2_BARRIER))
664 		return 0;
665 	read_lock(&journal->j_state_lock);
666 	/* Transaction already committed? */
667 	if (tid_geq(journal->j_commit_sequence, tid))
668 		goto out;
669 	commit_trans = journal->j_committing_transaction;
670 	if (!commit_trans || commit_trans->t_tid != tid) {
671 		ret = 1;
672 		goto out;
673 	}
674 	/*
675 	 * Transaction is being committed and we already proceeded to
676 	 * submitting a flush to fs partition?
677 	 */
678 	if (journal->j_fs_dev != journal->j_dev) {
679 		if (!commit_trans->t_need_data_flush ||
680 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
681 			goto out;
682 	} else {
683 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684 			goto out;
685 	}
686 	ret = 1;
687 out:
688 	read_unlock(&journal->j_state_lock);
689 	return ret;
690 }
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692 
693 /*
694  * Wait for a specified commit to complete.
695  * The caller may not hold the journal lock.
696  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
698 {
699 	int err = 0;
700 
701 	read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_PROVE_LOCKING
703 	/*
704 	 * Some callers make sure transaction is already committing and in that
705 	 * case we cannot block on open handles anymore. So don't warn in that
706 	 * case.
707 	 */
708 	if (tid_gt(tid, journal->j_commit_sequence) &&
709 	    (!journal->j_committing_transaction ||
710 	     journal->j_committing_transaction->t_tid != tid)) {
711 		read_unlock(&journal->j_state_lock);
712 		jbd2_might_wait_for_commit(journal);
713 		read_lock(&journal->j_state_lock);
714 	}
715 #endif
716 #ifdef CONFIG_JBD2_DEBUG
717 	if (!tid_geq(journal->j_commit_request, tid)) {
718 		printk(KERN_ERR
719 		       "%s: error: j_commit_request=%d, tid=%d\n",
720 		       __func__, journal->j_commit_request, tid);
721 	}
722 #endif
723 	while (tid_gt(tid, journal->j_commit_sequence)) {
724 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
725 				  tid, journal->j_commit_sequence);
726 		read_unlock(&journal->j_state_lock);
727 		wake_up(&journal->j_wait_commit);
728 		wait_event(journal->j_wait_done_commit,
729 				!tid_gt(tid, journal->j_commit_sequence));
730 		read_lock(&journal->j_state_lock);
731 	}
732 	read_unlock(&journal->j_state_lock);
733 
734 	if (unlikely(is_journal_aborted(journal)))
735 		err = -EIO;
736 	return err;
737 }
738 
739 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)740 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
741 {
742 	int ret = 1;
743 
744 	read_lock(&journal->j_state_lock);
745 	if (journal->j_running_transaction &&
746 	    journal->j_running_transaction->t_tid == tid)
747 		ret = 0;
748 	if (journal->j_committing_transaction &&
749 	    journal->j_committing_transaction->t_tid == tid)
750 		ret = 0;
751 	read_unlock(&journal->j_state_lock);
752 	return ret;
753 }
754 EXPORT_SYMBOL(jbd2_transaction_committed);
755 
756 /*
757  * When this function returns the transaction corresponding to tid
758  * will be completed.  If the transaction has currently running, start
759  * committing that transaction before waiting for it to complete.  If
760  * the transaction id is stale, it is by definition already completed,
761  * so just return SUCCESS.
762  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)763 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
764 {
765 	int	need_to_wait = 1;
766 
767 	read_lock(&journal->j_state_lock);
768 	if (journal->j_running_transaction &&
769 	    journal->j_running_transaction->t_tid == tid) {
770 		if (journal->j_commit_request != tid) {
771 			/* transaction not yet started, so request it */
772 			read_unlock(&journal->j_state_lock);
773 			jbd2_log_start_commit(journal, tid);
774 			goto wait_commit;
775 		}
776 	} else if (!(journal->j_committing_transaction &&
777 		     journal->j_committing_transaction->t_tid == tid))
778 		need_to_wait = 0;
779 	read_unlock(&journal->j_state_lock);
780 	if (!need_to_wait)
781 		return 0;
782 wait_commit:
783 	return jbd2_log_wait_commit(journal, tid);
784 }
785 EXPORT_SYMBOL(jbd2_complete_transaction);
786 
787 /*
788  * Log buffer allocation routines:
789  */
790 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)791 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
792 {
793 	unsigned long blocknr;
794 
795 	write_lock(&journal->j_state_lock);
796 	J_ASSERT(journal->j_free > 1);
797 
798 	blocknr = journal->j_head;
799 	journal->j_head++;
800 	journal->j_free--;
801 	if (journal->j_head == journal->j_last)
802 		journal->j_head = journal->j_first;
803 	write_unlock(&journal->j_state_lock);
804 	return jbd2_journal_bmap(journal, blocknr, retp);
805 }
806 
807 /*
808  * Conversion of logical to physical block numbers for the journal
809  *
810  * On external journals the journal blocks are identity-mapped, so
811  * this is a no-op.  If needed, we can use j_blk_offset - everything is
812  * ready.
813  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)814 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
815 		 unsigned long long *retp)
816 {
817 	int err = 0;
818 	unsigned long long ret;
819 
820 	if (journal->j_inode) {
821 		ret = bmap(journal->j_inode, blocknr);
822 		if (ret)
823 			*retp = ret;
824 		else {
825 			printk(KERN_ALERT "%s: journal block not found "
826 					"at offset %lu on %s\n",
827 			       __func__, blocknr, journal->j_devname);
828 			err = -EIO;
829 			__journal_abort_soft(journal, err);
830 		}
831 	} else {
832 		*retp = blocknr; /* +journal->j_blk_offset */
833 	}
834 	return err;
835 }
836 
837 /*
838  * We play buffer_head aliasing tricks to write data/metadata blocks to
839  * the journal without copying their contents, but for journal
840  * descriptor blocks we do need to generate bona fide buffers.
841  *
842  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
843  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
844  * But we don't bother doing that, so there will be coherency problems with
845  * mmaps of blockdevs which hold live JBD-controlled filesystems.
846  */
847 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)848 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
849 {
850 	journal_t *journal = transaction->t_journal;
851 	struct buffer_head *bh;
852 	unsigned long long blocknr;
853 	journal_header_t *header;
854 	int err;
855 
856 	err = jbd2_journal_next_log_block(journal, &blocknr);
857 
858 	if (err)
859 		return NULL;
860 
861 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
862 	if (!bh)
863 		return NULL;
864 	lock_buffer(bh);
865 	memset(bh->b_data, 0, journal->j_blocksize);
866 	header = (journal_header_t *)bh->b_data;
867 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
868 	header->h_blocktype = cpu_to_be32(type);
869 	header->h_sequence = cpu_to_be32(transaction->t_tid);
870 	set_buffer_uptodate(bh);
871 	unlock_buffer(bh);
872 	BUFFER_TRACE(bh, "return this buffer");
873 	return bh;
874 }
875 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)876 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
877 {
878 	struct jbd2_journal_block_tail *tail;
879 	__u32 csum;
880 
881 	if (!jbd2_journal_has_csum_v2or3(j))
882 		return;
883 
884 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
885 			sizeof(struct jbd2_journal_block_tail));
886 	tail->t_checksum = 0;
887 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
888 	tail->t_checksum = cpu_to_be32(csum);
889 }
890 
891 /*
892  * Return tid of the oldest transaction in the journal and block in the journal
893  * where the transaction starts.
894  *
895  * If the journal is now empty, return which will be the next transaction ID
896  * we will write and where will that transaction start.
897  *
898  * The return value is 0 if journal tail cannot be pushed any further, 1 if
899  * it can.
900  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)901 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
902 			      unsigned long *block)
903 {
904 	transaction_t *transaction;
905 	int ret;
906 
907 	read_lock(&journal->j_state_lock);
908 	spin_lock(&journal->j_list_lock);
909 	transaction = journal->j_checkpoint_transactions;
910 	if (transaction) {
911 		*tid = transaction->t_tid;
912 		*block = transaction->t_log_start;
913 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
914 		*tid = transaction->t_tid;
915 		*block = transaction->t_log_start;
916 	} else if ((transaction = journal->j_running_transaction) != NULL) {
917 		*tid = transaction->t_tid;
918 		*block = journal->j_head;
919 	} else {
920 		*tid = journal->j_transaction_sequence;
921 		*block = journal->j_head;
922 	}
923 	ret = tid_gt(*tid, journal->j_tail_sequence);
924 	spin_unlock(&journal->j_list_lock);
925 	read_unlock(&journal->j_state_lock);
926 
927 	return ret;
928 }
929 
930 /*
931  * Update information in journal structure and in on disk journal superblock
932  * about log tail. This function does not check whether information passed in
933  * really pushes log tail further. It's responsibility of the caller to make
934  * sure provided log tail information is valid (e.g. by holding
935  * j_checkpoint_mutex all the time between computing log tail and calling this
936  * function as is the case with jbd2_cleanup_journal_tail()).
