1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/kthread.h>
55 #include <linux/io.h>
56
57 #include <asm/processor.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* Default resets per-vcpu halt_poll_ns . */
86 unsigned int halt_poll_ns_shrink;
87 module_param(halt_poll_ns_shrink, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
89
90 /*
91 * Ordering of locks:
92 *
93 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
94 */
95
96 DEFINE_MUTEX(kvm_lock);
97 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
98 LIST_HEAD(vm_list);
99
100 static cpumask_var_t cpus_hardware_enabled;
101 static int kvm_usage_count;
102 static atomic_t hardware_enable_failed;
103
104 struct kmem_cache *kvm_vcpu_cache;
105 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108
109 struct dentry *kvm_debugfs_dir;
110 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111
112 static int kvm_debugfs_num_entries;
113 static const struct file_operations *stat_fops_per_vm[];
114
115 static struct file_operations kvm_chardev_ops;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #define KVM_COMPAT(c) .compat_ioctl = (c)
123 #else
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137
138 static bool largepages_enabled = true;
139
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)146 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 unsigned long start, unsigned long end)
148 {
149 }
150
kvm_is_zone_device_pfn(kvm_pfn_t pfn)151 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
152 {
153 /*
154 * The metadata used by is_zone_device_page() to determine whether or
155 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
156 * the device has been pinned, e.g. by get_user_pages(). WARN if the
157 * page_count() is zero to help detect bad usage of this helper.
158 */
159 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
160 return false;
161
162 return is_zone_device_page(pfn_to_page(pfn));
163 }
164
kvm_is_reserved_pfn(kvm_pfn_t pfn)165 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
166 {
167 /*
168 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
169 * perspective they are "normal" pages, albeit with slightly different
170 * usage rules.
171 */
172 if (pfn_valid(pfn))
173 return PageReserved(pfn_to_page(pfn)) &&
174 !is_zero_pfn(pfn) &&
175 !kvm_is_zone_device_pfn(pfn);
176
177 return true;
178 }
179
180 /*
181 * Switches to specified vcpu, until a matching vcpu_put()
182 */
vcpu_load(struct kvm_vcpu * vcpu)183 void vcpu_load(struct kvm_vcpu *vcpu)
184 {
185 int cpu = get_cpu();
186 preempt_notifier_register(&vcpu->preempt_notifier);
187 kvm_arch_vcpu_load(vcpu, cpu);
188 put_cpu();
189 }
190 EXPORT_SYMBOL_GPL(vcpu_load);
191
vcpu_put(struct kvm_vcpu * vcpu)192 void vcpu_put(struct kvm_vcpu *vcpu)
193 {
194 preempt_disable();
195 kvm_arch_vcpu_put(vcpu);
196 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 preempt_enable();
198 }
199 EXPORT_SYMBOL_GPL(vcpu_put);
200
201 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)202 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
203 {
204 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
205
206 /*
207 * We need to wait for the VCPU to reenable interrupts and get out of
208 * READING_SHADOW_PAGE_TABLES mode.
209 */
210 if (req & KVM_REQUEST_WAIT)
211 return mode != OUTSIDE_GUEST_MODE;
212
213 /*
214 * Need to kick a running VCPU, but otherwise there is nothing to do.
215 */
216 return mode == IN_GUEST_MODE;
217 }
218
ack_flush(void * _completed)219 static void ack_flush(void *_completed)
220 {
221 }
222
kvm_kick_many_cpus(const struct cpumask * cpus,bool wait)223 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
224 {
225 if (unlikely(!cpus))
226 cpus = cpu_online_mask;
227
228 if (cpumask_empty(cpus))
229 return false;
230
231 smp_call_function_many(cpus, ack_flush, NULL, wait);
232 return true;
233 }
234
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap,cpumask_var_t tmp)235 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
236 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
237 {
238 int i, cpu, me;
239 struct kvm_vcpu *vcpu;
240 bool called;
241
242 me = get_cpu();
243
244 kvm_for_each_vcpu(i, vcpu, kvm) {
245 if (!test_bit(i, vcpu_bitmap))
246 continue;
247
248 kvm_make_request(req, vcpu);
249 cpu = vcpu->cpu;
250
251 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
252 continue;
253
254 if (tmp != NULL && cpu != -1 && cpu != me &&
255 kvm_request_needs_ipi(vcpu, req))
256 __cpumask_set_cpu(cpu, tmp);
257 }
258
259 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
260 put_cpu();
261
262 return called;
263 }
264
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)265 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
266 {
267 cpumask_var_t cpus;
268 bool called;
269 static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
270 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
271
272 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
273
274 called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
275
276 free_cpumask_var(cpus);
277 return called;
278 }
279
280 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)281 void kvm_flush_remote_tlbs(struct kvm *kvm)
282 {
283 /*
284 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
285 * kvm_make_all_cpus_request.
286 */
287 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
288
289 /*
290 * We want to publish modifications to the page tables before reading
291 * mode. Pairs with a memory barrier in arch-specific code.
292 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
293 * and smp_mb in walk_shadow_page_lockless_begin/end.
294 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
295 *
296 * There is already an smp_mb__after_atomic() before
297 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
298 * barrier here.
299 */
300 if (!kvm_arch_flush_remote_tlb(kvm)
301 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
302 ++kvm->stat.remote_tlb_flush;
303 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
304 }
305 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
306 #endif
307
kvm_reload_remote_mmus(struct kvm * kvm)308 void kvm_reload_remote_mmus(struct kvm *kvm)
309 {
310 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
311 }
312
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)313 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
314 {
315 struct page *page;
316 int r;
317
318 mutex_init(&vcpu->mutex);
319 vcpu->cpu = -1;
320 vcpu->kvm = kvm;
321 vcpu->vcpu_id = id;
322 vcpu->pid = NULL;
323 init_swait_queue_head(&vcpu->wq);
324 kvm_async_pf_vcpu_init(vcpu);
325
326 vcpu->pre_pcpu = -1;
327 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
328
329 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
330 if (!page) {
331 r = -ENOMEM;
332 goto fail;
333 }
334 vcpu->run = page_address(page);
335
336 kvm_vcpu_set_in_spin_loop(vcpu, false);
337 kvm_vcpu_set_dy_eligible(vcpu, false);
338 vcpu->preempted = false;
339
340 r = kvm_arch_vcpu_init(vcpu);
341 if (r < 0)
342 goto fail_free_run;
343 return 0;
344
345 fail_free_run:
346 free_page((unsigned long)vcpu->run);
347 fail:
348 return r;
349 }
350 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
351
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)352 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
353 {
354 /*
355 * no need for rcu_read_lock as VCPU_RUN is the only place that
356 * will change the vcpu->pid pointer and on uninit all file
357 * descriptors are already gone.
358 */
359 put_pid(rcu_dereference_protected(vcpu->pid, 1));
360 kvm_arch_vcpu_uninit(vcpu);
361 free_page((unsigned long)vcpu->run);
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
364
365 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)366 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
367 {
368 return container_of(mn, struct kvm, mmu_notifier);
369 }
370
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)371 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long start, unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
380 srcu_read_unlock(&kvm->srcu, idx);
381 }
382
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)383 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
384 struct mm_struct *mm,
385 unsigned long address,
386 pte_t pte)
387 {
388 struct kvm *kvm = mmu_notifier_to_kvm(mn);
389 int idx;
390
391 idx = srcu_read_lock(&kvm->srcu);
392 spin_lock(&kvm->mmu_lock);
393 kvm->mmu_notifier_seq++;
394 kvm_set_spte_hva(kvm, address, pte);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397 }
398
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)399 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
400 struct mm_struct *mm,
401 unsigned long start,
402 unsigned long end,
403 bool blockable)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int need_tlb_flush = 0, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410 /*
411 * The count increase must become visible at unlock time as no
412 * spte can be established without taking the mmu_lock and
413 * count is also read inside the mmu_lock critical section.
414 */
415 kvm->mmu_notifier_count++;
416 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end, blockable);
417 /* we've to flush the tlb before the pages can be freed */
418 if (need_tlb_flush || kvm->tlbs_dirty)
419 kvm_flush_remote_tlbs(kvm);
420
421 spin_unlock(&kvm->mmu_lock);
422 srcu_read_unlock(&kvm->srcu, idx);
423
424 return 0;
425 }
426
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)427 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
428 struct mm_struct *mm,
429 unsigned long start,
430 unsigned long end)
431 {
432 struct kvm *kvm = mmu_notifier_to_kvm(mn);
433
434 spin_lock(&kvm->mmu_lock);
435 /*
436 * This sequence increase will notify the kvm page fault that
437 * the page that is going to be mapped in the spte could have
438 * been freed.
439 */
440 kvm->mmu_notifier_seq++;
441 smp_wmb();
442 /*
443 * The above sequence increase must be visible before the
444 * below count decrease, which is ensured by the smp_wmb above
445 * in conjunction with the smp_rmb in mmu_notifier_retry().
446 */
447 kvm->mmu_notifier_count--;
448 spin_unlock(&kvm->mmu_lock);
449
450 BUG_ON(kvm->mmu_notifier_count < 0);
451 }
452
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)453 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long start,
456 unsigned long end)
457 {
458 struct kvm *kvm = mmu_notifier_to_kvm(mn);
459 int young, idx;
460
461 idx = srcu_read_lock(&kvm->srcu);
462 spin_lock(&kvm->mmu_lock);
463
464 young = kvm_age_hva(kvm, start, end);
465 if (young)
466 kvm_flush_remote_tlbs(kvm);
467
468 spin_unlock(&kvm->mmu_lock);
469 srcu_read_unlock(&kvm->srcu, idx);
470
471 return young;
472 }
473
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)474 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
475 struct mm_struct *mm,
476 unsigned long start,
477 unsigned long end)
478 {
479 struct kvm *kvm = mmu_notifier_to_kvm(mn);
480 int young, idx;
481
482 idx = srcu_read_lock(&kvm->srcu);
483 spin_lock(&kvm->mmu_lock);
484 /*
485 * Even though we do not flush TLB, this will still adversely
486 * affect performance on pre-Haswell Intel EPT, where there is
487 * no EPT Access Bit to clear so that we have to tear down EPT
488 * tables instead. If we find this unacceptable, we can always
489 * add a parameter to kvm_age_hva so that it effectively doesn't
490 * do anything on clear_young.
