1 /*
2 * fs/kernfs/mount.c - kernfs mount implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 #include <linux/exportfs.h>
20
21 #include "kernfs-internal.h"
22
23 struct kmem_cache *kernfs_node_cache;
24
kernfs_sop_remount_fs(struct super_block * sb,int * flags,char * data)25 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
26 {
27 struct kernfs_root *root = kernfs_info(sb)->root;
28 struct kernfs_syscall_ops *scops = root->syscall_ops;
29
30 if (scops && scops->remount_fs)
31 return scops->remount_fs(root, flags, data);
32 return 0;
33 }
34
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)35 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
36 {
37 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
38 struct kernfs_syscall_ops *scops = root->syscall_ops;
39
40 if (scops && scops->show_options)
41 return scops->show_options(sf, root);
42 return 0;
43 }
44
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)45 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
46 {
47 struct kernfs_node *node = kernfs_dentry_node(dentry);
48 struct kernfs_root *root = kernfs_root(node);
49 struct kernfs_syscall_ops *scops = root->syscall_ops;
50
51 if (scops && scops->show_path)
52 return scops->show_path(sf, node, root);
53
54 seq_dentry(sf, dentry, " \t\n\\");
55 return 0;
56 }
57
58 const struct super_operations kernfs_sops = {
59 .statfs = simple_statfs,
60 .drop_inode = generic_delete_inode,
61 .evict_inode = kernfs_evict_inode,
62
63 .remount_fs = kernfs_sop_remount_fs,
64 .show_options = kernfs_sop_show_options,
65 .show_path = kernfs_sop_show_path,
66 };
67
68 /*
69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70 * number and generation
71 */
kernfs_get_node_by_id(struct kernfs_root * root,const union kernfs_node_id * id)72 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
73 const union kernfs_node_id *id)
74 {
75 struct kernfs_node *kn;
76
77 kn = kernfs_find_and_get_node_by_ino(root, id->ino);
78 if (!kn)
79 return NULL;
80 if (kn->id.generation != id->generation) {
81 kernfs_put(kn);
82 return NULL;
83 }
84 return kn;
85 }
86
kernfs_fh_get_inode(struct super_block * sb,u64 ino,u32 generation)87 static struct inode *kernfs_fh_get_inode(struct super_block *sb,
88 u64 ino, u32 generation)
89 {
90 struct kernfs_super_info *info = kernfs_info(sb);
91 struct inode *inode;
92 struct kernfs_node *kn;
93
94 if (ino == 0)
95 return ERR_PTR(-ESTALE);
96
97 kn = kernfs_find_and_get_node_by_ino(info->root, ino);
98 if (!kn)
99 return ERR_PTR(-ESTALE);
100 inode = kernfs_get_inode(sb, kn);
101 kernfs_put(kn);
102 if (!inode)
103 return ERR_PTR(-ESTALE);
104
105 if (generation && inode->i_generation != generation) {
106 /* we didn't find the right inode.. */
107 iput(inode);
108 return ERR_PTR(-ESTALE);
109 }
110 return inode;
111 }
112
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)113 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114 int fh_len, int fh_type)
115 {
116 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117 kernfs_fh_get_inode);
118 }
119
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)120 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121 int fh_len, int fh_type)
122 {
123 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124 kernfs_fh_get_inode);
125 }
126
kernfs_get_parent_dentry(struct dentry * child)127 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128 {
129 struct kernfs_node *kn = kernfs_dentry_node(child);
130
131 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132 }
133
134 static const struct export_operations kernfs_export_ops = {
135 .fh_to_dentry = kernfs_fh_to_dentry,
136 .fh_to_parent = kernfs_fh_to_parent,
137 .get_parent = kernfs_get_parent_dentry,
138 };
139
140 /**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
kernfs_root_from_sb(struct super_block * sb)147 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148 {
149 if (sb->s_op == &kernfs_sops)
150 return kernfs_info(sb)->root;
151 return NULL;
152 }
153
154 /*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
159 * node. If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)162 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163 struct kernfs_node *parent)
