1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25 
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29 
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32 
33 #include "trace.h"
34 
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38 
39 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
40 
41 static const struct kvm_irq_level default_ptimer_irq = {
42 	.irq	= 30,
43 	.level	= 1,
44 };
45 
46 static const struct kvm_irq_level default_vtimer_irq = {
47 	.irq	= 27,
48 	.level	= 1,
49 };
50 
51 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
52 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
53 				 struct arch_timer_context *timer_ctx);
54 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
55 
kvm_phys_timer_read(void)56 u64 kvm_phys_timer_read(void)
57 {
58 	return timecounter->cc->read(timecounter->cc);
59 }
60 
userspace_irqchip(struct kvm * kvm)61 static inline bool userspace_irqchip(struct kvm *kvm)
62 {
63 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
64 		unlikely(!irqchip_in_kernel(kvm));
65 }
66 
soft_timer_start(struct hrtimer * hrt,u64 ns)67 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
68 {
69 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
70 		      HRTIMER_MODE_ABS);
71 }
72 
soft_timer_cancel(struct hrtimer * hrt,struct work_struct * work)73 static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
74 {
75 	hrtimer_cancel(hrt);
76 	if (work)
77 		cancel_work_sync(work);
78 }
79 
kvm_arch_timer_handler(int irq,void * dev_id)80 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
81 {
82 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
83 	struct arch_timer_context *vtimer;
84 
85 	/*
86 	 * We may see a timer interrupt after vcpu_put() has been called which
87 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
88 	 * has been disabled in vtimer_save_state(), the hardware interrupt
89 	 * signal may not have been retired from the interrupt controller yet.
90 	 */
91 	if (!vcpu)
92 		return IRQ_HANDLED;
93 
94 	vtimer = vcpu_vtimer(vcpu);
95 	if (kvm_timer_should_fire(vtimer))
96 		kvm_timer_update_irq(vcpu, true, vtimer);
97 
98 	if (userspace_irqchip(vcpu->kvm) &&
99 	    !static_branch_unlikely(&has_gic_active_state))
100 		disable_percpu_irq(host_vtimer_irq);
101 
102 	return IRQ_HANDLED;
103 }
104 
105 /*
106  * Work function for handling the backup timer that we schedule when a vcpu is
107  * no longer running, but had a timer programmed to fire in the future.
108  */
kvm_timer_inject_irq_work(struct work_struct * work)109 static void kvm_timer_inject_irq_work(struct work_struct *work)
110 {
111 	struct kvm_vcpu *vcpu;
112 
113 	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
114 
115 	/*
116 	 * If the vcpu is blocked we want to wake it up so that it will see
117 	 * the timer has expired when entering the guest.
118 	 */
119 	kvm_vcpu_wake_up(vcpu);
120 }
121 
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)122 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
123 {
124 	u64 cval, now;
125 
126 	cval = timer_ctx->cnt_cval;
127 	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
128 
129 	if (now < cval) {
130 		u64 ns;
131 
132 		ns = cyclecounter_cyc2ns(timecounter->cc,
133 					 cval - now,
134 					 timecounter->mask,
135 					 &timecounter->frac);
136 		return ns;
137 	}
138 
139 	return 0;
140 }
141 
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)142 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
143 {
144 	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
145 		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
146 }
147 
148 /*
149  * Returns the earliest expiration time in ns among guest timers.
150  * Note that it will return 0 if none of timers can fire.
151  */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)152 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
153 {
154 	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
155 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
156 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
157 
158 	if (kvm_timer_irq_can_fire(vtimer))
159 		min_virt = kvm_timer_compute_delta(vtimer);
160 
161 	if (kvm_timer_irq_can_fire(ptimer))
162 		min_phys = kvm_timer_compute_delta(ptimer);
163 
164 	/* If none of timers can fire, then return 0 */
165 	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
166 		return 0;
167 
168 	return min(min_virt, min_phys);
169 }
170 
kvm_bg_timer_expire(struct hrtimer * hrt)171 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
172 {
173 	struct arch_timer_cpu *timer;
174 	struct kvm_vcpu *vcpu;
175 	u64 ns;
176 
177 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
178 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
179 
180 	/*
181 	 * Check that the timer has really expired from the guest's
182 	 * PoV (NTP on the host may have forced it to expire
183 	 * early). If we should have slept longer, restart it.
