1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_SPINLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84 * Must be called from non-preemptible context
85 */
kvm_arm_get_running_vcpu(void)86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88 return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 */
kvm_get_running_vcpus(void)94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96 return &kvm_arm_running_vcpu;
97 }
98
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
kvm_arch_hardware_setup(void)104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
kvm_arch_check_processor_compat(void * rtn)109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111 *(int *)rtn = 0;
112 }
113
114
115 /**
116 * kvm_arch_init_vm - initializes a VM data structure
117 * @kvm: pointer to the KVM struct
118 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121 int ret, cpu;
122
123 if (type)
124 return -EINVAL;
125
126 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127 if (!kvm->arch.last_vcpu_ran)
128 return -ENOMEM;
129
130 for_each_possible_cpu(cpu)
131 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 kvm_vgic_early_init(kvm);
142
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid_gen = 0;
145
146 /* The maximum number of VCPUs is limited by the host's GIC model */
147 kvm->arch.max_vcpus = vgic_present ?
148 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150 return ret;
151 out_free_stage2_pgd:
152 kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154 free_percpu(kvm->arch.last_vcpu_ran);
155 kvm->arch.last_vcpu_ran = NULL;
156 return ret;
157 }
158
kvm_arch_has_vcpu_debugfs(void)159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161 return false;
162 }
163
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166 return 0;
167 }
168
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171 return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176 * kvm_arch_destroy_vm - destroy the VM data structure
177 * @kvm: pointer to the KVM struct
178 */
kvm_arch_destroy_vm(struct kvm * kvm)179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181 int i;
182
183 kvm_vgic_destroy(kvm);
184
185 free_percpu(kvm->arch.last_vcpu_ran);
186 kvm->arch.last_vcpu_ran = NULL;
187
188 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189 if (kvm->vcpus[i]) {
190 kvm_arch_vcpu_free(kvm->vcpus[i]);
191 kvm->vcpus[i] = NULL;
192 }
193 }
194 atomic_set(&kvm->online_vcpus, 0);
195 }
196
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199 int r;
200 switch (ext) {
201 case KVM_CAP_IRQCHIP:
202 r = vgic_present;
203 break;
204 case KVM_CAP_IOEVENTFD:
205 case KVM_CAP_DEVICE_CTRL:
206 case KVM_CAP_USER_MEMORY:
207 case KVM_CAP_SYNC_MMU:
208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 case KVM_CAP_ONE_REG:
210 case KVM_CAP_ARM_PSCI:
211 case KVM_CAP_ARM_PSCI_0_2:
212 case KVM_CAP_READONLY_MEM:
213 case KVM_CAP_MP_STATE:
214 case KVM_CAP_IMMEDIATE_EXIT:
215 r = 1;
216 break;
217 case KVM_CAP_ARM_SET_DEVICE_ADDR:
218 r = 1;
219 break;
220 case KVM_CAP_NR_VCPUS:
221 r = num_online_cpus();
222 break;
223 case KVM_CAP_MAX_VCPUS:
224 r = KVM_MAX_VCPUS;
225 break;
226 case KVM_CAP_MAX_VCPU_ID:
227 r = KVM_MAX_VCPU_ID;
228 break;
229 case KVM_CAP_NR_MEMSLOTS:
230 r = KVM_USER_MEM_SLOTS;
231 break;
232 case KVM_CAP_MSI_DEVID:
233 if (!kvm)
234 r = -EINVAL;
235 else
236 r = kvm->arch.vgic.msis_require_devid;
237 break;
238 case KVM_CAP_ARM_USER_IRQ:
239 /*
240 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
241 * (bump this number if adding more devices)
242 */
243 r = 1;
244 break;
245 default:
246 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
247 break;
248 }
249 return r;
250 }
251
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)252 long kvm_arch_dev_ioctl(struct file *filp,
253 unsigned int ioctl, unsigned long arg)
254 {
255 return -EINVAL;
256 }
257
kvm_arch_alloc_vm(void)258 struct kvm *kvm_arch_alloc_vm(void)
259 {
260 if (!has_vhe())
261 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
262
263 return vzalloc(sizeof(struct kvm));
264 }
265
kvm_arch_free_vm(struct kvm * kvm)266 void kvm_arch_free_vm(struct kvm *kvm)
267 {
268 if (!has_vhe())
269 kfree(kvm);
270 else
271 vfree(kvm);
272 }
273
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)274 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
275 {
276 int err;
277 struct kvm_vcpu *vcpu;
278
279 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
280 err = -EBUSY;
281 goto out;
282 }
283
284 if (id >= kvm->arch.max_vcpus) {
285 err = -EINVAL;
286 goto out;
287 }
288
289 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
290 if (!vcpu) {
291 err = -ENOMEM;
292 goto out;
293 }
294
295 err = kvm_vcpu_init(vcpu, kvm, id);
296 if (err)
297 goto free_vcpu;
298
299 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
300 if (err)
301 goto vcpu_uninit;
302
303 return vcpu;
304 vcpu_uninit:
305 kvm_vcpu_uninit(vcpu);
306 free_vcpu:
307 kmem_cache_free(kvm_vcpu_cache, vcpu);
308 out:
309 return ERR_PTR(err);
310 }
311
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)312 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
313 {
314 }
315
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)316 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
317 {
318 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
319 static_branch_dec(&userspace_irqchip_in_use);
320
321 kvm_mmu_free_memory_caches(vcpu);
322 kvm_timer_vcpu_terminate(vcpu);
323 kvm_pmu_vcpu_destroy(vcpu);
324 kvm_vcpu_uninit(vcpu);
325 kmem_cache_free(kvm_vcpu_cache, vcpu);
326 }
327
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)328 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
329 {
330 kvm_arch_vcpu_free(vcpu);
331 }
332
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)333 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
334 {
335 return kvm_timer_is_pending(vcpu);
336 }
337
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)338 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
339 {
340 kvm_timer_schedule(vcpu);
341 /*
342 * If we're about to block (most likely because we've just hit a
343 * WFI), we need to sync back the state of the GIC CPU interface
344 * so that we have the lastest PMR and group enables. This ensures
345 * that kvm_arch_vcpu_runnable has up-to-date data to decide
346 * whether we have pending interrupts.