937  *
938  * Requires j_checkpoint_mutex
939  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)940 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
941 {
942 	unsigned long freed;
943 	int ret;
944 
945 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
946 
947 	/*
948 	 * We cannot afford for write to remain in drive's caches since as
949 	 * soon as we update j_tail, next transaction can start reusing journal
950 	 * space and if we lose sb update during power failure we'd replay
951 	 * old transaction with possibly newly overwritten data.
952 	 */
953 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
954 					      REQ_SYNC | REQ_FUA);
955 	if (ret)
956 		goto out;
957 
958 	write_lock(&journal->j_state_lock);
959 	freed = block - journal->j_tail;
960 	if (block < journal->j_tail)
961 		freed += journal->j_last - journal->j_first;
962 
963 	trace_jbd2_update_log_tail(journal, tid, block, freed);
964 	jbd_debug(1,
965 		  "Cleaning journal tail from %d to %d (offset %lu), "
966 		  "freeing %lu\n",
967 		  journal->j_tail_sequence, tid, block, freed);
968 
969 	journal->j_free += freed;
970 	journal->j_tail_sequence = tid;
971 	journal->j_tail = block;
972 	write_unlock(&journal->j_state_lock);
973 
974 out:
975 	return ret;
976 }
977 
978 /*
979  * This is a variation of __jbd2_update_log_tail which checks for validity of
980  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
981  * with other threads updating log tail.
982  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)983 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
984 {
985 	mutex_lock_io(&journal->j_checkpoint_mutex);
986 	if (tid_gt(tid, journal->j_tail_sequence))
987 		__jbd2_update_log_tail(journal, tid, block);
988 	mutex_unlock(&journal->j_checkpoint_mutex);
989 }
990 
991 struct jbd2_stats_proc_session {
992 	journal_t *journal;
993 	struct transaction_stats_s *stats;
994 	int start;
995 	int max;
996 };
997 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)998 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
999 {
1000 	return *pos ? NULL : SEQ_START_TOKEN;
1001 }
1002 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1003 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1004 {
1005 	(*pos)++;
1006 	return NULL;
1007 }
1008 
jbd2_seq_info_show(struct seq_file * seq,void * v)1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011 	struct jbd2_stats_proc_session *s = seq->private;
1012 
1013 	if (v != SEQ_START_TOKEN)
1014 		return 0;
1015 	seq_printf(seq, "%lu transactions (%lu requested), "
1016 		   "each up to %u blocks\n",
1017 		   s->stats->ts_tid, s->stats->ts_requested,
1018 		   s->journal->j_max_transaction_buffers);
1019 	if (s->stats->ts_tid == 0)
1020 		return 0;
1021 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023 	seq_printf(seq, "  %ums request delay\n",
1024 	    (s->stats->ts_requested == 0) ? 0 :
1025 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1026 			     s->stats->ts_requested));
1027 	seq_printf(seq, "  %ums running transaction\n",
1028 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029 	seq_printf(seq, "  %ums transaction was being locked\n",
1030 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033 	seq_printf(seq, "  %ums logging transaction\n",
1034 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035 	seq_printf(seq, "  %lluus average transaction commit time\n",
1036 		   div_u64(s->journal->j_average_commit_time, 1000));
1037 	seq_printf(seq, "  %lu handles per transaction\n",
1038 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1039 	seq_printf(seq, "  %lu blocks per transaction\n",
1040 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1041 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1042 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043 	return 0;
1044 }
1045 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049 
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051 	.start  = jbd2_seq_info_start,
1052 	.next   = jbd2_seq_info_next,
1053 	.stop   = jbd2_seq_info_stop,
1054 	.show   = jbd2_seq_info_show,
1055 };
1056 
jbd2_seq_info_open(struct inode * inode,struct file * file)1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059 	journal_t *journal = PDE_DATA(inode);
1060 	struct jbd2_stats_proc_session *s;
1061 	int rc, size;
1062 
1063 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1064 	if (s == NULL)
1065 		return -ENOMEM;
1066 	size = sizeof(struct transaction_stats_s);
1067 	s->stats = kmalloc(size, GFP_KERNEL);
1068 	if (s->stats == NULL) {
1069 		kfree(s);
1070 		return -ENOMEM;
1071 	}
1072 	spin_lock(&journal->j_history_lock);
1073 	memcpy(s->stats, &journal->j_stats, size);
1074 	s->journal = journal;
1075 	spin_unlock(&journal->j_history_lock);
1076 
1077 	rc = seq_open(file, &jbd2_seq_info_ops);
1078 	if (rc == 0) {
1079 		struct seq_file *m = file->private_data;
1080 		m->private = s;
1081 	} else {
1082 		kfree(s->stats);
1083 		kfree(s);
1084 	}
1085 	return rc;
1086 
1087 }
1088 
jbd2_seq_info_release(struct inode * inode,struct file * file)1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091 	struct seq_file *seq = file->private_data;
1092 	struct jbd2_stats_proc_session *s = seq->private;
1093 	kfree(s->stats);
1094 	kfree(s);
1095 	return seq_release(inode, file);
1096 }
1097 
1098 static const struct file_operations jbd2_seq_info_fops = {
1099 	.owner		= THIS_MODULE,
1100 	.open           = jbd2_seq_info_open,
1101 	.read           = seq_read,
1102 	.llseek         = seq_lseek,
1103 	.release        = jbd2_seq_info_release,
1104 };
1105 
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107 
jbd2_stats_proc_init(journal_t * journal)1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111 	if (journal->j_proc_entry) {
1112 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113 				 &jbd2_seq_info_fops, journal);
1114 	}
1115 }
1116 
jbd2_stats_proc_exit(journal_t * journal)1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119 	remove_proc_entry("info", journal->j_proc_entry);
1120 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122 
1123 /*
1124  * Management for journal control blocks: functions to create and
1125  * destroy journal_t structures, and to initialise and read existing
1126  * journal blocks from disk.  */
1127 
1128 /* First: create and setup a journal_t object in memory.  We initialise
1129  * very few fields yet: that has to wait until we have created the
1130  * journal structures from from scratch, or loaded them from disk. */
1131 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1132 static journal_t *journal_init_common(struct block_device *bdev,
1133 			struct block_device *fs_dev,
1134 			unsigned long long start, int len, int blocksize)
1135 {
1136 	static struct lock_class_key jbd2_trans_commit_key;
1137 	journal_t *journal;
1138 	int err;
1139 	struct buffer_head *bh;
1140 	int n;
1141 
1142 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143 	if (!journal)
1144 		return NULL;
1145 
1146 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1147 	init_waitqueue_head(&journal->j_wait_done_commit);
1148 	init_waitqueue_head(&journal->j_wait_commit);
1149 	init_waitqueue_head(&journal->j_wait_updates);
1150 	init_waitqueue_head(&journal->j_wait_reserved);
1151 	mutex_init(&journal->j_barrier);
1152 	mutex_init(&journal->j_checkpoint_mutex);
1153 	spin_lock_init(&journal->j_revoke_lock);
1154 	spin_lock_init(&journal->j_list_lock);
1155 	rwlock_init(&journal->j_state_lock);
1156 
1157 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158 	journal->j_min_batch_time = 0;
1159 	journal->j_max_batch_time = 15000; /* 15ms */
1160 	atomic_set(&journal->j_reserved_credits, 0);
1161 
1162 	/* The journal is marked for error until we succeed with recovery! */
1163 	journal->j_flags = JBD2_ABORT;
1164 
1165 	/* Set up a default-sized revoke table for the new mount. */
1166 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167 	if (err)
1168 		goto err_cleanup;
1169 
1170 	spin_lock_init(&journal->j_history_lock);
1171 
1172 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173 			 &jbd2_trans_commit_key, 0);
1174 
1175 	/* journal descriptor can store up to n blocks -bzzz */
1176 	journal->j_blocksize = blocksize;
1177 	journal->j_dev = bdev;
1178 	journal->j_fs_dev = fs_dev;
1179 	journal->j_blk_offset = start;
1180 	journal->j_maxlen = len;
1181 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182 	journal->j_wbufsize = n;
1183 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184 					GFP_KERNEL);
1185 	if (!journal->j_wbuf)
1186 		goto err_cleanup;
1187 
1188 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189 	if (!bh) {
1190 		pr_err("%s: Cannot get buffer for journal superblock\n",
1191 			__func__);
1192 		goto err_cleanup;
1193 	}
1194 	journal->j_sb_buffer = bh;
1195 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196 
1197 	return journal;
1198 
1199 err_cleanup:
1200 	kfree(journal->j_wbuf);
1201 	jbd2_journal_destroy_revoke(journal);
1202 	kfree(journal);
1203 	return NULL;
1204 }
1205 
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207  *
1208  * Create a journal structure assigned some fixed set of disk blocks to
1209  * the journal.  We don't actually touch those disk blocks yet, but we
1210  * need to set up all of the mapping information to tell the journaling
1211  * system where the journal blocks are.