491 *
492 * Also note that currently we never issue secondary TLB flushes
493 * from clear_young, leaving this job up to the regular system
494 * cadence. If we find this inaccurate, we might come up with a
495 * more sophisticated heuristic later.
496 */
497 young = kvm_age_hva(kvm, start, end);
498 spin_unlock(&kvm->mmu_lock);
499 srcu_read_unlock(&kvm->srcu, idx);
500
501 return young;
502 }
503
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)504 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
505 struct mm_struct *mm,
506 unsigned long address)
507 {
508 struct kvm *kvm = mmu_notifier_to_kvm(mn);
509 int young, idx;
510
511 idx = srcu_read_lock(&kvm->srcu);
512 spin_lock(&kvm->mmu_lock);
513 young = kvm_test_age_hva(kvm, address);
514 spin_unlock(&kvm->mmu_lock);
515 srcu_read_unlock(&kvm->srcu, idx);
516
517 return young;
518 }
519
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)520 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
521 struct mm_struct *mm)
522 {
523 struct kvm *kvm = mmu_notifier_to_kvm(mn);
524 int idx;
525
526 idx = srcu_read_lock(&kvm->srcu);
527 kvm_arch_flush_shadow_all(kvm);
528 srcu_read_unlock(&kvm->srcu, idx);
529 }
530
531 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
532 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
533 .invalidate_range = kvm_mmu_notifier_invalidate_range,
534 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
535 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
536 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
537 .clear_young = kvm_mmu_notifier_clear_young,
538 .test_young = kvm_mmu_notifier_test_young,
539 .change_pte = kvm_mmu_notifier_change_pte,
540 .release = kvm_mmu_notifier_release,
541 };
542
kvm_init_mmu_notifier(struct kvm * kvm)543 static int kvm_init_mmu_notifier(struct kvm *kvm)
544 {
545 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
546 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
547 }
548
549 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
550
kvm_init_mmu_notifier(struct kvm * kvm)551 static int kvm_init_mmu_notifier(struct kvm *kvm)
552 {
553 return 0;
554 }
555
556 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
557
kvm_alloc_memslots(void)558 static struct kvm_memslots *kvm_alloc_memslots(void)
559 {
560 int i;
561 struct kvm_memslots *slots;
562
563 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
564 if (!slots)
565 return NULL;
566
567 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
568 slots->id_to_index[i] = slots->memslots[i].id = i;
569
570 return slots;
571 }
572
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)573 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
574 {
575 if (!memslot->dirty_bitmap)
576 return;
577
578 kvfree(memslot->dirty_bitmap);
579 memslot->dirty_bitmap = NULL;
580 }
581
582 /*
583 * Free any memory in @free but not in @dont.
584 */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)585 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
586 struct kvm_memory_slot *dont)
587 {
588 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
589 kvm_destroy_dirty_bitmap(free);
590
591 kvm_arch_free_memslot(kvm, free, dont);
592
593 free->npages = 0;
594 }
595
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)596 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
597 {
598 struct kvm_memory_slot *memslot;
599
600 if (!slots)
601 return;
602
603 kvm_for_each_memslot(memslot, slots)
604 kvm_free_memslot(kvm, memslot, NULL);
605
606 kvfree(slots);
607 }
608
kvm_destroy_vm_debugfs(struct kvm * kvm)609 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
610 {
611 int i;
612
613 if (!kvm->debugfs_dentry)
614 return;
615
616 debugfs_remove_recursive(kvm->debugfs_dentry);
617
618 if (kvm->debugfs_stat_data) {
619 for (i = 0; i < kvm_debugfs_num_entries; i++)
620 kfree(kvm->debugfs_stat_data[i]);
621 kfree(kvm->debugfs_stat_data);
622 }
623 }
624
kvm_create_vm_debugfs(struct kvm * kvm,int fd)625 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
626 {
627 char dir_name[ITOA_MAX_LEN * 2];
628 struct kvm_stat_data *stat_data;
629 struct kvm_stats_debugfs_item *p;
630
631 if (!debugfs_initialized())
632 return 0;
633
634 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
635 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
636
637 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
638 sizeof(*kvm->debugfs_stat_data),
639 GFP_KERNEL);
640 if (!kvm->debugfs_stat_data)
641 return -ENOMEM;
642
643 for (p = debugfs_entries; p->name; p++) {
644 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
645 if (!stat_data)
646 return -ENOMEM;
647
648 stat_data->kvm = kvm;
649 stat_data->offset = p->offset;
650 stat_data->mode = p->mode ? p->mode : 0644;
651 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
652 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
653 stat_data, stat_fops_per_vm[p->kind]);
654 }
655 return 0;
656 }
657
658 /*
659 * Called after the VM is otherwise initialized, but just before adding it to
660 * the vm_list.
661 */
kvm_arch_post_init_vm(struct kvm * kvm)662 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
663 {
664 return 0;
665 }
666
667 /*
668 * Called just after removing the VM from the vm_list, but before doing any
669 * other destruction.
670 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)671 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
672 {
673 }
674
kvm_create_vm(unsigned long type)675 static struct kvm *kvm_create_vm(unsigned long type)
676 {
677 int r, i;
678 struct kvm *kvm = kvm_arch_alloc_vm();
679
680 if (!kvm)
681 return ERR_PTR(-ENOMEM);
682
683 spin_lock_init(&kvm->mmu_lock);
684 mmgrab(current->mm);
685 kvm->mm = current->mm;
686 kvm_eventfd_init(kvm);
687 mutex_init(&kvm->lock);
688 mutex_init(&kvm->irq_lock);
689 mutex_init(&kvm->slots_lock);
690 refcount_set(&kvm->users_count, 1);
691 INIT_LIST_HEAD(&kvm->devices);
692
693 r = kvm_arch_init_vm(kvm, type);
694 if (r)
695 goto out_err_no_disable;
696
697 r = hardware_enable_all();
698 if (r)
699 goto out_err_no_disable;
700
701 #ifdef CONFIG_HAVE_KVM_IRQFD
702 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
703 #endif
704
705 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
706
707 r = -ENOMEM;
708 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
709 struct kvm_memslots *slots = kvm_alloc_memslots();
710 if (!slots)
711 goto out_err_no_srcu;
712 /*
713 * Generations must be different for each address space.
714 * Init kvm generation close to the maximum to easily test the
715 * code of handling generation number wrap-around.
716 */
717 slots->generation = i * 2 - 150;
718 rcu_assign_pointer(kvm->memslots[i], slots);
719 }
720
721 if (init_srcu_struct(&kvm->srcu))
722 goto out_err_no_srcu;
723 if (init_srcu_struct(&kvm->irq_srcu))
724 goto out_err_no_irq_srcu;
725 for (i = 0; i < KVM_NR_BUSES; i++) {
726 rcu_assign_pointer(kvm->buses[i],
727 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
728 if (!kvm->buses[i])
729 goto out_err_no_mmu_notifier;
730 }
731
732 r = kvm_init_mmu_notifier(kvm);
733 if (r)
734 goto out_err_no_mmu_notifier;
735
736 r = kvm_arch_post_init_vm(kvm);
737 if (r)
738 goto out_err;
739
740 mutex_lock(&kvm_lock);
741 list_add(&kvm->vm_list, &vm_list);
742 mutex_unlock(&kvm_lock);
743
744 preempt_notifier_inc();
745
746 /*
747 * When the fd passed to this ioctl() is opened it pins the module,
748 * but try_module_get() also prevents getting a reference if the module
749 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
750 */
751 if (!try_module_get(kvm_chardev_ops.owner)) {
752 r = -ENODEV;
753 goto out_err;
754 }
755
756 return kvm;
757
758 out_err:
759 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
760 if (kvm->mmu_notifier.ops)
761 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
762 #endif
763 out_err_no_mmu_notifier:
764 cleanup_srcu_struct(&kvm->irq_srcu);
765 out_err_no_irq_srcu:
766 cleanup_srcu_struct(&kvm->srcu);
767 out_err_no_srcu:
768 hardware_disable_all();
769 out_err_no_disable:
770 refcount_set(&kvm->users_count, 0);
771 for (i = 0; i < KVM_NR_BUSES; i++)
772 kfree(kvm_get_bus(kvm, i));
773 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
774 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
775 kvm_arch_free_vm(kvm);
776 mmdrop(current->mm);
777 return ERR_PTR(r);
778 }
779
kvm_destroy_devices(struct kvm * kvm)780 static void kvm_destroy_devices(struct kvm *kvm)
781 {
782 struct kvm_device *dev, *tmp;
783
784 /*
785 * We do not need to take the kvm->lock here, because nobody else
786 * has a reference to the struct kvm at this point and therefore
787 * cannot access the devices list anyhow.
788 */
789 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
790 list_del(&dev->vm_node);
791 dev->ops->destroy(dev);
792 }
793 }
794
kvm_destroy_vm(struct kvm * kvm)795 static void kvm_destroy_vm(struct kvm *kvm)
796 {
797 int i;
798 struct mm_struct *mm = kvm->mm;
799
800 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
801 kvm_destroy_vm_debugfs(kvm);
802 kvm_arch_sync_events(kvm);
803 mutex_lock(&kvm_lock);
804 list_del(&kvm->vm_list);
805 mutex_unlock(&kvm_lock);
806 kvm_arch_pre_destroy_vm(kvm);
807
808 kvm_free_irq_routing(kvm);
809 for (i = 0; i < KVM_NR_BUSES; i++) {
810 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
811
812 if (bus)
813 kvm_io_bus_destroy(bus);
814 kvm->buses[i] = NULL;
815 }
816 kvm_coalesced_mmio_free(kvm);
817 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
818 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
819 #else
820 kvm_arch_flush_shadow_all(kvm);
821 #endif
822 kvm_arch_destroy_vm(kvm);
823 kvm_destroy_devices(kvm);
824 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826 cleanup_srcu_struct(&kvm->irq_srcu);
827 cleanup_srcu_struct(&kvm->srcu);
828 kvm_arch_free_vm(kvm);
829 preempt_notifier_dec();
830 hardware_disable_all();
831 mmdrop(mm);
832 module_put(kvm_chardev_ops.owner);
833 }
834
kvm_get_kvm(struct kvm * kvm)835 void kvm_get_kvm(struct kvm *kvm)
836 {
837 refcount_inc(&kvm->users_count);
838 }
839 EXPORT_SYMBOL_GPL(kvm_get_kvm);
840
kvm_put_kvm(struct kvm * kvm)841 void kvm_put_kvm(struct kvm *kvm)
842 {
843 if (refcount_dec_and_test(&kvm->users_count))
844 kvm_destroy_vm(kvm);
845 }
846 EXPORT_SYMBOL_GPL(kvm_put_kvm);
847
848
kvm_vm_release(struct inode * inode,struct file * filp)849 static int kvm_vm_release(struct inode *inode, struct file *filp)
850 {
851 struct kvm *kvm = filp->private_data;
852
853 kvm_irqfd_release(kvm);
854
855 kvm_put_kvm(kvm);
856 return 0;
857 }
858
859 /*
860 * Allocation size is twice as large as the actual dirty bitmap size.