347 */
348 preempt_disable();
349 kvm_vgic_vmcr_sync(vcpu);
350 preempt_enable();
351
352 kvm_vgic_v4_enable_doorbell(vcpu);
353 }
354
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)355 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
356 {
357 kvm_timer_unschedule(vcpu);
358 kvm_vgic_v4_disable_doorbell(vcpu);
359 }
360
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)361 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
362 {
363 /* Force users to call KVM_ARM_VCPU_INIT */
364 vcpu->arch.target = -1;
365 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
366
367 /* Set up the timer */
368 kvm_timer_vcpu_init(vcpu);
369
370 kvm_arm_reset_debug_ptr(vcpu);
371
372 return kvm_vgic_vcpu_init(vcpu);
373 }
374
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)375 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
376 {
377 int *last_ran;
378
379 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
380
381 /*
382 * We might get preempted before the vCPU actually runs, but
383 * over-invalidation doesn't affect correctness.
384 */
385 if (*last_ran != vcpu->vcpu_id) {
386 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
387 *last_ran = vcpu->vcpu_id;
388 }
389
390 vcpu->cpu = cpu;
391 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
392
393 kvm_arm_set_running_vcpu(vcpu);
394 kvm_vgic_load(vcpu);
395 kvm_timer_vcpu_load(vcpu);
396 kvm_vcpu_load_sysregs(vcpu);
397 kvm_arch_vcpu_load_fp(vcpu);
398
399 if (single_task_running())
400 vcpu_clear_wfe_traps(vcpu);
401 else
402 vcpu_set_wfe_traps(vcpu);
403 }
404
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)405 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
406 {
407 kvm_arch_vcpu_put_fp(vcpu);
408 kvm_vcpu_put_sysregs(vcpu);
409 kvm_timer_vcpu_put(vcpu);
410 kvm_vgic_put(vcpu);
411
412 vcpu->cpu = -1;
413
414 kvm_arm_set_running_vcpu(NULL);
415 }
416
vcpu_power_off(struct kvm_vcpu * vcpu)417 static void vcpu_power_off(struct kvm_vcpu *vcpu)
418 {
419 vcpu->arch.power_off = true;
420 kvm_make_request(KVM_REQ_SLEEP, vcpu);
421 kvm_vcpu_kick(vcpu);
422 }
423
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)424 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
425 struct kvm_mp_state *mp_state)
426 {
427 if (vcpu->arch.power_off)
428 mp_state->mp_state = KVM_MP_STATE_STOPPED;
429 else
430 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
431
432 return 0;
433 }
434
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)435 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
436 struct kvm_mp_state *mp_state)
437 {
438 int ret = 0;
439
440 switch (mp_state->mp_state) {
441 case KVM_MP_STATE_RUNNABLE:
442 vcpu->arch.power_off = false;
443 break;
444 case KVM_MP_STATE_STOPPED:
445 vcpu_power_off(vcpu);
446 break;
447 default:
448 ret = -EINVAL;
449 }
450
451 return ret;
452 }
453
454 /**
455 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
456 * @v: The VCPU pointer
457 *
458 * If the guest CPU is not waiting for interrupts or an interrupt line is
459 * asserted, the CPU is by definition runnable.
460 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)461 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
462 {
463 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
464 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
465 && !v->arch.power_off && !v->arch.pause);
466 }
467
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)468 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
469 {
470 return vcpu_mode_priv(vcpu);
471 }
472
473 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)474 static void exit_vm_noop(void *info)
475 {
476 }
477
force_vm_exit(const cpumask_t * mask)478 void force_vm_exit(const cpumask_t *mask)
479 {
480 preempt_disable();
481 smp_call_function_many(mask, exit_vm_noop, NULL, true);
482 preempt_enable();
483 }
484
485 /**
486 * need_new_vmid_gen - check that the VMID is still valid
487 * @kvm: The VM's VMID to check
488 *
489 * return true if there is a new generation of VMIDs being used
490 *
491 * The hardware supports only 256 values with the value zero reserved for the
492 * host, so we check if an assigned value belongs to a previous generation,
493 * which which requires us to assign a new value. If we're the first to use a
494 * VMID for the new generation, we must flush necessary caches and TLBs on all
495 * CPUs.
496 */
need_new_vmid_gen(struct kvm * kvm)497 static bool need_new_vmid_gen(struct kvm *kvm)
498 {
499 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
500 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
501 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
502 }
503
504 /**
505 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
506 * @kvm The guest that we are about to run
507 *
508 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
509 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
510 * caches and TLBs.
511 */
update_vttbr(struct kvm * kvm)512 static void update_vttbr(struct kvm *kvm)
513 {
514 phys_addr_t pgd_phys;
515 u64 vmid;
516
517 if (!need_new_vmid_gen(kvm))
518 return;
519
520 spin_lock(&kvm_vmid_lock);
521
522 /*
523 * We need to re-check the vmid_gen here to ensure that if another vcpu
524 * already allocated a valid vmid for this vm, then this vcpu should
525 * use the same vmid.