1212  *
1213  */
1214 
1215 /**
1216  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217  *  @bdev: Block device on which to create the journal
1218  *  @fs_dev: Device which hold journalled filesystem for this journal.
1219  *  @start: Block nr Start of journal.
1220  *  @len:  Length of the journal in blocks.
1221  *  @blocksize: blocksize of journalling device
1222  *
1223  *  Returns: a newly created journal_t *
1224  *
1225  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226  *  range of blocks on an arbitrary block device.
1227  *
1228  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230 			struct block_device *fs_dev,
1231 			unsigned long long start, int len, int blocksize)
1232 {
1233 	journal_t *journal;
1234 
1235 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236 	if (!journal)
1237 		return NULL;
1238 
1239 	bdevname(journal->j_dev, journal->j_devname);
1240 	strreplace(journal->j_devname, '/', '!');
1241 	jbd2_stats_proc_init(journal);
1242 
1243 	return journal;
1244 }
1245 
1246 /**
1247  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248  *  @inode: An inode to create the journal in
1249  *
1250  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251  * the journal.  The inode must exist already, must support bmap() and
1252  * must have all data blocks preallocated.
1253  */
jbd2_journal_init_inode(struct inode * inode)1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256 	journal_t *journal;
1257 	char *p;
1258 	unsigned long long blocknr;
1259 
1260 	blocknr = bmap(inode, 0);
1261 	if (!blocknr) {
1262 		pr_err("%s: Cannot locate journal superblock\n",
1263 			__func__);
1264 		return NULL;
1265 	}
1266 
1267 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270 
1271 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273 			inode->i_sb->s_blocksize);
1274 	if (!journal)
1275 		return NULL;
1276 
1277 	journal->j_inode = inode;
1278 	bdevname(journal->j_dev, journal->j_devname);
1279 	p = strreplace(journal->j_devname, '/', '!');
1280 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1281 	jbd2_stats_proc_init(journal);
1282 
1283 	return journal;
1284 }
1285 
1286 /*
1287  * If the journal init or create aborts, we need to mark the journal
1288  * superblock as being NULL to prevent the journal destroy from writing
1289  * back a bogus superblock.
1290  */
journal_fail_superblock(journal_t * journal)1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293 	struct buffer_head *bh = journal->j_sb_buffer;
1294 	brelse(bh);
1295 	journal->j_sb_buffer = NULL;
1296 }
1297 
1298 /*
1299  * Given a journal_t structure, initialise the various fields for
1300  * startup of a new journaling session.  We use this both when creating
1301  * a journal, and after recovering an old journal to reset it for
1302  * subsequent use.
1303  */
1304 
journal_reset(journal_t * journal)1305 static int journal_reset(journal_t *journal)
1306 {
1307 	journal_superblock_t *sb = journal->j_superblock;
1308 	unsigned long long first, last;
1309 
1310 	first = be32_to_cpu(sb->s_first);
1311 	last = be32_to_cpu(sb->s_maxlen);
1312 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314 		       first, last);
1315 		journal_fail_superblock(journal);
1316 		return -EINVAL;
1317 	}
1318 
1319 	journal->j_first = first;
1320 	journal->j_last = last;
1321 
1322 	journal->j_head = first;
1323 	journal->j_tail = first;
1324 	journal->j_free = last - first;
1325 
1326 	journal->j_tail_sequence = journal->j_transaction_sequence;
1327 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328 	journal->j_commit_request = journal->j_commit_sequence;
1329 
1330 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331 
1332 	/*
1333 	 * As a special case, if the on-disk copy is already marked as needing
1334 	 * no recovery (s_start == 0), then we can safely defer the superblock
1335 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336 	 * attempting a write to a potential-readonly device.
1337 	 */
1338 	if (sb->s_start == 0) {
1339 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340 			"(start %ld, seq %d, errno %d)\n",
1341 			journal->j_tail, journal->j_tail_sequence,
1342 			journal->j_errno);
1343 		journal->j_flags |= JBD2_FLUSHED;
1344 	} else {
1345 		/* Lock here to make assertions happy... */
1346 		mutex_lock_io(&journal->j_checkpoint_mutex);
1347 		/*
1348 		 * Update log tail information. We use REQ_FUA since new
1349 		 * transaction will start reusing journal space and so we
1350 		 * must make sure information about current log tail is on
1351 		 * disk before that.
1352 		 */
1353 		jbd2_journal_update_sb_log_tail(journal,
1354 						journal->j_tail_sequence,
1355 						journal->j_tail,
1356 						REQ_SYNC | REQ_FUA);
1357 		mutex_unlock(&journal->j_checkpoint_mutex);
1358 	}
1359 	return jbd2_journal_start_thread(journal);
1360 }
1361 
1362 /*
1363  * This function expects that the caller will have locked the journal
1364  * buffer head, and will return with it unlocked
1365  */
jbd2_write_superblock(journal_t * journal,int write_flags)1366 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1367 {
1368 	struct buffer_head *bh = journal->j_sb_buffer;
1369 	journal_superblock_t *sb = journal->j_superblock;
1370 	int ret;
1371 
1372 	/* Buffer got discarded which means block device got invalidated */
1373 	if (!buffer_mapped(bh)) {
1374 		unlock_buffer(bh);
1375 		return -EIO;
1376 	}
1377 
1378 	trace_jbd2_write_superblock(journal, write_flags);
1379 	if (!(journal->j_flags & JBD2_BARRIER))
1380 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1381 	if (buffer_write_io_error(bh)) {
1382 		/*
1383 		 * Oh, dear.  A previous attempt to write the journal
1384 		 * superblock failed.  This could happen because the
1385 		 * USB device was yanked out.  Or it could happen to
1386 		 * be a transient write error and maybe the block will
1387 		 * be remapped.  Nothing we can do but to retry the
1388 		 * write and hope for the best.
1389 		 */
1390 		printk(KERN_ERR "JBD2: previous I/O error detected "
1391 		       "for journal superblock update for %s.\n",
1392 		       journal->j_devname);
1393 		clear_buffer_write_io_error(bh);
1394 		set_buffer_uptodate(bh);
1395 	}
1396 	jbd2_superblock_csum_set(journal, sb);
1397 	get_bh(bh);
1398 	bh->b_end_io = end_buffer_write_sync;
1399 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1400 	wait_on_buffer(bh);
1401 	if (buffer_write_io_error(bh)) {
1402 		clear_buffer_write_io_error(bh);
1403 		set_buffer_uptodate(bh);
1404 		ret = -EIO;
1405 	}
1406 	if (ret) {
1407 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1408 		       "journal superblock for %s.\n", ret,
1409 		       journal->j_devname);
1410 		jbd2_journal_abort(journal, ret);
1411 	}
1412 
1413 	return ret;
1414 }
1415 
1416 /**
1417  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1418  * @journal: The journal to update.
1419  * @tail_tid: TID of the new transaction at the tail of the log
1420  * @tail_block: The first block of the transaction at the tail of the log
1421  * @write_op: With which operation should we write the journal sb
1422  *
1423  * Update a journal's superblock information about log tail and write it to
1424  * disk, waiting for the IO to complete.
1425  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1426 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1427 				     unsigned long tail_block, int write_op)
1428 {
1429 	journal_superblock_t *sb = journal->j_superblock;
1430 	int ret;
1431 
1432 	if (is_journal_aborted(journal))
1433 		return -EIO;
1434 
1435 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1436 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1437 		  tail_block, tail_tid);
1438 
1439 	lock_buffer(journal->j_sb_buffer);
1440 	sb->s_sequence = cpu_to_be32(tail_tid);
1441 	sb->s_start    = cpu_to_be32(tail_block);
1442 
1443 	ret = jbd2_write_superblock(journal, write_op);
1444 	if (ret)
1445 		goto out;
1446 
1447 	/* Log is no longer empty */
1448 	write_lock(&journal->j_state_lock);
1449 	WARN_ON(!sb->s_sequence);
1450 	journal->j_flags &= ~JBD2_FLUSHED;
1451 	write_unlock(&journal->j_state_lock);
1452 
1453 out:
1454 	return ret;
1455 }
1456 
1457 /**
1458  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1459  * @journal: The journal to update.