184 	 */
185 	ns = kvm_timer_earliest_exp(vcpu);
186 	if (unlikely(ns)) {
187 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
188 		return HRTIMER_RESTART;
189 	}
190 
191 	schedule_work(&timer->expired);
192 	return HRTIMER_NORESTART;
193 }
194 
kvm_phys_timer_expire(struct hrtimer * hrt)195 static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
196 {
197 	struct arch_timer_context *ptimer;
198 	struct arch_timer_cpu *timer;
199 	struct kvm_vcpu *vcpu;
200 	u64 ns;
201 
202 	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
203 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
204 	ptimer = vcpu_ptimer(vcpu);
205 
206 	/*
207 	 * Check that the timer has really expired from the guest's
208 	 * PoV (NTP on the host may have forced it to expire
209 	 * early). If not ready, schedule for a later time.
210 	 */
211 	ns = kvm_timer_compute_delta(ptimer);
212 	if (unlikely(ns)) {
213 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
214 		return HRTIMER_RESTART;
215 	}
216 
217 	kvm_timer_update_irq(vcpu, true, ptimer);
218 	return HRTIMER_NORESTART;
219 }
220 
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)221 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
222 {
223 	u64 cval, now;
224 
225 	if (timer_ctx->loaded) {
226 		u32 cnt_ctl;
227 
228 		/* Only the virtual timer can be loaded so far */
229 		cnt_ctl = read_sysreg_el0(cntv_ctl);
230 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
231 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
232 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
233 	}
234 
235 	if (!kvm_timer_irq_can_fire(timer_ctx))
236 		return false;
237 
238 	cval = timer_ctx->cnt_cval;
239 	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
240 
241 	return cval <= now;
242 }
243 
kvm_timer_is_pending(struct kvm_vcpu * vcpu)244 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
245 {
246 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
247 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
248 
249 	if (kvm_timer_should_fire(vtimer))
250 		return true;
251 
252 	return kvm_timer_should_fire(ptimer);
253 }
254 
255 /*
256  * Reflect the timer output level into the kvm_run structure
257  */
kvm_timer_update_run(struct kvm_vcpu * vcpu)258 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
259 {
260 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
261 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
262 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
263 
264 	/* Populate the device bitmap with the timer states */
265 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
266 				    KVM_ARM_DEV_EL1_PTIMER);
267 	if (kvm_timer_should_fire(vtimer))
268 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
269 	if (kvm_timer_should_fire(ptimer))
270 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
271 }
272 
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)273 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
274 				 struct arch_timer_context *timer_ctx)
275 {
276 	int ret;
277 
278 	timer_ctx->irq.level = new_level;
279 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
280 				   timer_ctx->irq.level);
281 
282 	if (!userspace_irqchip(vcpu->kvm)) {
283 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
284 					  timer_ctx->irq.irq,
285 					  timer_ctx->irq.level,
286 					  timer_ctx);
287 		WARN_ON(ret);
288 	}
289 }
290 
291 /* Schedule the background timer for the emulated timer. */
phys_timer_emulate(struct kvm_vcpu * vcpu)292 static void phys_timer_emulate(struct kvm_vcpu *vcpu)
293 {
294 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
295 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
296 
297 	/*
298 	 * If the timer can fire now, we don't need to have a soft timer
299 	 * scheduled for the future.  If the timer cannot fire at all,
300 	 * then we also don't need a soft timer.
301 	 */
302 	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
303 		soft_timer_cancel(&timer->phys_timer, NULL);
304 		return;
305 	}
306 
307 	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
308 }
309 
310 /*
311  * Check if there was a change in the timer state, so that we should either
312  * raise or lower the line level to the GIC or schedule a background timer to
313  * emulate the physical timer.
314  */
kvm_timer_update_state(struct kvm_vcpu * vcpu)315 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
316 {
317 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
318 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
319 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
320 	bool level;
321 
322 	if (unlikely(!timer->enabled))
323 		return;
324 
325 	/*
326 	 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
327 	 * of its lifecycle is offloaded to the hardware, and we therefore may
328 	 * not have lowered the irq.level value before having to signal a new
329 	 * interrupt, but have to signal an interrupt every time the level is
330 	 * asserted.
