1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50 }
51
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 kmem_cache_destroy(transaction_cache);
55 transaction_cache = NULL;
56 }
57
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66 * jbd2_get_transaction: obtain a new transaction_t object.
67 *
68 * Simply allocate and initialise a new transaction. Create it in
69 * RUNNING state and add it to the current journal (which should not
70 * have an existing running transaction: we only make a new transaction
71 * once we have started to commit the old one).
72 *
73 * Preconditions:
74 * The journal MUST be locked. We don't perform atomic mallocs on the
75 * new transaction and we can't block without protecting against other
76 * processes trying to touch the journal while it is in transition.
77 *
78 */
79
80 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 transaction->t_journal = journal;
84 transaction->t_state = T_RUNNING;
85 transaction->t_start_time = ktime_get();
86 transaction->t_tid = journal->j_transaction_sequence++;
87 transaction->t_expires = jiffies + journal->j_commit_interval;
88 spin_lock_init(&transaction->t_handle_lock);
89 atomic_set(&transaction->t_updates, 0);
90 atomic_set(&transaction->t_outstanding_credits,
91 atomic_read(&journal->j_reserved_credits));
92 atomic_set(&transaction->t_handle_count, 0);
93 INIT_LIST_HEAD(&transaction->t_inode_list);
94 INIT_LIST_HEAD(&transaction->t_private_list);
95
96 /* Set up the commit timer for the new transaction. */
97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 add_timer(&journal->j_commit_timer);
99
100 J_ASSERT(journal->j_running_transaction == NULL);
101 journal->j_running_transaction = transaction;
102 transaction->t_max_wait = 0;
103 transaction->t_start = jiffies;
104 transaction->t_requested = 0;
105
106 return transaction;
107 }
108
109 /*
110 * Handle management.
111 *
112 * A handle_t is an object which represents a single atomic update to a
113 * filesystem, and which tracks all of the modifications which form part
114 * of that one update.
115 */
116
117 /*
118 * Update transaction's maximum wait time, if debugging is enabled.
119 *
120 * In order for t_max_wait to be reliable, it must be protected by a
121 * lock. But doing so will mean that start_this_handle() can not be
122 * run in parallel on SMP systems, which limits our scalability. So
123 * unless debugging is enabled, we no longer update t_max_wait, which
124 * means that maximum wait time reported by the jbd2_run_stats
125 * tracepoint will always be zero.
126 */
update_t_max_wait(transaction_t * transaction,unsigned long ts)127 static inline void update_t_max_wait(transaction_t *transaction,
128 unsigned long ts)
129 {
130 #ifdef CONFIG_JBD2_DEBUG
131 if (jbd2_journal_enable_debug &&
132 time_after(transaction->t_start, ts)) {
133 ts = jbd2_time_diff(ts, transaction->t_start);
134 spin_lock(&transaction->t_handle_lock);
135 if (ts > transaction->t_max_wait)
136 transaction->t_max_wait = ts;
137 spin_unlock(&transaction->t_handle_lock);
138 }
139 #endif
140 }
141
142 /*
143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
144 * if needed. The function expects running transaction to exist and releases
145 * j_state_lock.
146 */
wait_transaction_locked(journal_t * journal)147 static void wait_transaction_locked(journal_t *journal)
148 __releases(journal->j_state_lock)
149 {
150 DEFINE_WAIT(wait);
151 int need_to_start;
152 tid_t tid = journal->j_running_transaction->t_tid;
153
154 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
155 TASK_UNINTERRUPTIBLE);
156 need_to_start = !tid_geq(journal->j_commit_request, tid);
157 read_unlock(&journal->j_state_lock);
158 if (need_to_start)
159 jbd2_log_start_commit(journal, tid);
160 jbd2_might_wait_for_commit(journal);
161 schedule();
162 finish_wait(&journal->j_wait_transaction_locked, &wait);
163 }
164
sub_reserved_credits(journal_t * journal,int blocks)165 static void sub_reserved_credits(journal_t *journal, int blocks)
166 {
167 atomic_sub(blocks, &journal->j_reserved_credits);
168 wake_up(&journal->j_wait_reserved);
169 }
170
171 /*
172 * Wait until we can add credits for handle to the running transaction. Called
173 * with j_state_lock held for reading. Returns 0 if handle joined the running
174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
175 * caller must retry.
176 */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)177 static int add_transaction_credits(journal_t *journal, int blocks,
178 int rsv_blocks)
179 {
180 transaction_t *t = journal->j_running_transaction;
181 int needed;
182 int total = blocks + rsv_blocks;
183
184 /*
185 * If the current transaction is locked down for commit, wait
186 * for the lock to be released.
187 */
188 if (t->t_state == T_LOCKED) {
189 wait_transaction_locked(journal);
190 return 1;
191 }
192
193 /*
194 * If there is not enough space left in the log to write all
195 * potential buffers requested by this operation, we need to
196 * stall pending a log checkpoint to free some more log space.
197 */
198 needed = atomic_add_return(total, &t->t_outstanding_credits);
199 if (needed > journal->j_max_transaction_buffers) {
200 /*
201 * If the current transaction is already too large,
202 * then start to commit it: we can then go back and
203 * attach this handle to a new transaction.
204 */
205 atomic_sub(total, &t->t_outstanding_credits);
206
207 /*
208 * Is the number of reserved credits in the current transaction too
209 * big to fit this handle? Wait until reserved credits are freed.
210 */
211 if (atomic_read(&journal->j_reserved_credits) + total >
212 journal->j_max_transaction_buffers) {
213 read_unlock(&journal->j_state_lock);
214 jbd2_might_wait_for_commit(journal);
215 wait_event(journal->j_wait_reserved,
216 atomic_read(&journal->j_reserved_credits) + total <=
217 journal->j_max_transaction_buffers);
218 return 1;
219 }
220
221 wait_transaction_locked(journal);
222 return 1;
223 }
224
225 /*
226 * The commit code assumes that it can get enough log space
227 * without forcing a checkpoint. This is *critical* for
228 * correctness: a checkpoint of a buffer which is also
229 * associated with a committing transaction creates a deadlock,
230 * so commit simply cannot force through checkpoints.
231 *
232 * We must therefore ensure the necessary space in the journal
233 * *before* starting to dirty potentially checkpointed buffers
234 * in the new transaction.
235 */
236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 atomic_sub(total, &t->t_outstanding_credits);
238 read_unlock(&journal->j_state_lock);
239 jbd2_might_wait_for_commit(journal);
240 write_lock(&journal->j_state_lock);
241 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
242 __jbd2_log_wait_for_space(journal);
243 write_unlock(&journal->j_state_lock);
244 return 1;
245 }
246
247 /* No reservation? We are done... */
248 if (!rsv_blocks)
249 return 0;
250
251 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
252 /* We allow at most half of a transaction to be reserved */
253 if (needed > journal->j_max_transaction_buffers / 2) {
254 sub_reserved_credits(journal, rsv_blocks);
255 atomic_sub(total, &t->t_outstanding_credits);
256 read_unlock(&journal->j_state_lock);
257 jbd2_might_wait_for_commit(journal);
258 wait_event(journal->j_wait_reserved,
259 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 <= journal->j_max_transaction_buffers / 2);
261 return 1;
262 }
263 return 0;
264 }
265
266 /*
267 * start_this_handle: Given a handle, deal with any locking or stalling
268 * needed to make sure that there is enough journal space for the handle
269 * to begin. Attach the handle to a transaction and set up the
270 * transaction's buffer credits.
271 */
272
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)273 static int start_this_handle(journal_t *journal, handle_t *handle,
274 gfp_t gfp_mask)
275 {
276 transaction_t *transaction, *new_transaction = NULL;
277 int blocks = handle->h_buffer_credits;
278 int rsv_blocks = 0;
279 unsigned long ts = jiffies;
280
281 if (handle->h_rsv_handle)
282 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283
284 /*
285 * Limit the number of reserved credits to 1/2 of maximum transaction
286 * size and limit the number of total credits to not exceed maximum
287 * transaction size per operation.
288 */
289 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 printk(KERN_ERR "JBD2: %s wants too many credits "
292 "credits:%d rsv_credits:%d max:%d\n",
293 current->comm, blocks, rsv_blocks,
294 journal->j_max_transaction_buffers);
295 WARN_ON(1);
296 return -ENOSPC;
297 }
298
299 alloc_transaction:
300 if (!journal->j_running_transaction) {
301 /*
302 * If __GFP_FS is not present, then we may be being called from
303 * inside the fs writeback layer, so we MUST NOT fail.
304 */
305 if ((gfp_mask & __GFP_FS) == 0)
306 gfp_mask |= __GFP_NOFAIL;
307 new_transaction = kmem_cache_zalloc(transaction_cache,
308 gfp_mask);
309 if (!new_transaction)
310 return -ENOMEM;
311 }
312
313 jbd_debug(3, "New handle %p going live.\n", handle);
314
315 /*
316 * We need to hold j_state_lock until t_updates has been incremented,
317 * for proper journal barrier handling
318 */
319 repeat:
320 read_lock(&journal->j_state_lock);
321 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322 if (is_journal_aborted(journal) ||
323 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324 read_unlock(&journal->j_state_lock);
325 jbd2_journal_free_transaction(new_transaction);
326 return -EROFS;
327 }
328
329 /*
330 * Wait on the journal's transaction barrier if necessary. Specifically
331 * we allow reserved handles to proceed because otherwise commit could
332 * deadlock on page writeback not being able to complete.
333 */
334 if (!handle->h_reserved && journal->j_barrier_count) {
335 read_unlock(&journal->j_state_lock);
336 wait_event(journal->j_wait_transaction_locked,
337 journal->j_barrier_count == 0);
338 goto repeat;
339 }
340
341 if (!journal->j_running_transaction) {
342 read_unlock(&journal->j_state_lock);
343 if (!new_transaction)
344 goto alloc_transaction;
345 write_lock(&journal->j_state_lock);
346 if (!journal->j_running_transaction &&
347 (handle->h_reserved || !journal->j_barrier_count)) {
348 jbd2_get_transaction(journal, new_transaction);
349 new_transaction = NULL;
350 }
351 write_unlock(&journal->j_state_lock);
352 goto repeat;
353 }
354
355 transaction = journal->j_running_transaction;
356
357 if (!handle->h_reserved) {
358 /* We may have dropped j_state_lock - restart in that case */
359 if (add_transaction_credits(journal, blocks, rsv_blocks))
360 goto repeat;
361 } else {
362 /*
363 * We have handle reserved so we are allowed to join T_LOCKED
364 * transaction and we don't have to check for transaction size
365 * and journal space.
366 */
367 sub_reserved_credits(journal, blocks);
368 handle->h_reserved = 0;
369 }
370
371 /* OK, account for the buffers that this operation expects to
372 * use and add the handle to the running transaction.
373 */
374 update_t_max_wait(transaction, ts);
375 handle->h_transaction = transaction;
376 handle->h_requested_credits = blocks;
377 handle->h_start_jiffies = jiffies;
378 atomic_inc(&transaction->t_updates);
379 atomic_inc(&transaction->t_handle_count);
380 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 handle, blocks,
382 atomic_read(&transaction->t_outstanding_credits),
383 jbd2_log_space_left(journal));
384 read_unlock(&journal->j_state_lock);
385 current->journal_info = handle;
386
387 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
388 jbd2_journal_free_transaction(new_transaction);
389 /*
390 * Ensure that no allocations done while the transaction is open are
391 * going to recurse back to the fs layer.