861 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
862 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)863 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
864 {
865 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
866
867 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
868 if (!memslot->dirty_bitmap)
869 return -ENOMEM;
870
871 return 0;
872 }
873
874 /*
875 * Insert memslot and re-sort memslots based on their GFN,
876 * so binary search could be used to lookup GFN.
877 * Sorting algorithm takes advantage of having initially
878 * sorted array and known changed memslot position.
879 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)880 static void update_memslots(struct kvm_memslots *slots,
881 struct kvm_memory_slot *new)
882 {
883 int id = new->id;
884 int i = slots->id_to_index[id];
885 struct kvm_memory_slot *mslots = slots->memslots;
886
887 WARN_ON(mslots[i].id != id);
888 if (!new->npages) {
889 WARN_ON(!mslots[i].npages);
890 if (mslots[i].npages)
891 slots->used_slots--;
892 } else {
893 if (!mslots[i].npages)
894 slots->used_slots++;
895 }
896
897 while (i < KVM_MEM_SLOTS_NUM - 1 &&
898 new->base_gfn <= mslots[i + 1].base_gfn) {
899 if (!mslots[i + 1].npages)
900 break;
901 mslots[i] = mslots[i + 1];
902 slots->id_to_index[mslots[i].id] = i;
903 i++;
904 }
905
906 /*
907 * The ">=" is needed when creating a slot with base_gfn == 0,
908 * so that it moves before all those with base_gfn == npages == 0.
909 *
910 * On the other hand, if new->npages is zero, the above loop has
911 * already left i pointing to the beginning of the empty part of
912 * mslots, and the ">=" would move the hole backwards in this
913 * case---which is wrong. So skip the loop when deleting a slot.
914 */
915 if (new->npages) {
916 while (i > 0 &&
917 new->base_gfn >= mslots[i - 1].base_gfn) {
918 mslots[i] = mslots[i - 1];
919 slots->id_to_index[mslots[i].id] = i;
920 i--;
921 }
922 } else
923 WARN_ON_ONCE(i != slots->used_slots);
924
925 mslots[i] = *new;
926 slots->id_to_index[mslots[i].id] = i;
927 }
928
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)929 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
930 {
931 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
932
933 #ifdef __KVM_HAVE_READONLY_MEM
934 valid_flags |= KVM_MEM_READONLY;
935 #endif
936
937 if (mem->flags & ~valid_flags)
938 return -EINVAL;
939
940 return 0;
941 }
942
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)943 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
944 int as_id, struct kvm_memslots *slots)
945 {
946 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
947 u64 gen;
948
949 /*
950 * Set the low bit in the generation, which disables SPTE caching
951 * until the end of synchronize_srcu_expedited.
952 */
953 WARN_ON(old_memslots->generation & 1);
954 slots->generation = old_memslots->generation + 1;
955
956 rcu_assign_pointer(kvm->memslots[as_id], slots);
957 synchronize_srcu_expedited(&kvm->srcu);
958
959 /*
960 * Increment the new memslot generation a second time. This prevents
961 * vm exits that race with memslot updates from caching a memslot
962 * generation that will (potentially) be valid forever.
963 *
964 * Generations must be unique even across address spaces. We do not need
965 * a global counter for that, instead the generation space is evenly split
966 * across address spaces. For example, with two address spaces, address
967 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
968 * use generations 2, 6, 10, 14, ...
969 */
970 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
971
972 kvm_arch_memslots_updated(kvm, gen);
973
974 slots->generation = gen;
975
976 return old_memslots;
977 }
978
979 /*
980 * Allocate some memory and give it an address in the guest physical address
981 * space.
982 *
983 * Discontiguous memory is allowed, mostly for framebuffers.
984 *
985 * Must be called holding kvm->slots_lock for write.
986 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)987 int __kvm_set_memory_region(struct kvm *kvm,
988 const struct kvm_userspace_memory_region *mem)
989 {
990 int r;
991 gfn_t base_gfn;
992 unsigned long npages;
993 struct kvm_memory_slot *slot;
994 struct kvm_memory_slot old, new;
995 struct kvm_memslots *slots = NULL, *old_memslots;
996 int as_id, id;
997 enum kvm_mr_change change;
998
999 r = check_memory_region_flags(mem);
1000 if (r)
1001 goto out;
1002
1003 r = -EINVAL;
1004 as_id = mem->slot >> 16;
1005 id = (u16)mem->slot;
1006
1007 /* General sanity checks */
1008 if (mem->memory_size & (PAGE_SIZE - 1))
1009 goto out;
1010 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1011 goto out;
1012 /* We can read the guest memory with __xxx_user() later on. */
1013 if ((id < KVM_USER_MEM_SLOTS) &&
1014 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1015 !access_ok(VERIFY_WRITE,
1016 (void __user *)(unsigned long)mem->userspace_addr,
1017 mem->memory_size)))
1018 goto out;
1019 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1020 goto out;
1021 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1022 goto out;
1023
1024 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1025 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1026 npages = mem->memory_size >> PAGE_SHIFT;
1027
1028 if (npages > KVM_MEM_MAX_NR_PAGES)
1029 goto out;
1030
1031 new = old = *slot;
1032
1033 new.id = id;
1034 new.base_gfn = base_gfn;
1035 new.npages = npages;
1036 new.flags = mem->flags;
1037
1038 if (npages) {
1039 if (!old.npages)
1040 change = KVM_MR_CREATE;
1041 else { /* Modify an existing slot. */
1042 if ((mem->userspace_addr != old.userspace_addr) ||
1043 (npages != old.npages) ||
1044 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1045 goto out;
1046
1047 if (base_gfn != old.base_gfn)
1048 change = KVM_MR_MOVE;
1049 else if (new.flags != old.flags)
1050 change = KVM_MR_FLAGS_ONLY;
1051 else { /* Nothing to change. */
1052 r = 0;
1053 goto out;
1054 }
1055 }
1056 } else {
1057 if (!old.npages)
1058 goto out;
1059
1060 change = KVM_MR_DELETE;
1061 new.base_gfn = 0;
1062 new.flags = 0;
1063 }
1064
1065 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1066 /* Check for overlaps */
1067 r = -EEXIST;
1068 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1069 if (slot->id == id)
1070 continue;
1071 if (!((base_gfn + npages <= slot->base_gfn) ||
1072 (base_gfn >= slot->base_gfn + slot->npages)))
1073 goto out;
1074 }
1075 }
1076
1077 /* Free page dirty bitmap if unneeded */
1078 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1079 new.dirty_bitmap = NULL;
1080
1081 r = -ENOMEM;
1082 if (change == KVM_MR_CREATE) {
1083 new.userspace_addr = mem->userspace_addr;
1084
1085 if (kvm_arch_create_memslot(kvm, &new, npages))
1086 goto out_free;
1087 }
1088
1089 /* Allocate page dirty bitmap if needed */
1090 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1091 if (kvm_create_dirty_bitmap(&new) < 0)
1092 goto out_free;
1093 }
1094
1095 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1096 if (!slots)
1097 goto out_free;
1098 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1099
1100 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1101 slot = id_to_memslot(slots, id);
1102 slot->flags |= KVM_MEMSLOT_INVALID;
1103
1104 old_memslots = install_new_memslots(kvm, as_id, slots);
1105
1106 /* From this point no new shadow pages pointing to a deleted,
1107 * or moved, memslot will be created.
1108 *
1109 * validation of sp->gfn happens in:
1110 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1111 * - kvm_is_visible_gfn (mmu_check_roots)
1112 */
1113 kvm_arch_flush_shadow_memslot(kvm, slot);
1114
1115 /*
1116 * We can re-use the old_memslots from above, the only difference
1117 * from the currently installed memslots is the invalid flag. This
1118 * will get overwritten by update_memslots anyway.
1119 */
1120 slots = old_memslots;
1121 }
1122
1123 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1124 if (r)
1125 goto out_slots;
1126
1127 /* actual memory is freed via old in kvm_free_memslot below */
1128 if (change == KVM_MR_DELETE) {
1129 new.dirty_bitmap = NULL;
1130 memset(&new.arch, 0, sizeof(new.arch));
1131 }
1132
1133 update_memslots(slots, &new);
1134 old_memslots = install_new_memslots(kvm, as_id, slots);
1135
1136 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1137
1138 kvm_free_memslot(kvm, &old, &new);
1139 kvfree(old_memslots);
1140 return 0;
1141
1142 out_slots:
1143 kvfree(slots);
1144 out_free:
1145 kvm_free_memslot(kvm, &new, &old);
1146 out:
1147 return r;
1148 }
1149 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1150
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1151 int kvm_set_memory_region(struct kvm *kvm,
1152 const struct kvm_userspace_memory_region *mem)
1153 {
1154 int r;
1155
1156 mutex_lock(&kvm->slots_lock);
1157 r = __kvm_set_memory_region(kvm, mem);
1158 mutex_unlock(&kvm->slots_lock);
1159 return r;
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1162
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1163 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1164 struct kvm_userspace_memory_region *mem)
1165 {
1166 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1167 return -EINVAL;
1168
1169 return kvm_set_memory_region(kvm, mem);
1170 }
1171
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1172 int kvm_get_dirty_log(struct kvm *kvm,
1173 struct kvm_dirty_log *log, int *is_dirty)
1174 {
1175 struct kvm_memslots *slots;
1176 struct kvm_memory_slot *memslot;
1177 int i, as_id, id;
1178 unsigned long n;
1179 unsigned long any = 0;
1180
1181 as_id = log->slot >> 16;
1182 id = (u16)log->slot;
1183 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1184 return -EINVAL;
1185
1186 slots = __kvm_memslots(kvm, as_id);
1187 memslot = id_to_memslot(slots, id);
1188 if (!memslot->dirty_bitmap)
1189 return -ENOENT;
1190
1191 n = kvm_dirty_bitmap_bytes(memslot);
1192
1193 for (i = 0; !any && i < n/sizeof(long); ++i)
1194 any = memslot->dirty_bitmap[i];
1195
1196 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1197 return -EFAULT;
1198
1199 if (any)
1200 *is_dirty = 1;
1201 return 0;
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1204
1205 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1206 /**
1207 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1208 * are dirty write protect them for next write.
