1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 #include <linux/exportfs.h>
20 
21 #include "kernfs-internal.h"
22 
23 struct kmem_cache *kernfs_node_cache;
24 
kernfs_sop_remount_fs(struct super_block * sb,int * flags,char * data)25 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
26 {
27 	struct kernfs_root *root = kernfs_info(sb)->root;
28 	struct kernfs_syscall_ops *scops = root->syscall_ops;
29 
30 	if (scops && scops->remount_fs)
31 		return scops->remount_fs(root, flags, data);
32 	return 0;
33 }
34 
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)35 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
36 {
37 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
38 	struct kernfs_syscall_ops *scops = root->syscall_ops;
39 
40 	if (scops && scops->show_options)
41 		return scops->show_options(sf, root);
42 	return 0;
43 }
44 
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)45 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
46 {
47 	struct kernfs_node *node = kernfs_dentry_node(dentry);
48 	struct kernfs_root *root = kernfs_root(node);
49 	struct kernfs_syscall_ops *scops = root->syscall_ops;
50 
51 	if (scops && scops->show_path)
52 		return scops->show_path(sf, node, root);
53 
54 	seq_dentry(sf, dentry, " \t\n\\");
55 	return 0;
56 }
57 
58 const struct super_operations kernfs_sops = {
59 	.statfs		= simple_statfs,
60 	.drop_inode	= generic_delete_inode,
61 	.evict_inode	= kernfs_evict_inode,
62 
63 	.remount_fs	= kernfs_sop_remount_fs,
64 	.show_options	= kernfs_sop_show_options,
65 	.show_path	= kernfs_sop_show_path,
66 };
67 
68 /*
69  * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70  * number and generation
71  */
kernfs_get_node_by_id(struct kernfs_root * root,const union kernfs_node_id * id)72 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
73 	const union kernfs_node_id *id)
74 {
75 	struct kernfs_node *kn;
76 
77 	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
78 	if (!kn)
79 		return NULL;
80 	if (kn->id.generation != id->generation) {
81 		kernfs_put(kn);
82 		return NULL;
83 	}
84 	return kn;
85 }
86 
kernfs_fh_get_inode(struct super_block * sb,u64 ino,u32 generation)87 static struct inode *kernfs_fh_get_inode(struct super_block *sb,
88 		u64 ino, u32 generation)
89 {
90 	struct kernfs_super_info *info = kernfs_info(sb);
91 	struct inode *inode;
92 	struct kernfs_node *kn;
93 
94 	if (ino == 0)
95 		return ERR_PTR(-ESTALE);
96 
97 	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
98 	if (!kn)
99 		return ERR_PTR(-ESTALE);
100 	inode = kernfs_get_inode(sb, kn);
101 	kernfs_put(kn);
102 	if (!inode)
103 		return ERR_PTR(-ESTALE);
104 
105 	if (generation && inode->i_generation != generation) {
106 		/* we didn't find the right inode.. */
107 		iput(inode);
108 		return ERR_PTR(-ESTALE);
109 	}
110 	return inode;
111 }
112 
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)113 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114 		int fh_len, int fh_type)
115 {
116 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117 				    kernfs_fh_get_inode);
118 }
119 
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)120 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121 		int fh_len, int fh_type)
122 {
123 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124 				    kernfs_fh_get_inode);
125 }
126 
kernfs_get_parent_dentry(struct dentry * child)127 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128 {
129 	struct kernfs_node *kn = kernfs_dentry_node(child);
130 
131 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132 }
133 
134 static const struct export_operations kernfs_export_ops = {
135 	.fh_to_dentry	= kernfs_fh_to_dentry,
136 	.fh_to_parent	= kernfs_fh_to_parent,
137 	.get_parent	= kernfs_get_parent_dentry,
138 };
139 
140 /**
141  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142  * @sb: the super_block in question
143  *
144  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
145  * %NULL is returned.
146  */
kernfs_root_from_sb(struct super_block * sb)147 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148 {
149 	if (sb->s_op == &kernfs_sops)
150 		return kernfs_info(sb)->root;
151 	return NULL;
152 }
153 
154 /*
155  * find the next ancestor in the path down to @child, where @parent was the
156  * ancestor whose descendant we want to find.
157  *
158  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
159  * node.  If @parent is b, then we return the node for c.
160  * Passing in d as @parent is not ok.
