1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply allocate and initialise a new transaction.  Create it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits,
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_handle_count, 0);
93 	INIT_LIST_HEAD(&transaction->t_inode_list);
94 	INIT_LIST_HEAD(&transaction->t_private_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 
106 	return transaction;
107 }
108 
109 /*
110  * Handle management.
111  *
112  * A handle_t is an object which represents a single atomic update to a
113  * filesystem, and which tracks all of the modifications which form part
114  * of that one update.
115  */
116 
117 /*
118  * Update transaction's maximum wait time, if debugging is enabled.
119  *
120  * In order for t_max_wait to be reliable, it must be protected by a
121  * lock.  But doing so will mean that start_this_handle() can not be
122  * run in parallel on SMP systems, which limits our scalability.  So
123  * unless debugging is enabled, we no longer update t_max_wait, which
124  * means that maximum wait time reported by the jbd2_run_stats
125  * tracepoint will always be zero.
126  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)127 static inline void update_t_max_wait(transaction_t *transaction,
128 				     unsigned long ts)
129 {
130 #ifdef CONFIG_JBD2_DEBUG
131 	if (jbd2_journal_enable_debug &&
132 	    time_after(transaction->t_start, ts)) {
133 		ts = jbd2_time_diff(ts, transaction->t_start);
134 		spin_lock(&transaction->t_handle_lock);
135 		if (ts > transaction->t_max_wait)
136 			transaction->t_max_wait = ts;
137 		spin_unlock(&transaction->t_handle_lock);
138 	}
139 #endif
140 }
141 
142 /*
143  * Wait until running transaction passes T_LOCKED state. Also starts the commit
144  * if needed. The function expects running transaction to exist and releases
145  * j_state_lock.
146  */
wait_transaction_locked(journal_t * journal)147 static void wait_transaction_locked(journal_t *journal)
148 	__releases(journal->j_state_lock)
149 {
150 	DEFINE_WAIT(wait);
151 	int need_to_start;
152 	tid_t tid = journal->j_running_transaction->t_tid;
153 
154 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
155 			TASK_UNINTERRUPTIBLE);
156 	need_to_start = !tid_geq(journal->j_commit_request, tid);
157 	read_unlock(&journal->j_state_lock);
158 	if (need_to_start)
159 		jbd2_log_start_commit(journal, tid);
160 	jbd2_might_wait_for_commit(journal);
161 	schedule();
162 	finish_wait(&journal->j_wait_transaction_locked, &wait);
163 }
164 
sub_reserved_credits(journal_t * journal,int blocks)165 static void sub_reserved_credits(journal_t *journal, int blocks)
166 {
167 	atomic_sub(blocks, &journal->j_reserved_credits);
168 	wake_up(&journal->j_wait_reserved);
169 }
170 
171 /*
172  * Wait until we can add credits for handle to the running transaction.  Called
173  * with j_state_lock held for reading. Returns 0 if handle joined the running
174  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
175  * caller must retry.
176  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)177 static int add_transaction_credits(journal_t *journal, int blocks,
178 				   int rsv_blocks)
179 {
180 	transaction_t *t = journal->j_running_transaction;
181 	int needed;
182 	int total = blocks + rsv_blocks;
183 
184 	/*
185 	 * If the current transaction is locked down for commit, wait
186 	 * for the lock to be released.
187 	 */
188 	if (t->t_state == T_LOCKED) {
189 		wait_transaction_locked(journal);
190 		return 1;
191 	}
192 
193 	/*
194 	 * If there is not enough space left in the log to write all
195 	 * potential buffers requested by this operation, we need to
196 	 * stall pending a log checkpoint to free some more log space.
197 	 */
198 	needed = atomic_add_return(total, &t->t_outstanding_credits);
199 	if (needed > journal->j_max_transaction_buffers) {
200 		/*
201 		 * If the current transaction is already too large,
202 		 * then start to commit it: we can then go back and
203 		 * attach this handle to a new transaction.
204 		 */
205 		atomic_sub(total, &t->t_outstanding_credits);
206 
207 		/*
208 		 * Is the number of reserved credits in the current transaction too
209 		 * big to fit this handle? Wait until reserved credits are freed.
210 		 */
211 		if (atomic_read(&journal->j_reserved_credits) + total >
212 		    journal->j_max_transaction_buffers) {
213 			read_unlock(&journal->j_state_lock);
214 			jbd2_might_wait_for_commit(journal);
215 			wait_event(journal->j_wait_reserved,
216 				   atomic_read(&journal->j_reserved_credits) + total <=
217 				   journal->j_max_transaction_buffers);
218 			return 1;
219 		}
220 
221 		wait_transaction_locked(journal);
222 		return 1;
223 	}
224 
225 	/*
226 	 * The commit code assumes that it can get enough log space
227 	 * without forcing a checkpoint.  This is *critical* for
228 	 * correctness: a checkpoint of a buffer which is also
229 	 * associated with a committing transaction creates a deadlock,
230 	 * so commit simply cannot force through checkpoints.
231 	 *
232 	 * We must therefore ensure the necessary space in the journal
233 	 * *before* starting to dirty potentially checkpointed buffers
234 	 * in the new transaction.
235 	 */
236 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 		atomic_sub(total, &t->t_outstanding_credits);
238 		read_unlock(&journal->j_state_lock);
239 		jbd2_might_wait_for_commit(journal);
240 		write_lock(&journal->j_state_lock);
241 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
242 			__jbd2_log_wait_for_space(journal);
243 		write_unlock(&journal->j_state_lock);
244 		return 1;
245 	}
246 
247 	/* No reservation? We are done... */
248 	if (!rsv_blocks)
249 		return 0;
250 
251 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
252 	/* We allow at most half of a transaction to be reserved */
253 	if (needed > journal->j_max_transaction_buffers / 2) {
254 		sub_reserved_credits(journal, rsv_blocks);
255 		atomic_sub(total, &t->t_outstanding_credits);
256 		read_unlock(&journal->j_state_lock);
257 		jbd2_might_wait_for_commit(journal);
258 		wait_event(journal->j_wait_reserved,
259 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 			 <= journal->j_max_transaction_buffers / 2);
261 		return 1;
262 	}
263 	return 0;
264 }
265 
266 /*
267  * start_this_handle: Given a handle, deal with any locking or stalling
268  * needed to make sure that there is enough journal space for the handle
269  * to begin.  Attach the handle to a transaction and set up the
270  * transaction's buffer credits.
271  */
272 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)273 static int start_this_handle(journal_t *journal, handle_t *handle,
274 			     gfp_t gfp_mask)
275 {
276 	transaction_t	*transaction, *new_transaction = NULL;
277 	int		blocks = handle->h_buffer_credits;
278 	int		rsv_blocks = 0;
279 	unsigned long ts = jiffies;
280 
281 	if (handle->h_rsv_handle)
282 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283 
284 	/*
285 	 * Limit the number of reserved credits to 1/2 of maximum transaction
286 	 * size and limit the number of total credits to not exceed maximum
287 	 * transaction size per operation.
288 	 */
289 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 		printk(KERN_ERR "JBD2: %s wants too many credits "
292 		       "credits:%d rsv_credits:%d max:%d\n",
293 		       current->comm, blocks, rsv_blocks,
294 		       journal->j_max_transaction_buffers);
295 		WARN_ON(1);
296 		return -ENOSPC;
297 	}
298 
299 alloc_transaction:
300 	if (!journal->j_running_transaction) {
301 		/*
302 		 * If __GFP_FS is not present, then we may be being called from
303 		 * inside the fs writeback layer, so we MUST NOT fail.
304 		 */
305 		if ((gfp_mask & __GFP_FS) == 0)
306 			gfp_mask |= __GFP_NOFAIL;
307 		new_transaction = kmem_cache_zalloc(transaction_cache,
308 						    gfp_mask);
309 		if (!new_transaction)
310 			return -ENOMEM;
311 	}
312 
313 	jbd_debug(3, "New handle %p going live.\n", handle);
314 
315 	/*
316 	 * We need to hold j_state_lock until t_updates has been incremented,
317 	 * for proper journal barrier handling
318 	 */
319 repeat:
320 	read_lock(&journal->j_state_lock);
321 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322 	if (is_journal_aborted(journal) ||
323 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324 		read_unlock(&journal->j_state_lock);
325 		jbd2_journal_free_transaction(new_transaction);
326 		return -EROFS;
327 	}
328 
329 	/*
330 	 * Wait on the journal's transaction barrier if necessary. Specifically
331 	 * we allow reserved handles to proceed because otherwise commit could
332 	 * deadlock on page writeback not being able to complete.
333 	 */
334 	if (!handle->h_reserved && journal->j_barrier_count) {
335 		read_unlock(&journal->j_state_lock);
336 		wait_event(journal->j_wait_transaction_locked,
337 				journal->j_barrier_count == 0);
338 		goto repeat;
339 	}
340 
341 	if (!journal->j_running_transaction) {
342 		read_unlock(&journal->j_state_lock);
343 		if (!new_transaction)
344 			goto alloc_transaction;
345 		write_lock(&journal->j_state_lock);
346 		if (!journal->j_running_transaction &&
347 		    (handle->h_reserved || !journal->j_barrier_count)) {
348 			jbd2_get_transaction(journal, new_transaction);
349 			new_transaction = NULL;
350 		}
351 		write_unlock(&journal->j_state_lock);
352 		goto repeat;
353 	}
354 
355 	transaction = journal->j_running_transaction;
356 
357 	if (!handle->h_reserved) {
358 		/* We may have dropped j_state_lock - restart in that case */
359 		if (add_transaction_credits(journal, blocks, rsv_blocks))
360 			goto repeat;
361 	} else {
362 		/*
363 		 * We have handle reserved so we are allowed to join T_LOCKED
364 		 * transaction and we don't have to check for transaction size
365 		 * and journal space.
366 		 */
367 		sub_reserved_credits(journal, blocks);
368 		handle->h_reserved = 0;
369 	}
370 
371 	/* OK, account for the buffers that this operation expects to
372 	 * use and add the handle to the running transaction.
373 	 */
374 	update_t_max_wait(transaction, ts);
375 	handle->h_transaction = transaction;
376 	handle->h_requested_credits = blocks;
377 	handle->h_start_jiffies = jiffies;
378 	atomic_inc(&transaction->t_updates);
379 	atomic_inc(&transaction->t_handle_count);
380 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 		  handle, blocks,
382 		  atomic_read(&transaction->t_outstanding_credits),
383 		  jbd2_log_space_left(journal));
384 	read_unlock(&journal->j_state_lock);
385 	current->journal_info = handle;
386 
387 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
388 	jbd2_journal_free_transaction(new_transaction);
389 	/*
390 	 * Ensure that no allocations done while the transaction is open are
391 	 * going to recurse back to the fs layer.