1209 * @kvm: pointer to kvm instance
1210 * @log: slot id and address to which we copy the log
1211 * @is_dirty: flag set if any page is dirty
1212 *
1213 * We need to keep it in mind that VCPU threads can write to the bitmap
1214 * concurrently. So, to avoid losing track of dirty pages we keep the
1215 * following order:
1216 *
1217 * 1. Take a snapshot of the bit and clear it if needed.
1218 * 2. Write protect the corresponding page.
1219 * 3. Copy the snapshot to the userspace.
1220 * 4. Upon return caller flushes TLB's if needed.
1221 *
1222 * Between 2 and 4, the guest may write to the page using the remaining TLB
1223 * entry. This is not a problem because the page is reported dirty using
1224 * the snapshot taken before and step 4 ensures that writes done after
1225 * exiting to userspace will be logged for the next call.
1226 *
1227 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1228 int kvm_get_dirty_log_protect(struct kvm *kvm,
1229 struct kvm_dirty_log *log, bool *is_dirty)
1230 {
1231 struct kvm_memslots *slots;
1232 struct kvm_memory_slot *memslot;
1233 int i, as_id, id;
1234 unsigned long n;
1235 unsigned long *dirty_bitmap;
1236 unsigned long *dirty_bitmap_buffer;
1237
1238 as_id = log->slot >> 16;
1239 id = (u16)log->slot;
1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 return -EINVAL;
1242
1243 slots = __kvm_memslots(kvm, as_id);
1244 memslot = id_to_memslot(slots, id);
1245
1246 dirty_bitmap = memslot->dirty_bitmap;
1247 if (!dirty_bitmap)
1248 return -ENOENT;
1249
1250 n = kvm_dirty_bitmap_bytes(memslot);
1251
1252 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1253 memset(dirty_bitmap_buffer, 0, n);
1254
1255 spin_lock(&kvm->mmu_lock);
1256 *is_dirty = false;
1257 for (i = 0; i < n / sizeof(long); i++) {
1258 unsigned long mask;
1259 gfn_t offset;
1260
1261 if (!dirty_bitmap[i])
1262 continue;
1263
1264 *is_dirty = true;
1265
1266 mask = xchg(&dirty_bitmap[i], 0);
1267 dirty_bitmap_buffer[i] = mask;
1268
1269 if (mask) {
1270 offset = i * BITS_PER_LONG;
1271 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1272 offset, mask);
1273 }
1274 }
1275
1276 spin_unlock(&kvm->mmu_lock);
1277 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1278 return -EFAULT;
1279 return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1282 #endif
1283
kvm_largepages_enabled(void)1284 bool kvm_largepages_enabled(void)
1285 {
1286 return largepages_enabled;
1287 }
1288
kvm_disable_largepages(void)1289 void kvm_disable_largepages(void)
1290 {
1291 largepages_enabled = false;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1294
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1295 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1296 {
1297 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1300
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1301 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1302 {
1303 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1304 }
1305
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1306 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1307 {
1308 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1309
1310 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1311 memslot->flags & KVM_MEMSLOT_INVALID)
1312 return false;
1313
1314 return true;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1317
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)1318 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1319 {
1320 struct vm_area_struct *vma;
1321 unsigned long addr, size;
1322
1323 size = PAGE_SIZE;
1324
1325 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1326 if (kvm_is_error_hva(addr))
1327 return PAGE_SIZE;
1328
1329 down_read(¤t->mm->mmap_sem);
1330 vma = find_vma(current->mm, addr);
1331 if (!vma)
1332 goto out;
1333
1334 size = vma_kernel_pagesize(vma);
1335
1336 out:
1337 up_read(¤t->mm->mmap_sem);
1338
1339 return size;
1340 }
1341
memslot_is_readonly(struct kvm_memory_slot * slot)1342 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1343 {
1344 return slot->flags & KVM_MEM_READONLY;
1345 }
1346
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1347 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1348 gfn_t *nr_pages, bool write)
1349 {
1350 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1351 return KVM_HVA_ERR_BAD;
1352
1353 if (memslot_is_readonly(slot) && write)
1354 return KVM_HVA_ERR_RO_BAD;
1355
1356 if (nr_pages)
1357 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1358
1359 return __gfn_to_hva_memslot(slot, gfn);
1360 }
1361
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1362 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1363 gfn_t *nr_pages)
1364 {
1365 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1366 }
1367
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1368 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1369 gfn_t gfn)
1370 {
1371 return gfn_to_hva_many(slot, gfn, NULL);
1372 }
1373 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1374
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1375 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1376 {
1377 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1378 }
1379 EXPORT_SYMBOL_GPL(gfn_to_hva);
1380
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1381 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1382 {
1383 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1386
1387 /*
1388 * If writable is set to false, the hva returned by this function is only
1389 * allowed to be read.
1390 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1391 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1392 gfn_t gfn, bool *writable)
1393 {
1394 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1395
1396 if (!kvm_is_error_hva(hva) && writable)
1397 *writable = !memslot_is_readonly(slot);
1398
1399 return hva;
1400 }
1401
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1402 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1403 {
1404 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1405
1406 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1407 }
1408
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1409 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1410 {
1411 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1412
1413 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1414 }
1415
check_user_page_hwpoison(unsigned long addr)1416 static inline int check_user_page_hwpoison(unsigned long addr)
1417 {
1418 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1419
1420 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1421 return rc == -EHWPOISON;
1422 }
1423
1424 /*
1425 * The fast path to get the writable pfn which will be stored in @pfn,
1426 * true indicates success, otherwise false is returned. It's also the
1427 * only part that runs if we can are in atomic context.
1428 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1429 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1430 bool *writable, kvm_pfn_t *pfn)
1431 {
1432 struct page *page[1];
1433 int npages;
1434
1435 /*
1436 * Fast pin a writable pfn only if it is a write fault request
1437 * or the caller allows to map a writable pfn for a read fault
1438 * request.
1439 */
1440 if (!(write_fault || writable))
1441 return false;
1442
1443 npages = __get_user_pages_fast(addr, 1, 1, page);
1444 if (npages == 1) {
1445 *pfn = page_to_pfn(page[0]);
1446
1447 if (writable)
1448 *writable = true;
1449 return true;
1450 }
1451
1452 return false;
1453 }
1454
1455 /*
1456 * The slow path to get the pfn of the specified host virtual address,
1457 * 1 indicates success, -errno is returned if error is detected.
1458 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1459 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1460 bool *writable, kvm_pfn_t *pfn)
1461 {
1462 unsigned int flags = FOLL_HWPOISON;
1463 struct page *page;
1464 int npages = 0;
1465
1466 might_sleep();
1467
1468 if (writable)
1469 *writable = write_fault;
1470
1471 if (write_fault)
1472 flags |= FOLL_WRITE;
1473 if (async)
1474 flags |= FOLL_NOWAIT;
1475
1476 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1477 if (npages != 1)
1478 return npages;
1479
1480 /* map read fault as writable if possible */
1481 if (unlikely(!write_fault) && writable) {
1482 struct page *wpage;
1483
1484 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1485 *writable = true;
1486 put_page(page);
1487 page = wpage;
1488 }
1489 }
1490 *pfn = page_to_pfn(page);
1491 return npages;
1492 }
1493
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1494 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1495 {
1496 if (unlikely(!(vma->vm_flags & VM_READ)))
1497 return false;
1498
1499 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1500 return false;
1501
1502 return true;
1503 }
1504
kvm_try_get_pfn(kvm_pfn_t pfn)1505 static int kvm_try_get_pfn(kvm_pfn_t pfn)
1506 {
1507 if (kvm_is_reserved_pfn(pfn))
1508 return 1;
1509 return get_page_unless_zero(pfn_to_page(pfn));
1510 }
1511
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1512 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1513 unsigned long addr, bool *async,
1514 bool write_fault, bool *writable,
1515 kvm_pfn_t *p_pfn)
1516 {
1517 kvm_pfn_t pfn;
1518 pte_t *ptep;
1519 spinlock_t *ptl;
1520 int r;
1521
1522 r = follow_pte_pmd(vma->vm_mm, addr, NULL, NULL, &ptep, NULL, &ptl);
1523 if (r) {
1524 /*
1525 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1526 * not call the fault handler, so do it here.
1527 */
1528 bool unlocked = false;
1529 r = fixup_user_fault(current, current->mm, addr,
1530 (write_fault ? FAULT_FLAG_WRITE : 0),
1531 &unlocked);
1532 if (unlocked)
1533 return -EAGAIN;
1534 if (r)
1535 return r;
1536
1537 r = follow_pte_pmd(vma->vm_mm, addr, NULL, NULL, &ptep, NULL, &ptl);
1538 if (r)
1539 return r;
1540 }
1541
1542 if (write_fault && !pte_write(*ptep)) {
1543 pfn = KVM_PFN_ERR_RO_FAULT;
1544 goto out;
1545 }
1546
1547 if (writable)
1548 *writable = pte_write(*ptep);
1549 pfn = pte_pfn(*ptep);
1550
1551 /*
1552 * Get a reference here because callers of *hva_to_pfn* and
1553 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1554 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1555 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1556 * simply do nothing for reserved pfns.