526 */
527 if (!need_new_vmid_gen(kvm)) {
528 spin_unlock(&kvm_vmid_lock);
529 return;
530 }
531
532 /* First user of a new VMID generation? */
533 if (unlikely(kvm_next_vmid == 0)) {
534 atomic64_inc(&kvm_vmid_gen);
535 kvm_next_vmid = 1;
536
537 /*
538 * On SMP we know no other CPUs can use this CPU's or each
539 * other's VMID after force_vm_exit returns since the
540 * kvm_vmid_lock blocks them from reentry to the guest.
541 */
542 force_vm_exit(cpu_all_mask);
543 /*
544 * Now broadcast TLB + ICACHE invalidation over the inner
545 * shareable domain to make sure all data structures are
546 * clean.
547 */
548 kvm_call_hyp(__kvm_flush_vm_context);
549 }
550
551 kvm->arch.vmid = kvm_next_vmid;
552 kvm_next_vmid++;
553 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
554
555 /* update vttbr to be used with the new vmid */
556 pgd_phys = virt_to_phys(kvm->arch.pgd);
557 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
558 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
559 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
560
561 smp_wmb();
562 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
563
564 spin_unlock(&kvm_vmid_lock);
565 }
566
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)567 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
568 {
569 struct kvm *kvm = vcpu->kvm;
570 int ret = 0;
571
572 if (likely(vcpu->arch.has_run_once))
573 return 0;
574
575 vcpu->arch.has_run_once = true;
576
577 kvm_arm_vcpu_init_debug(vcpu);
578
579 if (likely(irqchip_in_kernel(kvm))) {
580 /*
581 * Map the VGIC hardware resources before running a vcpu the
582 * first time on this VM.
583 */
584 if (unlikely(!vgic_ready(kvm))) {
585 ret = kvm_vgic_map_resources(kvm);
586 if (ret)
587 return ret;
588 }
589 } else {
590 /*
591 * Tell the rest of the code that there are userspace irqchip
592 * VMs in the wild.
593 */
594 static_branch_inc(&userspace_irqchip_in_use);
595 }
596
597 ret = kvm_timer_enable(vcpu);
598 if (ret)
599 return ret;
600
601 ret = kvm_arm_pmu_v3_enable(vcpu);
602
603 return ret;
604 }
605
kvm_arch_intc_initialized(struct kvm * kvm)606 bool kvm_arch_intc_initialized(struct kvm *kvm)
607 {
608 return vgic_initialized(kvm);
609 }
610
kvm_arm_halt_guest(struct kvm * kvm)611 void kvm_arm_halt_guest(struct kvm *kvm)
612 {
613 int i;
614 struct kvm_vcpu *vcpu;
615
616 kvm_for_each_vcpu(i, vcpu, kvm)
617 vcpu->arch.pause = true;
618 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
619 }
620
kvm_arm_resume_guest(struct kvm * kvm)621 void kvm_arm_resume_guest(struct kvm *kvm)
622 {
623 int i;
624 struct kvm_vcpu *vcpu;
625
626 kvm_for_each_vcpu(i, vcpu, kvm) {
627 vcpu->arch.pause = false;
628 swake_up_one(kvm_arch_vcpu_wq(vcpu));
629 }
630 }
631
vcpu_req_sleep(struct kvm_vcpu * vcpu)632 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
633 {
634 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
635
636 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
637 (!vcpu->arch.pause)));
638
639 if (vcpu->arch.power_off || vcpu->arch.pause) {
640 /* Awaken to handle a signal, request we sleep again later. */
641 kvm_make_request(KVM_REQ_SLEEP, vcpu);
642 }
643
644 /*
645 * Make sure we will observe a potential reset request if we've
646 * observed a change to the power state. Pairs with the smp_wmb() in
647 * kvm_psci_vcpu_on().
648 */
649 smp_rmb();
650 }
651
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)652 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
653 {
654 return vcpu->arch.target >= 0;
655 }
656
check_vcpu_requests(struct kvm_vcpu * vcpu)657 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
658 {
659 if (kvm_request_pending(vcpu)) {
660 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
661 vcpu_req_sleep(vcpu);
662
663 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
664 kvm_reset_vcpu(vcpu);
665
666 /*
667 * Clear IRQ_PENDING requests that were made to guarantee
668 * that a VCPU sees new virtual interrupts.
669 */
670 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
671 }
672 }
673
674 /**
675 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
676 * @vcpu: The VCPU pointer
677 * @run: The kvm_run structure pointer used for userspace state exchange
678 *
679 * This function is called through the VCPU_RUN ioctl called from user space. It
680 * will execute VM code in a loop until the time slice for the process is used
681 * or some emulation is needed from user space in which case the function will
682 * return with return value 0 and with the kvm_run structure filled in with the
683 * required data for the requested emulation.
684 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)685 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
686 {
687 int ret;
688
689 if (unlikely(!kvm_vcpu_initialized(vcpu)))
690 return -ENOEXEC;
691
692 ret = kvm_vcpu_first_run_init(vcpu);
693 if (ret)
694 return ret;
695
696 if (run->exit_reason == KVM_EXIT_MMIO) {
697 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
698 if (ret)
699 return ret;
700 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
701 return 0;
702 }
703
704 if (run->immediate_exit)
705 return -EINTR;
706
707 vcpu_load(vcpu);
708
709 kvm_sigset_activate(vcpu);
710
711 ret = 1;
712 run->exit_reason = KVM_EXIT_UNKNOWN;
713 while (ret > 0) {
714 /*
715 * Check conditions before entering the guest
716 */
717 cond_resched();
718
719 update_vttbr(vcpu->kvm);
720
721 check_vcpu_requests(vcpu);
722
723 /*
724 * Preparing the interrupts to be injected also
725 * involves poking the GIC, which must be done in a
726 * non-preemptible context.