392 	 */
393 	handle->saved_alloc_context = memalloc_nofs_save();
394 	return 0;
395 }
396 
397 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)398 static handle_t *new_handle(int nblocks)
399 {
400 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
401 	if (!handle)
402 		return NULL;
403 	handle->h_buffer_credits = nblocks;
404 	handle->h_ref = 1;
405 
406 	return handle;
407 }
408 
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)409 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
410 			      gfp_t gfp_mask, unsigned int type,
411 			      unsigned int line_no)
412 {
413 	handle_t *handle = journal_current_handle();
414 	int err;
415 
416 	if (!journal)
417 		return ERR_PTR(-EROFS);
418 
419 	if (handle) {
420 		J_ASSERT(handle->h_transaction->t_journal == journal);
421 		handle->h_ref++;
422 		return handle;
423 	}
424 
425 	handle = new_handle(nblocks);
426 	if (!handle)
427 		return ERR_PTR(-ENOMEM);
428 	if (rsv_blocks) {
429 		handle_t *rsv_handle;
430 
431 		rsv_handle = new_handle(rsv_blocks);
432 		if (!rsv_handle) {
433 			jbd2_free_handle(handle);
434 			return ERR_PTR(-ENOMEM);
435 		}
436 		rsv_handle->h_reserved = 1;
437 		rsv_handle->h_journal = journal;
438 		handle->h_rsv_handle = rsv_handle;
439 	}
440 
441 	err = start_this_handle(journal, handle, gfp_mask);
442 	if (err < 0) {
443 		if (handle->h_rsv_handle)
444 			jbd2_free_handle(handle->h_rsv_handle);
445 		jbd2_free_handle(handle);
446 		return ERR_PTR(err);
447 	}
448 	handle->h_type = type;
449 	handle->h_line_no = line_no;
450 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
451 				handle->h_transaction->t_tid, type,
452 				line_no, nblocks);
453 
454 	return handle;
455 }
456 EXPORT_SYMBOL(jbd2__journal_start);
457 
458 
459 /**
460  * handle_t *jbd2_journal_start() - Obtain a new handle.
461  * @journal: Journal to start transaction on.
462  * @nblocks: number of block buffer we might modify
463  *
464  * We make sure that the transaction can guarantee at least nblocks of
465  * modified buffers in the log.  We block until the log can guarantee
466  * that much space. Additionally, if rsv_blocks > 0, we also create another
467  * handle with rsv_blocks reserved blocks in the journal. This handle is
468  * is stored in h_rsv_handle. It is not attached to any particular transaction
469  * and thus doesn't block transaction commit. If the caller uses this reserved
470  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
471  * on the parent handle will dispose the reserved one. Reserved handle has to
472  * be converted to a normal handle using jbd2_journal_start_reserved() before
473  * it can be used.
474  *
475  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
476  * on failure.
477  */
jbd2_journal_start(journal_t * journal,int nblocks)478 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
479 {
480 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
481 }
482 EXPORT_SYMBOL(jbd2_journal_start);
483 
jbd2_journal_free_reserved(handle_t * handle)484 void jbd2_journal_free_reserved(handle_t *handle)
485 {
486 	journal_t *journal = handle->h_journal;
487 
488 	WARN_ON(!handle->h_reserved);
489 	sub_reserved_credits(journal, handle->h_buffer_credits);
490 	jbd2_free_handle(handle);
491 }
492 EXPORT_SYMBOL(jbd2_journal_free_reserved);
493 
494 /**
495  * int jbd2_journal_start_reserved() - start reserved handle
496  * @handle: handle to start
497  * @type: for handle statistics
498  * @line_no: for handle statistics
499  *
500  * Start handle that has been previously reserved with jbd2_journal_reserve().
501  * This attaches @handle to the running transaction (or creates one if there's
502  * not transaction running). Unlike jbd2_journal_start() this function cannot
503  * block on journal commit, checkpointing, or similar stuff. It can block on
504  * memory allocation or frozen journal though.
505  *
506  * Return 0 on success, non-zero on error - handle is freed in that case.
507  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)508 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
509 				unsigned int line_no)
510 {
511 	journal_t *journal = handle->h_journal;
512 	int ret = -EIO;
513 
514 	if (WARN_ON(!handle->h_reserved)) {
515 		/* Someone passed in normal handle? Just stop it. */
516 		jbd2_journal_stop(handle);
517 		return ret;
518 	}
519 	/*
520 	 * Usefulness of mixing of reserved and unreserved handles is
521 	 * questionable. So far nobody seems to need it so just error out.
522 	 */
523 	if (WARN_ON(current->journal_info)) {
524 		jbd2_journal_free_reserved(handle);
525 		return ret;
526 	}
527 
528 	handle->h_journal = NULL;
529 	/*
530 	 * GFP_NOFS is here because callers are likely from writeback or
531 	 * similarly constrained call sites
532 	 */
533 	ret = start_this_handle(journal, handle, GFP_NOFS);
534 	if (ret < 0) {
535 		handle->h_journal = journal;
536 		jbd2_journal_free_reserved(handle);
537 		return ret;
538 	}
539 	handle->h_type = type;
540 	handle->h_line_no = line_no;
541 	return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544 
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
jbd2_journal_extend(handle_t * handle,int nblocks)565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567 	transaction_t *transaction = handle->h_transaction;
568 	journal_t *journal;
569 	int result;
570 	int wanted;
571 
572 	if (is_handle_aborted(handle))
573 		return -EROFS;
574 	journal = transaction->t_journal;
575 
576 	result = 1;
577 
578 	read_lock(&journal->j_state_lock);
579 
580 	/* Don't extend a locked-down transaction! */
581 	if (transaction->t_state != T_RUNNING) {
582 		jbd_debug(3, "denied handle %p %d blocks: "
583 			  "transaction not running\n", handle, nblocks);
584 		goto error_out;
585 	}
586 
587 	spin_lock(&transaction->t_handle_lock);
588 	wanted = atomic_add_return(nblocks,
589 				   &transaction->t_outstanding_credits);
590 
591 	if (wanted > journal->j_max_transaction_buffers) {
592 		jbd_debug(3, "denied handle %p %d blocks: "
593 			  "transaction too large\n", handle, nblocks);
594 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
595 		goto unlock;
596 	}
597 
598 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599 	    jbd2_log_space_left(journal)) {
600 		jbd_debug(3, "denied handle %p %d blocks: "
601 			  "insufficient log space\n", handle, nblocks);
602 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
603 		goto unlock;
604 	}
605 
606 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607 				 transaction->t_tid,
608 				 handle->h_type, handle->h_line_no,
609 				 handle->h_buffer_credits,
610 				 nblocks);
611 
612 	handle->h_buffer_credits += nblocks;
613 	handle->h_requested_credits += nblocks;
614 	result = 0;
615 
616 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618 	spin_unlock(&transaction->t_handle_lock);
619 error_out:
620 	read_unlock(&journal->j_state_lock);
621 	return result;
622 }
623 
624 
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  * @gfp_mask: memory allocation flags (for start_this_handle)
630  *
631  * Restart a handle for a multi-transaction filesystem
632  * operation.
633  *
634  * If the jbd2_journal_extend() call above fails to grant new buffer credits
635  * to a running handle, a call to jbd2_journal_restart will commit the
636  * handle's transaction so far and reattach the handle to a new
637  * transaction capable of guaranteeing the requested number of
638  * credits. We preserve reserved handle if there's any attached to the
639  * passed in handle.
640  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)641 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
642 {
643 	transaction_t *transaction = handle->h_transaction;
644 	journal_t *journal;
645 	tid_t		tid;
646 	int		need_to_start, ret;
647 
648 	/* If we've had an abort of any type, don't even think about
649 	 * actually doing the restart! */
650 	if (is_handle_aborted(handle))
651 		return 0;
652 	journal = transaction->t_journal;
653 
654 	/*
655 	 * First unlink the handle from its current transaction, and start the
656 	 * commit on that.
657 	 */
658 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
659 	J_ASSERT(journal_current_handle() == handle);
660 
661 	read_lock(&journal->j_state_lock);
662 	spin_lock(&transaction->t_handle_lock);
663 	atomic_sub(handle->h_buffer_credits,
664 		   &transaction->t_outstanding_credits);
665 	if (handle->h_rsv_handle) {
666 		sub_reserved_credits(journal,
667 				     handle->h_rsv_handle->h_buffer_credits);
668 	}
669 	if (atomic_dec_and_test(&transaction->t_updates))
670 		wake_up(&journal->j_wait_updates);
671 	tid = transaction->t_tid;
672 	spin_unlock(&transaction->t_handle_lock);
673 	handle->h_transaction = NULL;
674 	current->journal_info = NULL;
675 
676 	jbd_debug(2, "restarting handle %p\n", handle);
677 	need_to_start = !tid_geq(journal->j_commit_request, tid);
678 	read_unlock(&journal->j_state_lock);
679 	if (need_to_start)
680 		jbd2_log_start_commit(journal, tid);
681 
682 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
683 	handle->h_buffer_credits = nblocks;
684 	/*
685 	 * Restore the original nofs context because the journal restart
686 	 * is basically the same thing as journal stop and start.
687 	 * start_this_handle will start a new nofs context.
688 	 */
689 	memalloc_nofs_restore(handle->saved_alloc_context);
690 	ret = start_this_handle(journal, handle, gfp_mask);
691 	return ret;
692 }
693 EXPORT_SYMBOL(jbd2__journal_restart);
694 
695 
jbd2_journal_restart(handle_t * handle,int nblocks)696 int jbd2_journal_restart(handle_t *handle, int nblocks)
697 {
698 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
699 }
700 EXPORT_SYMBOL(jbd2_journal_restart);
701 
702 /**
703  * void jbd2_journal_lock_updates () - establish a transaction barrier.
704  * @journal:  Journal to establish a barrier on.
705  *
706  * This locks out any further updates from being started, and blocks
707  * until all existing updates have completed, returning only once the
708  * journal is in a quiescent state with no updates running.
709  *
710  * The journal lock should not be held on entry.
711  */
jbd2_journal_lock_updates(journal_t * journal)712 void jbd2_journal_lock_updates(journal_t *journal)
713 {
714 	DEFINE_WAIT(wait);
715 
716 	jbd2_might_wait_for_commit(journal);
717 
718 	write_lock(&journal->j_state_lock);
719 	++journal->j_barrier_count;
720 
721 	/* Wait until there are no reserved handles */
722 	if (atomic_read(&journal->j_reserved_credits)) {
723 		write_unlock(&journal->j_state_lock);
724 		wait_event(journal->j_wait_reserved,
725 			   atomic_read(&journal->j_reserved_credits) == 0);
726 		write_lock(&journal->j_state_lock);
727 	}
728 
729 	/* Wait until there are no running updates */
730 	while (1) {
731 		transaction_t *transaction = journal->j_running_transaction;
732 
733 		if (!transaction)
734 			break;
735 
736 		spin_lock(&transaction->t_handle_lock);
737 		prepare_to_wait(&journal->j_wait_updates, &wait,
738 				TASK_UNINTERRUPTIBLE);
739 		if (!atomic_read(&transaction->t_updates)) {
740 			spin_unlock(&transaction->t_handle_lock);
741 			finish_wait(&journal->j_wait_updates, &wait);
742 			break;
743 		}
744 		spin_unlock(&transaction->t_handle_lock);
745 		write_unlock(&journal->j_state_lock);
746 		schedule();
747 		finish_wait(&journal->j_wait_updates, &wait);
748 		write_lock(&journal->j_state_lock);
749 	}
750 	write_unlock(&journal->j_state_lock);
751 
752 	/*
753 	 * We have now established a barrier against other normal updates, but
754 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
755 	 * to make sure that we serialise special journal-locked operations
756 	 * too.
757 	 */
758 	mutex_lock(&journal->j_barrier);
759 }
760 
761 /**
762  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
763  * @journal:  Journal to release the barrier on.