1460  * @write_op: With which operation should we write the journal sb
1461  *
1462  * Update a journal's dynamic superblock fields to show that journal is empty.
1463  * Write updated superblock to disk waiting for IO to complete.
1464  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1465 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1466 {
1467 	journal_superblock_t *sb = journal->j_superblock;
1468 
1469 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1470 	lock_buffer(journal->j_sb_buffer);
1471 	if (sb->s_start == 0) {		/* Is it already empty? */
1472 		unlock_buffer(journal->j_sb_buffer);
1473 		return;
1474 	}
1475 
1476 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1477 		  journal->j_tail_sequence);
1478 
1479 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1480 	sb->s_start    = cpu_to_be32(0);
1481 
1482 	jbd2_write_superblock(journal, write_op);
1483 
1484 	/* Log is no longer empty */
1485 	write_lock(&journal->j_state_lock);
1486 	journal->j_flags |= JBD2_FLUSHED;
1487 	write_unlock(&journal->j_state_lock);
1488 }
1489 
1490 
1491 /**
1492  * jbd2_journal_update_sb_errno() - Update error in the journal.
1493  * @journal: The journal to update.
1494  *
1495  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1496  * to complete.
1497  */
jbd2_journal_update_sb_errno(journal_t * journal)1498 void jbd2_journal_update_sb_errno(journal_t *journal)
1499 {
1500 	journal_superblock_t *sb = journal->j_superblock;
1501 	int errcode;
1502 
1503 	lock_buffer(journal->j_sb_buffer);
1504 	errcode = journal->j_errno;
1505 	if (errcode == -ESHUTDOWN)
1506 		errcode = 0;
1507 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1508 	sb->s_errno    = cpu_to_be32(errcode);
1509 
1510 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1511 }
1512 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1513 
1514 /*
1515  * Read the superblock for a given journal, performing initial
1516  * validation of the format.
1517  */
journal_get_superblock(journal_t * journal)1518 static int journal_get_superblock(journal_t *journal)
1519 {
1520 	struct buffer_head *bh;
1521 	journal_superblock_t *sb;
1522 	int err = -EIO;
1523 
1524 	bh = journal->j_sb_buffer;
1525 
1526 	J_ASSERT(bh != NULL);
1527 	if (!buffer_uptodate(bh)) {
1528 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1529 		wait_on_buffer(bh);
1530 		if (!buffer_uptodate(bh)) {
1531 			printk(KERN_ERR
1532 				"JBD2: IO error reading journal superblock\n");
1533 			goto out;
1534 		}
1535 	}
1536 
1537 	if (buffer_verified(bh))
1538 		return 0;
1539 
1540 	sb = journal->j_superblock;
1541 
1542 	err = -EINVAL;
1543 
1544 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1545 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1546 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1547 		goto out;
1548 	}
1549 
1550 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1551 	case JBD2_SUPERBLOCK_V1:
1552 		journal->j_format_version = 1;
1553 		break;
1554 	case JBD2_SUPERBLOCK_V2:
1555 		journal->j_format_version = 2;
1556 		break;
1557 	default:
1558 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1559 		goto out;
1560 	}
1561 
1562 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1563 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1564 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1565 		printk(KERN_WARNING "JBD2: journal file too short\n");
1566 		goto out;
1567 	}
1568 
1569 	if (be32_to_cpu(sb->s_first) == 0 ||
1570 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1571 		printk(KERN_WARNING
1572 			"JBD2: Invalid start block of journal: %u\n",
1573 			be32_to_cpu(sb->s_first));
1574 		goto out;
1575 	}
1576 
1577 	if (jbd2_has_feature_csum2(journal) &&
1578 	    jbd2_has_feature_csum3(journal)) {
1579 		/* Can't have checksum v2 and v3 at the same time! */
1580 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1581 		       "at the same time!\n");
1582 		goto out;
1583 	}
1584 
1585 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1586 	    jbd2_has_feature_checksum(journal)) {
1587 		/* Can't have checksum v1 and v2 on at the same time! */
1588 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1589 		       "at the same time!\n");
1590 		goto out;
1591 	}
1592 
1593 	if (!jbd2_verify_csum_type(journal, sb)) {
1594 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1595 		goto out;
1596 	}
1597 
1598 	/* Load the checksum driver */
1599 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1600 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1601 		if (IS_ERR(journal->j_chksum_driver)) {
1602 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1603 			err = PTR_ERR(journal->j_chksum_driver);
1604 			journal->j_chksum_driver = NULL;
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	/* Check superblock checksum */
1610 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1611 		printk(KERN_ERR "JBD2: journal checksum error\n");
1612 		err = -EFSBADCRC;
1613 		goto out;
1614 	}
1615 
1616 	/* Precompute checksum seed for all metadata */
1617 	if (jbd2_journal_has_csum_v2or3(journal))
1618 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1619 						   sizeof(sb->s_uuid));
1620 
1621 	set_buffer_verified(bh);
1622 
1623 	return 0;
1624 
1625 out:
1626 	journal_fail_superblock(journal);
1627 	return err;
1628 }
1629 
1630 /*
1631  * Load the on-disk journal superblock and read the key fields into the
1632  * journal_t.
1633  */
1634 
load_superblock(journal_t * journal)1635 static int load_superblock(journal_t *journal)
1636 {
1637 	int err;
1638 	journal_superblock_t *sb;
1639 
1640 	err = journal_get_superblock(journal);
1641 	if (err)
1642 		return err;
1643 
1644 	sb = journal->j_superblock;
1645 
1646 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1647 	journal->j_tail = be32_to_cpu(sb->s_start);
1648 	journal->j_first = be32_to_cpu(sb->s_first);
1649 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1650 	journal->j_errno = be32_to_cpu(sb->s_errno);
1651 
1652 	return 0;
1653 }
1654 
1655 
1656 /**
1657  * int jbd2_journal_load() - Read journal from disk.
1658  * @journal: Journal to act on.
1659  *
1660  * Given a journal_t structure which tells us which disk blocks contain
1661  * a journal, read the journal from disk to initialise the in-memory
1662  * structures.
1663  */
jbd2_journal_load(journal_t * journal)1664 int jbd2_journal_load(journal_t *journal)
1665 {
1666 	int err;
1667 	journal_superblock_t *sb;
1668 
1669 	err = load_superblock(journal);
1670 	if (err)
1671 		return err;
1672 
1673 	sb = journal->j_superblock;
1674 	/* If this is a V2 superblock, then we have to check the
1675 	 * features flags on it. */
1676 
1677 	if (journal->j_format_version >= 2) {
1678 		if ((sb->s_feature_ro_compat &
1679 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1680 		    (sb->s_feature_incompat &
1681 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1682 			printk(KERN_WARNING
1683 				"JBD2: Unrecognised features on journal\n");
1684 			return -EINVAL;
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * Create a slab for this blocksize
1690 	 */
1691 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1692 	if (err)
1693 		return err;
1694 
1695 	/* Let the recovery code check whether it needs to recover any
1696 	 * data from the journal. */
1697 	if (jbd2_journal_recover(journal))
1698 		goto recovery_error;
1699 
1700 	if (journal->j_failed_commit) {
1701 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1702 		       "is corrupt.\n", journal->j_failed_commit,
1703 		       journal->j_devname);
1704 		return -EFSCORRUPTED;
1705 	}
1706 	/*
1707 	 * clear JBD2_ABORT flag initialized in journal_init_common
1708 	 * here to update log tail information with the newest seq.
1709 	 */
1710 	journal->j_flags &= ~JBD2_ABORT;
1711 
1712 	/* OK, we've finished with the dynamic journal bits:
1713 	 * reinitialise the dynamic contents of the superblock in memory
1714 	 * and reset them on disk. */
1715 	if (journal_reset(journal))
1716 		goto recovery_error;
1717 
1718 	journal->j_flags |= JBD2_LOADED;
1719 	return 0;
1720 
1721 recovery_error:
1722 	printk(KERN_WARNING "JBD2: recovery failed\n");
1723 	return -EIO;
1724 }
1725 
1726 /**
1727  * void jbd2_journal_destroy() - Release a journal_t structure.
1728  * @journal: Journal to act on.
1729  *
1730  * Release a journal_t structure once it is no longer in use by the
1731  * journaled object.
1732  * Return <0 if we couldn't clean up the journal.