727 */
728 preempt_disable();
729
730 kvm_pmu_flush_hwstate(vcpu);
731
732 local_irq_disable();
733
734 kvm_vgic_flush_hwstate(vcpu);
735
736 /*
737 * Exit if we have a signal pending so that we can deliver the
738 * signal to user space.
739 */
740 if (signal_pending(current)) {
741 ret = -EINTR;
742 run->exit_reason = KVM_EXIT_INTR;
743 }
744
745 /*
746 * If we're using a userspace irqchip, then check if we need
747 * to tell a userspace irqchip about timer or PMU level
748 * changes and if so, exit to userspace (the actual level
749 * state gets updated in kvm_timer_update_run and
750 * kvm_pmu_update_run below).
751 */
752 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
753 if (kvm_timer_should_notify_user(vcpu) ||
754 kvm_pmu_should_notify_user(vcpu)) {
755 ret = -EINTR;
756 run->exit_reason = KVM_EXIT_INTR;
757 }
758 }
759
760 /*
761 * Ensure we set mode to IN_GUEST_MODE after we disable
762 * interrupts and before the final VCPU requests check.
763 * See the comment in kvm_vcpu_exiting_guest_mode() and
764 * Documentation/virtual/kvm/vcpu-requests.rst
765 */
766 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
767
768 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
769 kvm_request_pending(vcpu)) {
770 vcpu->mode = OUTSIDE_GUEST_MODE;
771 isb(); /* Ensure work in x_flush_hwstate is committed */
772 kvm_pmu_sync_hwstate(vcpu);
773 if (static_branch_unlikely(&userspace_irqchip_in_use))
774 kvm_timer_sync_hwstate(vcpu);
775 kvm_vgic_sync_hwstate(vcpu);
776 local_irq_enable();
777 preempt_enable();
778 continue;
779 }
780
781 kvm_arm_setup_debug(vcpu);
782
783 /**************************************************************
784 * Enter the guest
785 */
786 trace_kvm_entry(*vcpu_pc(vcpu));
787 guest_enter_irqoff();
788
789 if (has_vhe()) {
790 kvm_arm_vhe_guest_enter();
791 ret = kvm_vcpu_run_vhe(vcpu);
792 kvm_arm_vhe_guest_exit();
793 } else {
794 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
795 }
796
797 vcpu->mode = OUTSIDE_GUEST_MODE;
798 vcpu->stat.exits++;
799 /*
800 * Back from guest
801 *************************************************************/
802
803 kvm_arm_clear_debug(vcpu);
804
805 /*
806 * We must sync the PMU state before the vgic state so
807 * that the vgic can properly sample the updated state of the
808 * interrupt line.
809 */
810 kvm_pmu_sync_hwstate(vcpu);
811
812 /*
813 * Sync the vgic state before syncing the timer state because
814 * the timer code needs to know if the virtual timer
815 * interrupts are active.
816 */
817 kvm_vgic_sync_hwstate(vcpu);
818
819 /*
820 * Sync the timer hardware state before enabling interrupts as
821 * we don't want vtimer interrupts to race with syncing the
822 * timer virtual interrupt state.
823 */
824 if (static_branch_unlikely(&userspace_irqchip_in_use))
825 kvm_timer_sync_hwstate(vcpu);
826
827 kvm_arch_vcpu_ctxsync_fp(vcpu);
828
829 /*
830 * We may have taken a host interrupt in HYP mode (ie
831 * while executing the guest). This interrupt is still
832 * pending, as we haven't serviced it yet!
833 *
834 * We're now back in SVC mode, with interrupts
835 * disabled. Enabling the interrupts now will have
836 * the effect of taking the interrupt again, in SVC
837 * mode this time.
838 */
839 local_irq_enable();
840
841 /*
842 * We do local_irq_enable() before calling guest_exit() so
843 * that if a timer interrupt hits while running the guest we
844 * account that tick as being spent in the guest. We enable
845 * preemption after calling guest_exit() so that if we get
846 * preempted we make sure ticks after that is not counted as
847 * guest time.
848 */
849 guest_exit();
850 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
851
852 /* Exit types that need handling before we can be preempted */
853 handle_exit_early(vcpu, run, ret);
854
855 preempt_enable();
856
857 ret = handle_exit(vcpu, run, ret);
858 }
859
860 /* Tell userspace about in-kernel device output levels */
861 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
862 kvm_timer_update_run(vcpu);
863 kvm_pmu_update_run(vcpu);
864 }
865
866 kvm_sigset_deactivate(vcpu);
867
868 vcpu_put(vcpu);
869 return ret;
870 }
871
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)872 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
873 {
874 int bit_index;
875 bool set;
876 unsigned long *hcr;
877
878 if (number == KVM_ARM_IRQ_CPU_IRQ)
879 bit_index = __ffs(HCR_VI);
880 else /* KVM_ARM_IRQ_CPU_FIQ */
881 bit_index = __ffs(HCR_VF);
882
883 hcr = vcpu_hcr(vcpu);
884 if (level)
885 set = test_and_set_bit(bit_index, hcr);
886 else
887 set = test_and_clear_bit(bit_index, hcr);
888
889 /*
890 * If we didn't change anything, no need to wake up or kick other CPUs
891 */
892 if (set == level)
893 return 0;
894
895 /*
896 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
897 * trigger a world-switch round on the running physical CPU to set the
898 * virtual IRQ/FIQ fields in the HCR appropriately.