764  *
765  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
766  *
767  * Should be called without the journal lock held.
768  */
jbd2_journal_unlock_updates(journal_t * journal)769 void jbd2_journal_unlock_updates (journal_t *journal)
770 {
771 	J_ASSERT(journal->j_barrier_count != 0);
772 
773 	mutex_unlock(&journal->j_barrier);
774 	write_lock(&journal->j_state_lock);
775 	--journal->j_barrier_count;
776 	write_unlock(&journal->j_state_lock);
777 	wake_up(&journal->j_wait_transaction_locked);
778 }
779 
warn_dirty_buffer(struct buffer_head * bh)780 static void warn_dirty_buffer(struct buffer_head *bh)
781 {
782 	printk(KERN_WARNING
783 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
784 	       "There's a risk of filesystem corruption in case of system "
785 	       "crash.\n",
786 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
787 }
788 
789 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)790 static void jbd2_freeze_jh_data(struct journal_head *jh)
791 {
792 	struct page *page;
793 	int offset;
794 	char *source;
795 	struct buffer_head *bh = jh2bh(jh);
796 
797 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
798 	page = bh->b_page;
799 	offset = offset_in_page(bh->b_data);
800 	source = kmap_atomic(page);
801 	/* Fire data frozen trigger just before we copy the data */
802 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
803 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
804 	kunmap_atomic(source);
805 
806 	/*
807 	 * Now that the frozen data is saved off, we need to store any matching
808 	 * triggers.
809 	 */
810 	jh->b_frozen_triggers = jh->b_triggers;
811 }
812 
813 /*
814  * If the buffer is already part of the current transaction, then there
815  * is nothing we need to do.  If it is already part of a prior
816  * transaction which we are still committing to disk, then we need to
817  * make sure that we do not overwrite the old copy: we do copy-out to
818  * preserve the copy going to disk.  We also account the buffer against
819  * the handle's metadata buffer credits (unless the buffer is already
820  * part of the transaction, that is).
821  *
822  */
823 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)824 do_get_write_access(handle_t *handle, struct journal_head *jh,
825 			int force_copy)
826 {
827 	struct buffer_head *bh;
828 	transaction_t *transaction = handle->h_transaction;
829 	journal_t *journal;
830 	int error;
831 	char *frozen_buffer = NULL;
832 	unsigned long start_lock, time_lock;
833 
834 	journal = transaction->t_journal;
835 
836 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
837 
838 	JBUFFER_TRACE(jh, "entry");
839 repeat:
840 	bh = jh2bh(jh);
841 
842 	/* @@@ Need to check for errors here at some point. */
843 
844  	start_lock = jiffies;
845 	lock_buffer(bh);
846 	jbd_lock_bh_state(bh);
847 
848 	/* If it takes too long to lock the buffer, trace it */
849 	time_lock = jbd2_time_diff(start_lock, jiffies);
850 	if (time_lock > HZ/10)
851 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
852 			jiffies_to_msecs(time_lock));
853 
854 	/* We now hold the buffer lock so it is safe to query the buffer
855 	 * state.  Is the buffer dirty?
856 	 *
857 	 * If so, there are two possibilities.  The buffer may be
858 	 * non-journaled, and undergoing a quite legitimate writeback.
859 	 * Otherwise, it is journaled, and we don't expect dirty buffers
860 	 * in that state (the buffers should be marked JBD_Dirty
861 	 * instead.)  So either the IO is being done under our own
862 	 * control and this is a bug, or it's a third party IO such as
863 	 * dump(8) (which may leave the buffer scheduled for read ---
864 	 * ie. locked but not dirty) or tune2fs (which may actually have
865 	 * the buffer dirtied, ugh.)  */
866 
867 	if (buffer_dirty(bh)) {
868 		/*
869 		 * First question: is this buffer already part of the current
870 		 * transaction or the existing committing transaction?
871 		 */
872 		if (jh->b_transaction) {
873 			J_ASSERT_JH(jh,
874 				jh->b_transaction == transaction ||
875 				jh->b_transaction ==
876 					journal->j_committing_transaction);
877 			if (jh->b_next_transaction)
878 				J_ASSERT_JH(jh, jh->b_next_transaction ==
879 							transaction);
880 			warn_dirty_buffer(bh);
881 		}
882 		/*
883 		 * In any case we need to clean the dirty flag and we must
884 		 * do it under the buffer lock to be sure we don't race
885 		 * with running write-out.
886 		 */
887 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
888 		clear_buffer_dirty(bh);
889 		set_buffer_jbddirty(bh);
890 	}
891 
892 	unlock_buffer(bh);
893 
894 	error = -EROFS;
895 	if (is_handle_aborted(handle)) {
896 		jbd_unlock_bh_state(bh);
897 		goto out;
898 	}
899 	error = 0;
900 
901 	/*
902 	 * The buffer is already part of this transaction if b_transaction or
903 	 * b_next_transaction points to it
904 	 */
905 	if (jh->b_transaction == transaction ||
906 	    jh->b_next_transaction == transaction)
907 		goto done;
908 
909 	/*
910 	 * this is the first time this transaction is touching this buffer,
911 	 * reset the modified flag
912 	 */
913        jh->b_modified = 0;
914 
915 	/*
916 	 * If the buffer is not journaled right now, we need to make sure it
917 	 * doesn't get written to disk before the caller actually commits the
918 	 * new data
919 	 */
920 	if (!jh->b_transaction) {
921 		JBUFFER_TRACE(jh, "no transaction");
922 		J_ASSERT_JH(jh, !jh->b_next_transaction);
923 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
924 		/*
925 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
926 		 * visible before attaching it to the running transaction.
927 		 * Paired with barrier in jbd2_write_access_granted()
928 		 */
929 		smp_wmb();
930 		spin_lock(&journal->j_list_lock);
931 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
932 		spin_unlock(&journal->j_list_lock);
933 		goto done;
934 	}
935 	/*
936 	 * If there is already a copy-out version of this buffer, then we don't
937 	 * need to make another one
938 	 */
939 	if (jh->b_frozen_data) {
940 		JBUFFER_TRACE(jh, "has frozen data");
941 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942 		goto attach_next;
943 	}
944 
945 	JBUFFER_TRACE(jh, "owned by older transaction");
946 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
948 
949 	/*
950 	 * There is one case we have to be very careful about.  If the
951 	 * committing transaction is currently writing this buffer out to disk
952 	 * and has NOT made a copy-out, then we cannot modify the buffer
953 	 * contents at all right now.  The essence of copy-out is that it is
954 	 * the extra copy, not the primary copy, which gets journaled.  If the
955 	 * primary copy is already going to disk then we cannot do copy-out
956 	 * here.
957 	 */
958 	if (buffer_shadow(bh)) {
959 		JBUFFER_TRACE(jh, "on shadow: sleep");
960 		jbd_unlock_bh_state(bh);
961 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
962 		goto repeat;
963 	}
964 
965 	/*
966 	 * Only do the copy if the currently-owning transaction still needs it.
967 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
968 	 * past that stage (here we use the fact that BH_Shadow is set under
969 	 * bh_state lock together with refiling to BJ_Shadow list and at this
970 	 * point we know the buffer doesn't have BH_Shadow set).
971 	 *
972 	 * Subtle point, though: if this is a get_undo_access, then we will be
973 	 * relying on the frozen_data to contain the new value of the
974 	 * committed_data record after the transaction, so we HAVE to force the
975 	 * frozen_data copy in that case.
976 	 */
977 	if (jh->b_jlist == BJ_Metadata || force_copy) {
978 		JBUFFER_TRACE(jh, "generate frozen data");
979 		if (!frozen_buffer) {
980 			JBUFFER_TRACE(jh, "allocate memory for buffer");
981 			jbd_unlock_bh_state(bh);
982 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
983 						   GFP_NOFS | __GFP_NOFAIL);
984 			goto repeat;
985 		}
986 		jh->b_frozen_data = frozen_buffer;
987 		frozen_buffer = NULL;
988 		jbd2_freeze_jh_data(jh);
989 	}
990 attach_next:
991 	/*
992 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
993 	 * before attaching it to the running transaction. Paired with barrier
994 	 * in jbd2_write_access_granted()
995 	 */
996 	smp_wmb();
997 	jh->b_next_transaction = transaction;
998 
999 done:
1000 	jbd_unlock_bh_state(bh);
1001 
1002 	/*
1003 	 * If we are about to journal a buffer, then any revoke pending on it is
1004 	 * no longer valid
1005 	 */
1006 	jbd2_journal_cancel_revoke(handle, jh);
1007 
1008 out:
1009 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1010 		jbd2_free(frozen_buffer, bh->b_size);
1011 
1012 	JBUFFER_TRACE(jh, "exit");
1013 	return error;
1014 }
1015 
1016 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1018 							bool undo)
1019 {
1020 	struct journal_head *jh;
1021 	bool ret = false;
1022 
1023 	/* Dirty buffers require special handling... */
1024 	if (buffer_dirty(bh))
1025 		return false;
1026 
1027 	/*
1028 	 * RCU protects us from dereferencing freed pages. So the checks we do
1029 	 * are guaranteed not to oops. However the jh slab object can get freed
1030 	 * & reallocated while we work with it. So we have to be careful. When
1031 	 * we see jh attached to the running transaction, we know it must stay
1032 	 * so until the transaction is committed. Thus jh won't be freed and
1033 	 * will be attached to the same bh while we run.  However it can
1034 	 * happen jh gets freed, reallocated, and attached to the transaction
1035 	 * just after we get pointer to it from bh. So we have to be careful
1036 	 * and recheck jh still belongs to our bh before we return success.
1037 	 */
1038 	rcu_read_lock();
1039 	if (!buffer_jbd(bh))
1040 		goto out;
1041 	/* This should be bh2jh() but that doesn't work with inline functions */
1042 	jh = READ_ONCE(bh->b_private);
1043 	if (!jh)
1044 		goto out;
1045 	/* For undo access buffer must have data copied */
1046 	if (undo && !jh->b_committed_data)
1047 		goto out;
1048 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1049 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1050 		goto out;
1051 	/*
1052 	 * There are two reasons for the barrier here:
1053 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1054 	 * detect when jh went through free, realloc, attach to transaction
1055 	 * while we were checking. Paired with implicit barrier in that path.
1056 	 * 2) So that access to bh done after jbd2_write_access_granted()
1057 	 * doesn't get reordered and see inconsistent state of concurrent
1058 	 * do_get_write_access().
1059 	 */
1060 	smp_mb();
1061 	if (unlikely(jh->b_bh != bh))
1062 		goto out;
1063 	ret = true;
1064 out:
1065 	rcu_read_unlock();
1066 	return ret;
1067 }
1068 
1069 /**
1070  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1071  * @handle: transaction to add buffer modifications to
1072  * @bh:     bh to be used for metadata writes
1073  *
1074  * Returns: error code or 0 on success.