164 {
165 if (child == parent) {
166 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167 return NULL;
168 }
169
170 while (child->parent != parent) {
171 if (!child->parent)
172 return NULL;
173 child = child->parent;
174 }
175
176 return child;
177 }
178
179 /**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
183 */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)184 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185 struct super_block *sb)
186 {
187 struct dentry *dentry;
188 struct kernfs_node *knparent = NULL;
189
190 BUG_ON(sb->s_op != &kernfs_sops);
191
192 dentry = dget(sb->s_root);
193
194 /* Check if this is the root kernfs_node */
195 if (!kn->parent)
196 return dentry;
197
198 knparent = find_next_ancestor(kn, NULL);
199 if (WARN_ON(!knparent)) {
200 dput(dentry);
201 return ERR_PTR(-EINVAL);
202 }
203
204 do {
205 struct dentry *dtmp;
206 struct kernfs_node *kntmp;
207
208 if (kn == knparent)
209 return dentry;
210 kntmp = find_next_ancestor(kn, knparent);
211 if (WARN_ON(!kntmp)) {
212 dput(dentry);
213 return ERR_PTR(-EINVAL);
214 }
215 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
216 strlen(kntmp->name));
217 dput(dentry);
218 if (IS_ERR(dtmp))
219 return dtmp;
220 knparent = kntmp;
221 dentry = dtmp;
222 } while (true);
223 }
224
kernfs_fill_super(struct super_block * sb,unsigned long magic)225 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
226 {
227 struct kernfs_super_info *info = kernfs_info(sb);
228 struct inode *inode;
229 struct dentry *root;
230
231 info->sb = sb;
232 /* Userspace would break if executables or devices appear on sysfs */
233 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
234 sb->s_blocksize = PAGE_SIZE;
235 sb->s_blocksize_bits = PAGE_SHIFT;
236 sb->s_magic = magic;
237 sb->s_op = &kernfs_sops;
238 sb->s_xattr = kernfs_xattr_handlers;
239 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
240 sb->s_export_op = &kernfs_export_ops;
241 sb->s_time_gran = 1;
242
243 /* get root inode, initialize and unlock it */
244 mutex_lock(&kernfs_mutex);
245 inode = kernfs_get_inode(sb, info->root->kn);
246 mutex_unlock(&kernfs_mutex);
247 if (!inode) {
248 pr_debug("kernfs: could not get root inode\n");
249 return -ENOMEM;
250 }
251
252 /* instantiate and link root dentry */
253 root = d_make_root(inode);
254 if (!root) {
255 pr_debug("%s: could not get root dentry!\n", __func__);
256 return -ENOMEM;
257 }
258 sb->s_root = root;
259 sb->s_d_op = &kernfs_dops;
260 return 0;
261 }
262
kernfs_test_super(struct super_block * sb,void * data)263 static int kernfs_test_super(struct super_block *sb, void *data)
264 {
265 struct kernfs_super_info *sb_info = kernfs_info(sb);
266 struct kernfs_super_info *info = data;
267
268 return sb_info->root == info->root && sb_info->ns == info->ns;
269 }
270
kernfs_set_super(struct super_block * sb,void * data)271 static int kernfs_set_super(struct super_block *sb, void *data)
272 {
273 int error;
274 error = set_anon_super(sb, data);
275 if (!error)
276 sb->s_fs_info = data;
277 return error;
278 }
279
280 /**
281 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
282 * @sb: super_block of interest
283 *
284 * Return the namespace tag associated with kernfs super_block @sb.
285 */
kernfs_super_ns(struct super_block * sb)286 const void *kernfs_super_ns(struct super_block *sb)
287 {
288 struct kernfs_super_info *info = kernfs_info(sb);
289
290 return info->ns;
291 }
292
293 /**
294 * kernfs_mount_ns - kernfs mount helper
295 * @fs_type: file_system_type of the fs being mounted
296 * @flags: mount flags specified for the mount
297 * @root: kernfs_root of the hierarchy being mounted
298 * @magic: file system specific magic number
299 * @new_sb_created: tell the caller if we allocated a new superblock
300 * @ns: optional namespace tag of the mount
301 *
302 * This is to be called from each kernfs user's file_system_type->mount()
303 * implementation, which should pass through the specified @fs_type and
304 * @flags, and specify the hierarchy and namespace tag to mount via @root
305 * and @ns, respectively.