392 */
393 handle->saved_alloc_context = memalloc_nofs_save();
394 return 0;
395 }
396
397 /* Allocate a new handle. This should probably be in a slab... */
new_handle(int nblocks)398 static handle_t *new_handle(int nblocks)
399 {
400 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
401 if (!handle)
402 return NULL;
403 handle->h_buffer_credits = nblocks;
404 handle->h_ref = 1;
405
406 return handle;
407 }
408
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)409 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
410 gfp_t gfp_mask, unsigned int type,
411 unsigned int line_no)
412 {
413 handle_t *handle = journal_current_handle();
414 int err;
415
416 if (!journal)
417 return ERR_PTR(-EROFS);
418
419 if (handle) {
420 J_ASSERT(handle->h_transaction->t_journal == journal);
421 handle->h_ref++;
422 return handle;
423 }
424
425 handle = new_handle(nblocks);
426 if (!handle)
427 return ERR_PTR(-ENOMEM);
428 if (rsv_blocks) {
429 handle_t *rsv_handle;
430
431 rsv_handle = new_handle(rsv_blocks);
432 if (!rsv_handle) {
433 jbd2_free_handle(handle);
434 return ERR_PTR(-ENOMEM);
435 }
436 rsv_handle->h_reserved = 1;
437 rsv_handle->h_journal = journal;
438 handle->h_rsv_handle = rsv_handle;
439 }
440
441 err = start_this_handle(journal, handle, gfp_mask);
442 if (err < 0) {
443 if (handle->h_rsv_handle)
444 jbd2_free_handle(handle->h_rsv_handle);
445 jbd2_free_handle(handle);
446 return ERR_PTR(err);
447 }
448 handle->h_type = type;
449 handle->h_line_no = line_no;
450 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
451 handle->h_transaction->t_tid, type,
452 line_no, nblocks);
453
454 return handle;
455 }
456 EXPORT_SYMBOL(jbd2__journal_start);
457
458
459 /**
460 * handle_t *jbd2_journal_start() - Obtain a new handle.
461 * @journal: Journal to start transaction on.
462 * @nblocks: number of block buffer we might modify
463 *
464 * We make sure that the transaction can guarantee at least nblocks of
465 * modified buffers in the log. We block until the log can guarantee
466 * that much space. Additionally, if rsv_blocks > 0, we also create another
467 * handle with rsv_blocks reserved blocks in the journal. This handle is
468 * is stored in h_rsv_handle. It is not attached to any particular transaction
469 * and thus doesn't block transaction commit. If the caller uses this reserved
470 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
471 * on the parent handle will dispose the reserved one. Reserved handle has to
472 * be converted to a normal handle using jbd2_journal_start_reserved() before
473 * it can be used.
474 *
475 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
476 * on failure.
477 */
jbd2_journal_start(journal_t * journal,int nblocks)478 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
479 {
480 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
481 }
482 EXPORT_SYMBOL(jbd2_journal_start);
483
jbd2_journal_free_reserved(handle_t * handle)484 void jbd2_journal_free_reserved(handle_t *handle)
485 {
486 journal_t *journal = handle->h_journal;
487
488 WARN_ON(!handle->h_reserved);
489 sub_reserved_credits(journal, handle->h_buffer_credits);
490 jbd2_free_handle(handle);
491 }
492 EXPORT_SYMBOL(jbd2_journal_free_reserved);
493
494 /**
495 * int jbd2_journal_start_reserved() - start reserved handle
496 * @handle: handle to start
497 * @type: for handle statistics
498 * @line_no: for handle statistics
499 *
500 * Start handle that has been previously reserved with jbd2_journal_reserve().
501 * This attaches @handle to the running transaction (or creates one if there's
502 * not transaction running). Unlike jbd2_journal_start() this function cannot
503 * block on journal commit, checkpointing, or similar stuff. It can block on
504 * memory allocation or frozen journal though.
505 *
506 * Return 0 on success, non-zero on error - handle is freed in that case.
507 */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)508 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
509 unsigned int line_no)
510 {
511 journal_t *journal = handle->h_journal;
512 int ret = -EIO;
513
514 if (WARN_ON(!handle->h_reserved)) {
515 /* Someone passed in normal handle? Just stop it. */
516 jbd2_journal_stop(handle);
517 return ret;
518 }
519 /*
520 * Usefulness of mixing of reserved and unreserved handles is
521 * questionable. So far nobody seems to need it so just error out.
522 */
523 if (WARN_ON(current->journal_info)) {
524 jbd2_journal_free_reserved(handle);
525 return ret;
526 }
527
528 handle->h_journal = NULL;
529 /*
530 * GFP_NOFS is here because callers are likely from writeback or
531 * similarly constrained call sites
532 */
533 ret = start_this_handle(journal, handle, GFP_NOFS);
534 if (ret < 0) {
535 handle->h_journal = journal;
536 jbd2_journal_free_reserved(handle);
537 return ret;
538 }
539 handle->h_type = type;
540 handle->h_line_no = line_no;
541 return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544
545 /**
546 * int jbd2_journal_extend() - extend buffer credits.
547 * @handle: handle to 'extend'
548 * @nblocks: nr blocks to try to extend by.
549 *
550 * Some transactions, such as large extends and truncates, can be done
551 * atomically all at once or in several stages. The operation requests
552 * a credit for a number of buffer modifications in advance, but can
553 * extend its credit if it needs more.
554 *
555 * jbd2_journal_extend tries to give the running handle more buffer credits.
556 * It does not guarantee that allocation - this is a best-effort only.
557 * The calling process MUST be able to deal cleanly with a failure to
558 * extend here.
559 *
560 * Return 0 on success, non-zero on failure.
561 *
562 * return code < 0 implies an error
563 * return code > 0 implies normal transaction-full status.
564 */
jbd2_journal_extend(handle_t * handle,int nblocks)565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567 transaction_t *transaction = handle->h_transaction;
568 journal_t *journal;
569 int result;
570 int wanted;
571
572 if (is_handle_aborted(handle))
573 return -EROFS;
574 journal = transaction->t_journal;
575
576 result = 1;
577
578 read_lock(&journal->j_state_lock);
579
580 /* Don't extend a locked-down transaction! */
581 if (transaction->t_state != T_RUNNING) {
582 jbd_debug(3, "denied handle %p %d blocks: "
583 "transaction not running\n", handle, nblocks);
584 goto error_out;
585 }
586
587 spin_lock(&transaction->t_handle_lock);
588 wanted = atomic_add_return(nblocks,
589 &transaction->t_outstanding_credits);
590
591 if (wanted > journal->j_max_transaction_buffers) {
592 jbd_debug(3, "denied handle %p %d blocks: "
593 "transaction too large\n", handle, nblocks);
594 atomic_sub(nblocks, &transaction->t_outstanding_credits);
595 goto unlock;
596 }
597
598 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599 jbd2_log_space_left(journal)) {
600 jbd_debug(3, "denied handle %p %d blocks: "
601 "insufficient log space\n", handle, nblocks);
602 atomic_sub(nblocks, &transaction->t_outstanding_credits);
603 goto unlock;
604 }
605
606 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607 transaction->t_tid,
608 handle->h_type, handle->h_line_no,
609 handle->h_buffer_credits,
610 nblocks);
611
612 handle->h_buffer_credits += nblocks;
613 handle->h_requested_credits += nblocks;
614 result = 0;
615
616 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618 spin_unlock(&transaction->t_handle_lock);
619 error_out:
620 read_unlock(&journal->j_state_lock);
621 return result;
622 }
623
624
625 /**
626 * int jbd2_journal_restart() - restart a handle .
627 * @handle: handle to restart
628 * @nblocks: nr credits requested
629 * @gfp_mask: memory allocation flags (for start_this_handle)
630 *
631 * Restart a handle for a multi-transaction filesystem
632 * operation.
633 *
634 * If the jbd2_journal_extend() call above fails to grant new buffer credits
635 * to a running handle, a call to jbd2_journal_restart will commit the
636 * handle's transaction so far and reattach the handle to a new
637 * transaction capable of guaranteeing the requested number of
638 * credits. We preserve reserved handle if there's any attached to the
639 * passed in handle.
640 */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)641 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
642 {
643 transaction_t *transaction = handle->h_transaction;
644 journal_t *journal;
645 tid_t tid;
646 int need_to_start, ret;
647
648 /* If we've had an abort of any type, don't even think about
649 * actually doing the restart! */
650 if (is_handle_aborted(handle))
651 return 0;
652 journal = transaction->t_journal;
653
654 /*
655 * First unlink the handle from its current transaction, and start the
656 * commit on that.
657 */
658 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
659 J_ASSERT(journal_current_handle() == handle);
660
661 read_lock(&journal->j_state_lock);
662 spin_lock(&transaction->t_handle_lock);
663 atomic_sub(handle->h_buffer_credits,
664 &transaction->t_outstanding_credits);
665 if (handle->h_rsv_handle) {
666 sub_reserved_credits(journal,
667 handle->h_rsv_handle->h_buffer_credits);
668 }
669 if (atomic_dec_and_test(&transaction->t_updates))
670 wake_up(&journal->j_wait_updates);
671 tid = transaction->t_tid;
672 spin_unlock(&transaction->t_handle_lock);
673 handle->h_transaction = NULL;
674 current->journal_info = NULL;
675
676 jbd_debug(2, "restarting handle %p\n", handle);
677 need_to_start = !tid_geq(journal->j_commit_request, tid);
678 read_unlock(&journal->j_state_lock);
679 if (need_to_start)
680 jbd2_log_start_commit(journal, tid);
681
682 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
683 handle->h_buffer_credits = nblocks;
684 /*
685 * Restore the original nofs context because the journal restart
686 * is basically the same thing as journal stop and start.
687 * start_this_handle will start a new nofs context.
688 */
689 memalloc_nofs_restore(handle->saved_alloc_context);
690 ret = start_this_handle(journal, handle, gfp_mask);
691 return ret;
692 }
693 EXPORT_SYMBOL(jbd2__journal_restart);
694
695
jbd2_journal_restart(handle_t * handle,int nblocks)696 int jbd2_journal_restart(handle_t *handle, int nblocks)
697 {
698 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
699 }
700 EXPORT_SYMBOL(jbd2_journal_restart);
701
702 /**
703 * void jbd2_journal_lock_updates () - establish a transaction barrier.
704 * @journal: Journal to establish a barrier on.
705 *
706 * This locks out any further updates from being started, and blocks
707 * until all existing updates have completed, returning only once the
708 * journal is in a quiescent state with no updates running.
709 *
710 * The journal lock should not be held on entry.