1733  */
jbd2_journal_destroy(journal_t * journal)1734 int jbd2_journal_destroy(journal_t *journal)
1735 {
1736 	int err = 0;
1737 
1738 	/* Wait for the commit thread to wake up and die. */
1739 	journal_kill_thread(journal);
1740 
1741 	/* Force a final log commit */
1742 	if (journal->j_running_transaction)
1743 		jbd2_journal_commit_transaction(journal);
1744 
1745 	/* Force any old transactions to disk */
1746 
1747 	/* Totally anal locking here... */
1748 	spin_lock(&journal->j_list_lock);
1749 	while (journal->j_checkpoint_transactions != NULL) {
1750 		spin_unlock(&journal->j_list_lock);
1751 		mutex_lock_io(&journal->j_checkpoint_mutex);
1752 		err = jbd2_log_do_checkpoint(journal);
1753 		mutex_unlock(&journal->j_checkpoint_mutex);
1754 		/*
1755 		 * If checkpointing failed, just free the buffers to avoid
1756 		 * looping forever
1757 		 */
1758 		if (err) {
1759 			jbd2_journal_destroy_checkpoint(journal);
1760 			spin_lock(&journal->j_list_lock);
1761 			break;
1762 		}
1763 		spin_lock(&journal->j_list_lock);
1764 	}
1765 
1766 	J_ASSERT(journal->j_running_transaction == NULL);
1767 	J_ASSERT(journal->j_committing_transaction == NULL);
1768 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1769 	spin_unlock(&journal->j_list_lock);
1770 
1771 	if (journal->j_sb_buffer) {
1772 		if (!is_journal_aborted(journal)) {
1773 			mutex_lock_io(&journal->j_checkpoint_mutex);
1774 
1775 			write_lock(&journal->j_state_lock);
1776 			journal->j_tail_sequence =
1777 				++journal->j_transaction_sequence;
1778 			write_unlock(&journal->j_state_lock);
1779 
1780 			jbd2_mark_journal_empty(journal,
1781 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1782 			mutex_unlock(&journal->j_checkpoint_mutex);
1783 		} else
1784 			err = -EIO;
1785 		brelse(journal->j_sb_buffer);
1786 	}
1787 
1788 	if (journal->j_proc_entry)
1789 		jbd2_stats_proc_exit(journal);
1790 	iput(journal->j_inode);
1791 	if (journal->j_revoke)
1792 		jbd2_journal_destroy_revoke(journal);
1793 	if (journal->j_chksum_driver)
1794 		crypto_free_shash(journal->j_chksum_driver);
1795 	kfree(journal->j_wbuf);
1796 	kfree(journal);
1797 
1798 	return err;
1799 }
1800 
1801 
1802 /**
1803  *int jbd2_journal_check_used_features () - Check if features specified are used.
1804  * @journal: Journal to check.
1805  * @compat: bitmask of compatible features
1806  * @ro: bitmask of features that force read-only mount
1807  * @incompat: bitmask of incompatible features
1808  *
1809  * Check whether the journal uses all of a given set of
1810  * features.  Return true (non-zero) if it does.
1811  **/
1812 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1813 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1814 				 unsigned long ro, unsigned long incompat)
1815 {
1816 	journal_superblock_t *sb;
1817 
1818 	if (!compat && !ro && !incompat)
1819 		return 1;
1820 	/* Load journal superblock if it is not loaded yet. */
1821 	if (journal->j_format_version == 0 &&
1822 	    journal_get_superblock(journal) != 0)
1823 		return 0;
1824 	if (journal->j_format_version == 1)
1825 		return 0;
1826 
1827 	sb = journal->j_superblock;
1828 
1829 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1830 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1831 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1832 		return 1;
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1839  * @journal: Journal to check.
1840  * @compat: bitmask of compatible features
1841  * @ro: bitmask of features that force read-only mount
1842  * @incompat: bitmask of incompatible features
1843  *
1844  * Check whether the journaling code supports the use of
1845  * all of a given set of features on this journal.  Return true
1846  * (non-zero) if it can. */
1847 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1848 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1849 				      unsigned long ro, unsigned long incompat)
1850 {
1851 	if (!compat && !ro && !incompat)
1852 		return 1;
1853 
1854 	/* We can support any known requested features iff the
1855 	 * superblock is in version 2.  Otherwise we fail to support any
1856 	 * extended sb features. */
1857 
1858 	if (journal->j_format_version != 2)
1859 		return 0;
1860 
1861 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1862 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1863 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1864 		return 1;
1865 
1866 	return 0;
1867 }
1868 
1869 /**
1870  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1871  * @journal: Journal to act on.
1872  * @compat: bitmask of compatible features
1873  * @ro: bitmask of features that force read-only mount
1874  * @incompat: bitmask of incompatible features
1875  *
1876  * Mark a given journal feature as present on the
1877  * superblock.  Returns true if the requested features could be set.
1878  *
1879  */
1880 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1881 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1882 			  unsigned long ro, unsigned long incompat)
1883 {
1884 #define INCOMPAT_FEATURE_ON(f) \
1885 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1886 #define COMPAT_FEATURE_ON(f) \
1887 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1888 	journal_superblock_t *sb;
1889 
1890 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1891 		return 1;
1892 
1893 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1894 		return 0;
1895 
1896 	/* If enabling v2 checksums, turn on v3 instead */
1897 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1898 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1899 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1900 	}
1901 
1902 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1903 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1904 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1905 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1906 
1907 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1908 		  compat, ro, incompat);
1909 
1910 	sb = journal->j_superblock;
1911 
1912 	/* Load the checksum driver if necessary */
1913 	if ((journal->j_chksum_driver == NULL) &&
1914 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1915 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1916 		if (IS_ERR(journal->j_chksum_driver)) {
1917 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1918 			journal->j_chksum_driver = NULL;
1919 			return 0;
1920 		}
1921 		/* Precompute checksum seed for all metadata */
1922 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1923 						   sizeof(sb->s_uuid));
1924 	}
1925 
1926 	lock_buffer(journal->j_sb_buffer);
1927 
1928 	/* If enabling v3 checksums, update superblock */
1929 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1930 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1931 		sb->s_feature_compat &=
1932 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1933 	}
1934 
1935 	/* If enabling v1 checksums, downgrade superblock */
1936 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1937 		sb->s_feature_incompat &=
1938 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1939 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1940 
1941 	sb->s_feature_compat    |= cpu_to_be32(compat);
1942 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1943 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1944 	unlock_buffer(journal->j_sb_buffer);
1945 
1946 	return 1;
1947 #undef COMPAT_FEATURE_ON
1948 #undef INCOMPAT_FEATURE_ON
1949 }
1950 
1951 /*
1952  * jbd2_journal_clear_features () - Clear a given journal feature in the
1953  * 				    superblock
1954  * @journal: Journal to act on.
1955  * @compat: bitmask of compatible features
1956  * @ro: bitmask of features that force read-only mount
1957  * @incompat: bitmask of incompatible features
1958  *
1959  * Clear a given journal feature as present on the
1960  * superblock.
1961  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1962 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1963 				unsigned long ro, unsigned long incompat)
1964 {
1965 	journal_superblock_t *sb;
1966 
1967 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1968 		  compat, ro, incompat);
1969 
1970 	sb = journal->j_superblock;
1971 
1972 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1973 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1974 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1975 }
1976 EXPORT_SYMBOL(jbd2_journal_clear_features);
1977 
1978 /**
1979  * int jbd2_journal_flush () - Flush journal
1980  * @journal: Journal to act on.
1981  *
1982  * Flush all data for a given journal to disk and empty the journal.
1983  * Filesystems can use this when remounting readonly to ensure that
1984  * recovery does not need to happen on remount.
1985  */
1986 
jbd2_journal_flush(journal_t * journal)1987 int jbd2_journal_flush(journal_t *journal)
1988 {
1989 	int err = 0;
1990 	transaction_t *transaction = NULL;
1991 
1992 	write_lock(&journal->j_state_lock);
1993 
1994 	/* Force everything buffered to the log... */
1995 	if (journal->j_running_transaction) {
1996 		transaction = journal->j_running_transaction;
1997 		__jbd2_log_start_commit(journal, transaction->t_tid);
1998 	} else if (journal->j_committing_transaction)
1999 		transaction = journal->j_committing_transaction;
2000 
2001 	/* Wait for the log commit to complete... */
2002 	if (transaction) {
2003 		tid_t tid = transaction->t_tid;
2004 
2005 		write_unlock(&journal->j_state_lock);
2006 		jbd2_log_wait_commit(journal, tid);
2007 	} else {
2008 		write_unlock(&journal->j_state_lock);
2009 	}
2010 
2011 	/* ...and flush everything in the log out to disk. */
2012 	spin_lock(&journal->j_list_lock);
2013 	while (!err && journal->j_checkpoint_transactions != NULL) {
2014 		spin_unlock(&journal->j_list_lock);
2015 		mutex_lock_io(&journal->j_checkpoint_mutex);
2016 		err = jbd2_log_do_checkpoint(journal);
2017 		mutex_unlock(&journal->j_checkpoint_mutex);
2018 		spin_lock(&journal->j_list_lock);
2019 	}
2020 	spin_unlock(&journal->j_list_lock);
2021 
2022 	if (is_journal_aborted(journal))
2023 		return -EIO;
2024 
2025 	mutex_lock_io(&journal->j_checkpoint_mutex);
2026 	if (!err) {
2027 		err = jbd2_cleanup_journal_tail(journal);
2028 		if (err < 0) {
2029 			mutex_unlock(&journal->j_checkpoint_mutex);
2030 			goto out;
2031 		}
2032 		err = 0;
2033 	}
2034 
2035 	/* Finally, mark the journal as really needing no recovery.