899 */
900 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
901 kvm_vcpu_kick(vcpu);
902
903 return 0;
904 }
905
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)906 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
907 bool line_status)
908 {
909 u32 irq = irq_level->irq;
910 unsigned int irq_type, vcpu_idx, irq_num;
911 int nrcpus = atomic_read(&kvm->online_vcpus);
912 struct kvm_vcpu *vcpu = NULL;
913 bool level = irq_level->level;
914
915 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
916 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
917 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
918
919 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
920
921 switch (irq_type) {
922 case KVM_ARM_IRQ_TYPE_CPU:
923 if (irqchip_in_kernel(kvm))
924 return -ENXIO;
925
926 if (vcpu_idx >= nrcpus)
927 return -EINVAL;
928
929 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
930 if (!vcpu)
931 return -EINVAL;
932
933 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
934 return -EINVAL;
935
936 return vcpu_interrupt_line(vcpu, irq_num, level);
937 case KVM_ARM_IRQ_TYPE_PPI:
938 if (!irqchip_in_kernel(kvm))
939 return -ENXIO;
940
941 if (vcpu_idx >= nrcpus)
942 return -EINVAL;
943
944 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
945 if (!vcpu)
946 return -EINVAL;
947
948 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
949 return -EINVAL;
950
951 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
952 case KVM_ARM_IRQ_TYPE_SPI:
953 if (!irqchip_in_kernel(kvm))
954 return -ENXIO;
955
956 if (irq_num < VGIC_NR_PRIVATE_IRQS)
957 return -EINVAL;
958
959 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
960 }
961
962 return -EINVAL;
963 }
964
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)965 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
966 const struct kvm_vcpu_init *init)
967 {
968 unsigned int i, ret;
969 int phys_target = kvm_target_cpu();
970
971 if (init->target != phys_target)
972 return -EINVAL;
973
974 /*
975 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
976 * use the same target.
977 */
978 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
979 return -EINVAL;
980
981 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
982 for (i = 0; i < sizeof(init->features) * 8; i++) {
983 bool set = (init->features[i / 32] & (1 << (i % 32)));
984
985 if (set && i >= KVM_VCPU_MAX_FEATURES)
986 return -ENOENT;
987
988 /*
989 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
990 * use the same feature set.
991 */
992 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
993 test_bit(i, vcpu->arch.features) != set)
994 return -EINVAL;
995
996 if (set)
997 set_bit(i, vcpu->arch.features);
998 }
999
1000 vcpu->arch.target = phys_target;
1001
1002 /* Now we know what it is, we can reset it. */
1003 ret = kvm_reset_vcpu(vcpu);
1004 if (ret) {
1005 vcpu->arch.target = -1;
1006 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1007 }
1008
1009 return ret;
1010 }
1011
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1012 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1013 struct kvm_vcpu_init *init)
1014 {
1015 int ret;
1016
1017 ret = kvm_vcpu_set_target(vcpu, init);
1018 if (ret)
1019 return ret;
1020
1021 /*
1022 * Ensure a rebooted VM will fault in RAM pages and detect if the
1023 * guest MMU is turned off and flush the caches as needed.
1024 */
1025 if (vcpu->arch.has_run_once)
1026 stage2_unmap_vm(vcpu->kvm);
1027
1028 vcpu_reset_hcr(vcpu);
1029
1030 /*
1031 * Handle the "start in power-off" case.
1032 */
1033 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1034 vcpu_power_off(vcpu);
1035 else
1036 vcpu->arch.power_off = false;
1037
1038 return 0;
1039 }
1040
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1041 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1042 struct kvm_device_attr *attr)
1043 {
1044 int ret = -ENXIO;
1045
1046 switch (attr->group) {
1047 default:
1048 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1049 break;
1050 }
1051
1052 return ret;
1053 }
1054
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1055 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1056 struct kvm_device_attr *attr)
1057 {
1058 int ret = -ENXIO;
1059
1060 switch (attr->group) {
1061 default:
1062 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1063 break;
1064 }
1065
1066 return ret;
1067 }
1068
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1069 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1070 struct kvm_device_attr *attr)
1071 {
1072 int ret = -ENXIO;
1073
1074 switch (attr->group) {
1075 default:
1076 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1077 break;
1078 }
1079
1080 return ret;
1081 }
1082
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1083 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1084 struct kvm_vcpu_events *events)
1085 {
1086 memset(events, 0, sizeof(*events));
1087
1088 return __kvm_arm_vcpu_get_events(vcpu, events);
1089 }
1090
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1091 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1092 struct kvm_vcpu_events *events)
1093 {
1094 int i;
1095
1096 /* check whether the reserved field is zero */
1097 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1098 if (events->reserved[i])
1099 return -EINVAL;
1100
1101 /* check whether the pad field is zero */
1102 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1103 if (events->exception.pad[i])
1104 return -EINVAL;
1105
1106 return __kvm_arm_vcpu_set_events(vcpu, events);
1107 }
1108
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1109 long kvm_arch_vcpu_ioctl(struct file *filp,
1110 unsigned int ioctl, unsigned long arg)
1111 {
1112 struct kvm_vcpu *vcpu = filp->private_data;
1113 void __user *argp = (void __user *)arg;
1114 struct kvm_device_attr attr;
1115 long r;
1116
1117 switch (ioctl) {
1118 case KVM_ARM_VCPU_INIT: {
1119 struct kvm_vcpu_init init;
1120
1121 r = -EFAULT;
1122 if (copy_from_user(&init, argp, sizeof(init)))
1123 break;
1124
1125 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1126 break;
1127 }
1128 case KVM_SET_ONE_REG:
1129 case KVM_GET_ONE_REG: {
1130 struct kvm_one_reg reg;
1131
1132 r = -ENOEXEC;
1133 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1134 break;
1135
1136 r = -EFAULT;
1137 if (copy_from_user(®, argp, sizeof(reg)))
1138 break;
1139
1140 /*
1141 * We could owe a reset due to PSCI. Handle the pending reset
1142 * here to ensure userspace register accesses are ordered after
1143 * the reset.