1075  *
1076  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1077  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1078  */
1079 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1081 {
1082 	struct journal_head *jh;
1083 	int rc;
1084 
1085 	if (is_handle_aborted(handle))
1086 		return -EROFS;
1087 
1088 	if (jbd2_write_access_granted(handle, bh, false))
1089 		return 0;
1090 
1091 	jh = jbd2_journal_add_journal_head(bh);
1092 	/* We do not want to get caught playing with fields which the
1093 	 * log thread also manipulates.  Make sure that the buffer
1094 	 * completes any outstanding IO before proceeding. */
1095 	rc = do_get_write_access(handle, jh, 0);
1096 	jbd2_journal_put_journal_head(jh);
1097 	return rc;
1098 }
1099 
1100 
1101 /*
1102  * When the user wants to journal a newly created buffer_head
1103  * (ie. getblk() returned a new buffer and we are going to populate it
1104  * manually rather than reading off disk), then we need to keep the
1105  * buffer_head locked until it has been completely filled with new
1106  * data.  In this case, we should be able to make the assertion that
1107  * the bh is not already part of an existing transaction.
1108  *
1109  * The buffer should already be locked by the caller by this point.
1110  * There is no lock ranking violation: it was a newly created,
1111  * unlocked buffer beforehand. */
1112 
1113 /**
1114  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1115  * @handle: transaction to new buffer to
1116  * @bh: new buffer.
1117  *
1118  * Call this if you create a new bh.
1119  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1120 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1121 {
1122 	transaction_t *transaction = handle->h_transaction;
1123 	journal_t *journal;
1124 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1125 	int err;
1126 
1127 	jbd_debug(5, "journal_head %p\n", jh);
1128 	err = -EROFS;
1129 	if (is_handle_aborted(handle))
1130 		goto out;
1131 	journal = transaction->t_journal;
1132 	err = 0;
1133 
1134 	JBUFFER_TRACE(jh, "entry");
1135 	/*
1136 	 * The buffer may already belong to this transaction due to pre-zeroing
1137 	 * in the filesystem's new_block code.  It may also be on the previous,
1138 	 * committing transaction's lists, but it HAS to be in Forget state in
1139 	 * that case: the transaction must have deleted the buffer for it to be
1140 	 * reused here.
1141 	 */
1142 	jbd_lock_bh_state(bh);
1143 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1144 		jh->b_transaction == NULL ||
1145 		(jh->b_transaction == journal->j_committing_transaction &&
1146 			  jh->b_jlist == BJ_Forget)));
1147 
1148 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1149 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1150 
1151 	if (jh->b_transaction == NULL) {
1152 		/*
1153 		 * Previous jbd2_journal_forget() could have left the buffer
1154 		 * with jbddirty bit set because it was being committed. When
1155 		 * the commit finished, we've filed the buffer for
1156 		 * checkpointing and marked it dirty. Now we are reallocating
1157 		 * the buffer so the transaction freeing it must have
1158 		 * committed and so it's safe to clear the dirty bit.
1159 		 */
1160 		clear_buffer_dirty(jh2bh(jh));
1161 		/* first access by this transaction */
1162 		jh->b_modified = 0;
1163 
1164 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1165 		spin_lock(&journal->j_list_lock);
1166 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1167 		spin_unlock(&journal->j_list_lock);
1168 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1169 		/* first access by this transaction */
1170 		jh->b_modified = 0;
1171 
1172 		JBUFFER_TRACE(jh, "set next transaction");
1173 		spin_lock(&journal->j_list_lock);
1174 		jh->b_next_transaction = transaction;
1175 		spin_unlock(&journal->j_list_lock);
1176 	}
1177 	jbd_unlock_bh_state(bh);
1178 
1179 	/*
1180 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1181 	 * blocks which contain freed but then revoked metadata.  We need
1182 	 * to cancel the revoke in case we end up freeing it yet again
1183 	 * and the reallocating as data - this would cause a second revoke,
1184 	 * which hits an assertion error.
1185 	 */
1186 	JBUFFER_TRACE(jh, "cancelling revoke");
1187 	jbd2_journal_cancel_revoke(handle, jh);
1188 out:
1189 	jbd2_journal_put_journal_head(jh);
1190 	return err;
1191 }
1192 
1193 /**
1194  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1195  *     non-rewindable consequences
1196  * @handle: transaction
1197  * @bh: buffer to undo
1198  *
1199  * Sometimes there is a need to distinguish between metadata which has
1200  * been committed to disk and that which has not.  The ext3fs code uses
1201  * this for freeing and allocating space, we have to make sure that we
1202  * do not reuse freed space until the deallocation has been committed,
1203  * since if we overwrote that space we would make the delete
1204  * un-rewindable in case of a crash.
1205  *
1206  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1207  * buffer for parts of non-rewindable operations such as delete
1208  * operations on the bitmaps.  The journaling code must keep a copy of
1209  * the buffer's contents prior to the undo_access call until such time
1210  * as we know that the buffer has definitely been committed to disk.
1211  *
1212  * We never need to know which transaction the committed data is part
1213  * of, buffers touched here are guaranteed to be dirtied later and so
1214  * will be committed to a new transaction in due course, at which point
1215  * we can discard the old committed data pointer.
1216  *
1217  * Returns error number or 0 on success.
1218  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1219 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1220 {
1221 	int err;
1222 	struct journal_head *jh;
1223 	char *committed_data = NULL;
1224 
1225 	if (is_handle_aborted(handle))
1226 		return -EROFS;
1227 
1228 	if (jbd2_write_access_granted(handle, bh, true))
1229 		return 0;
1230 
1231 	jh = jbd2_journal_add_journal_head(bh);
1232 	JBUFFER_TRACE(jh, "entry");
1233 
1234 	/*
1235 	 * Do this first --- it can drop the journal lock, so we want to
1236 	 * make sure that obtaining the committed_data is done
1237 	 * atomically wrt. completion of any outstanding commits.
1238 	 */
1239 	err = do_get_write_access(handle, jh, 1);
1240 	if (err)
1241 		goto out;
1242 
1243 repeat:
1244 	if (!jh->b_committed_data)
1245 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1246 					    GFP_NOFS|__GFP_NOFAIL);
1247 
1248 	jbd_lock_bh_state(bh);
1249 	if (!jh->b_committed_data) {
1250 		/* Copy out the current buffer contents into the
1251 		 * preserved, committed copy. */
1252 		JBUFFER_TRACE(jh, "generate b_committed data");
1253 		if (!committed_data) {
1254 			jbd_unlock_bh_state(bh);
1255 			goto repeat;
1256 		}
1257 
1258 		jh->b_committed_data = committed_data;
1259 		committed_data = NULL;
1260 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1261 	}
1262 	jbd_unlock_bh_state(bh);
1263 out:
1264 	jbd2_journal_put_journal_head(jh);
1265 	if (unlikely(committed_data))
1266 		jbd2_free(committed_data, bh->b_size);
1267 	return err;
1268 }
1269 
1270 /**
1271  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1272  * @bh: buffer to trigger on
1273  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1274  *
1275  * Set any triggers on this journal_head.  This is always safe, because
1276  * triggers for a committing buffer will be saved off, and triggers for
1277  * a running transaction will match the buffer in that transaction.
1278  *
1279  * Call with NULL to clear the triggers.
1280  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1281 void jbd2_journal_set_triggers(struct buffer_head *bh,
1282 			       struct jbd2_buffer_trigger_type *type)
1283 {
1284 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1285 
1286 	if (WARN_ON(!jh))
1287 		return;
1288 	jh->b_triggers = type;
1289 	jbd2_journal_put_journal_head(jh);
1290 }
1291 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1292 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1293 				struct jbd2_buffer_trigger_type *triggers)
1294 {
1295 	struct buffer_head *bh = jh2bh(jh);
1296 
1297 	if (!triggers || !triggers->t_frozen)
1298 		return;
1299 
1300 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1301 }
1302 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1303 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1304 			       struct jbd2_buffer_trigger_type *triggers)
1305 {
1306 	if (!triggers || !triggers->t_abort)
1307 		return;
1308 
1309 	triggers->t_abort(triggers, jh2bh(jh));
1310 }
1311 
1312 /**
1313  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1314  * @handle: transaction to add buffer to.
1315  * @bh: buffer to mark
1316  *
1317  * mark dirty metadata which needs to be journaled as part of the current
1318  * transaction.
1319  *
1320  * The buffer must have previously had jbd2_journal_get_write_access()
1321  * called so that it has a valid journal_head attached to the buffer
1322  * head.
1323  *
1324  * The buffer is placed on the transaction's metadata list and is marked
1325  * as belonging to the transaction.
1326  *
1327  * Returns error number or 0 on success.
1328  *
1329  * Special care needs to be taken if the buffer already belongs to the
1330  * current committing transaction (in which case we should have frozen
1331  * data present for that commit).  In that case, we don't relink the
1332  * buffer: that only gets done when the old transaction finally
1333  * completes its commit.
1334  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1335 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1336 {
1337 	transaction_t *transaction = handle->h_transaction;
1338 	journal_t *journal;
1339 	struct journal_head *jh;
1340 	int ret = 0;
1341 
1342 	if (!buffer_jbd(bh))
1343 		return -EUCLEAN;
1344 
1345 	/*
1346 	 * We don't grab jh reference here since the buffer must be part
1347 	 * of the running transaction.
1348 	 */
1349 	jh = bh2jh(bh);
1350 	jbd_debug(5, "journal_head %p\n", jh);
1351 	JBUFFER_TRACE(jh, "entry");
1352 
1353 	/*
1354 	 * This and the following assertions are unreliable since we may see jh
1355 	 * in inconsistent state unless we grab bh_state lock. But this is
1356 	 * crucial to catch bugs so let's do a reliable check until the
1357 	 * lockless handling is fully proven.
1358 	 */
1359 	if (jh->b_transaction != transaction &&
1360 	    jh->b_next_transaction != transaction) {
1361 		jbd_lock_bh_state(bh);
1362 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1363 				jh->b_next_transaction == transaction);
1364 		jbd_unlock_bh_state(bh);
1365 	}
1366 	if (jh->b_modified == 1) {
1367 		/* If it's in our transaction it must be in BJ_Metadata list. */
1368 		if (jh->b_transaction == transaction &&
1369 		    jh->b_jlist != BJ_Metadata) {
1370 			jbd_lock_bh_state(bh);
1371 			if (jh->b_transaction == transaction &&
1372 			    jh->b_jlist != BJ_Metadata)
1373 				pr_err("JBD2: assertion failure: h_type=%u "
1374 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1375 				       handle->h_type, handle->h_line_no,
1376 				       (unsigned long long) bh->b_blocknr,
1377 				       jh->b_jlist);
1378 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1379 					jh->b_jlist == BJ_Metadata);
1380 			jbd_unlock_bh_state(bh);
1381 		}
1382 		goto out;
1383 	}
1384 
1385 	journal = transaction->t_journal;
1386 	jbd_lock_bh_state(bh);
1387 
1388 	if (is_handle_aborted(handle)) {
1389 		/*
1390 		 * Check journal aborting with @jh->b_state_lock locked,
1391 		 * since 'jh->b_transaction' could be replaced with
1392 		 * 'jh->b_next_transaction' during old transaction
1393 		 * committing if journal aborted, which may fail
1394 		 * assertion on 'jh->b_frozen_data == NULL'.
1395 		 */
1396 		ret = -EROFS;
1397 		goto out_unlock_bh;
1398 	}
1399 
1400 	if (jh->b_modified == 0) {
1401 		/*
1402 		 * This buffer's got modified and becoming part
1403 		 * of the transaction. This needs to be done
1404 		 * once a transaction -bzzz
1405 		 */
1406 		if (handle->h_buffer_credits <= 0) {
1407 			ret = -ENOSPC;
1408 			goto out_unlock_bh;
1409 		}
1410 		jh->b_modified = 1;
1411 		handle->h_buffer_credits--;
1412 	}
1413 
1414 	/*
1415 	 * fastpath, to avoid expensive locking.  If this buffer is already
1416 	 * on the running transaction's metadata list there is nothing to do.