2036 	 * This sets s_start==0 in the underlying superblock, which is
2037 	 * the magic code for a fully-recovered superblock.  Any future
2038 	 * commits of data to the journal will restore the current
2039 	 * s_start value. */
2040 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2041 	mutex_unlock(&journal->j_checkpoint_mutex);
2042 	write_lock(&journal->j_state_lock);
2043 	J_ASSERT(!journal->j_running_transaction);
2044 	J_ASSERT(!journal->j_committing_transaction);
2045 	J_ASSERT(!journal->j_checkpoint_transactions);
2046 	J_ASSERT(journal->j_head == journal->j_tail);
2047 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2048 	write_unlock(&journal->j_state_lock);
2049 out:
2050 	return err;
2051 }
2052 
2053 /**
2054  * int jbd2_journal_wipe() - Wipe journal contents
2055  * @journal: Journal to act on.
2056  * @write: flag (see below)
2057  *
2058  * Wipe out all of the contents of a journal, safely.  This will produce
2059  * a warning if the journal contains any valid recovery information.
2060  * Must be called between journal_init_*() and jbd2_journal_load().
2061  *
2062  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2063  * we merely suppress recovery.
2064  */
2065 
jbd2_journal_wipe(journal_t * journal,int write)2066 int jbd2_journal_wipe(journal_t *journal, int write)
2067 {
2068 	int err = 0;
2069 
2070 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2071 
2072 	err = load_superblock(journal);
2073 	if (err)
2074 		return err;
2075 
2076 	if (!journal->j_tail)
2077 		goto no_recovery;
2078 
2079 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2080 		write ? "Clearing" : "Ignoring");
2081 
2082 	err = jbd2_journal_skip_recovery(journal);
2083 	if (write) {
2084 		/* Lock to make assertions happy... */
2085 		mutex_lock(&journal->j_checkpoint_mutex);
2086 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2087 		mutex_unlock(&journal->j_checkpoint_mutex);
2088 	}
2089 
2090  no_recovery:
2091 	return err;
2092 }
2093 
2094 /*
2095  * Journal abort has very specific semantics, which we describe
2096  * for journal abort.
2097  *
2098  * Two internal functions, which provide abort to the jbd layer
2099  * itself are here.
2100  */
2101 
2102 /*
2103  * Quick version for internal journal use (doesn't lock the journal).
2104  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2105  * and don't attempt to make any other journal updates.
2106  */
__jbd2_journal_abort_hard(journal_t * journal)2107 void __jbd2_journal_abort_hard(journal_t *journal)
2108 {
2109 	transaction_t *transaction;
2110 
2111 	if (journal->j_flags & JBD2_ABORT)
2112 		return;
2113 
2114 	printk(KERN_ERR "Aborting journal on device %s.\n",
2115 	       journal->j_devname);
2116 
2117 	write_lock(&journal->j_state_lock);
2118 	journal->j_flags |= JBD2_ABORT;
2119 	transaction = journal->j_running_transaction;
2120 	if (transaction)
2121 		__jbd2_log_start_commit(journal, transaction->t_tid);
2122 	write_unlock(&journal->j_state_lock);
2123 }
2124 
2125 /* Soft abort: record the abort error status in the journal superblock,
2126  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2127 static void __journal_abort_soft (journal_t *journal, int errno)
2128 {
2129 	int old_errno;
2130 
2131 	write_lock(&journal->j_state_lock);
2132 	old_errno = journal->j_errno;
2133 	if (!journal->j_errno || errno == -ESHUTDOWN)
2134 		journal->j_errno = errno;
2135 
2136 	if (journal->j_flags & JBD2_ABORT) {
2137 		write_unlock(&journal->j_state_lock);
2138 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN)
2139 			jbd2_journal_update_sb_errno(journal);
2140 		return;
2141 	}
2142 	write_unlock(&journal->j_state_lock);
2143 
2144 	__jbd2_journal_abort_hard(journal);
2145 
2146 	jbd2_journal_update_sb_errno(journal);
2147 	write_lock(&journal->j_state_lock);
2148 	journal->j_flags |= JBD2_REC_ERR;
2149 	write_unlock(&journal->j_state_lock);
2150 }
2151 
2152 /**
2153  * void jbd2_journal_abort () - Shutdown the journal immediately.
2154  * @journal: the journal to shutdown.
2155  * @errno:   an error number to record in the journal indicating
2156  *           the reason for the shutdown.
2157  *
2158  * Perform a complete, immediate shutdown of the ENTIRE
2159  * journal (not of a single transaction).  This operation cannot be
2160  * undone without closing and reopening the journal.
2161  *
2162  * The jbd2_journal_abort function is intended to support higher level error
2163  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2164  * mode.
2165  *
2166  * Journal abort has very specific semantics.  Any existing dirty,
2167  * unjournaled buffers in the main filesystem will still be written to
2168  * disk by bdflush, but the journaling mechanism will be suspended
2169  * immediately and no further transaction commits will be honoured.
2170  *
2171  * Any dirty, journaled buffers will be written back to disk without
2172  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2173  * filesystem, but we _do_ attempt to leave as much data as possible
2174  * behind for fsck to use for cleanup.
2175  *
2176  * Any attempt to get a new transaction handle on a journal which is in
2177  * ABORT state will just result in an -EROFS error return.  A
2178  * jbd2_journal_stop on an existing handle will return -EIO if we have
2179  * entered abort state during the update.
2180  *
2181  * Recursive transactions are not disturbed by journal abort until the
2182  * final jbd2_journal_stop, which will receive the -EIO error.
2183  *
2184  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2185  * which will be recorded (if possible) in the journal superblock.  This
2186  * allows a client to record failure conditions in the middle of a
2187  * transaction without having to complete the transaction to record the
2188  * failure to disk.  ext3_error, for example, now uses this
2189  * functionality.
2190  *
2191  */
2192 
jbd2_journal_abort(journal_t * journal,int errno)2193 void jbd2_journal_abort(journal_t *journal, int errno)
2194 {
2195 	__journal_abort_soft(journal, errno);
2196 }
2197 
2198 /**
2199  * int jbd2_journal_errno () - returns the journal's error state.
2200  * @journal: journal to examine.
2201  *
2202  * This is the errno number set with jbd2_journal_abort(), the last
2203  * time the journal was mounted - if the journal was stopped
2204  * without calling abort this will be 0.
2205  *
2206  * If the journal has been aborted on this mount time -EROFS will
2207  * be returned.
2208  */
jbd2_journal_errno(journal_t * journal)2209 int jbd2_journal_errno(journal_t *journal)
2210 {
2211 	int err;
2212 
2213 	read_lock(&journal->j_state_lock);
2214 	if (journal->j_flags & JBD2_ABORT)
2215 		err = -EROFS;
2216 	else
2217 		err = journal->j_errno;
2218 	read_unlock(&journal->j_state_lock);
2219 	return err;
2220 }
2221 
2222 /**
2223  * int jbd2_journal_clear_err () - clears the journal's error state
2224  * @journal: journal to act on.
2225  *
2226  * An error must be cleared or acked to take a FS out of readonly
2227  * mode.
2228  */
jbd2_journal_clear_err(journal_t * journal)2229 int jbd2_journal_clear_err(journal_t *journal)
2230 {
2231 	int err = 0;
2232 
2233 	write_lock(&journal->j_state_lock);
2234 	if (journal->j_flags & JBD2_ABORT)
2235 		err = -EROFS;
2236 	else
2237 		journal->j_errno = 0;
2238 	write_unlock(&journal->j_state_lock);
2239 	return err;
2240 }
2241 
2242 /**
2243  * void jbd2_journal_ack_err() - Ack journal err.