711 */
jbd2_journal_lock_updates(journal_t * journal)712 void jbd2_journal_lock_updates(journal_t *journal)
713 {
714 DEFINE_WAIT(wait);
715
716 jbd2_might_wait_for_commit(journal);
717
718 write_lock(&journal->j_state_lock);
719 ++journal->j_barrier_count;
720
721 /* Wait until there are no reserved handles */
722 if (atomic_read(&journal->j_reserved_credits)) {
723 write_unlock(&journal->j_state_lock);
724 wait_event(journal->j_wait_reserved,
725 atomic_read(&journal->j_reserved_credits) == 0);
726 write_lock(&journal->j_state_lock);
727 }
728
729 /* Wait until there are no running updates */
730 while (1) {
731 transaction_t *transaction = journal->j_running_transaction;
732
733 if (!transaction)
734 break;
735
736 spin_lock(&transaction->t_handle_lock);
737 prepare_to_wait(&journal->j_wait_updates, &wait,
738 TASK_UNINTERRUPTIBLE);
739 if (!atomic_read(&transaction->t_updates)) {
740 spin_unlock(&transaction->t_handle_lock);
741 finish_wait(&journal->j_wait_updates, &wait);
742 break;
743 }
744 spin_unlock(&transaction->t_handle_lock);
745 write_unlock(&journal->j_state_lock);
746 schedule();
747 finish_wait(&journal->j_wait_updates, &wait);
748 write_lock(&journal->j_state_lock);
749 }
750 write_unlock(&journal->j_state_lock);
751
752 /*
753 * We have now established a barrier against other normal updates, but
754 * we also need to barrier against other jbd2_journal_lock_updates() calls
755 * to make sure that we serialise special journal-locked operations
756 * too.
757 */
758 mutex_lock(&journal->j_barrier);
759 }
760
761 /**
762 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
763 * @journal: Journal to release the barrier on.
764 *
765 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
766 *
767 * Should be called without the journal lock held.
768 */
jbd2_journal_unlock_updates(journal_t * journal)769 void jbd2_journal_unlock_updates (journal_t *journal)
770 {
771 J_ASSERT(journal->j_barrier_count != 0);
772
773 mutex_unlock(&journal->j_barrier);
774 write_lock(&journal->j_state_lock);
775 --journal->j_barrier_count;
776 write_unlock(&journal->j_state_lock);
777 wake_up(&journal->j_wait_transaction_locked);
778 }
779
warn_dirty_buffer(struct buffer_head * bh)780 static void warn_dirty_buffer(struct buffer_head *bh)
781 {
782 printk(KERN_WARNING
783 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
784 "There's a risk of filesystem corruption in case of system "
785 "crash.\n",
786 bh->b_bdev, (unsigned long long)bh->b_blocknr);
787 }
788
789 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)790 static void jbd2_freeze_jh_data(struct journal_head *jh)
791 {
792 struct page *page;
793 int offset;
794 char *source;
795 struct buffer_head *bh = jh2bh(jh);
796
797 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
798 page = bh->b_page;
799 offset = offset_in_page(bh->b_data);
800 source = kmap_atomic(page);
801 /* Fire data frozen trigger just before we copy the data */
802 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
803 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
804 kunmap_atomic(source);
805
806 /*
807 * Now that the frozen data is saved off, we need to store any matching
808 * triggers.
809 */
810 jh->b_frozen_triggers = jh->b_triggers;
811 }
812
813 /*
814 * If the buffer is already part of the current transaction, then there
815 * is nothing we need to do. If it is already part of a prior
816 * transaction which we are still committing to disk, then we need to
817 * make sure that we do not overwrite the old copy: we do copy-out to
818 * preserve the copy going to disk. We also account the buffer against
819 * the handle's metadata buffer credits (unless the buffer is already
820 * part of the transaction, that is).
821 *
822 */
823 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)824 do_get_write_access(handle_t *handle, struct journal_head *jh,
825 int force_copy)
826 {
827 struct buffer_head *bh;
828 transaction_t *transaction = handle->h_transaction;
829 journal_t *journal;
830 int error;
831 char *frozen_buffer = NULL;
832 unsigned long start_lock, time_lock;
833
834 journal = transaction->t_journal;
835
836 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
837
838 JBUFFER_TRACE(jh, "entry");
839 repeat:
840 bh = jh2bh(jh);
841
842 /* @@@ Need to check for errors here at some point. */
843
844 start_lock = jiffies;
845 lock_buffer(bh);
846 jbd_lock_bh_state(bh);
847
848 /* If it takes too long to lock the buffer, trace it */
849 time_lock = jbd2_time_diff(start_lock, jiffies);
850 if (time_lock > HZ/10)
851 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
852 jiffies_to_msecs(time_lock));
853
854 /* We now hold the buffer lock so it is safe to query the buffer
855 * state. Is the buffer dirty?
856 *
857 * If so, there are two possibilities. The buffer may be
858 * non-journaled, and undergoing a quite legitimate writeback.
859 * Otherwise, it is journaled, and we don't expect dirty buffers
860 * in that state (the buffers should be marked JBD_Dirty
861 * instead.) So either the IO is being done under our own
862 * control and this is a bug, or it's a third party IO such as
863 * dump(8) (which may leave the buffer scheduled for read ---
864 * ie. locked but not dirty) or tune2fs (which may actually have
865 * the buffer dirtied, ugh.) */
866
867 if (buffer_dirty(bh)) {
868 /*
869 * First question: is this buffer already part of the current
870 * transaction or the existing committing transaction?
871 */
872 if (jh->b_transaction) {
873 J_ASSERT_JH(jh,
874 jh->b_transaction == transaction ||
875 jh->b_transaction ==
876 journal->j_committing_transaction);
877 if (jh->b_next_transaction)
878 J_ASSERT_JH(jh, jh->b_next_transaction ==
879 transaction);
880 warn_dirty_buffer(bh);
881 }
882 /*
883 * In any case we need to clean the dirty flag and we must
884 * do it under the buffer lock to be sure we don't race
885 * with running write-out.
886 */
887 JBUFFER_TRACE(jh, "Journalling dirty buffer");
888 clear_buffer_dirty(bh);
889 set_buffer_jbddirty(bh);
890 }
891
892 unlock_buffer(bh);
893
894 error = -EROFS;
895 if (is_handle_aborted(handle)) {
896 jbd_unlock_bh_state(bh);
897 goto out;
898 }
899 error = 0;
900
901 /*
902 * The buffer is already part of this transaction if b_transaction or
903 * b_next_transaction points to it
904 */
905 if (jh->b_transaction == transaction ||
906 jh->b_next_transaction == transaction)
907 goto done;
908
909 /*
910 * this is the first time this transaction is touching this buffer,
911 * reset the modified flag
912 */
913 jh->b_modified = 0;
914
915 /*
916 * If the buffer is not journaled right now, we need to make sure it
917 * doesn't get written to disk before the caller actually commits the
918 * new data
919 */
920 if (!jh->b_transaction) {
921 JBUFFER_TRACE(jh, "no transaction");
922 J_ASSERT_JH(jh, !jh->b_next_transaction);
923 JBUFFER_TRACE(jh, "file as BJ_Reserved");
924 /*
925 * Make sure all stores to jh (b_modified, b_frozen_data) are
926 * visible before attaching it to the running transaction.
927 * Paired with barrier in jbd2_write_access_granted()
928 */
929 smp_wmb();
930 spin_lock(&journal->j_list_lock);
931 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
932 spin_unlock(&journal->j_list_lock);
933 goto done;
934 }
935 /*
936 * If there is already a copy-out version of this buffer, then we don't
937 * need to make another one
938 */
939 if (jh->b_frozen_data) {
940 JBUFFER_TRACE(jh, "has frozen data");
941 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942 goto attach_next;
943 }
944
945 JBUFFER_TRACE(jh, "owned by older transaction");
946 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
948
949 /*
950 * There is one case we have to be very careful about. If the
951 * committing transaction is currently writing this buffer out to disk
952 * and has NOT made a copy-out, then we cannot modify the buffer
953 * contents at all right now. The essence of copy-out is that it is
954 * the extra copy, not the primary copy, which gets journaled. If the
955 * primary copy is already going to disk then we cannot do copy-out
956 * here.
957 */
958 if (buffer_shadow(bh)) {
959 JBUFFER_TRACE(jh, "on shadow: sleep");
960 jbd_unlock_bh_state(bh);
961 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
962 goto repeat;
963 }
964
965 /*
966 * Only do the copy if the currently-owning transaction still needs it.
967 * If buffer isn't on BJ_Metadata list, the committing transaction is
968 * past that stage (here we use the fact that BH_Shadow is set under
969 * bh_state lock together with refiling to BJ_Shadow list and at this
970 * point we know the buffer doesn't have BH_Shadow set).
971 *
972 * Subtle point, though: if this is a get_undo_access, then we will be
973 * relying on the frozen_data to contain the new value of the
974 * committed_data record after the transaction, so we HAVE to force the
975 * frozen_data copy in that case.
976 */
977 if (jh->b_jlist == BJ_Metadata || force_copy) {
978 JBUFFER_TRACE(jh, "generate frozen data");
979 if (!frozen_buffer) {
980 JBUFFER_TRACE(jh, "allocate memory for buffer");
981 jbd_unlock_bh_state(bh);
982 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
983 GFP_NOFS | __GFP_NOFAIL);
984 goto repeat;
985 }
986 jh->b_frozen_data = frozen_buffer;
987 frozen_buffer = NULL;
988 jbd2_freeze_jh_data(jh);
989 }
990 attach_next:
991 /*
992 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
993 * before attaching it to the running transaction. Paired with barrier
994 * in jbd2_write_access_granted()
995 */
996 smp_wmb();
997 jh->b_next_transaction = transaction;
998
999 done:
1000 jbd_unlock_bh_state(bh);
1001
1002 /*
1003 * If we are about to journal a buffer, then any revoke pending on it is
1004 * no longer valid
1005 */
1006 jbd2_journal_cancel_revoke(handle, jh);
1007
1008 out:
1009 if (unlikely(frozen_buffer)) /* It's usually NULL */
1010 jbd2_free(frozen_buffer, bh->b_size);
1011
1012 JBUFFER_TRACE(jh, "exit");
1013 return error;
1014 }
1015
1016 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1018 bool undo)
1019 {
1020 struct journal_head *jh;
1021 bool ret = false;
1022
1023 /* Dirty buffers require special handling... */
1024 if (buffer_dirty(bh))
1025 return false;
1026
1027 /*
1028 * RCU protects us from dereferencing freed pages. So the checks we do
1029 * are guaranteed not to oops. However the jh slab object can get freed
1030 * & reallocated while we work with it. So we have to be careful. When
1031 * we see jh attached to the running transaction, we know it must stay
1032 * so until the transaction is committed. Thus jh won't be freed and
1033 * will be attached to the same bh while we run. However it can
1034 * happen jh gets freed, reallocated, and attached to the transaction
1035 * just after we get pointer to it from bh. So we have to be careful
1036 * and recheck jh still belongs to our bh before we return success.
1037 */
1038 rcu_read_lock();
1039 if (!buffer_jbd(bh))
1040 goto out;
1041 /* This should be bh2jh() but that doesn't work with inline functions */
1042 jh = READ_ONCE(bh->b_private);
1043 if (!jh)
1044 goto out;
1045 /* For undo access buffer must have data copied */
1046 if (undo && !jh->b_committed_data)
1047 goto out;
1048 if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1049 READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1050 goto out;
1051 /*
1052 * There are two reasons for the barrier here:
1053 * 1) Make sure to fetch b_bh after we did previous checks so that we
1054 * detect when jh went through free, realloc, attach to transaction
1055 * while we were checking. Paired with implicit barrier in that path.