1417 	 * Nobody can take it off again because there is a handle open.
1418 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1419 	 * result in this test being false, so we go in and take the locks.
1420 	 */
1421 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1422 		JBUFFER_TRACE(jh, "fastpath");
1423 		if (unlikely(jh->b_transaction !=
1424 			     journal->j_running_transaction)) {
1425 			printk(KERN_ERR "JBD2: %s: "
1426 			       "jh->b_transaction (%llu, %p, %u) != "
1427 			       "journal->j_running_transaction (%p, %u)\n",
1428 			       journal->j_devname,
1429 			       (unsigned long long) bh->b_blocknr,
1430 			       jh->b_transaction,
1431 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1432 			       journal->j_running_transaction,
1433 			       journal->j_running_transaction ?
1434 			       journal->j_running_transaction->t_tid : 0);
1435 			ret = -EINVAL;
1436 		}
1437 		goto out_unlock_bh;
1438 	}
1439 
1440 	set_buffer_jbddirty(bh);
1441 
1442 	/*
1443 	 * Metadata already on the current transaction list doesn't
1444 	 * need to be filed.  Metadata on another transaction's list must
1445 	 * be committing, and will be refiled once the commit completes:
1446 	 * leave it alone for now.
1447 	 */
1448 	if (jh->b_transaction != transaction) {
1449 		JBUFFER_TRACE(jh, "already on other transaction");
1450 		if (unlikely(((jh->b_transaction !=
1451 			       journal->j_committing_transaction)) ||
1452 			     (jh->b_next_transaction != transaction))) {
1453 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1454 			       "bad jh for block %llu: "
1455 			       "transaction (%p, %u), "
1456 			       "jh->b_transaction (%p, %u), "
1457 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1458 			       journal->j_devname,
1459 			       (unsigned long long) bh->b_blocknr,
1460 			       transaction, transaction->t_tid,
1461 			       jh->b_transaction,
1462 			       jh->b_transaction ?
1463 			       jh->b_transaction->t_tid : 0,
1464 			       jh->b_next_transaction,
1465 			       jh->b_next_transaction ?
1466 			       jh->b_next_transaction->t_tid : 0,
1467 			       jh->b_jlist);
1468 			WARN_ON(1);
1469 			ret = -EINVAL;
1470 		}
1471 		/* And this case is illegal: we can't reuse another
1472 		 * transaction's data buffer, ever. */
1473 		goto out_unlock_bh;
1474 	}
1475 
1476 	/* That test should have eliminated the following case: */
1477 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1478 
1479 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1480 	spin_lock(&journal->j_list_lock);
1481 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1482 	spin_unlock(&journal->j_list_lock);
1483 out_unlock_bh:
1484 	jbd_unlock_bh_state(bh);
1485 out:
1486 	JBUFFER_TRACE(jh, "exit");
1487 	return ret;
1488 }
1489 
1490 /**
1491  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1492  * @handle: transaction handle
1493  * @bh:     bh to 'forget'
1494  *
1495  * We can only do the bforget if there are no commits pending against the
1496  * buffer.  If the buffer is dirty in the current running transaction we
1497  * can safely unlink it.
1498  *
1499  * bh may not be a journalled buffer at all - it may be a non-JBD
1500  * buffer which came off the hashtable.  Check for this.
1501  *
1502  * Decrements bh->b_count by one.
1503  *
1504  * Allow this call even if the handle has aborted --- it may be part of
1505  * the caller's cleanup after an abort.
1506  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1507 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1508 {
1509 	transaction_t *transaction = handle->h_transaction;
1510 	journal_t *journal;
1511 	struct journal_head *jh;
1512 	int drop_reserve = 0;
1513 	int err = 0;
1514 	int was_modified = 0;
1515 
1516 	if (is_handle_aborted(handle))
1517 		return -EROFS;
1518 	journal = transaction->t_journal;
1519 
1520 	BUFFER_TRACE(bh, "entry");
1521 
1522 	jbd_lock_bh_state(bh);
1523 
1524 	if (!buffer_jbd(bh))
1525 		goto not_jbd;
1526 	jh = bh2jh(bh);
1527 
1528 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1529 	 * Don't do any jbd operations, and return an error. */
1530 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1531 			 "inconsistent data on disk")) {
1532 		err = -EIO;
1533 		goto not_jbd;
1534 	}
1535 
1536 	/* keep track of whether or not this transaction modified us */
1537 	was_modified = jh->b_modified;
1538 
1539 	/*
1540 	 * The buffer's going from the transaction, we must drop
1541 	 * all references -bzzz
1542 	 */
1543 	jh->b_modified = 0;
1544 
1545 	if (jh->b_transaction == transaction) {
1546 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1547 
1548 		/* If we are forgetting a buffer which is already part
1549 		 * of this transaction, then we can just drop it from
1550 		 * the transaction immediately. */
1551 		clear_buffer_dirty(bh);
1552 		clear_buffer_jbddirty(bh);
1553 
1554 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1555 
1556 		/*
1557 		 * we only want to drop a reference if this transaction
1558 		 * modified the buffer
1559 		 */
1560 		if (was_modified)
1561 			drop_reserve = 1;
1562 
1563 		/*
1564 		 * We are no longer going to journal this buffer.
1565 		 * However, the commit of this transaction is still
1566 		 * important to the buffer: the delete that we are now
1567 		 * processing might obsolete an old log entry, so by
1568 		 * committing, we can satisfy the buffer's checkpoint.
1569 		 *
1570 		 * So, if we have a checkpoint on the buffer, we should
1571 		 * now refile the buffer on our BJ_Forget list so that
1572 		 * we know to remove the checkpoint after we commit.
1573 		 */
1574 
1575 		spin_lock(&journal->j_list_lock);
1576 		if (jh->b_cp_transaction) {
1577 			__jbd2_journal_temp_unlink_buffer(jh);
1578 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1579 		} else {
1580 			__jbd2_journal_unfile_buffer(jh);
1581 			if (!buffer_jbd(bh)) {
1582 				spin_unlock(&journal->j_list_lock);
1583 				jbd_unlock_bh_state(bh);
1584 				__bforget(bh);
1585 				goto drop;
1586 			}
1587 		}
1588 		spin_unlock(&journal->j_list_lock);
1589 	} else if (jh->b_transaction) {
1590 		J_ASSERT_JH(jh, (jh->b_transaction ==
1591 				 journal->j_committing_transaction));
1592 		/* However, if the buffer is still owned by a prior
1593 		 * (committing) transaction, we can't drop it yet... */
1594 		JBUFFER_TRACE(jh, "belongs to older transaction");
1595 		/* ... but we CAN drop it from the new transaction through
1596 		 * marking the buffer as freed and set j_next_transaction to
1597 		 * the new transaction, so that not only the commit code
1598 		 * knows it should clear dirty bits when it is done with the
1599 		 * buffer, but also the buffer can be checkpointed only
1600 		 * after the new transaction commits. */
1601 
1602 		set_buffer_freed(bh);
1603 
1604 		if (!jh->b_next_transaction) {
1605 			spin_lock(&journal->j_list_lock);
1606 			jh->b_next_transaction = transaction;
1607 			spin_unlock(&journal->j_list_lock);
1608 		} else {
1609 			J_ASSERT(jh->b_next_transaction == transaction);
1610 
1611 			/*
1612 			 * only drop a reference if this transaction modified
1613 			 * the buffer
1614 			 */
1615 			if (was_modified)
1616 				drop_reserve = 1;
1617 		}
1618 	}
1619 
1620 not_jbd:
1621 	jbd_unlock_bh_state(bh);
1622 	__brelse(bh);
1623 drop:
1624 	if (drop_reserve) {
1625 		/* no need to reserve log space for this block -bzzz */
1626 		handle->h_buffer_credits++;
1627 	}
1628 	return err;
1629 }
1630 
1631 /**
1632  * int jbd2_journal_stop() - complete a transaction
1633  * @handle: transaction to complete.
1634  *
1635  * All done for a particular handle.
1636  *
1637  * There is not much action needed here.  We just return any remaining
1638  * buffer credits to the transaction and remove the handle.  The only
1639  * complication is that we need to start a commit operation if the
1640  * filesystem is marked for synchronous update.
1641  *
1642  * jbd2_journal_stop itself will not usually return an error, but it may
1643  * do so in unusual circumstances.  In particular, expect it to
1644  * return -EIO if a jbd2_journal_abort has been executed since the
1645  * transaction began.
1646  */
jbd2_journal_stop(handle_t * handle)1647 int jbd2_journal_stop(handle_t *handle)
1648 {
1649 	transaction_t *transaction = handle->h_transaction;
1650 	journal_t *journal;
1651 	int err = 0, wait_for_commit = 0;
1652 	tid_t tid;
1653 	pid_t pid;
1654 
1655 	if (!transaction) {
1656 		/*
1657 		 * Handle is already detached from the transaction so
1658 		 * there is nothing to do other than decrease a refcount,
1659 		 * or free the handle if refcount drops to zero
1660 		 */
1661 		if (--handle->h_ref > 0) {
1662 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1663 							 handle->h_ref);
1664 			return err;
1665 		} else {
1666 			if (handle->h_rsv_handle)
1667 				jbd2_free_handle(handle->h_rsv_handle);
1668 			goto free_and_exit;
1669 		}
1670 	}
1671 	journal = transaction->t_journal;
1672 
1673 	J_ASSERT(journal_current_handle() == handle);
1674 
1675 	if (is_handle_aborted(handle))
1676 		err = -EIO;
1677 	else
1678 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1679 
1680 	if (--handle->h_ref > 0) {
1681 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1682 			  handle->h_ref);
1683 		return err;
1684 	}
1685 
1686 	jbd_debug(4, "Handle %p going down\n", handle);
1687 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1688 				transaction->t_tid,
1689 				handle->h_type, handle->h_line_no,
1690 				jiffies - handle->h_start_jiffies,
1691 				handle->h_sync, handle->h_requested_credits,
1692 				(handle->h_requested_credits -
1693 				 handle->h_buffer_credits));
1694 
1695 	/*
1696 	 * Implement synchronous transaction batching.  If the handle
1697 	 * was synchronous, don't force a commit immediately.  Let's
1698 	 * yield and let another thread piggyback onto this
1699 	 * transaction.  Keep doing that while new threads continue to
1700 	 * arrive.  It doesn't cost much - we're about to run a commit
1701 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1702 	 * operations by 30x or more...
1703 	 *
1704 	 * We try and optimize the sleep time against what the
1705 	 * underlying disk can do, instead of having a static sleep
1706 	 * time.  This is useful for the case where our storage is so
1707 	 * fast that it is more optimal to go ahead and force a flush
1708 	 * and wait for the transaction to be committed than it is to
1709 	 * wait for an arbitrary amount of time for new writers to
1710 	 * join the transaction.  We achieve this by measuring how
1711 	 * long it takes to commit a transaction, and compare it with
1712 	 * how long this transaction has been running, and if run time
1713 	 * < commit time then we sleep for the delta and commit.  This
1714 	 * greatly helps super fast disks that would see slowdowns as
1715 	 * more threads started doing fsyncs.