331 	 */
332 	level = kvm_timer_should_fire(vtimer);
333 	kvm_timer_update_irq(vcpu, level, vtimer);
334 
335 	phys_timer_emulate(vcpu);
336 
337 	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
338 		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
339 }
340 
vtimer_save_state(struct kvm_vcpu * vcpu)341 static void vtimer_save_state(struct kvm_vcpu *vcpu)
342 {
343 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
344 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
345 	unsigned long flags;
346 
347 	local_irq_save(flags);
348 
349 	if (!vtimer->loaded)
350 		goto out;
351 
352 	if (timer->enabled) {
353 		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
354 		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
355 	}
356 
357 	/* Disable the virtual timer */
358 	write_sysreg_el0(0, cntv_ctl);
359 	isb();
360 
361 	vtimer->loaded = false;
362 out:
363 	local_irq_restore(flags);
364 }
365 
366 /*
367  * Schedule the background timer before calling kvm_vcpu_block, so that this
368  * thread is removed from its waitqueue and made runnable when there's a timer
369  * interrupt to handle.
370  */
kvm_timer_schedule(struct kvm_vcpu * vcpu)371 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
372 {
373 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
374 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
375 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
376 
377 	vtimer_save_state(vcpu);
378 
379 	/*
380 	 * No need to schedule a background timer if any guest timer has
381 	 * already expired, because kvm_vcpu_block will return before putting
382 	 * the thread to sleep.
383 	 */
384 	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
385 		return;
386 
387 	/*
388 	 * If both timers are not capable of raising interrupts (disabled or
389 	 * masked), then there's no more work for us to do.
390 	 */
391 	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
392 		return;
393 
394 	/*
395 	 * The guest timers have not yet expired, schedule a background timer.
396 	 * Set the earliest expiration time among the guest timers.
397 	 */
398 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
399 }
400 
vtimer_restore_state(struct kvm_vcpu * vcpu)401 static void vtimer_restore_state(struct kvm_vcpu *vcpu)
402 {
403 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
404 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
405 	unsigned long flags;
406 
407 	local_irq_save(flags);
408 
409 	if (vtimer->loaded)
410 		goto out;
411 
412 	if (timer->enabled) {
413 		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
414 		isb();
415 		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
416 	}
417 
418 	vtimer->loaded = true;
419 out:
420 	local_irq_restore(flags);
421 }
422 
kvm_timer_unschedule(struct kvm_vcpu * vcpu)423 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
424 {
425 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
426 
427 	vtimer_restore_state(vcpu);
428 
429 	soft_timer_cancel(&timer->bg_timer, &timer->expired);
430 }
431 
set_cntvoff(u64 cntvoff)432 static void set_cntvoff(u64 cntvoff)
433 {
434 	u32 low = lower_32_bits(cntvoff);
435 	u32 high = upper_32_bits(cntvoff);
436 
437 	/*
438 	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
439 	 * 32-bit systems, but rather passes register by register shifted one
440 	 * place (we put the function address in r0/x0), we cannot simply pass
441 	 * a 64-bit value as an argument, but have to split the value in two
442 	 * 32-bit halves.
443 	 */
444 	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
445 }
446 
set_vtimer_irq_phys_active(struct kvm_vcpu * vcpu,bool active)447 static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active)
448 {
449 	int r;
450 	r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active);
451 	WARN_ON(r);
452 }
453 
kvm_timer_vcpu_load_gic(struct kvm_vcpu * vcpu)454 static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu)
455 {
456 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
457 	bool phys_active;
458 
459 	if (irqchip_in_kernel(vcpu->kvm))
460 		phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
461 	else
462 		phys_active = vtimer->irq.level;
463 	set_vtimer_irq_phys_active(vcpu, phys_active);
464 }
465 
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)466 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
467 {
468 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
469 
470 	/*
471 	 * When using a userspace irqchip with the architected timers and a
472 	 * host interrupt controller that doesn't support an active state, we
473 	 * must still prevent continuously exiting from the guest, and
474 	 * therefore mask the physical interrupt by disabling it on the host
475 	 * interrupt controller when the virtual level is high, such that the
476 	 * guest can make forward progress.  Once we detect the output level
477 	 * being de-asserted, we unmask the interrupt again so that we exit
478 	 * from the guest when the timer fires.