1056 * 2) So that access to bh done after jbd2_write_access_granted()
1057 * doesn't get reordered and see inconsistent state of concurrent
1058 * do_get_write_access().
1059 */
1060 smp_mb();
1061 if (unlikely(jh->b_bh != bh))
1062 goto out;
1063 ret = true;
1064 out:
1065 rcu_read_unlock();
1066 return ret;
1067 }
1068
1069 /**
1070 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1071 * @handle: transaction to add buffer modifications to
1072 * @bh: bh to be used for metadata writes
1073 *
1074 * Returns: error code or 0 on success.
1075 *
1076 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1077 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1078 */
1079
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1081 {
1082 struct journal_head *jh;
1083 int rc;
1084
1085 if (is_handle_aborted(handle))
1086 return -EROFS;
1087
1088 if (jbd2_write_access_granted(handle, bh, false))
1089 return 0;
1090
1091 jh = jbd2_journal_add_journal_head(bh);
1092 /* We do not want to get caught playing with fields which the
1093 * log thread also manipulates. Make sure that the buffer
1094 * completes any outstanding IO before proceeding. */
1095 rc = do_get_write_access(handle, jh, 0);
1096 jbd2_journal_put_journal_head(jh);
1097 return rc;
1098 }
1099
1100
1101 /*
1102 * When the user wants to journal a newly created buffer_head
1103 * (ie. getblk() returned a new buffer and we are going to populate it
1104 * manually rather than reading off disk), then we need to keep the
1105 * buffer_head locked until it has been completely filled with new
1106 * data. In this case, we should be able to make the assertion that
1107 * the bh is not already part of an existing transaction.
1108 *
1109 * The buffer should already be locked by the caller by this point.
1110 * There is no lock ranking violation: it was a newly created,
1111 * unlocked buffer beforehand. */
1112
1113 /**
1114 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1115 * @handle: transaction to new buffer to
1116 * @bh: new buffer.
1117 *
1118 * Call this if you create a new bh.
1119 */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1120 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1121 {
1122 transaction_t *transaction = handle->h_transaction;
1123 journal_t *journal;
1124 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1125 int err;
1126
1127 jbd_debug(5, "journal_head %p\n", jh);
1128 err = -EROFS;
1129 if (is_handle_aborted(handle))
1130 goto out;
1131 journal = transaction->t_journal;
1132 err = 0;
1133
1134 JBUFFER_TRACE(jh, "entry");
1135 /*
1136 * The buffer may already belong to this transaction due to pre-zeroing
1137 * in the filesystem's new_block code. It may also be on the previous,
1138 * committing transaction's lists, but it HAS to be in Forget state in
1139 * that case: the transaction must have deleted the buffer for it to be
1140 * reused here.
1141 */
1142 jbd_lock_bh_state(bh);
1143 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1144 jh->b_transaction == NULL ||
1145 (jh->b_transaction == journal->j_committing_transaction &&
1146 jh->b_jlist == BJ_Forget)));
1147
1148 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1149 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1150
1151 if (jh->b_transaction == NULL) {
1152 /*
1153 * Previous jbd2_journal_forget() could have left the buffer
1154 * with jbddirty bit set because it was being committed. When
1155 * the commit finished, we've filed the buffer for
1156 * checkpointing and marked it dirty. Now we are reallocating
1157 * the buffer so the transaction freeing it must have
1158 * committed and so it's safe to clear the dirty bit.
1159 */
1160 clear_buffer_dirty(jh2bh(jh));
1161 /* first access by this transaction */
1162 jh->b_modified = 0;
1163
1164 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1165 spin_lock(&journal->j_list_lock);
1166 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1167 spin_unlock(&journal->j_list_lock);
1168 } else if (jh->b_transaction == journal->j_committing_transaction) {
1169 /* first access by this transaction */
1170 jh->b_modified = 0;
1171
1172 JBUFFER_TRACE(jh, "set next transaction");
1173 spin_lock(&journal->j_list_lock);
1174 jh->b_next_transaction = transaction;
1175 spin_unlock(&journal->j_list_lock);
1176 }
1177 jbd_unlock_bh_state(bh);
1178
1179 /*
1180 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1181 * blocks which contain freed but then revoked metadata. We need
1182 * to cancel the revoke in case we end up freeing it yet again
1183 * and the reallocating as data - this would cause a second revoke,
1184 * which hits an assertion error.
1185 */
1186 JBUFFER_TRACE(jh, "cancelling revoke");
1187 jbd2_journal_cancel_revoke(handle, jh);
1188 out:
1189 jbd2_journal_put_journal_head(jh);
1190 return err;
1191 }
1192
1193 /**
1194 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1195 * non-rewindable consequences
1196 * @handle: transaction
1197 * @bh: buffer to undo
1198 *
1199 * Sometimes there is a need to distinguish between metadata which has
1200 * been committed to disk and that which has not. The ext3fs code uses
1201 * this for freeing and allocating space, we have to make sure that we
1202 * do not reuse freed space until the deallocation has been committed,
1203 * since if we overwrote that space we would make the delete
1204 * un-rewindable in case of a crash.
1205 *
1206 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1207 * buffer for parts of non-rewindable operations such as delete
1208 * operations on the bitmaps. The journaling code must keep a copy of
1209 * the buffer's contents prior to the undo_access call until such time
1210 * as we know that the buffer has definitely been committed to disk.
1211 *
1212 * We never need to know which transaction the committed data is part
1213 * of, buffers touched here are guaranteed to be dirtied later and so
1214 * will be committed to a new transaction in due course, at which point
1215 * we can discard the old committed data pointer.
1216 *
1217 * Returns error number or 0 on success.
1218 */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1219 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1220 {
1221 int err;
1222 struct journal_head *jh;
1223 char *committed_data = NULL;
1224
1225 if (is_handle_aborted(handle))
1226 return -EROFS;
1227
1228 if (jbd2_write_access_granted(handle, bh, true))
1229 return 0;
1230
1231 jh = jbd2_journal_add_journal_head(bh);
1232 JBUFFER_TRACE(jh, "entry");
1233
1234 /*
1235 * Do this first --- it can drop the journal lock, so we want to
1236 * make sure that obtaining the committed_data is done
1237 * atomically wrt. completion of any outstanding commits.
1238 */
1239 err = do_get_write_access(handle, jh, 1);
1240 if (err)
1241 goto out;
1242
1243 repeat:
1244 if (!jh->b_committed_data)
1245 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1246 GFP_NOFS|__GFP_NOFAIL);
1247
1248 jbd_lock_bh_state(bh);
1249 if (!jh->b_committed_data) {
1250 /* Copy out the current buffer contents into the
1251 * preserved, committed copy. */
1252 JBUFFER_TRACE(jh, "generate b_committed data");
1253 if (!committed_data) {
1254 jbd_unlock_bh_state(bh);
1255 goto repeat;
1256 }
1257
1258 jh->b_committed_data = committed_data;
1259 committed_data = NULL;
1260 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1261 }
1262 jbd_unlock_bh_state(bh);
1263 out:
1264 jbd2_journal_put_journal_head(jh);
1265 if (unlikely(committed_data))
1266 jbd2_free(committed_data, bh->b_size);
1267 return err;
1268 }
1269
1270 /**
1271 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1272 * @bh: buffer to trigger on
1273 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1274 *
1275 * Set any triggers on this journal_head. This is always safe, because
1276 * triggers for a committing buffer will be saved off, and triggers for
1277 * a running transaction will match the buffer in that transaction.
1278 *
1279 * Call with NULL to clear the triggers.
1280 */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1281 void jbd2_journal_set_triggers(struct buffer_head *bh,
1282 struct jbd2_buffer_trigger_type *type)
1283 {
1284 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1285
1286 if (WARN_ON(!jh))
1287 return;
1288 jh->b_triggers = type;
1289 jbd2_journal_put_journal_head(jh);
1290 }
1291
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1292 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1293 struct jbd2_buffer_trigger_type *triggers)
1294 {
1295 struct buffer_head *bh = jh2bh(jh);
1296
1297 if (!triggers || !triggers->t_frozen)
1298 return;
1299
1300 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1301 }
1302
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1303 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1304 struct jbd2_buffer_trigger_type *triggers)
1305 {
1306 if (!triggers || !triggers->t_abort)
1307 return;
1308
1309 triggers->t_abort(triggers, jh2bh(jh));
1310 }
1311
1312 /**
1313 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1314 * @handle: transaction to add buffer to.
1315 * @bh: buffer to mark
1316 *
1317 * mark dirty metadata which needs to be journaled as part of the current
1318 * transaction.
1319 *
1320 * The buffer must have previously had jbd2_journal_get_write_access()
1321 * called so that it has a valid journal_head attached to the buffer
1322 * head.
1323 *
1324 * The buffer is placed on the transaction's metadata list and is marked
1325 * as belonging to the transaction.
1326 *
1327 * Returns error number or 0 on success.
1328 *
1329 * Special care needs to be taken if the buffer already belongs to the
1330 * current committing transaction (in which case we should have frozen
1331 * data present for that commit). In that case, we don't relink the
1332 * buffer: that only gets done when the old transaction finally
1333 * completes its commit.
1334 */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1335 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1336 {
1337 transaction_t *transaction = handle->h_transaction;
1338 journal_t *journal;
1339 struct journal_head *jh;
1340 int ret = 0;
1341
1342 if (!buffer_jbd(bh))
1343 return -EUCLEAN;
1344
1345 /*
1346 * We don't grab jh reference here since the buffer must be part
1347 * of the running transaction.
1348 */
1349 jh = bh2jh(bh);
1350 jbd_debug(5, "journal_head %p\n", jh);
1351 JBUFFER_TRACE(jh, "entry");
1352
1353 /*
1354 * This and the following assertions are unreliable since we may see jh
1355 * in inconsistent state unless we grab bh_state lock. But this is
1356 * crucial to catch bugs so let's do a reliable check until the
1357 * lockless handling is fully proven.
1358 */
1359 if (jh->b_transaction != transaction &&
1360 jh->b_next_transaction != transaction) {
1361 jbd_lock_bh_state(bh);
1362 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1363 jh->b_next_transaction == transaction);
1364 jbd_unlock_bh_state(bh);
1365 }
1366 if (jh->b_modified == 1) {
1367 /* If it's in our transaction it must be in BJ_Metadata list. */
1368 if (jh->b_transaction == transaction &&
1369 jh->b_jlist != BJ_Metadata) {
1370 jbd_lock_bh_state(bh);
1371 if (jh->b_transaction == transaction &&
1372 jh->b_jlist != BJ_Metadata)
1373 pr_err("JBD2: assertion failure: h_type=%u "
1374 "h_line_no=%u block_no=%llu jlist=%u\n",
1375 handle->h_type, handle->h_line_no,
1376 (unsigned long long) bh->b_blocknr,
1377 jh->b_jlist);
1378 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1379 jh->b_jlist == BJ_Metadata);
1380 jbd_unlock_bh_state(bh);
1381 }
1382 goto out;
1383 }
1384
1385 journal = transaction->t_journal;
1386 jbd_lock_bh_state(bh);
1387
1388 if (is_handle_aborted(handle)) {
1389 /*
1390 * Check journal aborting with @jh->b_state_lock locked,
1391 * since 'jh->b_transaction' could be replaced with
1392 * 'jh->b_next_transaction' during old transaction
1393 * committing if journal aborted, which may fail
1394 * assertion on 'jh->b_frozen_data == NULL'.