1716 	 *
1717 	 * But don't do this if this process was the most recent one
1718 	 * to perform a synchronous write.  We do this to detect the
1719 	 * case where a single process is doing a stream of sync
1720 	 * writes.  No point in waiting for joiners in that case.
1721 	 *
1722 	 * Setting max_batch_time to 0 disables this completely.
1723 	 */
1724 	pid = current->pid;
1725 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1726 	    journal->j_max_batch_time) {
1727 		u64 commit_time, trans_time;
1728 
1729 		journal->j_last_sync_writer = pid;
1730 
1731 		read_lock(&journal->j_state_lock);
1732 		commit_time = journal->j_average_commit_time;
1733 		read_unlock(&journal->j_state_lock);
1734 
1735 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1736 						   transaction->t_start_time));
1737 
1738 		commit_time = max_t(u64, commit_time,
1739 				    1000*journal->j_min_batch_time);
1740 		commit_time = min_t(u64, commit_time,
1741 				    1000*journal->j_max_batch_time);
1742 
1743 		if (trans_time < commit_time) {
1744 			ktime_t expires = ktime_add_ns(ktime_get(),
1745 						       commit_time);
1746 			set_current_state(TASK_UNINTERRUPTIBLE);
1747 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1748 		}
1749 	}
1750 
1751 	if (handle->h_sync)
1752 		transaction->t_synchronous_commit = 1;
1753 	current->journal_info = NULL;
1754 	atomic_sub(handle->h_buffer_credits,
1755 		   &transaction->t_outstanding_credits);
1756 
1757 	/*
1758 	 * If the handle is marked SYNC, we need to set another commit
1759 	 * going!  We also want to force a commit if the current
1760 	 * transaction is occupying too much of the log, or if the
1761 	 * transaction is too old now.
1762 	 */
1763 	if (handle->h_sync ||
1764 	    (atomic_read(&transaction->t_outstanding_credits) >
1765 	     journal->j_max_transaction_buffers) ||
1766 	    time_after_eq(jiffies, transaction->t_expires)) {
1767 		/* Do this even for aborted journals: an abort still
1768 		 * completes the commit thread, it just doesn't write
1769 		 * anything to disk. */
1770 
1771 		jbd_debug(2, "transaction too old, requesting commit for "
1772 					"handle %p\n", handle);
1773 		/* This is non-blocking */
1774 		jbd2_log_start_commit(journal, transaction->t_tid);
1775 
1776 		/*
1777 		 * Special case: JBD2_SYNC synchronous updates require us
1778 		 * to wait for the commit to complete.
1779 		 */
1780 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1781 			wait_for_commit = 1;
1782 	}
1783 
1784 	/*
1785 	 * Once we drop t_updates, if it goes to zero the transaction
1786 	 * could start committing on us and eventually disappear.  So
1787 	 * once we do this, we must not dereference transaction
1788 	 * pointer again.
1789 	 */
1790 	tid = transaction->t_tid;
1791 	if (atomic_dec_and_test(&transaction->t_updates)) {
1792 		wake_up(&journal->j_wait_updates);
1793 		if (journal->j_barrier_count)
1794 			wake_up(&journal->j_wait_transaction_locked);
1795 	}
1796 
1797 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1798 
1799 	if (wait_for_commit)
1800 		err = jbd2_log_wait_commit(journal, tid);
1801 
1802 	if (handle->h_rsv_handle)
1803 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1804 free_and_exit:
1805 	/*
1806 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1807 	 * original alloc context.
1808 	 */
1809 	memalloc_nofs_restore(handle->saved_alloc_context);
1810 	jbd2_free_handle(handle);
1811 	return err;
1812 }
1813 
1814 /*
1815  *
1816  * List management code snippets: various functions for manipulating the
1817  * transaction buffer lists.
1818  *
1819  */
1820 
1821 /*
1822  * Append a buffer to a transaction list, given the transaction's list head
1823  * pointer.
1824  *
1825  * j_list_lock is held.
1826  *
1827  * jbd_lock_bh_state(jh2bh(jh)) is held.
1828  */
1829 
1830 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1831 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1832 {
1833 	if (!*list) {
1834 		jh->b_tnext = jh->b_tprev = jh;
1835 		*list = jh;
1836 	} else {
1837 		/* Insert at the tail of the list to preserve order */
1838 		struct journal_head *first = *list, *last = first->b_tprev;
1839 		jh->b_tprev = last;
1840 		jh->b_tnext = first;
1841 		last->b_tnext = first->b_tprev = jh;
1842 	}
1843 }
1844 
1845 /*
1846  * Remove a buffer from a transaction list, given the transaction's list
1847  * head pointer.
1848  *
1849  * Called with j_list_lock held, and the journal may not be locked.
1850  *
1851  * jbd_lock_bh_state(jh2bh(jh)) is held.
1852  */
1853 
1854 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1855 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1856 {
1857 	if (*list == jh) {
1858 		*list = jh->b_tnext;
1859 		if (*list == jh)
1860 			*list = NULL;
1861 	}
1862 	jh->b_tprev->b_tnext = jh->b_tnext;
1863 	jh->b_tnext->b_tprev = jh->b_tprev;
1864 }
1865 
1866 /*
1867  * Remove a buffer from the appropriate transaction list.
1868  *
1869  * Note that this function can *change* the value of
1870  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1871  * t_reserved_list.  If the caller is holding onto a copy of one of these
1872  * pointers, it could go bad.  Generally the caller needs to re-read the
1873  * pointer from the transaction_t.
1874  *
1875  * Called under j_list_lock.
1876  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1877 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1878 {
1879 	struct journal_head **list = NULL;
1880 	transaction_t *transaction;
1881 	struct buffer_head *bh = jh2bh(jh);
1882 
1883 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1884 	transaction = jh->b_transaction;
1885 	if (transaction)
1886 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1887 
1888 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1889 	if (jh->b_jlist != BJ_None)
1890 		J_ASSERT_JH(jh, transaction != NULL);
1891 
1892 	switch (jh->b_jlist) {
1893 	case BJ_None:
1894 		return;
1895 	case BJ_Metadata:
1896 		transaction->t_nr_buffers--;
1897 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1898 		list = &transaction->t_buffers;
1899 		break;
1900 	case BJ_Forget:
1901 		list = &transaction->t_forget;
1902 		break;
1903 	case BJ_Shadow:
1904 		list = &transaction->t_shadow_list;
1905 		break;
1906 	case BJ_Reserved:
1907 		list = &transaction->t_reserved_list;
1908 		break;
1909 	}
1910 
1911 	__blist_del_buffer(list, jh);
1912 	jh->b_jlist = BJ_None;
1913 	if (transaction && is_journal_aborted(transaction->t_journal))
1914 		clear_buffer_jbddirty(bh);
1915 	else if (test_clear_buffer_jbddirty(bh))
1916 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1917 }
1918 
1919 /*
1920  * Remove buffer from all transactions.
1921  *
1922  * Called with bh_state lock and j_list_lock
1923  *
1924  * jh and bh may be already freed when this function returns.
1925  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1926 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1927 {
1928 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
1929 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1930 
1931 	__jbd2_journal_temp_unlink_buffer(jh);
1932 	jh->b_transaction = NULL;
1933 	jbd2_journal_put_journal_head(jh);
1934 }
1935 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1936 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1937 {
1938 	struct buffer_head *bh = jh2bh(jh);
1939 
1940 	/* Get reference so that buffer cannot be freed before we unlock it */
1941 	get_bh(bh);
1942 	jbd_lock_bh_state(bh);
1943 	spin_lock(&journal->j_list_lock);
1944 	__jbd2_journal_unfile_buffer(jh);
1945 	spin_unlock(&journal->j_list_lock);
1946 	jbd_unlock_bh_state(bh);
1947 	__brelse(bh);
1948 }
1949 
1950 /*
1951  * Called from jbd2_journal_try_to_free_buffers().
1952  *
1953  * Called under jbd_lock_bh_state(bh)
1954  */
1955 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1956 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1957 {
1958 	struct journal_head *jh;
1959 
1960 	jh = bh2jh(bh);
1961 
1962 	if (buffer_locked(bh) || buffer_dirty(bh))
1963 		goto out;
1964 
1965 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1966 		goto out;
1967 
1968 	spin_lock(&journal->j_list_lock);
1969 	if (jh->b_cp_transaction != NULL) {
1970 		/* written-back checkpointed metadata buffer */
1971 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1972 		__jbd2_journal_remove_checkpoint(jh);
1973 	}
1974 	spin_unlock(&journal->j_list_lock);
1975 out:
1976 	return;
1977 }
1978 
1979 /**
1980  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1981  * @journal: journal for operation
1982  * @page: to try and free
1983  * @gfp_mask: we use the mask to detect how hard should we try to release
1984  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1985  * code to release the buffers.
1986  *
1987  *
1988  * For all the buffers on this page,
1989  * if they are fully written out ordered data, move them onto BUF_CLEAN
1990  * so try_to_free_buffers() can reap them.
1991  *
1992  * This function returns non-zero if we wish try_to_free_buffers()
1993  * to be called. We do this if the page is releasable by try_to_free_buffers().
1994  * We also do it if the page has locked or dirty buffers and the caller wants
1995  * us to perform sync or async writeout.
1996  *
1997  * This complicates JBD locking somewhat.  We aren't protected by the
1998  * BKL here.  We wish to remove the buffer from its committing or
1999  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2000  *
2001  * This may *change* the value of transaction_t->t_datalist, so anyone
2002  * who looks at t_datalist needs to lock against this function.
2003  *
2004  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2005  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2006  * will come out of the lock with the buffer dirty, which makes it
2007  * ineligible for release here.
2008  *
2009  * Who else is affected by this?  hmm...  Really the only contender
2010  * is do_get_write_access() - it could be looking at the buffer while
2011  * journal_try_to_free_buffer() is changing its state.  But that
2012  * cannot happen because we never reallocate freed data as metadata
2013  * while the data is part of a transaction.  Yes?
2014  *
2015  * Return 0 on failure, 1 on success
2016  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)2017 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2018 				struct page *page, gfp_t gfp_mask)
2019 {
2020 	struct buffer_head *head;
2021 	struct buffer_head *bh;
2022 	bool has_write_io_error = false;
2023 	int ret = 0;
2024 
2025 	J_ASSERT(PageLocked(page));
2026 
2027 	head = page_buffers(page);
2028 	bh = head;
2029 	do {
2030 		struct journal_head *jh;
2031 
2032 		/*
2033 		 * We take our own ref against the journal_head here to avoid
2034 		 * having to add tons of locking around each instance of
2035 		 * jbd2_journal_put_journal_head().
2036 		 */
2037 		jh = jbd2_journal_grab_journal_head(bh);
2038 		if (!jh)
2039 			continue;
2040 
2041 		jbd_lock_bh_state(bh);
2042 		__journal_try_to_free_buffer(journal, bh);
2043 		jbd2_journal_put_journal_head(jh);
2044 		jbd_unlock_bh_state(bh);
2045 		if (buffer_jbd(bh))
2046 			goto busy;
2047 
2048 		/*
2049 		 * If we free a metadata buffer which has been failed to
2050 		 * write out, the jbd2 checkpoint procedure will not detect
2051 		 * this failure and may lead to filesystem inconsistency
2052 		 * after cleanup journal tail.