161  */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)162 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163 					      struct kernfs_node *parent)
164 {
165 	if (child == parent) {
166 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167 		return NULL;
168 	}
169 
170 	while (child->parent != parent) {
171 		if (!child->parent)
172 			return NULL;
173 		child = child->parent;
174 	}
175 
176 	return child;
177 }
178 
179 /**
180  * kernfs_node_dentry - get a dentry for the given kernfs_node
181  * @kn: kernfs_node for which a dentry is needed
182  * @sb: the kernfs super_block
183  */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)184 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185 				  struct super_block *sb)
186 {
187 	struct dentry *dentry;
188 	struct kernfs_node *knparent = NULL;
189 
190 	BUG_ON(sb->s_op != &kernfs_sops);
191 
192 	dentry = dget(sb->s_root);
193 
194 	/* Check if this is the root kernfs_node */
195 	if (!kn->parent)
196 		return dentry;
197 
198 	knparent = find_next_ancestor(kn, NULL);
199 	if (WARN_ON(!knparent)) {
200 		dput(dentry);
201 		return ERR_PTR(-EINVAL);
202 	}
203 
204 	do {
205 		struct dentry *dtmp;
206 		struct kernfs_node *kntmp;
207 
208 		if (kn == knparent)
209 			return dentry;
210 		kntmp = find_next_ancestor(kn, knparent);
211 		if (WARN_ON(!kntmp)) {
212 			dput(dentry);
213 			return ERR_PTR(-EINVAL);
214 		}
215 		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
216 					       strlen(kntmp->name));
217 		dput(dentry);
218 		if (IS_ERR(dtmp))
219 			return dtmp;
220 		knparent = kntmp;
221 		dentry = dtmp;
222 	} while (true);
223 }
224 
kernfs_fill_super(struct super_block * sb,unsigned long magic)225 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
226 {
227 	struct kernfs_super_info *info = kernfs_info(sb);
228 	struct inode *inode;
229 	struct dentry *root;
230 
231 	info->sb = sb;
232 	/* Userspace would break if executables or devices appear on sysfs */
233 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
234 	sb->s_blocksize = PAGE_SIZE;
235 	sb->s_blocksize_bits = PAGE_SHIFT;
236 	sb->s_magic = magic;
237 	sb->s_op = &kernfs_sops;
238 	sb->s_xattr = kernfs_xattr_handlers;
239 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
240 		sb->s_export_op = &kernfs_export_ops;
241 	sb->s_time_gran = 1;
242 
243 	/* get root inode, initialize and unlock it */
244 	mutex_lock(&kernfs_mutex);
245 	inode = kernfs_get_inode(sb, info->root->kn);
246 	mutex_unlock(&kernfs_mutex);
247 	if (!inode) {
248 		pr_debug("kernfs: could not get root inode\n");
249 		return -ENOMEM;
250 	}
251 
252 	/* instantiate and link root dentry */
253 	root = d_make_root(inode);
254 	if (!root) {
255 		pr_debug("%s: could not get root dentry!\n", __func__);
256 		return -ENOMEM;
257 	}
258 	sb->s_root = root;
259 	sb->s_d_op = &kernfs_dops;
260 	return 0;
261 }
262 
kernfs_test_super(struct super_block * sb,void * data)263 static int kernfs_test_super(struct super_block *sb, void *data)
264 {
265 	struct kernfs_super_info *sb_info = kernfs_info(sb);
266 	struct kernfs_super_info *info = data;
267 
268 	return sb_info->root == info->root && sb_info->ns == info->ns;
269 }
270 
kernfs_set_super(struct super_block * sb,void * data)271 static int kernfs_set_super(struct super_block *sb, void *data)
272 {
273 	int error;
274 	error = set_anon_super(sb, data);
275 	if (!error)
276 		sb->s_fs_info = data;
277 	return error;
278 }
279 
280 /**
281  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
282  * @sb: super_block of interest
283  *
284  * Return the namespace tag associated with kernfs super_block @sb.
285  */
kernfs_super_ns(struct super_block * sb)286 const void *kernfs_super_ns(struct super_block *sb)
287 {
288 	struct kernfs_super_info *info = kernfs_info(sb);
289 
290 	return info->ns;
291 }
292 
293 /**
294  * kernfs_mount_ns - kernfs mount helper
295  * @fs_type: file_system_type of the fs being mounted
296  * @flags: mount flags specified for the mount
297  * @root: kernfs_root of the hierarchy being mounted
298  * @magic: file system specific magic number
299  * @new_sb_created: tell the caller if we allocated a new superblock
300  * @ns: optional namespace tag of the mount
301  *
302  * This is to be called from each kernfs user's file_system_type->mount()
303  * implementation, which should pass through the specified @fs_type and
304  * @flags, and specify the hierarchy and namespace tag to mount via @root
305  * and @ns, respectively.