479 	 */
480 	if (vtimer->irq.level)
481 		disable_percpu_irq(host_vtimer_irq);
482 	else
483 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
484 }
485 
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)486 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
487 {
488 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
489 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
490 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
491 
492 	if (unlikely(!timer->enabled))
493 		return;
494 
495 	if (static_branch_likely(&has_gic_active_state))
496 		kvm_timer_vcpu_load_gic(vcpu);
497 	else
498 		kvm_timer_vcpu_load_nogic(vcpu);
499 
500 	set_cntvoff(vtimer->cntvoff);
501 
502 	vtimer_restore_state(vcpu);
503 
504 	/* Set the background timer for the physical timer emulation. */
505 	phys_timer_emulate(vcpu);
506 
507 	/* If the timer fired while we weren't running, inject it now */
508 	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
509 		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
510 }
511 
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)512 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
513 {
514 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
515 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
516 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
517 	bool vlevel, plevel;
518 
519 	if (likely(irqchip_in_kernel(vcpu->kvm)))
520 		return false;
521 
522 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
523 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
524 
525 	return kvm_timer_should_fire(vtimer) != vlevel ||
526 	       kvm_timer_should_fire(ptimer) != plevel;
527 }
528 
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)529 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
530 {
531 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
532 
533 	if (unlikely(!timer->enabled))
534 		return;
535 
536 	vtimer_save_state(vcpu);
537 
538 	/*
539 	 * Cancel the physical timer emulation, because the only case where we
540 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
541 	 * in that case we already factor in the deadline for the physical
542 	 * timer when scheduling the bg_timer.
543 	 *
544 	 * In any case, we re-schedule the hrtimer for the physical timer when
545 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
546 	 */
547 	soft_timer_cancel(&timer->phys_timer, NULL);
548 
549 	/*
550 	 * The kernel may decide to run userspace after calling vcpu_put, so
551 	 * we reset cntvoff to 0 to ensure a consistent read between user
552 	 * accesses to the virtual counter and kernel access to the physical
553 	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
554 	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
555 	 */
556 	if (!has_vhe())
557 		set_cntvoff(0);
558 }
559 
560 /*
561  * With a userspace irqchip we have to check if the guest de-asserted the
562  * timer and if so, unmask the timer irq signal on the host interrupt
563  * controller to ensure that we see future timer signals.
564  */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)565 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
566 {
567 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
568 
569 	if (!kvm_timer_should_fire(vtimer)) {
570 		kvm_timer_update_irq(vcpu, false, vtimer);
571 		if (static_branch_likely(&has_gic_active_state))
572 			set_vtimer_irq_phys_active(vcpu, false);
573 		else
574 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
575 	}
576 }
577 
kvm_timer_sync_hwstate(struct kvm_vcpu * vcpu)578 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
579 {
580 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
581 
582 	if (unlikely(!timer->enabled))
583 		return;
584 
585 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
586 		unmask_vtimer_irq_user(vcpu);
587 }
588 
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)589 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
590 {
591 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
592 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
593 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
594 
595 	/*
596 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
597 	 * and to 0 for ARMv7.  We provide an implementation that always
598 	 * resets the timer to be disabled and unmasked and is compliant with
599 	 * the ARMv7 architecture.
600 	 */
601 	vtimer->cnt_ctl = 0;
602 	ptimer->cnt_ctl = 0;
603 	kvm_timer_update_state(vcpu);
604 
605 	if (timer->enabled && irqchip_in_kernel(vcpu->kvm))
606 		kvm_vgic_reset_mapped_irq(vcpu, vtimer->irq.irq);
607 
608 	return 0;
609 }
610 
611 /* Make the updates of cntvoff for all vtimer contexts atomic */
update_vtimer_cntvoff(struct kvm_vcpu * vcpu,u64 cntvoff)612 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
613 {
614 	int i;
615 	struct kvm *kvm = vcpu->kvm;
616 	struct kvm_vcpu *tmp;
617 
618 	mutex_lock(&kvm->lock);
619 	kvm_for_each_vcpu(i, tmp, kvm)
620 		vcpu_vtimer(tmp)->cntvoff = cntvoff;
621 
622 	/*
623 	 * When called from the vcpu create path, the CPU being created is not
624 	 * included in the loop above, so we just set it here as well.