1144 */
1145 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1146 kvm_reset_vcpu(vcpu);
1147
1148 if (ioctl == KVM_SET_ONE_REG)
1149 r = kvm_arm_set_reg(vcpu, ®);
1150 else
1151 r = kvm_arm_get_reg(vcpu, ®);
1152 break;
1153 }
1154 case KVM_GET_REG_LIST: {
1155 struct kvm_reg_list __user *user_list = argp;
1156 struct kvm_reg_list reg_list;
1157 unsigned n;
1158
1159 r = -ENOEXEC;
1160 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1161 break;
1162
1163 r = -EFAULT;
1164 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1165 break;
1166 n = reg_list.n;
1167 reg_list.n = kvm_arm_num_regs(vcpu);
1168 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1169 break;
1170 r = -E2BIG;
1171 if (n < reg_list.n)
1172 break;
1173 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1174 break;
1175 }
1176 case KVM_SET_DEVICE_ATTR: {
1177 r = -EFAULT;
1178 if (copy_from_user(&attr, argp, sizeof(attr)))
1179 break;
1180 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1181 break;
1182 }
1183 case KVM_GET_DEVICE_ATTR: {
1184 r = -EFAULT;
1185 if (copy_from_user(&attr, argp, sizeof(attr)))
1186 break;
1187 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1188 break;
1189 }
1190 case KVM_HAS_DEVICE_ATTR: {
1191 r = -EFAULT;
1192 if (copy_from_user(&attr, argp, sizeof(attr)))
1193 break;
1194 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1195 break;
1196 }
1197 case KVM_GET_VCPU_EVENTS: {
1198 struct kvm_vcpu_events events;
1199
1200 if (kvm_arm_vcpu_get_events(vcpu, &events))
1201 return -EINVAL;
1202
1203 if (copy_to_user(argp, &events, sizeof(events)))
1204 return -EFAULT;
1205
1206 return 0;
1207 }
1208 case KVM_SET_VCPU_EVENTS: {
1209 struct kvm_vcpu_events events;
1210
1211 if (copy_from_user(&events, argp, sizeof(events)))
1212 return -EFAULT;
1213
1214 return kvm_arm_vcpu_set_events(vcpu, &events);
1215 }
1216 default:
1217 r = -EINVAL;
1218 }
1219
1220 return r;
1221 }
1222
1223 /**
1224 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1225 * @kvm: kvm instance
1226 * @log: slot id and address to which we copy the log
1227 *
1228 * Steps 1-4 below provide general overview of dirty page logging. See
1229 * kvm_get_dirty_log_protect() function description for additional details.
1230 *
1231 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1232 * always flush the TLB (step 4) even if previous step failed and the dirty
1233 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1234 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1235 * writes will be marked dirty for next log read.
1236 *
1237 * 1. Take a snapshot of the bit and clear it if needed.
1238 * 2. Write protect the corresponding page.
1239 * 3. Copy the snapshot to the userspace.
1240 * 4. Flush TLB's if needed.
1241 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1242 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1243 {
1244 bool is_dirty = false;
1245 int r;
1246
1247 mutex_lock(&kvm->slots_lock);
1248
1249 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1250
1251 if (is_dirty)
1252 kvm_flush_remote_tlbs(kvm);
1253
1254 mutex_unlock(&kvm->slots_lock);
1255 return r;
1256 }
1257
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1258 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1259 struct kvm_arm_device_addr *dev_addr)
1260 {
1261 unsigned long dev_id, type;
1262
1263 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1264 KVM_ARM_DEVICE_ID_SHIFT;
1265 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1266 KVM_ARM_DEVICE_TYPE_SHIFT;
1267
1268 switch (dev_id) {
1269 case KVM_ARM_DEVICE_VGIC_V2:
1270 if (!vgic_present)
1271 return -ENXIO;
1272 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1273 default:
1274 return -ENODEV;
1275 }
1276 }
1277
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1278 long kvm_arch_vm_ioctl(struct file *filp,
1279 unsigned int ioctl, unsigned long arg)
1280 {
1281 struct kvm *kvm = filp->private_data;
1282 void __user *argp = (void __user *)arg;
1283
1284 switch (ioctl) {
1285 case KVM_CREATE_IRQCHIP: {
1286 int ret;
1287 if (!vgic_present)
1288 return -ENXIO;
1289 mutex_lock(&kvm->lock);
1290 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1291 mutex_unlock(&kvm->lock);
1292 return ret;
1293 }
1294 case KVM_ARM_SET_DEVICE_ADDR: {
1295 struct kvm_arm_device_addr dev_addr;
1296
1297 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1298 return -EFAULT;
1299 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1300 }
1301 case KVM_ARM_PREFERRED_TARGET: {
1302 int err;
1303 struct kvm_vcpu_init init;
1304
1305 err = kvm_vcpu_preferred_target(&init);
1306 if (err)
1307 return err;
1308
1309 if (copy_to_user(argp, &init, sizeof(init)))
1310 return -EFAULT;
1311
1312 return 0;
1313 }
1314 default:
1315 return -EINVAL;
1316 }
1317 }
1318
cpu_init_hyp_mode(void * dummy)1319 static void cpu_init_hyp_mode(void *dummy)
1320 {
1321 phys_addr_t pgd_ptr;
1322 unsigned long hyp_stack_ptr;
1323 unsigned long stack_page;
1324 unsigned long vector_ptr;
1325
1326 /* Switch from the HYP stub to our own HYP init vector */
1327 __hyp_set_vectors(kvm_get_idmap_vector());
1328
1329 pgd_ptr = kvm_mmu_get_httbr();
1330 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1331 hyp_stack_ptr = stack_page + PAGE_SIZE;
1332 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1333
1334 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1335 __cpu_init_stage2();
1336 }
1337
cpu_hyp_reset(void)1338 static void cpu_hyp_reset(void)
1339 {
1340 if (!is_kernel_in_hyp_mode())
1341 __hyp_reset_vectors();
1342 }
1343
cpu_hyp_reinit(void)1344 static void cpu_hyp_reinit(void)
1345 {
1346 cpu_hyp_reset();
1347
1348 if (is_kernel_in_hyp_mode()) {
1349 /*
1350 * __cpu_init_stage2() is safe to call even if the PM
1351 * event was cancelled before the CPU was reset.