306  *
307  * The return value can be passed to the vfs layer verbatim.
308  */
kernfs_mount_ns(struct file_system_type * fs_type,int flags,struct kernfs_root * root,unsigned long magic,bool * new_sb_created,const void * ns)309 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
310 				struct kernfs_root *root, unsigned long magic,
311 				bool *new_sb_created, const void *ns)
312 {
313 	struct super_block *sb;
314 	struct kernfs_super_info *info;
315 	int error;
316 
317 	info = kzalloc(sizeof(*info), GFP_KERNEL);
318 	if (!info)
319 		return ERR_PTR(-ENOMEM);
320 
321 	info->root = root;
322 	info->ns = ns;
323 	INIT_LIST_HEAD(&info->node);
324 
325 	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
326 			 &init_user_ns, info);
327 	if (IS_ERR(sb) || sb->s_fs_info != info)
328 		kfree(info);
329 	if (IS_ERR(sb))
330 		return ERR_CAST(sb);
331 
332 	if (new_sb_created)
333 		*new_sb_created = !sb->s_root;
334 
335 	if (!sb->s_root) {
336 		struct kernfs_super_info *info = kernfs_info(sb);
337 
338 		error = kernfs_fill_super(sb, magic);
339 		if (error) {
340 			deactivate_locked_super(sb);
341 			return ERR_PTR(error);
342 		}
343 		sb->s_flags |= SB_ACTIVE;
344 
345 		mutex_lock(&kernfs_mutex);
346 		list_add(&info->node, &root->supers);
347 		mutex_unlock(&kernfs_mutex);
348 	}
349 
350 	return dget(sb->s_root);
351 }
352 
353 /**
354  * kernfs_kill_sb - kill_sb for kernfs
355  * @sb: super_block being killed
356  *
357  * This can be used directly for file_system_type->kill_sb().  If a kernfs
358  * user needs extra cleanup, it can implement its own kill_sb() and call
359  * this function at the end.
360  */
kernfs_kill_sb(struct super_block * sb)361 void kernfs_kill_sb(struct super_block *sb)
362 {
363 	struct kernfs_super_info *info = kernfs_info(sb);
364 
365 	mutex_lock(&kernfs_mutex);
366 	list_del(&info->node);
367 	mutex_unlock(&kernfs_mutex);
368 
369 	/*
370 	 * Remove the superblock from fs_supers/s_instances
371 	 * so we can't find it, before freeing kernfs_super_info.
372 	 */
373 	kill_anon_super(sb);
374 	kfree(info);
375 }
376 
377 /**
378  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
379  * @kernfs_root: the kernfs_root in question
380  * @ns: the namespace tag
381  *
382  * Pin the superblock so the superblock won't be destroyed in subsequent
383  * operations.  This can be used to block ->kill_sb() which may be useful
384  * for kernfs users which dynamically manage superblocks.
385  *
386  * Returns NULL if there's no superblock associated to this kernfs_root, or
387  * -EINVAL if the superblock is being freed.
388  */
kernfs_pin_sb(struct kernfs_root * root,const void * ns)389 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
390 {
391 	struct kernfs_super_info *info;
392 	struct super_block *sb = NULL;
393 
394 	mutex_lock(&kernfs_mutex);
395 	list_for_each_entry(info, &root->supers, node) {
396 		if (info->ns == ns) {
397 			sb = info->sb;
398 			if (!atomic_inc_not_zero(&info->sb->s_active))
399 				sb = ERR_PTR(-EINVAL);
400 			break;
401 		}
402 	}
403 	mutex_unlock(&kernfs_mutex);
404 	return sb;
405 }
406 
kernfs_init(void)407 void __init kernfs_init(void)
408 {
409 
410 	/*
411 	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
412 	 * can access the slab lock free. This could introduce stale nodes,
413 	 * please see how kernfs_find_and_get_node_by_ino filters out stale
414 	 * nodes.
415 	 */
416 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
417 					      sizeof(struct kernfs_node),
418 					      0,
419 					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
420 					      NULL);
421 }
422