1557 *
1558 * Whoever called remap_pfn_range is also going to call e.g.
1559 * unmap_mapping_range before the underlying pages are freed,
1560 * causing a call to our MMU notifier.
1561 *
1562 * Certain IO or PFNMAP mappings can be backed with valid
1563 * struct pages, but be allocated without refcounting e.g.,
1564 * tail pages of non-compound higher order allocations, which
1565 * would then underflow the refcount when the caller does the
1566 * required put_page. Don't allow those pages here.
1567 */
1568 if (!kvm_try_get_pfn(pfn))
1569 r = -EFAULT;
1570
1571 out:
1572 pte_unmap_unlock(ptep, ptl);
1573 *p_pfn = pfn;
1574
1575 return r;
1576 }
1577
1578 /*
1579 * Pin guest page in memory and return its pfn.
1580 * @addr: host virtual address which maps memory to the guest
1581 * @atomic: whether this function can sleep
1582 * @async: whether this function need to wait IO complete if the
1583 * host page is not in the memory
1584 * @write_fault: whether we should get a writable host page
1585 * @writable: whether it allows to map a writable host page for !@write_fault
1586 *
1587 * The function will map a writable host page for these two cases:
1588 * 1): @write_fault = true
1589 * 2): @write_fault = false && @writable, @writable will tell the caller
1590 * whether the mapping is writable.
1591 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1592 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1593 bool write_fault, bool *writable)
1594 {
1595 struct vm_area_struct *vma;
1596 kvm_pfn_t pfn = 0;
1597 int npages, r;
1598
1599 /* we can do it either atomically or asynchronously, not both */
1600 BUG_ON(atomic && async);
1601
1602 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1603 return pfn;
1604
1605 if (atomic)
1606 return KVM_PFN_ERR_FAULT;
1607
1608 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1609 if (npages == 1)
1610 return pfn;
1611
1612 down_read(¤t->mm->mmap_sem);
1613 if (npages == -EHWPOISON ||
1614 (!async && check_user_page_hwpoison(addr))) {
1615 pfn = KVM_PFN_ERR_HWPOISON;
1616 goto exit;
1617 }
1618
1619 retry:
1620 vma = find_vma_intersection(current->mm, addr, addr + 1);
1621
1622 if (vma == NULL)
1623 pfn = KVM_PFN_ERR_FAULT;
1624 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1625 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1626 if (r == -EAGAIN)
1627 goto retry;
1628 if (r < 0)
1629 pfn = KVM_PFN_ERR_FAULT;
1630 } else {
1631 if (async && vma_is_valid(vma, write_fault))
1632 *async = true;
1633 pfn = KVM_PFN_ERR_FAULT;
1634 }
1635 exit:
1636 up_read(¤t->mm->mmap_sem);
1637 return pfn;
1638 }
1639
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1640 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1641 bool atomic, bool *async, bool write_fault,
1642 bool *writable)
1643 {
1644 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1645
1646 if (addr == KVM_HVA_ERR_RO_BAD) {
1647 if (writable)
1648 *writable = false;
1649 return KVM_PFN_ERR_RO_FAULT;
1650 }
1651
1652 if (kvm_is_error_hva(addr)) {
1653 if (writable)
1654 *writable = false;
1655 return KVM_PFN_NOSLOT;
1656 }
1657
1658 /* Do not map writable pfn in the readonly memslot. */
1659 if (writable && memslot_is_readonly(slot)) {
1660 *writable = false;
1661 writable = NULL;
1662 }
1663
1664 return hva_to_pfn(addr, atomic, async, write_fault,
1665 writable);
1666 }
1667 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1668
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1669 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1670 bool *writable)
1671 {
1672 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1673 write_fault, writable);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1676
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1677 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1678 {
1679 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1682
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1683 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1684 {
1685 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1686 }
1687 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1688
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1689 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1690 {
1691 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1694
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1695 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1696 {
1697 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1700
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1701 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1702 {
1703 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1704 }
1705 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1706
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1707 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1708 {
1709 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1712
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1713 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1714 struct page **pages, int nr_pages)
1715 {
1716 unsigned long addr;
1717 gfn_t entry = 0;
1718
1719 addr = gfn_to_hva_many(slot, gfn, &entry);
1720 if (kvm_is_error_hva(addr))
1721 return -1;
1722
1723 if (entry < nr_pages)
1724 return 0;
1725
1726 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1727 }
1728 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1729
kvm_pfn_to_page(kvm_pfn_t pfn)1730 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1731 {
1732 if (is_error_noslot_pfn(pfn))
1733 return KVM_ERR_PTR_BAD_PAGE;
1734
1735 if (kvm_is_reserved_pfn(pfn)) {
1736 WARN_ON(1);
1737 return KVM_ERR_PTR_BAD_PAGE;
1738 }
1739
1740 return pfn_to_page(pfn);
1741 }
1742
gfn_to_page(struct kvm * kvm,gfn_t gfn)1743 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1744 {
1745 kvm_pfn_t pfn;
1746
1747 pfn = gfn_to_pfn(kvm, gfn);
1748
1749 return kvm_pfn_to_page(pfn);
1750 }
1751 EXPORT_SYMBOL_GPL(gfn_to_page);
1752
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)1753 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1754 {
1755 if (pfn == 0)
1756 return;
1757
1758 if (cache)
1759 cache->pfn = cache->gfn = 0;
1760
1761 if (dirty)
1762 kvm_release_pfn_dirty(pfn);
1763 else
1764 kvm_release_pfn_clean(pfn);
1765 }
1766
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)1767 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1768 struct gfn_to_pfn_cache *cache, u64 gen)
1769 {
1770 kvm_release_pfn(cache->pfn, cache->dirty, cache);
1771
1772 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1773 cache->gfn = gfn;
1774 cache->dirty = false;
1775 cache->generation = gen;
1776 }
1777
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)1778 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1779 struct kvm_host_map *map,
1780 struct gfn_to_pfn_cache *cache,
1781 bool atomic)
1782 {
1783 kvm_pfn_t pfn;
1784 void *hva = NULL;
1785 struct page *page = KVM_UNMAPPED_PAGE;
1786 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1787 u64 gen = slots->generation;
1788
1789 if (!map)
1790 return -EINVAL;
1791
1792 if (cache) {
1793 if (!cache->pfn || cache->gfn != gfn ||
1794 cache->generation != gen) {
1795 if (atomic)
1796 return -EAGAIN;
1797 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1798 }
1799 pfn = cache->pfn;
1800 } else {
1801 if (atomic)
1802 return -EAGAIN;
1803 pfn = gfn_to_pfn_memslot(slot, gfn);
1804 }
1805 if (is_error_noslot_pfn(pfn))
1806 return -EINVAL;
1807
1808 if (pfn_valid(pfn)) {
1809 page = pfn_to_page(pfn);
1810 if (atomic)
1811 hva = kmap_atomic(page);
1812 else
1813 hva = kmap(page);
1814 #ifdef CONFIG_HAS_IOMEM
1815 } else if (!atomic) {
1816 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1817 } else {
1818 return -EINVAL;
1819 #endif
1820 }
1821
1822 if (!hva)
1823 return -EFAULT;
1824
1825 map->page = page;
1826 map->hva = hva;
1827 map->pfn = pfn;
1828 map->gfn = gfn;
1829
1830 return 0;
1831 }
1832
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)1833 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1834 struct gfn_to_pfn_cache *cache, bool atomic)
1835 {
1836 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1837 cache, atomic);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1840
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)1841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1842 {
1843 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1844 NULL, false);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1847
__kvm_unmap_gfn(struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)1848 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1849 struct kvm_host_map *map,
1850 struct gfn_to_pfn_cache *cache,
1851 bool dirty, bool atomic)
1852 {
1853 if (!map)
1854 return;
1855
1856 if (!map->hva)
1857 return;
1858
1859 if (map->page != KVM_UNMAPPED_PAGE) {
1860 if (atomic)
1861 kunmap_atomic(map->hva);
1862 else
1863 kunmap(map->page);
1864 }
1865 #ifdef CONFIG_HAS_IOMEM
1866 else if (!atomic)
1867 memunmap(map->hva);
1868 else
1869 WARN_ONCE(1, "Unexpected unmapping in atomic context");
1870 #endif
1871
1872 if (dirty)
1873 mark_page_dirty_in_slot(memslot, map->gfn);
1874
1875 if (cache)
1876 cache->dirty |= dirty;
1877 else
1878 kvm_release_pfn(map->pfn, dirty, NULL);
1879
1880 map->hva = NULL;
1881 map->page = NULL;
1882 }
1883
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)1884 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1885 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1886 {
1887 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1888 cache, dirty, atomic);
1889 return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1892
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)1893 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1894 {
1895 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1896 dirty, false);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1899
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1900 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1901 {
1902 kvm_pfn_t pfn;
1903
1904 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1905
1906 return kvm_pfn_to_page(pfn);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1909
kvm_release_page_clean(struct page * page)1910 void kvm_release_page_clean(struct page *page)
1911 {
1912 WARN_ON(is_error_page(page));
1913
1914 kvm_release_pfn_clean(page_to_pfn(page));
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1917
kvm_release_pfn_clean(kvm_pfn_t pfn)1918 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1919 {
1920 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1921 put_page(pfn_to_page(pfn));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1924
kvm_release_page_dirty(struct page * page)1925 void kvm_release_page_dirty(struct page *page)
1926 {
1927 WARN_ON(is_error_page(page));
1928
1929 kvm_release_pfn_dirty(page_to_pfn(page));
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1932
kvm_release_pfn_dirty(kvm_pfn_t pfn)1933 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1934 {
1935 kvm_set_pfn_dirty(pfn);
1936 kvm_release_pfn_clean(pfn);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1939
kvm_set_pfn_dirty(kvm_pfn_t pfn)1940 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1941 {
1942 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1943 struct page *page = pfn_to_page(pfn);
1944
1945 if (!PageReserved(page))
1946 SetPageDirty(page);
1947 }
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1950
kvm_set_pfn_accessed(kvm_pfn_t pfn)1951 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1952 {
1953 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1954 mark_page_accessed(pfn_to_page(pfn));
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1957
kvm_get_pfn(kvm_pfn_t pfn)1958 void kvm_get_pfn(kvm_pfn_t pfn)
1959 {
1960 if (!kvm_is_reserved_pfn(pfn))
1961 get_page(pfn_to_page(pfn));
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1964
next_segment(unsigned long len,int offset)1965 static int next_segment(unsigned long len, int offset)
1966 {
1967 if (len > PAGE_SIZE - offset)
1968 return PAGE_SIZE - offset;
1969 else
1970 return len;
1971 }
1972
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1973 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1974 void *data, int offset, int len)
1975 {
1976 int r;
1977 unsigned long addr;
1978
1979 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1980 if (kvm_is_error_hva(addr))
1981 return -EFAULT;
1982 r = __copy_from_user(data, (void __user *)addr + offset, len);
1983 if (r)
1984 return -EFAULT;
1985 return 0;
1986 }
1987