2244  * @journal: journal to act on.
2245  *
2246  * An error must be cleared or acked to take a FS out of readonly
2247  * mode.
2248  */
jbd2_journal_ack_err(journal_t * journal)2249 void jbd2_journal_ack_err(journal_t *journal)
2250 {
2251 	write_lock(&journal->j_state_lock);
2252 	if (journal->j_errno)
2253 		journal->j_flags |= JBD2_ACK_ERR;
2254 	write_unlock(&journal->j_state_lock);
2255 }
2256 
jbd2_journal_blocks_per_page(struct inode * inode)2257 int jbd2_journal_blocks_per_page(struct inode *inode)
2258 {
2259 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2260 }
2261 
2262 /*
2263  * helper functions to deal with 32 or 64bit block numbers.
2264  */
journal_tag_bytes(journal_t * journal)2265 size_t journal_tag_bytes(journal_t *journal)
2266 {
2267 	size_t sz;
2268 
2269 	if (jbd2_has_feature_csum3(journal))
2270 		return sizeof(journal_block_tag3_t);
2271 
2272 	sz = sizeof(journal_block_tag_t);
2273 
2274 	if (jbd2_has_feature_csum2(journal))
2275 		sz += sizeof(__u16);
2276 
2277 	if (jbd2_has_feature_64bit(journal))
2278 		return sz;
2279 	else
2280 		return sz - sizeof(__u32);
2281 }
2282 
2283 /*
2284  * JBD memory management
2285  *
2286  * These functions are used to allocate block-sized chunks of memory
2287  * used for making copies of buffer_head data.  Very often it will be
2288  * page-sized chunks of data, but sometimes it will be in
2289  * sub-page-size chunks.  (For example, 16k pages on Power systems
2290  * with a 4k block file system.)  For blocks smaller than a page, we
2291  * use a SLAB allocator.  There are slab caches for each block size,
2292  * which are allocated at mount time, if necessary, and we only free
2293  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2294  * this reason we don't need to a mutex to protect access to
2295  * jbd2_slab[] allocating or releasing memory; only in
2296  * jbd2_journal_create_slab().
2297  */
2298 #define JBD2_MAX_SLABS 8
2299 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2300 
2301 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2302 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2303 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2304 };
2305 
2306 
jbd2_journal_destroy_slabs(void)2307 static void jbd2_journal_destroy_slabs(void)
2308 {
2309 	int i;
2310 
2311 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2312 		kmem_cache_destroy(jbd2_slab[i]);
2313 		jbd2_slab[i] = NULL;
2314 	}
2315 }
2316 
jbd2_journal_create_slab(size_t size)2317 static int jbd2_journal_create_slab(size_t size)
2318 {
2319 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2320 	int i = order_base_2(size) - 10;
2321 	size_t slab_size;
2322 
2323 	if (size == PAGE_SIZE)
2324 		return 0;
2325 
2326 	if (i >= JBD2_MAX_SLABS)
2327 		return -EINVAL;
2328 
2329 	if (unlikely(i < 0))
2330 		i = 0;
2331 	mutex_lock(&jbd2_slab_create_mutex);
2332 	if (jbd2_slab[i]) {
2333 		mutex_unlock(&jbd2_slab_create_mutex);
2334 		return 0;	/* Already created */
2335 	}
2336 
2337 	slab_size = 1 << (i+10);
2338 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2339 					 slab_size, 0, NULL);
2340 	mutex_unlock(&jbd2_slab_create_mutex);
2341 	if (!jbd2_slab[i]) {
2342 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2343 		return -ENOMEM;
2344 	}
2345 	return 0;
2346 }
2347 
get_slab(size_t size)2348 static struct kmem_cache *get_slab(size_t size)
2349 {
2350 	int i = order_base_2(size) - 10;
2351 
2352 	BUG_ON(i >= JBD2_MAX_SLABS);
2353 	if (unlikely(i < 0))
2354 		i = 0;
2355 	BUG_ON(jbd2_slab[i] == NULL);
2356 	return jbd2_slab[i];
2357 }
2358 
jbd2_alloc(size_t size,gfp_t flags)2359 void *jbd2_alloc(size_t size, gfp_t flags)
2360 {
2361 	void *ptr;
2362 
2363 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2364 
2365 	if (size < PAGE_SIZE)
2366 		ptr = kmem_cache_alloc(get_slab(size), flags);
2367 	else
2368 		ptr = (void *)__get_free_pages(flags, get_order(size));
2369 
2370 	/* Check alignment; SLUB has gotten this wrong in the past,
2371 	 * and this can lead to user data corruption! */
2372 	BUG_ON(((unsigned long) ptr) & (size-1));
2373 
2374 	return ptr;
2375 }
2376 
jbd2_free(void * ptr,size_t size)2377 void jbd2_free(void *ptr, size_t size)
2378 {
2379 	if (size < PAGE_SIZE)
2380 		kmem_cache_free(get_slab(size), ptr);
2381 	else
2382 		free_pages((unsigned long)ptr, get_order(size));
2383 };
2384 
2385 /*
2386  * Journal_head storage management
2387  */
2388 static struct kmem_cache *jbd2_journal_head_cache;
2389 #ifdef CONFIG_JBD2_DEBUG
2390 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2391 #endif
2392 
jbd2_journal_init_journal_head_cache(void)2393 static int __init jbd2_journal_init_journal_head_cache(void)
2394 {
2395 	J_ASSERT(!jbd2_journal_head_cache);
2396 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2397 				sizeof(struct journal_head),
2398 				0,		/* offset */
2399 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2400 				NULL);		/* ctor */
2401 	if (!jbd2_journal_head_cache) {
2402 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2403 		return -ENOMEM;
2404 	}
2405 	return 0;
2406 }
2407 
jbd2_journal_destroy_journal_head_cache(void)2408 static void jbd2_journal_destroy_journal_head_cache(void)
2409 {
2410 	kmem_cache_destroy(jbd2_journal_head_cache);
2411 	jbd2_journal_head_cache = NULL;
2412 }
2413 
2414 /*
2415  * journal_head splicing and dicing
2416  */
journal_alloc_journal_head(void)2417 static struct journal_head *journal_alloc_journal_head(void)
2418 {
2419 	struct journal_head *ret;
2420 
2421 #ifdef CONFIG_JBD2_DEBUG
2422 	atomic_inc(&nr_journal_heads);
2423 #endif
2424 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2425 	if (!ret) {
2426 		jbd_debug(1, "out of memory for journal_head\n");
2427 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2428 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2429 				GFP_NOFS | __GFP_NOFAIL);
2430 	}
2431 	return ret;
2432 }
2433 
journal_free_journal_head(struct journal_head * jh)2434 static void journal_free_journal_head(struct journal_head *jh)
2435 {
2436 #ifdef CONFIG_JBD2_DEBUG
2437 	atomic_dec(&nr_journal_heads);
2438 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2439 #endif
2440 	kmem_cache_free(jbd2_journal_head_cache, jh);
2441 }
2442 
2443 /*
2444  * A journal_head is attached to a buffer_head whenever JBD has an
2445  * interest in the buffer.
2446  *
2447  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2448  * is set.  This bit is tested in core kernel code where we need to take
2449  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2450  * there.
2451  *
2452  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2453  *
2454  * When a buffer has its BH_JBD bit set it is immune from being released by
2455  * core kernel code, mainly via ->b_count.
2456  *
2457  * A journal_head is detached from its buffer_head when the journal_head's
2458  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2459  * transaction (b_cp_transaction) hold their references to b_jcount.
2460  *
2461  * Various places in the kernel want to attach a journal_head to a buffer_head
2462  * _before_ attaching the journal_head to a transaction.  To protect the
2463  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2464  * journal_head's b_jcount refcount by one.  The caller must call
2465  * jbd2_journal_put_journal_head() to undo this.
2466  *
2467  * So the typical usage would be:
2468  *
2469  *	(Attach a journal_head if needed.  Increments b_jcount)
2470  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2471  *	...
2472  *      (Get another reference for transaction)
2473  *	jbd2_journal_grab_journal_head(bh);
2474  *	jh->b_transaction = xxx;
2475  *	(Put original reference)
2476  *	jbd2_journal_put_journal_head(jh);
2477  */
2478 
2479 /*
2480  * Give a buffer_head a journal_head.
2481  *
2482  * May sleep.