625 	 */
626 	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
627 	mutex_unlock(&kvm->lock);
628 }
629 
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)630 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
631 {
632 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
633 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
634 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
635 
636 	/* Synchronize cntvoff across all vtimers of a VM. */
637 	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
638 	vcpu_ptimer(vcpu)->cntvoff = 0;
639 
640 	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
641 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
642 	timer->bg_timer.function = kvm_bg_timer_expire;
643 
644 	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
645 	timer->phys_timer.function = kvm_phys_timer_expire;
646 
647 	vtimer->irq.irq = default_vtimer_irq.irq;
648 	ptimer->irq.irq = default_ptimer_irq.irq;
649 }
650 
kvm_timer_init_interrupt(void * info)651 static void kvm_timer_init_interrupt(void *info)
652 {
653 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
654 }
655 
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)656 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
657 {
658 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
659 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
660 
661 	switch (regid) {
662 	case KVM_REG_ARM_TIMER_CTL:
663 		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
664 		break;
665 	case KVM_REG_ARM_TIMER_CNT:
666 		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
667 		break;
668 	case KVM_REG_ARM_TIMER_CVAL:
669 		vtimer->cnt_cval = value;
670 		break;
671 	case KVM_REG_ARM_PTIMER_CTL:
672 		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
673 		break;
674 	case KVM_REG_ARM_PTIMER_CVAL:
675 		ptimer->cnt_cval = value;
676 		break;
677 
678 	default:
679 		return -1;
680 	}
681 
682 	kvm_timer_update_state(vcpu);
683 	return 0;
684 }
685 
read_timer_ctl(struct arch_timer_context * timer)686 static u64 read_timer_ctl(struct arch_timer_context *timer)
687 {
688 	/*
689 	 * Set ISTATUS bit if it's expired.
690 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
691 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
692 	 * regardless of ENABLE bit for our implementation convenience.
693 	 */
694 	if (!kvm_timer_compute_delta(timer))
695 		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
696 	else
697 		return timer->cnt_ctl;
698 }
699 
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)700 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
701 {
702 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
703 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
704 
705 	switch (regid) {
706 	case KVM_REG_ARM_TIMER_CTL:
707 		return read_timer_ctl(vtimer);
708 	case KVM_REG_ARM_TIMER_CNT:
709 		return kvm_phys_timer_read() - vtimer->cntvoff;
710 	case KVM_REG_ARM_TIMER_CVAL:
711 		return vtimer->cnt_cval;
712 	case KVM_REG_ARM_PTIMER_CTL:
713 		return read_timer_ctl(ptimer);
714 	case KVM_REG_ARM_PTIMER_CVAL:
715 		return ptimer->cnt_cval;
716 	case KVM_REG_ARM_PTIMER_CNT:
717 		return kvm_phys_timer_read();
718 	}
719 	return (u64)-1;
720 }
721 
kvm_timer_starting_cpu(unsigned int cpu)722 static int kvm_timer_starting_cpu(unsigned int cpu)
723 {
724 	kvm_timer_init_interrupt(NULL);
725 	return 0;
726 }
727 
kvm_timer_dying_cpu(unsigned int cpu)728 static int kvm_timer_dying_cpu(unsigned int cpu)
729 {
730 	disable_percpu_irq(host_vtimer_irq);
731 	return 0;
732 }
733 
kvm_timer_hyp_init(bool has_gic)734 int kvm_timer_hyp_init(bool has_gic)
735 {
736 	struct arch_timer_kvm_info *info;
737 	int err;
738 
739 	info = arch_timer_get_kvm_info();
740 	timecounter = &info->timecounter;
741 
742 	if (!timecounter->cc) {
743 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
744 		return -ENODEV;
745 	}
746 
747 	if (info->virtual_irq <= 0) {
748 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
749 			info->virtual_irq);
750 		return -ENODEV;
751 	}
752 	host_vtimer_irq = info->virtual_irq;
753 
754 	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
755 	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
756 	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
757 		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
758 			host_vtimer_irq);
759 		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
760 	}
761 
762 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
763 				 "kvm guest timer", kvm_get_running_vcpus());
764 	if (err) {
765 		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
766 			host_vtimer_irq, err);
767 		return err;
768 	}
769 
770 	if (has_gic) {
771 		err = irq_set_vcpu_affinity(host_vtimer_irq,
772 					    kvm_get_running_vcpus());
773 		if (err) {
774 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
775 			goto out_free_irq;
776 		}
777 
778 		static_branch_enable(&has_gic_active_state);
779 	}
780 
781 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
782 
783 	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
784 			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
785 			  kvm_timer_dying_cpu);
786 	return 0;
787 out_free_irq:
788 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
789 	return err;
790 }
791 