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1988 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1989 int len)
1990 {
1991 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1992
1993 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1996
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1997 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1998 int offset, int len)
1999 {
2000 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2001
2002 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2005
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2006 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2007 {
2008 gfn_t gfn = gpa >> PAGE_SHIFT;
2009 int seg;
2010 int offset = offset_in_page(gpa);
2011 int ret;
2012
2013 while ((seg = next_segment(len, offset)) != 0) {
2014 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2015 if (ret < 0)
2016 return ret;
2017 offset = 0;
2018 len -= seg;
2019 data += seg;
2020 ++gfn;
2021 }
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_read_guest);
2025
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2026 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2027 {
2028 gfn_t gfn = gpa >> PAGE_SHIFT;
2029 int seg;
2030 int offset = offset_in_page(gpa);
2031 int ret;
2032
2033 while ((seg = next_segment(len, offset)) != 0) {
2034 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2035 if (ret < 0)
2036 return ret;
2037 offset = 0;
2038 len -= seg;
2039 data += seg;
2040 ++gfn;
2041 }
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2045
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2046 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2047 void *data, int offset, unsigned long len)
2048 {
2049 int r;
2050 unsigned long addr;
2051
2052 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2053 if (kvm_is_error_hva(addr))
2054 return -EFAULT;
2055 pagefault_disable();
2056 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2057 pagefault_enable();
2058 if (r)
2059 return -EFAULT;
2060 return 0;
2061 }
2062
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2063 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2064 unsigned long len)
2065 {
2066 gfn_t gfn = gpa >> PAGE_SHIFT;
2067 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2068 int offset = offset_in_page(gpa);
2069
2070 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2073
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2074 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2075 void *data, unsigned long len)
2076 {
2077 gfn_t gfn = gpa >> PAGE_SHIFT;
2078 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2079 int offset = offset_in_page(gpa);
2080
2081 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2084
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2085 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2086 const void *data, int offset, int len)
2087 {
2088 int r;
2089 unsigned long addr;
2090
2091 addr = gfn_to_hva_memslot(memslot, gfn);
2092 if (kvm_is_error_hva(addr))
2093 return -EFAULT;
2094 r = __copy_to_user((void __user *)addr + offset, data, len);
2095 if (r)
2096 return -EFAULT;
2097 mark_page_dirty_in_slot(memslot, gfn);
2098 return 0;
2099 }
2100
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2101 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2102 const void *data, int offset, int len)
2103 {
2104 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2105
2106 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2109
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2110 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2111 const void *data, int offset, int len)
2112 {
2113 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2114
2115 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2118
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2119 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2120 unsigned long len)
2121 {
2122 gfn_t gfn = gpa >> PAGE_SHIFT;
2123 int seg;
2124 int offset = offset_in_page(gpa);
2125 int ret;
2126
2127 while ((seg = next_segment(len, offset)) != 0) {
2128 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2129 if (ret < 0)
2130 return ret;
2131 offset = 0;
2132 len -= seg;
2133 data += seg;
2134 ++gfn;
2135 }
2136 return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_write_guest);
2139
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2140 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2141 unsigned long len)
2142 {
2143 gfn_t gfn = gpa >> PAGE_SHIFT;
2144 int seg;
2145 int offset = offset_in_page(gpa);
2146 int ret;
2147
2148 while ((seg = next_segment(len, offset)) != 0) {
2149 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2150 if (ret < 0)
2151 return ret;
2152 offset = 0;
2153 len -= seg;
2154 data += seg;
2155 ++gfn;
2156 }
2157 return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2160
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2161 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2162 struct gfn_to_hva_cache *ghc,
2163 gpa_t gpa, unsigned long len)
2164 {
2165 int offset = offset_in_page(gpa);
2166 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2167 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2168 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2169 gfn_t nr_pages_avail;
2170
2171 ghc->gpa = gpa;
2172 ghc->generation = slots->generation;
2173 ghc->len = len;
2174 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2175 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
2176 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
2177 ghc->hva += offset;
2178 } else {
2179 /*
2180 * If the requested region crosses two memslots, we still
2181 * verify that the entire region is valid here.
2182 */
2183 while (start_gfn <= end_gfn) {
2184 nr_pages_avail = 0;
2185 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2186 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2187 &nr_pages_avail);
2188 if (kvm_is_error_hva(ghc->hva))
2189 return -EFAULT;
2190 start_gfn += nr_pages_avail;
2191 }
2192 /* Use the slow path for cross page reads and writes. */
2193 ghc->memslot = NULL;
2194 }
2195 return 0;
2196 }
2197
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2198 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2199 gpa_t gpa, unsigned long len)
2200 {
2201 struct kvm_memslots *slots = kvm_memslots(kvm);
2202 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2205
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2206 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2207 void *data, unsigned int offset,
2208 unsigned long len)
2209 {
2210 struct kvm_memslots *slots = kvm_memslots(kvm);
2211 int r;
2212 gpa_t gpa = ghc->gpa + offset;
2213
2214 BUG_ON(len + offset > ghc->len);
2215
2216 if (slots->generation != ghc->generation)
2217 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2218
2219 if (kvm_is_error_hva(ghc->hva))
2220 return -EFAULT;
2221
2222 if (unlikely(!ghc->memslot))
2223 return kvm_write_guest(kvm, gpa, data, len);
2224
2225 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2226 if (r)
2227 return -EFAULT;
2228 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2229
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2233
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2234 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2235 void *data, unsigned long len)
2236 {
2237 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2240
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2241 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2242 void *data, unsigned long len)
2243 {
2244 struct kvm_memslots *slots = kvm_memslots(kvm);
2245 int r;
2246
2247 BUG_ON(len > ghc->len);
2248
2249 if (slots->generation != ghc->generation)
2250 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2251
2252 if (kvm_is_error_hva(ghc->hva))
2253 return -EFAULT;
2254
2255 if (unlikely(!ghc->memslot))
2256 return kvm_read_guest(kvm, ghc->gpa, data, len);
2257
2258 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2259 if (r)
2260 return -EFAULT;
2261
2262 return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2265
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2266 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2267 {
2268 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2269
2270 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2271 }
2272 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2273
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2274 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2275 {
2276 gfn_t gfn = gpa >> PAGE_SHIFT;
2277 int seg;
2278 int offset = offset_in_page(gpa);
2279 int ret;
2280
2281 while ((seg = next_segment(len, offset)) != 0) {
2282 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2283 if (ret < 0)
2284 return ret;
2285 offset = 0;
2286 len -= seg;
2287 ++gfn;
2288 }
2289 return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2292
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2293 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2294 gfn_t gfn)
2295 {
2296 if (memslot && memslot->dirty_bitmap) {
2297 unsigned long rel_gfn = gfn - memslot->base_gfn;
2298
2299 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2300 }
2301 }
2302
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2303 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2304 {
2305 struct kvm_memory_slot *memslot;
2306
2307 memslot = gfn_to_memslot(kvm, gfn);
2308 mark_page_dirty_in_slot(memslot, gfn);
2309 }
2310 EXPORT_SYMBOL_GPL(mark_page_dirty);
2311
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2312 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2313 {
2314 struct kvm_memory_slot *memslot;
2315
2316 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2317 mark_page_dirty_in_slot(memslot, gfn);
2318 }
2319 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2320
kvm_sigset_activate(struct kvm_vcpu * vcpu)2321 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2322 {
2323 if (!vcpu->sigset_active)
2324 return;
2325
2326 /*
2327 * This does a lockless modification of ->real_blocked, which is fine
2328 * because, only current can change ->real_blocked and all readers of
2329 * ->real_blocked don't care as long ->real_blocked is always a subset
2330 * of ->blocked.
2331 */
2332 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2333 }
2334
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2335 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2336 {
2337 if (!vcpu->sigset_active)
2338 return;
2339
2340 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2341 sigemptyset(¤t->real_blocked);
2342 }
2343
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2344 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2345 {
2346 unsigned int old, val, grow;
2347
2348 old = val = vcpu->halt_poll_ns;
2349 grow = READ_ONCE(halt_poll_ns_grow);
2350 /* 10us base */
2351 if (val == 0 && grow)
2352 val = 10000;
2353 else
2354 val *= grow;
2355
2356 if (val > halt_poll_ns)
2357 val = halt_poll_ns;
2358
2359 vcpu->halt_poll_ns = val;
2360 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2361 }
2362
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2363 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2364 {
2365 unsigned int old, val, shrink;
2366
2367 old = val = vcpu->halt_poll_ns;
2368 shrink = READ_ONCE(halt_poll_ns_shrink);
2369 if (shrink == 0)
2370 val = 0;
2371 else
2372 val /= shrink;
2373
2374 vcpu->halt_poll_ns = val;
2375 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2376 }
2377
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2378 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2379 {
2380 int ret = -EINTR;
2381 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2382
2383 if (kvm_arch_vcpu_runnable(vcpu)) {
2384 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2385 goto out;
2386 }
2387 if (kvm_cpu_has_pending_timer(vcpu))
2388 goto out;
2389 if (signal_pending(current))
2390 goto out;
2391
2392 ret = 0;
2393 out:
2394 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2395 return ret;
2396 }
2397
2398 /*
2399 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2400 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2401 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2402 {
2403 ktime_t start, cur;
2404 DECLARE_SWAITQUEUE(wait);
2405 bool waited = false;
2406 u64 block_ns;
2407
2408 start = cur = ktime_get();
2409 if (vcpu->halt_poll_ns) {
2410 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2411
2412 ++vcpu->stat.halt_attempted_poll;
2413 do {
2414 /*
2415 * This sets KVM_REQ_UNHALT if an interrupt
2416 * arrives.