2483  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2484 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2485 {
2486 	struct journal_head *jh;
2487 	struct journal_head *new_jh = NULL;
2488 
2489 repeat:
2490 	if (!buffer_jbd(bh))
2491 		new_jh = journal_alloc_journal_head();
2492 
2493 	jbd_lock_bh_journal_head(bh);
2494 	if (buffer_jbd(bh)) {
2495 		jh = bh2jh(bh);
2496 	} else {
2497 		J_ASSERT_BH(bh,
2498 			(atomic_read(&bh->b_count) > 0) ||
2499 			(bh->b_page && bh->b_page->mapping));
2500 
2501 		if (!new_jh) {
2502 			jbd_unlock_bh_journal_head(bh);
2503 			goto repeat;
2504 		}
2505 
2506 		jh = new_jh;
2507 		new_jh = NULL;		/* We consumed it */
2508 		set_buffer_jbd(bh);
2509 		bh->b_private = jh;
2510 		jh->b_bh = bh;
2511 		get_bh(bh);
2512 		BUFFER_TRACE(bh, "added journal_head");
2513 	}
2514 	jh->b_jcount++;
2515 	jbd_unlock_bh_journal_head(bh);
2516 	if (new_jh)
2517 		journal_free_journal_head(new_jh);
2518 	return bh->b_private;
2519 }
2520 
2521 /*
2522  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2523  * having a journal_head, return NULL
2524  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2525 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2526 {
2527 	struct journal_head *jh = NULL;
2528 
2529 	jbd_lock_bh_journal_head(bh);
2530 	if (buffer_jbd(bh)) {
2531 		jh = bh2jh(bh);
2532 		jh->b_jcount++;
2533 	}
2534 	jbd_unlock_bh_journal_head(bh);
2535 	return jh;
2536 }
2537 
__journal_remove_journal_head(struct buffer_head * bh)2538 static void __journal_remove_journal_head(struct buffer_head *bh)
2539 {
2540 	struct journal_head *jh = bh2jh(bh);
2541 
2542 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2543 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2544 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2545 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2546 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2547 	J_ASSERT_BH(bh, buffer_jbd(bh));
2548 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2549 	BUFFER_TRACE(bh, "remove journal_head");
2550 	if (jh->b_frozen_data) {
2551 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2552 		jbd2_free(jh->b_frozen_data, bh->b_size);
2553 	}
2554 	if (jh->b_committed_data) {
2555 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2556 		jbd2_free(jh->b_committed_data, bh->b_size);
2557 	}
2558 	bh->b_private = NULL;
2559 	jh->b_bh = NULL;	/* debug, really */
2560 	clear_buffer_jbd(bh);
2561 	journal_free_journal_head(jh);
2562 }
2563 
2564 /*
2565  * Drop a reference on the passed journal_head.  If it fell to zero then
2566  * release the journal_head from the buffer_head.
2567  */
jbd2_journal_put_journal_head(struct journal_head * jh)2568 void jbd2_journal_put_journal_head(struct journal_head *jh)
2569 {
2570 	struct buffer_head *bh = jh2bh(jh);
2571 
2572 	jbd_lock_bh_journal_head(bh);
2573 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2574 	--jh->b_jcount;
2575 	if (!jh->b_jcount) {
2576 		__journal_remove_journal_head(bh);
2577 		jbd_unlock_bh_journal_head(bh);
2578 		__brelse(bh);
2579 	} else
2580 		jbd_unlock_bh_journal_head(bh);
2581 }
2582 
2583 /*
2584  * Initialize jbd inode head
2585  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2586 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2587 {
2588 	jinode->i_transaction = NULL;
2589 	jinode->i_next_transaction = NULL;
2590 	jinode->i_vfs_inode = inode;
2591 	jinode->i_flags = 0;
2592 	jinode->i_dirty_start = 0;
2593 	jinode->i_dirty_end = 0;
2594 	INIT_LIST_HEAD(&jinode->i_list);
2595 }
2596 
2597 /*
2598  * Function to be called before we start removing inode from memory (i.e.,
2599  * clear_inode() is a fine place to be called from). It removes inode from
2600  * transaction's lists.
2601  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2602 void jbd2_journal_release_jbd_inode(journal_t *journal,
2603 				    struct jbd2_inode *jinode)
2604 {
2605 	if (!journal)
2606 		return;
2607 restart:
2608 	spin_lock(&journal->j_list_lock);
2609 	/* Is commit writing out inode - we have to wait */
2610 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2611 		wait_queue_head_t *wq;
2612 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2613 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2614 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2615 		spin_unlock(&journal->j_list_lock);
2616 		schedule();
2617 		finish_wait(wq, &wait.wq_entry);
2618 		goto restart;
2619 	}
2620 
2621 	if (jinode->i_transaction) {
2622 		list_del(&jinode->i_list);
2623 		jinode->i_transaction = NULL;
2624 	}
2625 	spin_unlock(&journal->j_list_lock);
2626 }
2627 
2628 
2629 #ifdef CONFIG_PROC_FS
2630 
2631 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2632 
jbd2_create_jbd_stats_proc_entry(void)2633 static void __init jbd2_create_jbd_stats_proc_entry(void)
2634 {
2635 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2636 }
2637 
jbd2_remove_jbd_stats_proc_entry(void)2638 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2639 {
2640 	if (proc_jbd2_stats)
2641 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2642 }
2643 
2644 #else
2645 
2646 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2647 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2648 
2649 #endif
2650 
2651 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2652 
jbd2_journal_init_inode_cache(void)2653 static int __init jbd2_journal_init_inode_cache(void)
2654 {
2655 	J_ASSERT(!jbd2_inode_cache);
2656 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2657 	if (!jbd2_inode_cache) {
2658 		pr_emerg("JBD2: failed to create inode cache\n");
2659 		return -ENOMEM;
2660 	}
2661 	return 0;
2662 }
2663 
jbd2_journal_init_handle_cache(void)2664 static int __init jbd2_journal_init_handle_cache(void)
2665 {
2666 	J_ASSERT(!jbd2_handle_cache);
2667 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2668 	if (!jbd2_handle_cache) {
2669 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2670 		return -ENOMEM;
2671 	}
2672 	return 0;
2673 }
2674 
jbd2_journal_destroy_inode_cache(void)2675 static void jbd2_journal_destroy_inode_cache(void)
2676 {
2677 	kmem_cache_destroy(jbd2_inode_cache);
2678 	jbd2_inode_cache = NULL;
2679 }
2680 
jbd2_journal_destroy_handle_cache(void)2681 static void jbd2_journal_destroy_handle_cache(void)
2682 {
2683 	kmem_cache_destroy(jbd2_handle_cache);
2684 	jbd2_handle_cache = NULL;
2685 }
2686 
2687 /*
2688  * Module startup and shutdown
2689  */
2690 
journal_init_caches(void)2691 static int __init journal_init_caches(void)
2692 {
2693 	int ret;
2694 
2695 	ret = jbd2_journal_init_revoke_record_cache();
2696 	if (ret == 0)
2697 		ret = jbd2_journal_init_revoke_table_cache();
2698 	if (ret == 0)
2699 		ret = jbd2_journal_init_journal_head_cache();
2700 	if (ret == 0)
2701 		ret = jbd2_journal_init_handle_cache();
2702 	if (ret == 0)
2703 		ret = jbd2_journal_init_inode_cache();
2704 	if (ret == 0)
2705 		ret = jbd2_journal_init_transaction_cache();
2706 	return ret;
2707 }
2708 
jbd2_journal_destroy_caches(void)2709 static void jbd2_journal_destroy_caches(void)
2710 {
2711 	jbd2_journal_destroy_revoke_record_cache();
2712 	jbd2_journal_destroy_revoke_table_cache();
2713 	jbd2_journal_destroy_journal_head_cache();
2714 	jbd2_journal_destroy_handle_cache();
2715 	jbd2_journal_destroy_inode_cache();
2716 	jbd2_journal_destroy_transaction_cache();
2717 	jbd2_journal_destroy_slabs();
2718 }
2719 
journal_init(void)2720 static int __init journal_init(void)
2721 {
2722 	int ret;
2723 
2724 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2725 
2726 	ret = journal_init_caches();
2727 	if (ret == 0) {
2728 		jbd2_create_jbd_stats_proc_entry();
2729 	} else {
2730 		jbd2_journal_destroy_caches();
2731 	}
2732 	return ret;
2733 }
2734 
journal_exit(void)2735 static void __exit journal_exit(void)
2736 {
2737 #ifdef CONFIG_JBD2_DEBUG
2738 	int n = atomic_read(&nr_journal_heads);
2739 	if (n)
2740 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2741 #endif
2742 	jbd2_remove_jbd_stats_proc_entry();
2743 	jbd2_journal_destroy_caches();
2744 }
2745 
2746 MODULE_LICENSE("GPL");
2747 module_init(journal_init);
2748 module_exit(journal_exit);
2749 
2750