1352 */
1353 __cpu_init_stage2();
1354 kvm_timer_init_vhe();
1355 } else {
1356 cpu_init_hyp_mode(NULL);
1357 }
1358
1359 kvm_arm_init_debug();
1360
1361 if (vgic_present)
1362 kvm_vgic_init_cpu_hardware();
1363 }
1364
_kvm_arch_hardware_enable(void * discard)1365 static void _kvm_arch_hardware_enable(void *discard)
1366 {
1367 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1368 cpu_hyp_reinit();
1369 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1370 }
1371 }
1372
kvm_arch_hardware_enable(void)1373 int kvm_arch_hardware_enable(void)
1374 {
1375 _kvm_arch_hardware_enable(NULL);
1376 return 0;
1377 }
1378
_kvm_arch_hardware_disable(void * discard)1379 static void _kvm_arch_hardware_disable(void *discard)
1380 {
1381 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1382 cpu_hyp_reset();
1383 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1384 }
1385 }
1386
kvm_arch_hardware_disable(void)1387 void kvm_arch_hardware_disable(void)
1388 {
1389 _kvm_arch_hardware_disable(NULL);
1390 }
1391
1392 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1393 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1394 unsigned long cmd,
1395 void *v)
1396 {
1397 /*
1398 * kvm_arm_hardware_enabled is left with its old value over
1399 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1400 * re-enable hyp.
1401 */
1402 switch (cmd) {
1403 case CPU_PM_ENTER:
1404 if (__this_cpu_read(kvm_arm_hardware_enabled))
1405 /*
1406 * don't update kvm_arm_hardware_enabled here
1407 * so that the hardware will be re-enabled
1408 * when we resume. See below.
1409 */
1410 cpu_hyp_reset();
1411
1412 return NOTIFY_OK;
1413 case CPU_PM_ENTER_FAILED:
1414 case CPU_PM_EXIT:
1415 if (__this_cpu_read(kvm_arm_hardware_enabled))
1416 /* The hardware was enabled before suspend. */
1417 cpu_hyp_reinit();
1418
1419 return NOTIFY_OK;
1420
1421 default:
1422 return NOTIFY_DONE;
1423 }
1424 }
1425
1426 static struct notifier_block hyp_init_cpu_pm_nb = {
1427 .notifier_call = hyp_init_cpu_pm_notifier,
1428 };
1429
hyp_cpu_pm_init(void)1430 static void __init hyp_cpu_pm_init(void)
1431 {
1432 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1433 }
hyp_cpu_pm_exit(void)1434 static void __init hyp_cpu_pm_exit(void)
1435 {
1436 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1437 }
1438 #else
hyp_cpu_pm_init(void)1439 static inline void hyp_cpu_pm_init(void)
1440 {
1441 }
hyp_cpu_pm_exit(void)1442 static inline void hyp_cpu_pm_exit(void)
1443 {
1444 }
1445 #endif
1446
init_common_resources(void)1447 static int init_common_resources(void)
1448 {
1449 /* set size of VMID supported by CPU */
1450 kvm_vmid_bits = kvm_get_vmid_bits();
1451 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1452
1453 return 0;
1454 }
1455
init_subsystems(void)1456 static int init_subsystems(void)
1457 {
1458 int err = 0;
1459
1460 /*
1461 * Enable hardware so that subsystem initialisation can access EL2.