2417 */
2418 if (kvm_vcpu_check_block(vcpu) < 0) {
2419 ++vcpu->stat.halt_successful_poll;
2420 if (!vcpu_valid_wakeup(vcpu))
2421 ++vcpu->stat.halt_poll_invalid;
2422 goto out;
2423 }
2424 cur = ktime_get();
2425 } while (single_task_running() && ktime_before(cur, stop));
2426 }
2427
2428 kvm_arch_vcpu_blocking(vcpu);
2429
2430 for (;;) {
2431 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2432
2433 if (kvm_vcpu_check_block(vcpu) < 0)
2434 break;
2435
2436 waited = true;
2437 schedule();
2438 }
2439
2440 finish_swait(&vcpu->wq, &wait);
2441 cur = ktime_get();
2442
2443 kvm_arch_vcpu_unblocking(vcpu);
2444 out:
2445 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2446
2447 if (!vcpu_valid_wakeup(vcpu))
2448 shrink_halt_poll_ns(vcpu);
2449 else if (halt_poll_ns) {
2450 if (block_ns <= vcpu->halt_poll_ns)
2451 ;
2452 /* we had a long block, shrink polling */
2453 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2454 shrink_halt_poll_ns(vcpu);
2455 /* we had a short halt and our poll time is too small */
2456 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2457 block_ns < halt_poll_ns)
2458 grow_halt_poll_ns(vcpu);
2459 } else
2460 vcpu->halt_poll_ns = 0;
2461
2462 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2463 kvm_arch_vcpu_block_finish(vcpu);
2464 }
2465 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2466
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2467 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2468 {
2469 struct swait_queue_head *wqp;
2470
2471 wqp = kvm_arch_vcpu_wq(vcpu);
2472 if (swq_has_sleeper(wqp)) {
2473 swake_up_one(wqp);
2474 ++vcpu->stat.halt_wakeup;
2475 return true;
2476 }
2477
2478 return false;
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2481
2482 #ifndef CONFIG_S390
2483 /*
2484 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2485 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2486 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2487 {
2488 int me;
2489 int cpu = vcpu->cpu;
2490
2491 if (kvm_vcpu_wake_up(vcpu))
2492 return;
2493
2494 me = get_cpu();
2495 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2496 if (kvm_arch_vcpu_should_kick(vcpu))
2497 smp_send_reschedule(cpu);
2498 put_cpu();
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2501 #endif /* !CONFIG_S390 */
2502
kvm_vcpu_yield_to(struct kvm_vcpu * target)2503 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2504 {
2505 struct pid *pid;
2506 struct task_struct *task = NULL;
2507 int ret = 0;
2508
2509 rcu_read_lock();
2510 pid = rcu_dereference(target->pid);
2511 if (pid)
2512 task = get_pid_task(pid, PIDTYPE_PID);
2513 rcu_read_unlock();
2514 if (!task)
2515 return ret;
2516 ret = yield_to(task, 1);
2517 put_task_struct(task);
2518
2519 return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2522
2523 /*
2524 * Helper that checks whether a VCPU is eligible for directed yield.
2525 * Most eligible candidate to yield is decided by following heuristics:
2526 *
2527 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2528 * (preempted lock holder), indicated by @in_spin_loop.
2529 * Set at the beiginning and cleared at the end of interception/PLE handler.
2530 *
2531 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2532 * chance last time (mostly it has become eligible now since we have probably
2533 * yielded to lockholder in last iteration. This is done by toggling
2534 * @dy_eligible each time a VCPU checked for eligibility.)
2535 *
2536 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2537 * to preempted lock-holder could result in wrong VCPU selection and CPU
2538 * burning. Giving priority for a potential lock-holder increases lock
2539 * progress.
2540 *
2541 * Since algorithm is based on heuristics, accessing another VCPU data without
2542 * locking does not harm. It may result in trying to yield to same VCPU, fail
2543 * and continue with next VCPU and so on.
2544 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2545 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2546 {
2547 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2548 bool eligible;
2549
2550 eligible = !vcpu->spin_loop.in_spin_loop ||
2551 vcpu->spin_loop.dy_eligible;
2552
2553 if (vcpu->spin_loop.in_spin_loop)
2554 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2555
2556 return eligible;
2557 #else
2558 return true;
2559 #endif
2560 }
2561
2562 /*
2563 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2564 * a vcpu_load/vcpu_put pair. However, for most architectures
2565 * kvm_arch_vcpu_runnable does not require vcpu_load.
2566 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)2567 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2568 {
2569 return kvm_arch_vcpu_runnable(vcpu);
2570 }
2571
vcpu_dy_runnable(struct kvm_vcpu * vcpu)2572 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2573 {
2574 if (kvm_arch_dy_runnable(vcpu))
2575 return true;
2576
2577 #ifdef CONFIG_KVM_ASYNC_PF
2578 if (!list_empty_careful(&vcpu->async_pf.done))
2579 return true;
2580 #endif
2581
2582 return false;
2583 }
2584
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)2585 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2586 {
2587 struct kvm *kvm = me->kvm;
2588 struct kvm_vcpu *vcpu;
2589 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2590 int yielded = 0;
2591 int try = 3;
2592 int pass;
2593 int i;
2594
2595 kvm_vcpu_set_in_spin_loop(me, true);
2596 /*
2597 * We boost the priority of a VCPU that is runnable but not
2598 * currently running, because it got preempted by something
2599 * else and called schedule in __vcpu_run. Hopefully that
2600 * VCPU is holding the lock that we need and will release it.
2601 * We approximate round-robin by starting at the last boosted VCPU.
2602 */
2603 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2604 kvm_for_each_vcpu(i, vcpu, kvm) {
2605 if (!pass && i <= last_boosted_vcpu) {
2606 i = last_boosted_vcpu;
2607 continue;
2608 } else if (pass && i > last_boosted_vcpu)
2609 break;
2610 if (!READ_ONCE(vcpu->preempted))
2611 continue;
2612 if (vcpu == me)
2613 continue;
2614 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2615 continue;
2616 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2617 continue;
2618 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2619 continue;
2620
2621 yielded = kvm_vcpu_yield_to(vcpu);
2622 if (yielded > 0) {
2623 kvm->last_boosted_vcpu = i;
2624 break;
2625 } else if (yielded < 0) {
2626 try--;
2627 if (!try)
2628 break;
2629 }
2630 }
2631 }
2632 kvm_vcpu_set_in_spin_loop(me, false);
2633
2634 /* Ensure vcpu is not eligible during next spinloop */
2635 kvm_vcpu_set_dy_eligible(me, false);
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2638
kvm_vcpu_fault(struct vm_fault * vmf)2639 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2640 {
2641 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2642 struct page *page;
2643
2644 if (vmf->pgoff == 0)
2645 page = virt_to_page(vcpu->run);
2646 #ifdef CONFIG_X86
2647 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2648 page = virt_to_page(vcpu->arch.pio_data);
2649 #endif
2650 #ifdef CONFIG_KVM_MMIO
2651 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2652 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2653 #endif
2654 else
2655 return kvm_arch_vcpu_fault(vcpu, vmf);
2656 get_page(page);
2657 vmf->page = page;
2658 return 0;
2659 }
2660
2661 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2662 .fault = kvm_vcpu_fault,
2663 };
2664
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2665 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2666 {
2667 vma->vm_ops = &kvm_vcpu_vm_ops;
2668 return 0;
2669 }
2670
kvm_vcpu_release(struct inode * inode,struct file * filp)2671 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2672 {
2673 struct kvm_vcpu *vcpu = filp->private_data;
2674
2675 debugfs_remove_recursive(vcpu->debugfs_dentry);
2676 kvm_put_kvm(vcpu->kvm);
2677 return 0;
2678 }
2679
2680 static struct file_operations kvm_vcpu_fops = {
2681 .release = kvm_vcpu_release,
2682 .unlocked_ioctl = kvm_vcpu_ioctl,
2683 .mmap = kvm_vcpu_mmap,
2684 .llseek = noop_llseek,
2685 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2686 };
2687
2688 /*
2689 * Allocates an inode for the vcpu.
2690 */
create_vcpu_fd(struct kvm_vcpu * vcpu)2691 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2692 {
2693 char name[8 + 1 + ITOA_MAX_LEN + 1];
2694
2695 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2696 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2697 }
2698
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)2699 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2700 {
2701 char dir_name[ITOA_MAX_LEN * 2];
2702 int ret;
2703
2704 if (!kvm_arch_has_vcpu_debugfs())
2705 return 0;
2706
2707 if (!debugfs_initialized())
2708 return 0;
2709
2710 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2711 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2712 vcpu->kvm->debugfs_dentry);
2713 if (!vcpu->debugfs_dentry)
2714 return -ENOMEM;
2715
2716 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2717 if (ret < 0) {
2718 debugfs_remove_recursive(vcpu->debugfs_dentry);
2719 return ret;
2720 }
2721
2722 return 0;
2723 }
2724
2725 /*
2726 * Creates some virtual cpus. Good luck creating more than one.