1395 */
1396 ret = -EROFS;
1397 goto out_unlock_bh;
1398 }
1399
1400 if (jh->b_modified == 0) {
1401 /*
1402 * This buffer's got modified and becoming part
1403 * of the transaction. This needs to be done
1404 * once a transaction -bzzz
1405 */
1406 if (handle->h_buffer_credits <= 0) {
1407 ret = -ENOSPC;
1408 goto out_unlock_bh;
1409 }
1410 jh->b_modified = 1;
1411 handle->h_buffer_credits--;
1412 }
1413
1414 /*
1415 * fastpath, to avoid expensive locking. If this buffer is already
1416 * on the running transaction's metadata list there is nothing to do.
1417 * Nobody can take it off again because there is a handle open.
1418 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1419 * result in this test being false, so we go in and take the locks.
1420 */
1421 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1422 JBUFFER_TRACE(jh, "fastpath");
1423 if (unlikely(jh->b_transaction !=
1424 journal->j_running_transaction)) {
1425 printk(KERN_ERR "JBD2: %s: "
1426 "jh->b_transaction (%llu, %p, %u) != "
1427 "journal->j_running_transaction (%p, %u)\n",
1428 journal->j_devname,
1429 (unsigned long long) bh->b_blocknr,
1430 jh->b_transaction,
1431 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1432 journal->j_running_transaction,
1433 journal->j_running_transaction ?
1434 journal->j_running_transaction->t_tid : 0);
1435 ret = -EINVAL;
1436 }
1437 goto out_unlock_bh;
1438 }
1439
1440 set_buffer_jbddirty(bh);
1441
1442 /*
1443 * Metadata already on the current transaction list doesn't
1444 * need to be filed. Metadata on another transaction's list must
1445 * be committing, and will be refiled once the commit completes:
1446 * leave it alone for now.
1447 */
1448 if (jh->b_transaction != transaction) {
1449 JBUFFER_TRACE(jh, "already on other transaction");
1450 if (unlikely(((jh->b_transaction !=
1451 journal->j_committing_transaction)) ||
1452 (jh->b_next_transaction != transaction))) {
1453 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1454 "bad jh for block %llu: "
1455 "transaction (%p, %u), "
1456 "jh->b_transaction (%p, %u), "
1457 "jh->b_next_transaction (%p, %u), jlist %u\n",
1458 journal->j_devname,
1459 (unsigned long long) bh->b_blocknr,
1460 transaction, transaction->t_tid,
1461 jh->b_transaction,
1462 jh->b_transaction ?
1463 jh->b_transaction->t_tid : 0,
1464 jh->b_next_transaction,
1465 jh->b_next_transaction ?
1466 jh->b_next_transaction->t_tid : 0,
1467 jh->b_jlist);
1468 WARN_ON(1);
1469 ret = -EINVAL;
1470 }
1471 /* And this case is illegal: we can't reuse another
1472 * transaction's data buffer, ever. */
1473 goto out_unlock_bh;
1474 }
1475
1476 /* That test should have eliminated the following case: */
1477 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1478
1479 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1480 spin_lock(&journal->j_list_lock);
1481 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1482 spin_unlock(&journal->j_list_lock);
1483 out_unlock_bh:
1484 jbd_unlock_bh_state(bh);
1485 out:
1486 JBUFFER_TRACE(jh, "exit");
1487 return ret;
1488 }
1489
1490 /**
1491 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1492 * @handle: transaction handle
1493 * @bh: bh to 'forget'
1494 *
1495 * We can only do the bforget if there are no commits pending against the
1496 * buffer. If the buffer is dirty in the current running transaction we
1497 * can safely unlink it.
1498 *
1499 * bh may not be a journalled buffer at all - it may be a non-JBD
1500 * buffer which came off the hashtable. Check for this.
1501 *
1502 * Decrements bh->b_count by one.
1503 *
1504 * Allow this call even if the handle has aborted --- it may be part of
1505 * the caller's cleanup after an abort.
1506 */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1507 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1508 {
1509 transaction_t *transaction = handle->h_transaction;
1510 journal_t *journal;
1511 struct journal_head *jh;
1512 int drop_reserve = 0;
1513 int err = 0;
1514 int was_modified = 0;
1515
1516 if (is_handle_aborted(handle))
1517 return -EROFS;
1518 journal = transaction->t_journal;
1519
1520 BUFFER_TRACE(bh, "entry");
1521
1522 jbd_lock_bh_state(bh);
1523
1524 if (!buffer_jbd(bh))
1525 goto not_jbd;
1526 jh = bh2jh(bh);
1527
1528 /* Critical error: attempting to delete a bitmap buffer, maybe?
1529 * Don't do any jbd operations, and return an error. */
1530 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1531 "inconsistent data on disk")) {
1532 err = -EIO;
1533 goto not_jbd;
1534 }
1535
1536 /* keep track of whether or not this transaction modified us */
1537 was_modified = jh->b_modified;
1538
1539 /*
1540 * The buffer's going from the transaction, we must drop
1541 * all references -bzzz
1542 */
1543 jh->b_modified = 0;
1544
1545 if (jh->b_transaction == transaction) {
1546 J_ASSERT_JH(jh, !jh->b_frozen_data);
1547
1548 /* If we are forgetting a buffer which is already part
1549 * of this transaction, then we can just drop it from
1550 * the transaction immediately. */
1551 clear_buffer_dirty(bh);
1552 clear_buffer_jbddirty(bh);
1553
1554 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1555
1556 /*
1557 * we only want to drop a reference if this transaction
1558 * modified the buffer
1559 */
1560 if (was_modified)
1561 drop_reserve = 1;
1562
1563 /*
1564 * We are no longer going to journal this buffer.
1565 * However, the commit of this transaction is still
1566 * important to the buffer: the delete that we are now
1567 * processing might obsolete an old log entry, so by
1568 * committing, we can satisfy the buffer's checkpoint.
1569 *
1570 * So, if we have a checkpoint on the buffer, we should
1571 * now refile the buffer on our BJ_Forget list so that
1572 * we know to remove the checkpoint after we commit.
1573 */
1574
1575 spin_lock(&journal->j_list_lock);
1576 if (jh->b_cp_transaction) {
1577 __jbd2_journal_temp_unlink_buffer(jh);
1578 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1579 } else {
1580 __jbd2_journal_unfile_buffer(jh);
1581 if (!buffer_jbd(bh)) {
1582 spin_unlock(&journal->j_list_lock);
1583 jbd_unlock_bh_state(bh);
1584 __bforget(bh);
1585 goto drop;
1586 }
1587 }
1588 spin_unlock(&journal->j_list_lock);
1589 } else if (jh->b_transaction) {
1590 J_ASSERT_JH(jh, (jh->b_transaction ==
1591 journal->j_committing_transaction));
1592 /* However, if the buffer is still owned by a prior
1593 * (committing) transaction, we can't drop it yet... */
1594 JBUFFER_TRACE(jh, "belongs to older transaction");
1595 /* ... but we CAN drop it from the new transaction through
1596 * marking the buffer as freed and set j_next_transaction to
1597 * the new transaction, so that not only the commit code
1598 * knows it should clear dirty bits when it is done with the
1599 * buffer, but also the buffer can be checkpointed only
1600 * after the new transaction commits. */
1601
1602 set_buffer_freed(bh);
1603
1604 if (!jh->b_next_transaction) {
1605 spin_lock(&journal->j_list_lock);
1606 jh->b_next_transaction = transaction;
1607 spin_unlock(&journal->j_list_lock);
1608 } else {
1609 J_ASSERT(jh->b_next_transaction == transaction);
1610
1611 /*
1612 * only drop a reference if this transaction modified
1613 * the buffer
1614 */
1615 if (was_modified)
1616 drop_reserve = 1;
1617 }
1618 }
1619
1620 not_jbd:
1621 jbd_unlock_bh_state(bh);
1622 __brelse(bh);
1623 drop:
1624 if (drop_reserve) {
1625 /* no need to reserve log space for this block -bzzz */
1626 handle->h_buffer_credits++;
1627 }
1628 return err;
1629 }
1630
1631 /**
1632 * int jbd2_journal_stop() - complete a transaction
1633 * @handle: transaction to complete.
1634 *
1635 * All done for a particular handle.
1636 *
1637 * There is not much action needed here. We just return any remaining
1638 * buffer credits to the transaction and remove the handle. The only
1639 * complication is that we need to start a commit operation if the
1640 * filesystem is marked for synchronous update.
1641 *
1642 * jbd2_journal_stop itself will not usually return an error, but it may
1643 * do so in unusual circumstances. In particular, expect it to
1644 * return -EIO if a jbd2_journal_abort has been executed since the
1645 * transaction began.
1646 */
jbd2_journal_stop(handle_t * handle)1647 int jbd2_journal_stop(handle_t *handle)
1648 {
1649 transaction_t *transaction = handle->h_transaction;
1650 journal_t *journal;
1651 int err = 0, wait_for_commit = 0;
1652 tid_t tid;
1653 pid_t pid;
1654
1655 if (!transaction) {
1656 /*
1657 * Handle is already detached from the transaction so
1658 * there is nothing to do other than decrease a refcount,
1659 * or free the handle if refcount drops to zero
1660 */
1661 if (--handle->h_ref > 0) {
1662 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1663 handle->h_ref);
1664 return err;
1665 } else {
1666 if (handle->h_rsv_handle)
1667 jbd2_free_handle(handle->h_rsv_handle);
1668 goto free_and_exit;
1669 }
1670 }
1671 journal = transaction->t_journal;
1672
1673 J_ASSERT(journal_current_handle() == handle);
1674
1675 if (is_handle_aborted(handle))
1676 err = -EIO;
1677 else
1678 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1679
1680 if (--handle->h_ref > 0) {
1681 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1682 handle->h_ref);
1683 return err;
1684 }
1685
1686 jbd_debug(4, "Handle %p going down\n", handle);
1687 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1688 transaction->t_tid,
1689 handle->h_type, handle->h_line_no,
1690 jiffies - handle->h_start_jiffies,
1691 handle->h_sync, handle->h_requested_credits,
1692 (handle->h_requested_credits -
1693 handle->h_buffer_credits));
1694
1695 /*
1696 * Implement synchronous transaction batching. If the handle
1697 * was synchronous, don't force a commit immediately. Let's
1698 * yield and let another thread piggyback onto this
1699 * transaction. Keep doing that while new threads continue to
1700 * arrive. It doesn't cost much - we're about to run a commit
1701 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1702 * operations by 30x or more...
1703 *
1704 * We try and optimize the sleep time against what the
1705 * underlying disk can do, instead of having a static sleep
1706 * time. This is useful for the case where our storage is so
1707 * fast that it is more optimal to go ahead and force a flush
1708 * and wait for the transaction to be committed than it is to
1709 * wait for an arbitrary amount of time for new writers to
1710 * join the transaction. We achieve this by measuring how
1711 * long it takes to commit a transaction, and compare it with
1712 * how long this transaction has been running, and if run time
1713 * < commit time then we sleep for the delta and commit. This
1714 * greatly helps super fast disks that would see slowdowns as
1715 * more threads started doing fsyncs.