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)792 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
793 {
794 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
795 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
796 
797 	soft_timer_cancel(&timer->bg_timer, &timer->expired);
798 	soft_timer_cancel(&timer->phys_timer, NULL);
799 	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
800 }
801 
timer_irqs_are_valid(struct kvm_vcpu * vcpu)802 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
803 {
804 	int vtimer_irq, ptimer_irq;
805 	int i, ret;
806 
807 	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
808 	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
809 	if (ret)
810 		return false;
811 
812 	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
813 	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
814 	if (ret)
815 		return false;
816 
817 	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
818 		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
819 		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
820 			return false;
821 	}
822 
823 	return true;
824 }
825 
kvm_arch_timer_get_input_level(int vintid)826 bool kvm_arch_timer_get_input_level(int vintid)
827 {
828 	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
829 	struct arch_timer_context *timer;
830 
831 	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
832 		timer = vcpu_vtimer(vcpu);
833 	else
834 		BUG(); /* We only map the vtimer so far */
835 
836 	return kvm_timer_should_fire(timer);
837 }
838 
kvm_timer_enable(struct kvm_vcpu * vcpu)839 int kvm_timer_enable(struct kvm_vcpu *vcpu)
840 {
841 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
842 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
843 	int ret;
844 
845 	if (timer->enabled)
846 		return 0;
847 
848 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
849 	if (!irqchip_in_kernel(vcpu->kvm))
850 		goto no_vgic;
851 
852 	if (!vgic_initialized(vcpu->kvm))
853 		return -ENODEV;
854 
855 	if (!timer_irqs_are_valid(vcpu)) {
856 		kvm_debug("incorrectly configured timer irqs\n");
857 		return -EINVAL;
858 	}
859 
860 	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
861 				    kvm_arch_timer_get_input_level);
862 	if (ret)
863 		return ret;
864 
865 no_vgic:
866 	timer->enabled = 1;
867 	return 0;
868 }
869 
870 /*
871  * On VHE system, we only need to configure trap on physical timer and counter
872  * accesses in EL0 and EL1 once, not for every world switch.
873  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
874  * and this makes those bits have no effect for the host kernel execution.
875  */
kvm_timer_init_vhe(void)876 void kvm_timer_init_vhe(void)
877 {
878 	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
879 	u32 cnthctl_shift = 10;
880 	u64 val;
881 
882 	/*
883 	 * Disallow physical timer access for the guest.
884 	 * Physical counter access is allowed.
885 	 */
886 	val = read_sysreg(cnthctl_el2);
887 	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
888 	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
889 	write_sysreg(val, cnthctl_el2);
890 }
891 
set_timer_irqs(struct kvm * kvm,int vtimer_irq,int ptimer_irq)892 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
893 {
894 	struct kvm_vcpu *vcpu;
895 	int i;
896 
897 	kvm_for_each_vcpu(i, vcpu, kvm) {
898 		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
899 		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
900 	}
901 }
902 
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)903 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
904 {
905 	int __user *uaddr = (int __user *)(long)attr->addr;
906 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
907 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
908 	int irq;
909 
910 	if (!irqchip_in_kernel(vcpu->kvm))
911 		return -EINVAL;
912 
913 	if (get_user(irq, uaddr))
914 		return -EFAULT;
915 
916 	if (!(irq_is_ppi(irq)))
917 		return -EINVAL;
918 
919 	if (vcpu->arch.timer_cpu.enabled)
920 		return -EBUSY;
921 
922 	switch (attr->attr) {
923 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
924 		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
925 		break;
926 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
927 		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
928 		break;
929 	default:
930 		return -ENXIO;
931 	}
932 
933 	return 0;
934 }
935 
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)936 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
937 {
938 	int __user *uaddr = (int __user *)(long)attr->addr;
939 	struct arch_timer_context *timer;
940 	int irq;
941 
942 	switch (attr->attr) {
943 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
944 		timer = vcpu_vtimer(vcpu);
945 		break;
946 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
947 		timer = vcpu_ptimer(vcpu);
948 		break;
949 	default:
950 		return -ENXIO;
951 	}
952 
953 	irq = timer->irq.irq;
954 	return put_user(irq, uaddr);
955 }
956 
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)957 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
958 {
959 	switch (attr->attr) {
960 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
961 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
962 		return 0;
963 	}
964 
965 	return -ENXIO;
966 }
967