1462 */
1463 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1464
1465 /*
1466 * Register CPU lower-power notifier
1467 */
1468 hyp_cpu_pm_init();
1469
1470 /*
1471 * Init HYP view of VGIC
1472 */
1473 err = kvm_vgic_hyp_init();
1474 switch (err) {
1475 case 0:
1476 vgic_present = true;
1477 break;
1478 case -ENODEV:
1479 case -ENXIO:
1480 vgic_present = false;
1481 err = 0;
1482 break;
1483 default:
1484 goto out;
1485 }
1486
1487 /*
1488 * Init HYP architected timer support
1489 */
1490 err = kvm_timer_hyp_init(vgic_present);
1491 if (err)
1492 goto out;
1493
1494 kvm_perf_init();
1495 kvm_coproc_table_init();
1496
1497 out:
1498 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1499
1500 return err;
1501 }
1502
teardown_hyp_mode(void)1503 static void teardown_hyp_mode(void)
1504 {
1505 int cpu;
1506
1507 free_hyp_pgds();
1508 for_each_possible_cpu(cpu)
1509 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1510 hyp_cpu_pm_exit();
1511 }
1512
1513 /**
1514 * Inits Hyp-mode on all online CPUs
1515 */
init_hyp_mode(void)1516 static int init_hyp_mode(void)
1517 {
1518 int cpu;
1519 int err = 0;
1520
1521 /*
1522 * Allocate Hyp PGD and setup Hyp identity mapping
1523 */
1524 err = kvm_mmu_init();
1525 if (err)
1526 goto out_err;
1527
1528 /*
1529 * Allocate stack pages for Hypervisor-mode
1530 */
1531 for_each_possible_cpu(cpu) {
1532 unsigned long stack_page;
1533
1534 stack_page = __get_free_page(GFP_KERNEL);
1535 if (!stack_page) {
1536 err = -ENOMEM;
1537 goto out_err;
1538 }
1539
1540 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1541 }
1542
1543 /*
1544 * Map the Hyp-code called directly from the host
1545 */
1546 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1547 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1548 if (err) {
1549 kvm_err("Cannot map world-switch code\n");
1550 goto out_err;
1551 }
1552
1553 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1554 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1555 if (err) {
1556 kvm_err("Cannot map rodata section\n");
1557 goto out_err;
1558 }
1559
1560 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1561 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1562 if (err) {
1563 kvm_err("Cannot map bss section\n");
1564 goto out_err;
1565 }
1566
1567 err = kvm_map_vectors();
1568 if (err) {
1569 kvm_err("Cannot map vectors\n");
1570 goto out_err;
1571 }
1572
1573 /*
1574 * Map the Hyp stack pages
1575 */
1576 for_each_possible_cpu(cpu) {
1577 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1578 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1579 PAGE_HYP);
1580
1581 if (err) {
1582 kvm_err("Cannot map hyp stack\n");
1583 goto out_err;
1584 }
1585 }
1586
1587 for_each_possible_cpu(cpu) {
1588 kvm_cpu_context_t *cpu_ctxt;
1589
1590 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1591 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1592
1593 if (err) {
1594 kvm_err("Cannot map host CPU state: %d\n", err);
1595 goto out_err;
1596 }
1597 }
1598
1599 err = hyp_map_aux_data();
1600 if (err)
1601 kvm_err("Cannot map host auxilary data: %d\n", err);
1602
1603 return 0;
1604
1605 out_err:
1606 teardown_hyp_mode();
1607 kvm_err("error initializing Hyp mode: %d\n", err);
1608 return err;
1609 }
1610
check_kvm_target_cpu(void * ret)1611 static void check_kvm_target_cpu(void *ret)
1612 {
1613 *(int *)ret = kvm_target_cpu();
1614 }
1615
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1616 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1617 {
1618 struct kvm_vcpu *vcpu;
1619 int i;
1620
1621 mpidr &= MPIDR_HWID_BITMASK;
1622 kvm_for_each_vcpu(i, vcpu, kvm) {
1623 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1624 return vcpu;
1625 }
1626 return NULL;
1627 }
1628
kvm_arch_has_irq_bypass(void)1629 bool kvm_arch_has_irq_bypass(void)
1630 {
1631 return true;
1632 }
1633
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1634 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1635 struct irq_bypass_producer *prod)
1636 {
1637 struct kvm_kernel_irqfd *irqfd =
1638 container_of(cons, struct kvm_kernel_irqfd, consumer);
1639
1640 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1641 &irqfd->irq_entry);
1642 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1643 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1644 struct irq_bypass_producer *prod)
1645 {
1646 struct kvm_kernel_irqfd *irqfd =
1647 container_of(cons, struct kvm_kernel_irqfd, consumer);
1648
1649 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1650 &irqfd->irq_entry);
1651 }
1652
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)1653 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1654 {
1655 struct kvm_kernel_irqfd *irqfd =
1656 container_of(cons, struct kvm_kernel_irqfd, consumer);
1657
1658 kvm_arm_halt_guest(irqfd->kvm);
1659 }
1660
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)1661 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1662 {
1663 struct kvm_kernel_irqfd *irqfd =
1664 container_of(cons, struct kvm_kernel_irqfd, consumer);
1665
1666 kvm_arm_resume_guest(irqfd->kvm);
1667 }
1668
1669 /**
1670 * Initialize Hyp-mode and memory mappings on all CPUs.
1671 */
kvm_arch_init(void * opaque)1672 int kvm_arch_init(void *opaque)
1673 {
1674 int err;
1675 int ret, cpu;
1676 bool in_hyp_mode;
1677
1678 if (!is_hyp_mode_available()) {
1679 kvm_info("HYP mode not available\n");
1680 return -ENODEV;
1681 }
1682
1683 if (!kvm_arch_check_sve_has_vhe()) {
1684 kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?");
1685 return -ENODEV;
1686 }
1687
1688 for_each_online_cpu(cpu) {
1689 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1690 if (ret < 0) {
1691 kvm_err("Error, CPU %d not supported!\n", cpu);
1692 return -ENODEV;
1693 }
1694 }
1695
1696 err = init_common_resources();
1697 if (err)
1698 return err;
1699
1700 in_hyp_mode = is_kernel_in_hyp_mode();
1701
1702 if (!in_hyp_mode) {
1703 err = init_hyp_mode();
1704 if (err)
1705 goto out_err;
1706 }
1707
1708 err = init_subsystems();
1709 if (err)
1710 goto out_hyp;
1711
1712 if (in_hyp_mode)
1713 kvm_info("VHE mode initialized successfully\n");
1714 else
1715 kvm_info("Hyp mode initialized successfully\n");
1716
1717 return 0;
1718
1719 out_hyp:
1720 if (!in_hyp_mode)
1721 teardown_hyp_mode();
1722 out_err:
1723 return err;
1724 }
1725
1726 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1727 void kvm_arch_exit(void)
1728 {
1729 kvm_perf_teardown();
1730 }
1731
arm_init(void)1732 static int arm_init(void)
1733 {
1734 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1735 return rc;
1736 }
1737
1738 module_init(arm_init);
1739