1716 *
1717 * But don't do this if this process was the most recent one
1718 * to perform a synchronous write. We do this to detect the
1719 * case where a single process is doing a stream of sync
1720 * writes. No point in waiting for joiners in that case.
1721 *
1722 * Setting max_batch_time to 0 disables this completely.
1723 */
1724 pid = current->pid;
1725 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1726 journal->j_max_batch_time) {
1727 u64 commit_time, trans_time;
1728
1729 journal->j_last_sync_writer = pid;
1730
1731 read_lock(&journal->j_state_lock);
1732 commit_time = journal->j_average_commit_time;
1733 read_unlock(&journal->j_state_lock);
1734
1735 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1736 transaction->t_start_time));
1737
1738 commit_time = max_t(u64, commit_time,
1739 1000*journal->j_min_batch_time);
1740 commit_time = min_t(u64, commit_time,
1741 1000*journal->j_max_batch_time);
1742
1743 if (trans_time < commit_time) {
1744 ktime_t expires = ktime_add_ns(ktime_get(),
1745 commit_time);
1746 set_current_state(TASK_UNINTERRUPTIBLE);
1747 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1748 }
1749 }
1750
1751 if (handle->h_sync)
1752 transaction->t_synchronous_commit = 1;
1753 current->journal_info = NULL;
1754 atomic_sub(handle->h_buffer_credits,
1755 &transaction->t_outstanding_credits);
1756
1757 /*
1758 * If the handle is marked SYNC, we need to set another commit
1759 * going! We also want to force a commit if the current
1760 * transaction is occupying too much of the log, or if the
1761 * transaction is too old now.
1762 */
1763 if (handle->h_sync ||
1764 (atomic_read(&transaction->t_outstanding_credits) >
1765 journal->j_max_transaction_buffers) ||
1766 time_after_eq(jiffies, transaction->t_expires)) {
1767 /* Do this even for aborted journals: an abort still
1768 * completes the commit thread, it just doesn't write
1769 * anything to disk. */
1770
1771 jbd_debug(2, "transaction too old, requesting commit for "
1772 "handle %p\n", handle);
1773 /* This is non-blocking */
1774 jbd2_log_start_commit(journal, transaction->t_tid);
1775
1776 /*
1777 * Special case: JBD2_SYNC synchronous updates require us
1778 * to wait for the commit to complete.
1779 */
1780 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1781 wait_for_commit = 1;
1782 }
1783
1784 /*
1785 * Once we drop t_updates, if it goes to zero the transaction
1786 * could start committing on us and eventually disappear. So
1787 * once we do this, we must not dereference transaction
1788 * pointer again.
1789 */
1790 tid = transaction->t_tid;
1791 if (atomic_dec_and_test(&transaction->t_updates)) {
1792 wake_up(&journal->j_wait_updates);
1793 if (journal->j_barrier_count)
1794 wake_up(&journal->j_wait_transaction_locked);
1795 }
1796
1797 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1798
1799 if (wait_for_commit)
1800 err = jbd2_log_wait_commit(journal, tid);
1801
1802 if (handle->h_rsv_handle)
1803 jbd2_journal_free_reserved(handle->h_rsv_handle);
1804 free_and_exit:
1805 /*
1806 * Scope of the GFP_NOFS context is over here and so we can restore the
1807 * original alloc context.
1808 */
1809 memalloc_nofs_restore(handle->saved_alloc_context);
1810 jbd2_free_handle(handle);
1811 return err;
1812 }
1813
1814 /*
1815 *
1816 * List management code snippets: various functions for manipulating the
1817 * transaction buffer lists.
1818 *
1819 */
1820
1821 /*
1822 * Append a buffer to a transaction list, given the transaction's list head
1823 * pointer.
1824 *
1825 * j_list_lock is held.
1826 *
1827 * jbd_lock_bh_state(jh2bh(jh)) is held.
1828 */
1829
1830 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1831 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1832 {
1833 if (!*list) {
1834 jh->b_tnext = jh->b_tprev = jh;
1835 *list = jh;
1836 } else {
1837 /* Insert at the tail of the list to preserve order */
1838 struct journal_head *first = *list, *last = first->b_tprev;
1839 jh->b_tprev = last;
1840 jh->b_tnext = first;
1841 last->b_tnext = first->b_tprev = jh;
1842 }
1843 }
1844
1845 /*
1846 * Remove a buffer from a transaction list, given the transaction's list
1847 * head pointer.
1848 *
1849 * Called with j_list_lock held, and the journal may not be locked.
1850 *
1851 * jbd_lock_bh_state(jh2bh(jh)) is held.
1852 */
1853
1854 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1855 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1856 {
1857 if (*list == jh) {
1858 *list = jh->b_tnext;
1859 if (*list == jh)
1860 *list = NULL;
1861 }
1862 jh->b_tprev->b_tnext = jh->b_tnext;
1863 jh->b_tnext->b_tprev = jh->b_tprev;
1864 }
1865
1866 /*
1867 * Remove a buffer from the appropriate transaction list.
1868 *
1869 * Note that this function can *change* the value of
1870 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1871 * t_reserved_list. If the caller is holding onto a copy of one of these
1872 * pointers, it could go bad. Generally the caller needs to re-read the
1873 * pointer from the transaction_t.
1874 *
1875 * Called under j_list_lock.
1876 */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1877 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1878 {
1879 struct journal_head **list = NULL;
1880 transaction_t *transaction;
1881 struct buffer_head *bh = jh2bh(jh);
1882
1883 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1884 transaction = jh->b_transaction;
1885 if (transaction)
1886 assert_spin_locked(&transaction->t_journal->j_list_lock);
1887
1888 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1889 if (jh->b_jlist != BJ_None)
1890 J_ASSERT_JH(jh, transaction != NULL);
1891
1892 switch (jh->b_jlist) {
1893 case BJ_None:
1894 return;
1895 case BJ_Metadata:
1896 transaction->t_nr_buffers--;
1897 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1898 list = &transaction->t_buffers;
1899 break;
1900 case BJ_Forget:
1901 list = &transaction->t_forget;
1902 break;
1903 case BJ_Shadow:
1904 list = &transaction->t_shadow_list;
1905 break;
1906 case BJ_Reserved:
1907 list = &transaction->t_reserved_list;
1908 break;
1909 }
1910
1911 __blist_del_buffer(list, jh);
1912 jh->b_jlist = BJ_None;
1913 if (transaction && is_journal_aborted(transaction->t_journal))
1914 clear_buffer_jbddirty(bh);
1915 else if (test_clear_buffer_jbddirty(bh))
1916 mark_buffer_dirty(bh); /* Expose it to the VM */
1917 }
1918
1919 /*
1920 * Remove buffer from all transactions.
1921 *
1922 * Called with bh_state lock and j_list_lock
1923 *
1924 * jh and bh may be already freed when this function returns.
1925 */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1926 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1927 {
1928 J_ASSERT_JH(jh, jh->b_transaction != NULL);
1929 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1930
1931 __jbd2_journal_temp_unlink_buffer(jh);
1932 jh->b_transaction = NULL;
1933 jbd2_journal_put_journal_head(jh);
1934 }
1935
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1936 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1937 {
1938 struct buffer_head *bh = jh2bh(jh);
1939
1940 /* Get reference so that buffer cannot be freed before we unlock it */
1941 get_bh(bh);
1942 jbd_lock_bh_state(bh);
1943 spin_lock(&journal->j_list_lock);
1944 __jbd2_journal_unfile_buffer(jh);
1945 spin_unlock(&journal->j_list_lock);
1946 jbd_unlock_bh_state(bh);
1947 __brelse(bh);
1948 }
1949
1950 /*
1951 * Called from jbd2_journal_try_to_free_buffers().
1952 *
1953 * Called under jbd_lock_bh_state(bh)
1954 */
1955 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1956 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1957 {
1958 struct journal_head *jh;
1959
1960 jh = bh2jh(bh);
1961
1962 if (buffer_locked(bh) || buffer_dirty(bh))
1963 goto out;
1964
1965 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1966 goto out;
1967
1968 spin_lock(&journal->j_list_lock);
1969 if (jh->b_cp_transaction != NULL) {
1970 /* written-back checkpointed metadata buffer */
1971 JBUFFER_TRACE(jh, "remove from checkpoint list");
1972 __jbd2_journal_remove_checkpoint(jh);
1973 }
1974 spin_unlock(&journal->j_list_lock);
1975 out:
1976 return;
1977 }
1978
1979 /**
1980 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1981 * @journal: journal for operation
1982 * @page: to try and free
1983 * @gfp_mask: we use the mask to detect how hard should we try to release
1984 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1985 * code to release the buffers.
1986 *
1987 *
1988 * For all the buffers on this page,
1989 * if they are fully written out ordered data, move them onto BUF_CLEAN
1990 * so try_to_free_buffers() can reap them.
1991 *
1992 * This function returns non-zero if we wish try_to_free_buffers()
1993 * to be called. We do this if the page is releasable by try_to_free_buffers().
1994 * We also do it if the page has locked or dirty buffers and the caller wants
1995 * us to perform sync or async writeout.
1996 *
1997 * This complicates JBD locking somewhat. We aren't protected by the
1998 * BKL here. We wish to remove the buffer from its committing or
1999 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2000 *
2001 * This may *change* the value of transaction_t->t_datalist, so anyone
2002 * who looks at t_datalist needs to lock against this function.
2003 *
2004 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2005 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
2006 * will come out of the lock with the buffer dirty, which makes it
2007 * ineligible for release here.
2008 *
2009 * Who else is affected by this? hmm... Really the only contender
2010 * is do_get_write_access() - it could be looking at the buffer while
2011 * journal_try_to_free_buffer() is changing its state. But that
2012 * cannot happen because we never reallocate freed data as metadata
2013 * while the data is part of a transaction. Yes?
2014 *
2015 * Return 0 on failure, 1 on success
2016 */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)2017 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2018 struct page *page, gfp_t gfp_mask)
2019 {
2020 struct buffer_head *head;
2021 struct buffer_head *bh;
2022 bool has_write_io_error = false;
2023 int ret = 0;
2024
2025 J_ASSERT(PageLocked(page));
2026
2027 head = page_buffers(page);
2028 bh = head;
2029 do {
2030 struct journal_head *jh;
2031
2032 /*
2033 * We take our own ref against the journal_head here to avoid
2034 * having to add tons of locking around each instance of
2035 * jbd2_journal_put_journal_head().
2036 */
2037 jh = jbd2_journal_grab_journal_head(bh);
2038 if (!jh)
2039 continue;
2040
2041 jbd_lock_bh_state(bh);
2042 __journal_try_to_free_buffer(journal, bh);
2043 jbd2_journal_put_journal_head(jh);
2044 jbd_unlock_bh_state(bh);
2045 if (buffer_jbd(bh))
2046 goto busy;
2047
2048 /*
2049 * If we free a metadata buffer which has been failed to
2050 * write out, the jbd2 checkpoint procedure will not detect
2051 * this failure and may lead to filesystem inconsistency
2052 * after cleanup journal tail.