2053 		 */
2054 		if (buffer_write_io_error(bh)) {
2055 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2056 			       (unsigned long long)bh->b_blocknr);
2057 			has_write_io_error = true;
2058 		}
2059 	} while ((bh = bh->b_this_page) != head);
2060 
2061 	ret = try_to_free_buffers(page);
2062 
2063 busy:
2064 	if (has_write_io_error)
2065 		jbd2_journal_abort(journal, -EIO);
2066 
2067 	return ret;
2068 }
2069 
2070 /*
2071  * This buffer is no longer needed.  If it is on an older transaction's
2072  * checkpoint list we need to record it on this transaction's forget list
2073  * to pin this buffer (and hence its checkpointing transaction) down until
2074  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2075  * release it.
2076  * Returns non-zero if JBD no longer has an interest in the buffer.
2077  *
2078  * Called under j_list_lock.
2079  *
2080  * Called under jbd_lock_bh_state(bh).
2081  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2082 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2083 {
2084 	int may_free = 1;
2085 	struct buffer_head *bh = jh2bh(jh);
2086 
2087 	if (jh->b_cp_transaction) {
2088 		JBUFFER_TRACE(jh, "on running+cp transaction");
2089 		__jbd2_journal_temp_unlink_buffer(jh);
2090 		/*
2091 		 * We don't want to write the buffer anymore, clear the
2092 		 * bit so that we don't confuse checks in
2093 		 * __journal_file_buffer
2094 		 */
2095 		clear_buffer_dirty(bh);
2096 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2097 		may_free = 0;
2098 	} else {
2099 		JBUFFER_TRACE(jh, "on running transaction");
2100 		__jbd2_journal_unfile_buffer(jh);
2101 	}
2102 	return may_free;
2103 }
2104 
2105 /*
2106  * jbd2_journal_invalidatepage
2107  *
2108  * This code is tricky.  It has a number of cases to deal with.
2109  *
2110  * There are two invariants which this code relies on:
2111  *
2112  * i_size must be updated on disk before we start calling invalidatepage on the
2113  * data.
2114  *
2115  *  This is done in ext3 by defining an ext3_setattr method which
2116  *  updates i_size before truncate gets going.  By maintaining this
2117  *  invariant, we can be sure that it is safe to throw away any buffers
2118  *  attached to the current transaction: once the transaction commits,
2119  *  we know that the data will not be needed.
2120  *
2121  *  Note however that we can *not* throw away data belonging to the
2122  *  previous, committing transaction!
2123  *
2124  * Any disk blocks which *are* part of the previous, committing
2125  * transaction (and which therefore cannot be discarded immediately) are
2126  * not going to be reused in the new running transaction
2127  *
2128  *  The bitmap committed_data images guarantee this: any block which is
2129  *  allocated in one transaction and removed in the next will be marked
2130  *  as in-use in the committed_data bitmap, so cannot be reused until
2131  *  the next transaction to delete the block commits.  This means that
2132  *  leaving committing buffers dirty is quite safe: the disk blocks
2133  *  cannot be reallocated to a different file and so buffer aliasing is
2134  *  not possible.
2135  *
2136  *
2137  * The above applies mainly to ordered data mode.  In writeback mode we
2138  * don't make guarantees about the order in which data hits disk --- in
2139  * particular we don't guarantee that new dirty data is flushed before
2140  * transaction commit --- so it is always safe just to discard data
2141  * immediately in that mode.  --sct
2142  */
2143 
2144 /*
2145  * The journal_unmap_buffer helper function returns zero if the buffer
2146  * concerned remains pinned as an anonymous buffer belonging to an older
2147  * transaction.
2148  *
2149  * We're outside-transaction here.  Either or both of j_running_transaction
2150  * and j_committing_transaction may be NULL.
2151  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2152 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2153 				int partial_page)
2154 {
2155 	transaction_t *transaction;
2156 	struct journal_head *jh;
2157 	int may_free = 1;
2158 
2159 	BUFFER_TRACE(bh, "entry");
2160 
2161 	/*
2162 	 * It is safe to proceed here without the j_list_lock because the
2163 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2164 	 * holding the page lock. --sct
2165 	 */
2166 
2167 	if (!buffer_jbd(bh))
2168 		goto zap_buffer_unlocked;
2169 
2170 	/* OK, we have data buffer in journaled mode */
2171 	write_lock(&journal->j_state_lock);
2172 	jbd_lock_bh_state(bh);
2173 	spin_lock(&journal->j_list_lock);
2174 
2175 	jh = jbd2_journal_grab_journal_head(bh);
2176 	if (!jh)
2177 		goto zap_buffer_no_jh;
2178 
2179 	/*
2180 	 * We cannot remove the buffer from checkpoint lists until the
2181 	 * transaction adding inode to orphan list (let's call it T)
2182 	 * is committed.  Otherwise if the transaction changing the
2183 	 * buffer would be cleaned from the journal before T is
2184 	 * committed, a crash will cause that the correct contents of
2185 	 * the buffer will be lost.  On the other hand we have to
2186 	 * clear the buffer dirty bit at latest at the moment when the
2187 	 * transaction marking the buffer as freed in the filesystem
2188 	 * structures is committed because from that moment on the
2189 	 * block can be reallocated and used by a different page.
2190 	 * Since the block hasn't been freed yet but the inode has
2191 	 * already been added to orphan list, it is safe for us to add
2192 	 * the buffer to BJ_Forget list of the newest transaction.
2193 	 *
2194 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2195 	 * because the buffer_head may be attached to the page straddling
2196 	 * i_size (can happen only when blocksize < pagesize) and thus the
2197 	 * buffer_head can be reused when the file is extended again. So we end
2198 	 * up keeping around invalidated buffers attached to transactions'
2199 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2200 	 * the transaction this buffer was modified in.
2201 	 */
2202 	transaction = jh->b_transaction;
2203 	if (transaction == NULL) {
2204 		/* First case: not on any transaction.  If it
2205 		 * has no checkpoint link, then we can zap it:
2206 		 * it's a writeback-mode buffer so we don't care
2207 		 * if it hits disk safely. */
2208 		if (!jh->b_cp_transaction) {
2209 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2210 			goto zap_buffer;
2211 		}
2212 
2213 		if (!buffer_dirty(bh)) {
2214 			/* bdflush has written it.  We can drop it now */
2215 			__jbd2_journal_remove_checkpoint(jh);
2216 			goto zap_buffer;
2217 		}
2218 
2219 		/* OK, it must be in the journal but still not
2220 		 * written fully to disk: it's metadata or
2221 		 * journaled data... */
2222 
2223 		if (journal->j_running_transaction) {
2224 			/* ... and once the current transaction has
2225 			 * committed, the buffer won't be needed any
2226 			 * longer. */
2227 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2228 			may_free = __dispose_buffer(jh,
2229 					journal->j_running_transaction);
2230 			goto zap_buffer;
2231 		} else {
2232 			/* There is no currently-running transaction. So the
2233 			 * orphan record which we wrote for this file must have
2234 			 * passed into commit.  We must attach this buffer to
2235 			 * the committing transaction, if it exists. */
2236 			if (journal->j_committing_transaction) {
2237 				JBUFFER_TRACE(jh, "give to committing trans");
2238 				may_free = __dispose_buffer(jh,
2239 					journal->j_committing_transaction);
2240 				goto zap_buffer;
2241 			} else {
2242 				/* The orphan record's transaction has
2243 				 * committed.  We can cleanse this buffer */
2244 				clear_buffer_jbddirty(bh);
2245 				__jbd2_journal_remove_checkpoint(jh);
2246 				goto zap_buffer;
2247 			}
2248 		}
2249 	} else if (transaction == journal->j_committing_transaction) {
2250 		JBUFFER_TRACE(jh, "on committing transaction");
2251 		/*
2252 		 * The buffer is committing, we simply cannot touch
2253 		 * it. If the page is straddling i_size we have to wait
2254 		 * for commit and try again.
2255 		 */
2256 		if (partial_page) {
2257 			jbd2_journal_put_journal_head(jh);
2258 			spin_unlock(&journal->j_list_lock);
2259 			jbd_unlock_bh_state(bh);
2260 			write_unlock(&journal->j_state_lock);
2261 			return -EBUSY;
2262 		}
2263 		/*
2264 		 * OK, buffer won't be reachable after truncate. We just clear
2265 		 * b_modified to not confuse transaction credit accounting, and
2266 		 * set j_next_transaction to the running transaction (if there
2267 		 * is one) and mark buffer as freed so that commit code knows
2268 		 * it should clear dirty bits when it is done with the buffer.
2269 		 */
2270 		set_buffer_freed(bh);
2271 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2272 			jh->b_next_transaction = journal->j_running_transaction;
2273 		jh->b_modified = 0;
2274 		jbd2_journal_put_journal_head(jh);
2275 		spin_unlock(&journal->j_list_lock);
2276 		jbd_unlock_bh_state(bh);
2277 		write_unlock(&journal->j_state_lock);
2278 		return 0;
2279 	} else {
2280 		/* Good, the buffer belongs to the running transaction.
2281 		 * We are writing our own transaction's data, not any
2282 		 * previous one's, so it is safe to throw it away
2283 		 * (remember that we expect the filesystem to have set
2284 		 * i_size already for this truncate so recovery will not
2285 		 * expose the disk blocks we are discarding here.) */
2286 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2287 		JBUFFER_TRACE(jh, "on running transaction");
2288 		may_free = __dispose_buffer(jh, transaction);
2289 	}
2290 
2291 zap_buffer:
2292 	/*
2293 	 * This is tricky. Although the buffer is truncated, it may be reused
2294 	 * if blocksize < pagesize and it is attached to the page straddling
2295 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2296 	 * running transaction, journal_get_write_access() won't clear
2297 	 * b_modified and credit accounting gets confused. So clear b_modified
2298 	 * here.
2299 	 */
2300 	jh->b_modified = 0;
2301 	jbd2_journal_put_journal_head(jh);
2302 zap_buffer_no_jh:
2303 	spin_unlock(&journal->j_list_lock);
2304 	jbd_unlock_bh_state(bh);
2305 	write_unlock(&journal->j_state_lock);
2306 zap_buffer_unlocked:
2307 	clear_buffer_dirty(bh);
2308 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2309 	clear_buffer_mapped(bh);
2310 	clear_buffer_req(bh);
2311 	clear_buffer_new(bh);
2312 	clear_buffer_delay(bh);
2313 	clear_buffer_unwritten(bh);
2314 	bh->b_bdev = NULL;
2315 	return may_free;
2316 }
2317 
2318 /**
2319  * void jbd2_journal_invalidatepage()
2320  * @journal: journal to use for flush...
2321  * @page:    page to flush
2322  * @offset:  start of the range to invalidate
2323  * @length:  length of the range to invalidate
2324  *
2325  * Reap page buffers containing data after in the specified range in page.
2326  * Can return -EBUSY if buffers are part of the committing transaction and
2327  * the page is straddling i_size. Caller then has to wait for current commit
2328  * and try again.