306 *
307 * The return value can be passed to the vfs layer verbatim.
308 */
kernfs_mount_ns(struct file_system_type * fs_type,int flags,struct kernfs_root * root,unsigned long magic,bool * new_sb_created,const void * ns)309 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
310 struct kernfs_root *root, unsigned long magic,
311 bool *new_sb_created, const void *ns)
312 {
313 struct super_block *sb;
314 struct kernfs_super_info *info;
315 int error;
316
317 info = kzalloc(sizeof(*info), GFP_KERNEL);
318 if (!info)
319 return ERR_PTR(-ENOMEM);
320
321 info->root = root;
322 info->ns = ns;
323 INIT_LIST_HEAD(&info->node);
324
325 sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
326 &init_user_ns, info);
327 if (IS_ERR(sb) || sb->s_fs_info != info)
328 kfree(info);
329 if (IS_ERR(sb))
330 return ERR_CAST(sb);
331
332 if (new_sb_created)
333 *new_sb_created = !sb->s_root;
334
335 if (!sb->s_root) {
336 struct kernfs_super_info *info = kernfs_info(sb);
337
338 error = kernfs_fill_super(sb, magic);
339 if (error) {
340 deactivate_locked_super(sb);
341 return ERR_PTR(error);
342 }
343 sb->s_flags |= SB_ACTIVE;
344
345 mutex_lock(&kernfs_mutex);
346 list_add(&info->node, &root->supers);
347 mutex_unlock(&kernfs_mutex);
348 }
349
350 return dget(sb->s_root);
351 }
352
353 /**
354 * kernfs_kill_sb - kill_sb for kernfs
355 * @sb: super_block being killed
356 *
357 * This can be used directly for file_system_type->kill_sb(). If a kernfs
358 * user needs extra cleanup, it can implement its own kill_sb() and call
359 * this function at the end.
360 */
kernfs_kill_sb(struct super_block * sb)361 void kernfs_kill_sb(struct super_block *sb)
362 {
363 struct kernfs_super_info *info = kernfs_info(sb);
364
365 mutex_lock(&kernfs_mutex);
366 list_del(&info->node);
367 mutex_unlock(&kernfs_mutex);
368
369 /*
370 * Remove the superblock from fs_supers/s_instances
371 * so we can't find it, before freeing kernfs_super_info.
372 */
373 kill_anon_super(sb);
374 kfree(info);
375 }
376
377 /**
378 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
379 * @kernfs_root: the kernfs_root in question
380 * @ns: the namespace tag
381 *
382 * Pin the superblock so the superblock won't be destroyed in subsequent
383 * operations. This can be used to block ->kill_sb() which may be useful
384 * for kernfs users which dynamically manage superblocks.
385 *
386 * Returns NULL if there's no superblock associated to this kernfs_root, or
387 * -EINVAL if the superblock is being freed.
388 */
kernfs_pin_sb(struct kernfs_root * root,const void * ns)389 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
390 {
391 struct kernfs_super_info *info;
392 struct super_block *sb = NULL;
393
394 mutex_lock(&kernfs_mutex);
395 list_for_each_entry(info, &root->supers, node) {
396 if (info->ns == ns) {
397 sb = info->sb;
398 if (!atomic_inc_not_zero(&info->sb->s_active))
399 sb = ERR_PTR(-EINVAL);
400 break;
401 }
402 }
403 mutex_unlock(&kernfs_mutex);
404 return sb;
405 }
406
kernfs_init(void)407 void __init kernfs_init(void)
408 {
409
410 /*
411 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
412 * can access the slab lock free. This could introduce stale nodes,
413 * please see how kernfs_find_and_get_node_by_ino filters out stale
414 * nodes.
415 */
416 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
417 sizeof(struct kernfs_node),
418 0,
419 SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
420 NULL);
421 }
422