2053 */
2054 if (buffer_write_io_error(bh)) {
2055 pr_err("JBD2: Error while async write back metadata bh %llu.",
2056 (unsigned long long)bh->b_blocknr);
2057 has_write_io_error = true;
2058 }
2059 } while ((bh = bh->b_this_page) != head);
2060
2061 ret = try_to_free_buffers(page);
2062
2063 busy:
2064 if (has_write_io_error)
2065 jbd2_journal_abort(journal, -EIO);
2066
2067 return ret;
2068 }
2069
2070 /*
2071 * This buffer is no longer needed. If it is on an older transaction's
2072 * checkpoint list we need to record it on this transaction's forget list
2073 * to pin this buffer (and hence its checkpointing transaction) down until
2074 * this transaction commits. If the buffer isn't on a checkpoint list, we
2075 * release it.
2076 * Returns non-zero if JBD no longer has an interest in the buffer.
2077 *
2078 * Called under j_list_lock.
2079 *
2080 * Called under jbd_lock_bh_state(bh).
2081 */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2082 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2083 {
2084 int may_free = 1;
2085 struct buffer_head *bh = jh2bh(jh);
2086
2087 if (jh->b_cp_transaction) {
2088 JBUFFER_TRACE(jh, "on running+cp transaction");
2089 __jbd2_journal_temp_unlink_buffer(jh);
2090 /*
2091 * We don't want to write the buffer anymore, clear the
2092 * bit so that we don't confuse checks in
2093 * __journal_file_buffer
2094 */
2095 clear_buffer_dirty(bh);
2096 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2097 may_free = 0;
2098 } else {
2099 JBUFFER_TRACE(jh, "on running transaction");
2100 __jbd2_journal_unfile_buffer(jh);
2101 }
2102 return may_free;
2103 }
2104
2105 /*
2106 * jbd2_journal_invalidatepage
2107 *
2108 * This code is tricky. It has a number of cases to deal with.
2109 *
2110 * There are two invariants which this code relies on:
2111 *
2112 * i_size must be updated on disk before we start calling invalidatepage on the
2113 * data.
2114 *
2115 * This is done in ext3 by defining an ext3_setattr method which
2116 * updates i_size before truncate gets going. By maintaining this
2117 * invariant, we can be sure that it is safe to throw away any buffers
2118 * attached to the current transaction: once the transaction commits,
2119 * we know that the data will not be needed.
2120 *
2121 * Note however that we can *not* throw away data belonging to the
2122 * previous, committing transaction!
2123 *
2124 * Any disk blocks which *are* part of the previous, committing
2125 * transaction (and which therefore cannot be discarded immediately) are
2126 * not going to be reused in the new running transaction
2127 *
2128 * The bitmap committed_data images guarantee this: any block which is
2129 * allocated in one transaction and removed in the next will be marked
2130 * as in-use in the committed_data bitmap, so cannot be reused until
2131 * the next transaction to delete the block commits. This means that
2132 * leaving committing buffers dirty is quite safe: the disk blocks
2133 * cannot be reallocated to a different file and so buffer aliasing is
2134 * not possible.
2135 *
2136 *
2137 * The above applies mainly to ordered data mode. In writeback mode we
2138 * don't make guarantees about the order in which data hits disk --- in
2139 * particular we don't guarantee that new dirty data is flushed before
2140 * transaction commit --- so it is always safe just to discard data
2141 * immediately in that mode. --sct
2142 */
2143
2144 /*
2145 * The journal_unmap_buffer helper function returns zero if the buffer
2146 * concerned remains pinned as an anonymous buffer belonging to an older
2147 * transaction.
2148 *
2149 * We're outside-transaction here. Either or both of j_running_transaction
2150 * and j_committing_transaction may be NULL.
2151 */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2152 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2153 int partial_page)
2154 {
2155 transaction_t *transaction;
2156 struct journal_head *jh;
2157 int may_free = 1;
2158
2159 BUFFER_TRACE(bh, "entry");
2160
2161 /*
2162 * It is safe to proceed here without the j_list_lock because the
2163 * buffers cannot be stolen by try_to_free_buffers as long as we are
2164 * holding the page lock. --sct
2165 */
2166
2167 if (!buffer_jbd(bh))
2168 goto zap_buffer_unlocked;
2169
2170 /* OK, we have data buffer in journaled mode */
2171 write_lock(&journal->j_state_lock);
2172 jbd_lock_bh_state(bh);
2173 spin_lock(&journal->j_list_lock);
2174
2175 jh = jbd2_journal_grab_journal_head(bh);
2176 if (!jh)
2177 goto zap_buffer_no_jh;
2178
2179 /*
2180 * We cannot remove the buffer from checkpoint lists until the
2181 * transaction adding inode to orphan list (let's call it T)
2182 * is committed. Otherwise if the transaction changing the
2183 * buffer would be cleaned from the journal before T is
2184 * committed, a crash will cause that the correct contents of
2185 * the buffer will be lost. On the other hand we have to
2186 * clear the buffer dirty bit at latest at the moment when the
2187 * transaction marking the buffer as freed in the filesystem
2188 * structures is committed because from that moment on the
2189 * block can be reallocated and used by a different page.
2190 * Since the block hasn't been freed yet but the inode has
2191 * already been added to orphan list, it is safe for us to add
2192 * the buffer to BJ_Forget list of the newest transaction.
2193 *
2194 * Also we have to clear buffer_mapped flag of a truncated buffer
2195 * because the buffer_head may be attached to the page straddling
2196 * i_size (can happen only when blocksize < pagesize) and thus the
2197 * buffer_head can be reused when the file is extended again. So we end
2198 * up keeping around invalidated buffers attached to transactions'
2199 * BJ_Forget list just to stop checkpointing code from cleaning up
2200 * the transaction this buffer was modified in.
2201 */
2202 transaction = jh->b_transaction;
2203 if (transaction == NULL) {
2204 /* First case: not on any transaction. If it
2205 * has no checkpoint link, then we can zap it:
2206 * it's a writeback-mode buffer so we don't care
2207 * if it hits disk safely. */
2208 if (!jh->b_cp_transaction) {
2209 JBUFFER_TRACE(jh, "not on any transaction: zap");
2210 goto zap_buffer;
2211 }
2212
2213 if (!buffer_dirty(bh)) {
2214 /* bdflush has written it. We can drop it now */
2215 __jbd2_journal_remove_checkpoint(jh);
2216 goto zap_buffer;
2217 }
2218
2219 /* OK, it must be in the journal but still not
2220 * written fully to disk: it's metadata or
2221 * journaled data... */
2222
2223 if (journal->j_running_transaction) {
2224 /* ... and once the current transaction has
2225 * committed, the buffer won't be needed any
2226 * longer. */
2227 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2228 may_free = __dispose_buffer(jh,
2229 journal->j_running_transaction);
2230 goto zap_buffer;
2231 } else {
2232 /* There is no currently-running transaction. So the
2233 * orphan record which we wrote for this file must have
2234 * passed into commit. We must attach this buffer to
2235 * the committing transaction, if it exists. */
2236 if (journal->j_committing_transaction) {
2237 JBUFFER_TRACE(jh, "give to committing trans");
2238 may_free = __dispose_buffer(jh,
2239 journal->j_committing_transaction);
2240 goto zap_buffer;
2241 } else {
2242 /* The orphan record's transaction has
2243 * committed. We can cleanse this buffer */
2244 clear_buffer_jbddirty(bh);
2245 __jbd2_journal_remove_checkpoint(jh);
2246 goto zap_buffer;
2247 }
2248 }
2249 } else if (transaction == journal->j_committing_transaction) {
2250 JBUFFER_TRACE(jh, "on committing transaction");
2251 /*
2252 * The buffer is committing, we simply cannot touch
2253 * it. If the page is straddling i_size we have to wait
2254 * for commit and try again.
2255 */
2256 if (partial_page) {
2257 jbd2_journal_put_journal_head(jh);
2258 spin_unlock(&journal->j_list_lock);
2259 jbd_unlock_bh_state(bh);
2260 write_unlock(&journal->j_state_lock);
2261 return -EBUSY;
2262 }
2263 /*
2264 * OK, buffer won't be reachable after truncate. We just clear
2265 * b_modified to not confuse transaction credit accounting, and
2266 * set j_next_transaction to the running transaction (if there
2267 * is one) and mark buffer as freed so that commit code knows
2268 * it should clear dirty bits when it is done with the buffer.
2269 */
2270 set_buffer_freed(bh);
2271 if (journal->j_running_transaction && buffer_jbddirty(bh))
2272 jh->b_next_transaction = journal->j_running_transaction;
2273 jh->b_modified = 0;
2274 jbd2_journal_put_journal_head(jh);
2275 spin_unlock(&journal->j_list_lock);
2276 jbd_unlock_bh_state(bh);
2277 write_unlock(&journal->j_state_lock);
2278 return 0;
2279 } else {
2280 /* Good, the buffer belongs to the running transaction.
2281 * We are writing our own transaction's data, not any
2282 * previous one's, so it is safe to throw it away
2283 * (remember that we expect the filesystem to have set
2284 * i_size already for this truncate so recovery will not
2285 * expose the disk blocks we are discarding here.) */
2286 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2287 JBUFFER_TRACE(jh, "on running transaction");
2288 may_free = __dispose_buffer(jh, transaction);
2289 }
2290
2291 zap_buffer:
2292 /*
2293 * This is tricky. Although the buffer is truncated, it may be reused
2294 * if blocksize < pagesize and it is attached to the page straddling
2295 * EOF. Since the buffer might have been added to BJ_Forget list of the
2296 * running transaction, journal_get_write_access() won't clear
2297 * b_modified and credit accounting gets confused. So clear b_modified
2298 * here.
2299 */
2300 jh->b_modified = 0;
2301 jbd2_journal_put_journal_head(jh);
2302 zap_buffer_no_jh:
2303 spin_unlock(&journal->j_list_lock);
2304 jbd_unlock_bh_state(bh);
2305 write_unlock(&journal->j_state_lock);
2306 zap_buffer_unlocked:
2307 clear_buffer_dirty(bh);
2308 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2309 clear_buffer_mapped(bh);
2310 clear_buffer_req(bh);
2311 clear_buffer_new(bh);
2312 clear_buffer_delay(bh);
2313 clear_buffer_unwritten(bh);
2314 bh->b_bdev = NULL;
2315 return may_free;
2316 }
2317
2318 /**
2319 * void jbd2_journal_invalidatepage()
2320 * @journal: journal to use for flush...
2321 * @page: page to flush
2322 * @offset: start of the range to invalidate
2323 * @length: length of the range to invalidate
2324 *
2325 * Reap page buffers containing data after in the specified range in page.
2326 * Can return -EBUSY if buffers are part of the committing transaction and
2327 * the page is straddling i_size. Caller then has to wait for current commit
2328 * and try again.