2329  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2330 int jbd2_journal_invalidatepage(journal_t *journal,
2331 				struct page *page,
2332 				unsigned int offset,
2333 				unsigned int length)
2334 {
2335 	struct buffer_head *head, *bh, *next;
2336 	unsigned int stop = offset + length;
2337 	unsigned int curr_off = 0;
2338 	int partial_page = (offset || length < PAGE_SIZE);
2339 	int may_free = 1;
2340 	int ret = 0;
2341 
2342 	if (!PageLocked(page))
2343 		BUG();
2344 	if (!page_has_buffers(page))
2345 		return 0;
2346 
2347 	BUG_ON(stop > PAGE_SIZE || stop < length);
2348 
2349 	/* We will potentially be playing with lists other than just the
2350 	 * data lists (especially for journaled data mode), so be
2351 	 * cautious in our locking. */
2352 
2353 	head = bh = page_buffers(page);
2354 	do {
2355 		unsigned int next_off = curr_off + bh->b_size;
2356 		next = bh->b_this_page;
2357 
2358 		if (next_off > stop)
2359 			return 0;
2360 
2361 		if (offset <= curr_off) {
2362 			/* This block is wholly outside the truncation point */
2363 			lock_buffer(bh);
2364 			ret = journal_unmap_buffer(journal, bh, partial_page);
2365 			unlock_buffer(bh);
2366 			if (ret < 0)
2367 				return ret;
2368 			may_free &= ret;
2369 		}
2370 		curr_off = next_off;
2371 		bh = next;
2372 
2373 	} while (bh != head);
2374 
2375 	if (!partial_page) {
2376 		if (may_free && try_to_free_buffers(page))
2377 			J_ASSERT(!page_has_buffers(page));
2378 	}
2379 	return 0;
2380 }
2381 
2382 /*
2383  * File a buffer on the given transaction list.
2384  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2385 void __jbd2_journal_file_buffer(struct journal_head *jh,
2386 			transaction_t *transaction, int jlist)
2387 {
2388 	struct journal_head **list = NULL;
2389 	int was_dirty = 0;
2390 	struct buffer_head *bh = jh2bh(jh);
2391 
2392 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2393 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2394 
2395 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2396 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2397 				jh->b_transaction == NULL);
2398 
2399 	if (jh->b_transaction && jh->b_jlist == jlist)
2400 		return;
2401 
2402 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2403 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2404 		/*
2405 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2406 		 * instead of buffer_dirty. We should not see a dirty bit set
2407 		 * here because we clear it in do_get_write_access but e.g.
2408 		 * tune2fs can modify the sb and set the dirty bit at any time
2409 		 * so we try to gracefully handle that.
2410 		 */
2411 		if (buffer_dirty(bh))
2412 			warn_dirty_buffer(bh);
2413 		if (test_clear_buffer_dirty(bh) ||
2414 		    test_clear_buffer_jbddirty(bh))
2415 			was_dirty = 1;
2416 	}
2417 
2418 	if (jh->b_transaction)
2419 		__jbd2_journal_temp_unlink_buffer(jh);
2420 	else
2421 		jbd2_journal_grab_journal_head(bh);
2422 	jh->b_transaction = transaction;
2423 
2424 	switch (jlist) {
2425 	case BJ_None:
2426 		J_ASSERT_JH(jh, !jh->b_committed_data);
2427 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2428 		return;
2429 	case BJ_Metadata:
2430 		transaction->t_nr_buffers++;
2431 		list = &transaction->t_buffers;
2432 		break;
2433 	case BJ_Forget:
2434 		list = &transaction->t_forget;
2435 		break;
2436 	case BJ_Shadow:
2437 		list = &transaction->t_shadow_list;
2438 		break;
2439 	case BJ_Reserved:
2440 		list = &transaction->t_reserved_list;
2441 		break;
2442 	}
2443 
2444 	__blist_add_buffer(list, jh);
2445 	jh->b_jlist = jlist;
2446 
2447 	if (was_dirty)
2448 		set_buffer_jbddirty(bh);
2449 }
2450 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2451 void jbd2_journal_file_buffer(struct journal_head *jh,
2452 				transaction_t *transaction, int jlist)
2453 {
2454 	jbd_lock_bh_state(jh2bh(jh));
2455 	spin_lock(&transaction->t_journal->j_list_lock);
2456 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2457 	spin_unlock(&transaction->t_journal->j_list_lock);
2458 	jbd_unlock_bh_state(jh2bh(jh));
2459 }
2460 
2461 /*
2462  * Remove a buffer from its current buffer list in preparation for
2463  * dropping it from its current transaction entirely.  If the buffer has
2464  * already started to be used by a subsequent transaction, refile the
2465  * buffer on that transaction's metadata list.
2466  *
2467  * Called under j_list_lock
2468  * Called under jbd_lock_bh_state(jh2bh(jh))
2469  *
2470  * jh and bh may be already free when this function returns
2471  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2472 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2473 {
2474 	int was_dirty, jlist;
2475 	struct buffer_head *bh = jh2bh(jh);
2476 
2477 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2478 	if (jh->b_transaction)
2479 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2480 
2481 	/* If the buffer is now unused, just drop it. */
2482 	if (jh->b_next_transaction == NULL) {
2483 		__jbd2_journal_unfile_buffer(jh);
2484 		return;
2485 	}
2486 
2487 	/*
2488 	 * It has been modified by a later transaction: add it to the new
2489 	 * transaction's metadata list.
2490 	 */
2491 
2492 	was_dirty = test_clear_buffer_jbddirty(bh);
2493 	__jbd2_journal_temp_unlink_buffer(jh);
2494 
2495 	/*
2496 	 * b_transaction must be set, otherwise the new b_transaction won't
2497 	 * be holding jh reference
2498 	 */
2499 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2500 
2501 	/*
2502 	 * We set b_transaction here because b_next_transaction will inherit
2503 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2504 	 * take a new one.
2505 	 */
2506 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2507 	WRITE_ONCE(jh->b_next_transaction, NULL);
2508 	if (buffer_freed(bh))
2509 		jlist = BJ_Forget;
2510 	else if (jh->b_modified)
2511 		jlist = BJ_Metadata;
2512 	else
2513 		jlist = BJ_Reserved;
2514 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2515 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2516 
2517 	if (was_dirty)
2518 		set_buffer_jbddirty(bh);
2519 }
2520 
2521 /*
2522  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2523  * bh reference so that we can safely unlock bh.
2524  *
2525  * The jh and bh may be freed by this call.
2526  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2527 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2528 {
2529 	struct buffer_head *bh = jh2bh(jh);
2530 
2531 	/* Get reference so that buffer cannot be freed before we unlock it */
2532 	get_bh(bh);
2533 	jbd_lock_bh_state(bh);
2534 	spin_lock(&journal->j_list_lock);
2535 	__jbd2_journal_refile_buffer(jh);
2536 	jbd_unlock_bh_state(bh);
2537 	spin_unlock(&journal->j_list_lock);
2538 	__brelse(bh);
2539 }
2540 
2541 /*
2542  * File inode in the inode list of the handle's transaction
2543  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2544 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2545 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2546 {
2547 	transaction_t *transaction = handle->h_transaction;
2548 	journal_t *journal;
2549 
2550 	if (is_handle_aborted(handle))
2551 		return -EROFS;
2552 	journal = transaction->t_journal;
2553 
2554 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2555 			transaction->t_tid);
2556 
2557 	spin_lock(&journal->j_list_lock);
2558 	jinode->i_flags |= flags;
2559 
2560 	if (jinode->i_dirty_end) {
2561 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2562 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2563 	} else {
2564 		jinode->i_dirty_start = start_byte;
2565 		jinode->i_dirty_end = end_byte;
2566 	}
2567 
2568 	/* Is inode already attached where we need it? */
2569 	if (jinode->i_transaction == transaction ||
2570 	    jinode->i_next_transaction == transaction)
2571 		goto done;
2572 
2573 	/*
2574 	 * We only ever set this variable to 1 so the test is safe. Since
2575 	 * t_need_data_flush is likely to be set, we do the test to save some
2576 	 * cacheline bouncing
2577 	 */
2578 	if (!transaction->t_need_data_flush)
2579 		transaction->t_need_data_flush = 1;
2580 	/* On some different transaction's list - should be
2581 	 * the committing one */
2582 	if (jinode->i_transaction) {
2583 		J_ASSERT(jinode->i_next_transaction == NULL);
2584 		J_ASSERT(jinode->i_transaction ==
2585 					journal->j_committing_transaction);
2586 		jinode->i_next_transaction = transaction;
2587 		goto done;
2588 	}
2589 	/* Not on any transaction list... */
2590 	J_ASSERT(!jinode->i_next_transaction);
2591 	jinode->i_transaction = transaction;
2592 	list_add(&jinode->i_list, &transaction->t_inode_list);
2593 done:
2594 	spin_unlock(&journal->j_list_lock);
2595 
2596 	return 0;
2597 }
2598 
jbd2_journal_inode_add_write(handle_t * handle,struct jbd2_inode * jinode)2599 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2600 {
2601 	return jbd2_journal_file_inode(handle, jinode,
2602 			JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2603 }
2604 
jbd2_journal_inode_add_wait(handle_t * handle,struct jbd2_inode * jinode)2605 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2606 {
2607 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2608 			LLONG_MAX);
2609 }
2610 
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2611 int jbd2_journal_inode_ranged_write(handle_t *handle,
2612 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2613 {
2614 	return jbd2_journal_file_inode(handle, jinode,
2615 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2616 			start_byte + length - 1);
2617 }
2618 
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2619 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2620 		loff_t start_byte, loff_t length)
2621 {
2622 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2623 			start_byte, start_byte + length - 1);
2624 }
2625 
2626 /*
2627  * File truncate and transaction commit interact with each other in a
2628  * non-trivial way.  If a transaction writing data block A is
2629  * committing, we cannot discard the data by truncate until we have
2630  * written them.  Otherwise if we crashed after the transaction with
2631  * write has committed but before the transaction with truncate has
2632  * committed, we could see stale data in block A.  This function is a
2633  * helper to solve this problem.  It starts writeout of the truncated
2634  * part in case it is in the committing transaction.
2635  *
2636  * Filesystem code must call this function when inode is journaled in
2637  * ordered mode before truncation happens and after the inode has been
2638  * placed on orphan list with the new inode size. The second condition
2639  * avoids the race that someone writes new data and we start
2640  * committing the transaction after this function has been called but
2641  * before a transaction for truncate is started (and furthermore it
2642  * allows us to optimize the case where the addition to orphan list
2643  * happens in the same transaction as write --- we don't have to write
2644  * any data in such case).
2645  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2646 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2647 					struct jbd2_inode *jinode,
2648 					loff_t new_size)
2649 {
2650 	transaction_t *inode_trans, *commit_trans;
2651 	int ret = 0;
2652 
2653 	/* This is a quick check to avoid locking if not necessary */
2654 	if (!jinode->i_transaction)
2655 		goto out;
2656 	/* Locks are here just to force reading of recent values, it is
2657 	 * enough that the transaction was not committing before we started
2658 	 * a transaction adding the inode to orphan list */
2659 	read_lock(&journal->j_state_lock);
2660 	commit_trans = journal->j_committing_transaction;
2661 	read_unlock(&journal->j_state_lock);
2662 	spin_lock(&journal->j_list_lock);
2663 	inode_trans = jinode->i_transaction;
2664 	spin_unlock(&journal->j_list_lock);
2665 	if (inode_trans == commit_trans) {
2666 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2667 			new_size, LLONG_MAX);
2668 		if (ret)
2669 			jbd2_journal_abort(journal, ret);
2670 	}
2671 out:
2672 	return ret;
2673 }
2674