2329 */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2330 int jbd2_journal_invalidatepage(journal_t *journal,
2331 struct page *page,
2332 unsigned int offset,
2333 unsigned int length)
2334 {
2335 struct buffer_head *head, *bh, *next;
2336 unsigned int stop = offset + length;
2337 unsigned int curr_off = 0;
2338 int partial_page = (offset || length < PAGE_SIZE);
2339 int may_free = 1;
2340 int ret = 0;
2341
2342 if (!PageLocked(page))
2343 BUG();
2344 if (!page_has_buffers(page))
2345 return 0;
2346
2347 BUG_ON(stop > PAGE_SIZE || stop < length);
2348
2349 /* We will potentially be playing with lists other than just the
2350 * data lists (especially for journaled data mode), so be
2351 * cautious in our locking. */
2352
2353 head = bh = page_buffers(page);
2354 do {
2355 unsigned int next_off = curr_off + bh->b_size;
2356 next = bh->b_this_page;
2357
2358 if (next_off > stop)
2359 return 0;
2360
2361 if (offset <= curr_off) {
2362 /* This block is wholly outside the truncation point */
2363 lock_buffer(bh);
2364 ret = journal_unmap_buffer(journal, bh, partial_page);
2365 unlock_buffer(bh);
2366 if (ret < 0)
2367 return ret;
2368 may_free &= ret;
2369 }
2370 curr_off = next_off;
2371 bh = next;
2372
2373 } while (bh != head);
2374
2375 if (!partial_page) {
2376 if (may_free && try_to_free_buffers(page))
2377 J_ASSERT(!page_has_buffers(page));
2378 }
2379 return 0;
2380 }
2381
2382 /*
2383 * File a buffer on the given transaction list.
2384 */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2385 void __jbd2_journal_file_buffer(struct journal_head *jh,
2386 transaction_t *transaction, int jlist)
2387 {
2388 struct journal_head **list = NULL;
2389 int was_dirty = 0;
2390 struct buffer_head *bh = jh2bh(jh);
2391
2392 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2393 assert_spin_locked(&transaction->t_journal->j_list_lock);
2394
2395 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2396 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2397 jh->b_transaction == NULL);
2398
2399 if (jh->b_transaction && jh->b_jlist == jlist)
2400 return;
2401
2402 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2403 jlist == BJ_Shadow || jlist == BJ_Forget) {
2404 /*
2405 * For metadata buffers, we track dirty bit in buffer_jbddirty
2406 * instead of buffer_dirty. We should not see a dirty bit set
2407 * here because we clear it in do_get_write_access but e.g.
2408 * tune2fs can modify the sb and set the dirty bit at any time
2409 * so we try to gracefully handle that.
2410 */
2411 if (buffer_dirty(bh))
2412 warn_dirty_buffer(bh);
2413 if (test_clear_buffer_dirty(bh) ||
2414 test_clear_buffer_jbddirty(bh))
2415 was_dirty = 1;
2416 }
2417
2418 if (jh->b_transaction)
2419 __jbd2_journal_temp_unlink_buffer(jh);
2420 else
2421 jbd2_journal_grab_journal_head(bh);
2422 jh->b_transaction = transaction;
2423
2424 switch (jlist) {
2425 case BJ_None:
2426 J_ASSERT_JH(jh, !jh->b_committed_data);
2427 J_ASSERT_JH(jh, !jh->b_frozen_data);
2428 return;
2429 case BJ_Metadata:
2430 transaction->t_nr_buffers++;
2431 list = &transaction->t_buffers;
2432 break;
2433 case BJ_Forget:
2434 list = &transaction->t_forget;
2435 break;
2436 case BJ_Shadow:
2437 list = &transaction->t_shadow_list;
2438 break;
2439 case BJ_Reserved:
2440 list = &transaction->t_reserved_list;
2441 break;
2442 }
2443
2444 __blist_add_buffer(list, jh);
2445 jh->b_jlist = jlist;
2446
2447 if (was_dirty)
2448 set_buffer_jbddirty(bh);
2449 }
2450
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2451 void jbd2_journal_file_buffer(struct journal_head *jh,
2452 transaction_t *transaction, int jlist)
2453 {
2454 jbd_lock_bh_state(jh2bh(jh));
2455 spin_lock(&transaction->t_journal->j_list_lock);
2456 __jbd2_journal_file_buffer(jh, transaction, jlist);
2457 spin_unlock(&transaction->t_journal->j_list_lock);
2458 jbd_unlock_bh_state(jh2bh(jh));
2459 }
2460
2461 /*
2462 * Remove a buffer from its current buffer list in preparation for
2463 * dropping it from its current transaction entirely. If the buffer has
2464 * already started to be used by a subsequent transaction, refile the
2465 * buffer on that transaction's metadata list.
2466 *
2467 * Called under j_list_lock
2468 * Called under jbd_lock_bh_state(jh2bh(jh))
2469 *
2470 * jh and bh may be already free when this function returns
2471 */
__jbd2_journal_refile_buffer(struct journal_head * jh)2472 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2473 {
2474 int was_dirty, jlist;
2475 struct buffer_head *bh = jh2bh(jh);
2476
2477 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2478 if (jh->b_transaction)
2479 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2480
2481 /* If the buffer is now unused, just drop it. */
2482 if (jh->b_next_transaction == NULL) {
2483 __jbd2_journal_unfile_buffer(jh);
2484 return;
2485 }
2486
2487 /*
2488 * It has been modified by a later transaction: add it to the new
2489 * transaction's metadata list.
2490 */
2491
2492 was_dirty = test_clear_buffer_jbddirty(bh);
2493 __jbd2_journal_temp_unlink_buffer(jh);
2494
2495 /*
2496 * b_transaction must be set, otherwise the new b_transaction won't
2497 * be holding jh reference
2498 */
2499 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2500
2501 /*
2502 * We set b_transaction here because b_next_transaction will inherit
2503 * our jh reference and thus __jbd2_journal_file_buffer() must not
2504 * take a new one.
2505 */
2506 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2507 WRITE_ONCE(jh->b_next_transaction, NULL);
2508 if (buffer_freed(bh))
2509 jlist = BJ_Forget;
2510 else if (jh->b_modified)
2511 jlist = BJ_Metadata;
2512 else
2513 jlist = BJ_Reserved;
2514 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2515 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2516
2517 if (was_dirty)
2518 set_buffer_jbddirty(bh);
2519 }
2520
2521 /*
2522 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2523 * bh reference so that we can safely unlock bh.
2524 *
2525 * The jh and bh may be freed by this call.
2526 */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2527 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2528 {
2529 struct buffer_head *bh = jh2bh(jh);
2530
2531 /* Get reference so that buffer cannot be freed before we unlock it */
2532 get_bh(bh);
2533 jbd_lock_bh_state(bh);
2534 spin_lock(&journal->j_list_lock);
2535 __jbd2_journal_refile_buffer(jh);
2536 jbd_unlock_bh_state(bh);
2537 spin_unlock(&journal->j_list_lock);
2538 __brelse(bh);
2539 }
2540
2541 /*
2542 * File inode in the inode list of the handle's transaction
2543 */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2544 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2545 unsigned long flags, loff_t start_byte, loff_t end_byte)
2546 {
2547 transaction_t *transaction = handle->h_transaction;
2548 journal_t *journal;
2549
2550 if (is_handle_aborted(handle))
2551 return -EROFS;
2552 journal = transaction->t_journal;
2553
2554 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2555 transaction->t_tid);
2556
2557 spin_lock(&journal->j_list_lock);
2558 jinode->i_flags |= flags;
2559
2560 if (jinode->i_dirty_end) {
2561 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2562 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2563 } else {
2564 jinode->i_dirty_start = start_byte;
2565 jinode->i_dirty_end = end_byte;
2566 }
2567
2568 /* Is inode already attached where we need it? */
2569 if (jinode->i_transaction == transaction ||
2570 jinode->i_next_transaction == transaction)
2571 goto done;
2572
2573 /*
2574 * We only ever set this variable to 1 so the test is safe. Since
2575 * t_need_data_flush is likely to be set, we do the test to save some
2576 * cacheline bouncing
2577 */
2578 if (!transaction->t_need_data_flush)
2579 transaction->t_need_data_flush = 1;
2580 /* On some different transaction's list - should be
2581 * the committing one */
2582 if (jinode->i_transaction) {
2583 J_ASSERT(jinode->i_next_transaction == NULL);
2584 J_ASSERT(jinode->i_transaction ==
2585 journal->j_committing_transaction);
2586 jinode->i_next_transaction = transaction;
2587 goto done;
2588 }
2589 /* Not on any transaction list... */
2590 J_ASSERT(!jinode->i_next_transaction);
2591 jinode->i_transaction = transaction;
2592 list_add(&jinode->i_list, &transaction->t_inode_list);
2593 done:
2594 spin_unlock(&journal->j_list_lock);
2595
2596 return 0;
2597 }
2598
jbd2_journal_inode_add_write(handle_t * handle,struct jbd2_inode * jinode)2599 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2600 {
2601 return jbd2_journal_file_inode(handle, jinode,
2602 JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2603 }
2604
jbd2_journal_inode_add_wait(handle_t * handle,struct jbd2_inode * jinode)2605 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2606 {
2607 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2608 LLONG_MAX);
2609 }
2610
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2611 int jbd2_journal_inode_ranged_write(handle_t *handle,
2612 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2613 {
2614 return jbd2_journal_file_inode(handle, jinode,
2615 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2616 start_byte + length - 1);
2617 }
2618
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2619 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2620 loff_t start_byte, loff_t length)
2621 {
2622 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2623 start_byte, start_byte + length - 1);
2624 }
2625
2626 /*
2627 * File truncate and transaction commit interact with each other in a
2628 * non-trivial way. If a transaction writing data block A is
2629 * committing, we cannot discard the data by truncate until we have
2630 * written them. Otherwise if we crashed after the transaction with
2631 * write has committed but before the transaction with truncate has
2632 * committed, we could see stale data in block A. This function is a
2633 * helper to solve this problem. It starts writeout of the truncated
2634 * part in case it is in the committing transaction.
2635 *
2636 * Filesystem code must call this function when inode is journaled in
2637 * ordered mode before truncation happens and after the inode has been
2638 * placed on orphan list with the new inode size. The second condition
2639 * avoids the race that someone writes new data and we start
2640 * committing the transaction after this function has been called but
2641 * before a transaction for truncate is started (and furthermore it
2642 * allows us to optimize the case where the addition to orphan list
2643 * happens in the same transaction as write --- we don't have to write
2644 * any data in such case).
2645 */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2646 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2647 struct jbd2_inode *jinode,
2648 loff_t new_size)
2649 {
2650 transaction_t *inode_trans, *commit_trans;
2651 int ret = 0;
2652
2653 /* This is a quick check to avoid locking if not necessary */
2654 if (!jinode->i_transaction)
2655 goto out;
2656 /* Locks are here just to force reading of recent values, it is
2657 * enough that the transaction was not committing before we started
2658 * a transaction adding the inode to orphan list */
2659 read_lock(&journal->j_state_lock);
2660 commit_trans = journal->j_committing_transaction;
2661 read_unlock(&journal->j_state_lock);
2662 spin_lock(&journal->j_list_lock);
2663 inode_trans = jinode->i_transaction;
2664 spin_unlock(&journal->j_list_lock);
2665 if (inode_trans == commit_trans) {
2666 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2667 new_size, LLONG_MAX);
2668 if (ret)
2669 jbd2_journal_abort(journal, ret);
2670 }
2671 out:
2672 return ret;
2673 }
2674