2727 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2728 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2729 {
2730 int r;
2731 struct kvm_vcpu *vcpu;
2732
2733 if (id >= KVM_MAX_VCPU_ID)
2734 return -EINVAL;
2735
2736 mutex_lock(&kvm->lock);
2737 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2738 mutex_unlock(&kvm->lock);
2739 return -EINVAL;
2740 }
2741
2742 kvm->created_vcpus++;
2743 mutex_unlock(&kvm->lock);
2744
2745 vcpu = kvm_arch_vcpu_create(kvm, id);
2746 if (IS_ERR(vcpu)) {
2747 r = PTR_ERR(vcpu);
2748 goto vcpu_decrement;
2749 }
2750
2751 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2752
2753 r = kvm_arch_vcpu_setup(vcpu);
2754 if (r)
2755 goto vcpu_destroy;
2756
2757 r = kvm_create_vcpu_debugfs(vcpu);
2758 if (r)
2759 goto vcpu_destroy;
2760
2761 mutex_lock(&kvm->lock);
2762 if (kvm_get_vcpu_by_id(kvm, id)) {
2763 r = -EEXIST;
2764 goto unlock_vcpu_destroy;
2765 }
2766
2767 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2768 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2769
2770 /* Now it's all set up, let userspace reach it */
2771 kvm_get_kvm(kvm);
2772 r = create_vcpu_fd(vcpu);
2773 if (r < 0) {
2774 kvm_put_kvm(kvm);
2775 goto unlock_vcpu_destroy;
2776 }
2777
2778 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2779
2780 /*
2781 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2782 * before kvm->online_vcpu's incremented value.
2783 */
2784 smp_wmb();
2785 atomic_inc(&kvm->online_vcpus);
2786
2787 mutex_unlock(&kvm->lock);
2788 kvm_arch_vcpu_postcreate(vcpu);
2789 return r;
2790
2791 unlock_vcpu_destroy:
2792 mutex_unlock(&kvm->lock);
2793 debugfs_remove_recursive(vcpu->debugfs_dentry);
2794 vcpu_destroy:
2795 kvm_arch_vcpu_destroy(vcpu);
2796 vcpu_decrement:
2797 mutex_lock(&kvm->lock);
2798 kvm->created_vcpus--;
2799 mutex_unlock(&kvm->lock);
2800 return r;
2801 }
2802
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2803 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2804 {
2805 if (sigset) {
2806 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2807 vcpu->sigset_active = 1;
2808 vcpu->sigset = *sigset;
2809 } else
2810 vcpu->sigset_active = 0;
2811 return 0;
2812 }
2813
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2814 static long kvm_vcpu_ioctl(struct file *filp,
2815 unsigned int ioctl, unsigned long arg)
2816 {
2817 struct kvm_vcpu *vcpu = filp->private_data;
2818 void __user *argp = (void __user *)arg;
2819 int r;
2820 struct kvm_fpu *fpu = NULL;
2821 struct kvm_sregs *kvm_sregs = NULL;
2822
2823 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
2824 return -EIO;
2825
2826 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2827 return -EINVAL;
2828
2829 /*
2830 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2831 * execution; mutex_lock() would break them.
2832 */
2833 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2834 if (r != -ENOIOCTLCMD)
2835 return r;
2836
2837 if (mutex_lock_killable(&vcpu->mutex))
2838 return -EINTR;
2839 switch (ioctl) {
2840 case KVM_RUN: {
2841 struct pid *oldpid;
2842 r = -EINVAL;
2843 if (arg)
2844 goto out;
2845 oldpid = rcu_access_pointer(vcpu->pid);
2846 if (unlikely(oldpid != task_pid(current))) {
2847 /* The thread running this VCPU changed. */
2848 struct pid *newpid;
2849
2850 r = kvm_arch_vcpu_run_pid_change(vcpu);
2851 if (r)
2852 break;
2853
2854 newpid = get_task_pid(current, PIDTYPE_PID);
2855 rcu_assign_pointer(vcpu->pid, newpid);
2856 if (oldpid)
2857 synchronize_rcu();
2858 put_pid(oldpid);
2859 }
2860 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2861 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2862 break;
2863 }
2864 case KVM_GET_REGS: {
2865 struct kvm_regs *kvm_regs;
2866
2867 r = -ENOMEM;
2868 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2869 if (!kvm_regs)
2870 goto out;
2871 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2872 if (r)
2873 goto out_free1;
2874 r = -EFAULT;
2875 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2876 goto out_free1;
2877 r = 0;
2878 out_free1:
2879 kfree(kvm_regs);
2880 break;
2881 }
2882 case KVM_SET_REGS: {
2883 struct kvm_regs *kvm_regs;
2884
2885 r = -ENOMEM;
2886 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2887 if (IS_ERR(kvm_regs)) {
2888 r = PTR_ERR(kvm_regs);
2889 goto out;
2890 }
2891 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2892 kfree(kvm_regs);
2893 break;
2894 }
2895 case KVM_GET_SREGS: {
2896 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2897 r = -ENOMEM;
2898 if (!kvm_sregs)
2899 goto out;
2900 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2901 if (r)
2902 goto out;
2903 r = -EFAULT;
2904 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2905 goto out;
2906 r = 0;
2907 break;
2908 }
2909 case KVM_SET_SREGS: {
2910 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2911 if (IS_ERR(kvm_sregs)) {
2912 r = PTR_ERR(kvm_sregs);
2913 kvm_sregs = NULL;
2914 goto out;
2915 }
2916 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2917 break;
2918 }
2919 case KVM_GET_MP_STATE: {
2920 struct kvm_mp_state mp_state;
2921
2922 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2923 if (r)
2924 goto out;
2925 r = -EFAULT;
2926 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2927 goto out;
2928 r = 0;
2929 break;
2930 }
2931 case KVM_SET_MP_STATE: {
2932 struct kvm_mp_state mp_state;
2933
2934 r = -EFAULT;
2935 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2936 goto out;
2937 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2938 break;
2939 }
2940 case KVM_TRANSLATE: {
2941 struct kvm_translation tr;
2942
2943 r = -EFAULT;
2944 if (copy_from_user(&tr, argp, sizeof(tr)))
2945 goto out;
2946 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2947 if (r)
2948 goto out;
2949 r = -EFAULT;
2950 if (copy_to_user(argp, &tr, sizeof(tr)))
2951 goto out;
2952 r = 0;
2953 break;
2954 }
2955 case KVM_SET_GUEST_DEBUG: {
2956 struct kvm_guest_debug dbg;
2957
2958 r = -EFAULT;
2959 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2960 goto out;
2961 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2962 break;
2963 }
2964 case KVM_SET_SIGNAL_MASK: {
2965 struct kvm_signal_mask __user *sigmask_arg = argp;
2966 struct kvm_signal_mask kvm_sigmask;
2967 sigset_t sigset, *p;
2968
2969 p = NULL;
2970 if (argp) {
2971 r = -EFAULT;
2972 if (copy_from_user(&kvm_sigmask, argp,
2973 sizeof(kvm_sigmask)))
2974 goto out;
2975 r = -EINVAL;
2976 if (kvm_sigmask.len != sizeof(sigset))
2977 goto out;
2978 r = -EFAULT;
2979 if (copy_from_user(&sigset, sigmask_arg->sigset,
2980 sizeof(sigset)))
2981 goto out;
2982 p = &sigset;
2983 }
2984 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2985 break;
2986 }
2987 case KVM_GET_FPU: {
2988 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2989 r = -ENOMEM;
2990 if (!fpu)
2991 goto out;
2992 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2993 if (r)
2994 goto out;
2995 r = -EFAULT;
2996 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2997 goto out;
2998 r = 0;
2999 break;
3000 }
3001 case KVM_SET_FPU: {
3002 fpu = memdup_user(argp, sizeof(*fpu));
3003 if (IS_ERR(fpu)) {
3004 r = PTR_ERR(fpu);
3005 fpu = NULL;
3006 goto out;
3007 }
3008 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3009 break;
3010 }
3011 default:
3012 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3013 }
3014 out:
3015 mutex_unlock(&vcpu->mutex);
3016 kfree(fpu);
3017 kfree(kvm_sregs);
3018 return r;
3019 }
3020
3021 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3022 static long kvm_vcpu_compat_ioctl(struct file *filp,
3023 unsigned int ioctl, unsigned long arg)
3024 {
3025 struct kvm_vcpu *vcpu = filp->private_data;
3026 void __user *argp = compat_ptr(arg);
3027 int r;
3028
3029 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3030 return -EIO;
3031
3032 switch (ioctl) {
3033 case KVM_SET_SIGNAL_MASK: {
3034 struct kvm_signal_mask __user *sigmask_arg = argp;
3035 struct kvm_signal_mask kvm_sigmask;
3036 sigset_t sigset;
3037
3038 if (argp) {
3039 r = -EFAULT;
3040 if (copy_from_user(&kvm_sigmask, argp,
3041 sizeof(kvm_sigmask)))
3042 goto out;
3043 r = -EINVAL;
3044 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3045 goto out;
3046 r = -EFAULT;
3047 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3048 goto out;
3049 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3050 } else
3051 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3052 break;
3053 }
3054 default:
3055 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3056 }
3057
3058 out:
3059 return r;
3060 }
3061 #endif
3062
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3063 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3064 int (*accessor)(struct kvm_device *dev,
3065 struct kvm_device_attr *attr),
3066 unsigned long arg)
3067 {
3068 struct kvm_device_attr attr;
3069
3070 if (!accessor)
3071 return -EPERM;
3072
3073 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3074 return -EFAULT;
3075
3076 return accessor(dev, &attr);
3077 }
3078
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3079 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3080 unsigned long arg)
3081 {
3082 struct kvm_device *dev = filp->private_data;
3083
3084 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3085 return -EIO;
3086
3087 switch (ioctl) {
3088 case KVM_SET_DEVICE_ATTR:
3089 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3090 case KVM_GET_DEVICE_ATTR:
3091 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3092 case KVM_HAS_DEVICE_ATTR:
3093 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3094 default:
3095 if (dev->ops->ioctl)
3096 return dev->ops->ioctl(dev, ioctl, arg);
3097
3098 return -ENOTTY;
3099 }
3100 }
3101
kvm_device_release(struct inode * inode,struct file * filp)3102 static int kvm_device_release(struct inode *inode, struct file *filp)
3103 {
3104 struct kvm_device *dev = filp->private_data;
3105 struct kvm *kvm = dev->kvm;
3106
3107 kvm_put_kvm(kvm);
3108 return 0;
3109 }
3110
3111 static const struct file_operations kvm_device_fops = {
3112 .unlocked_ioctl = kvm_device_ioctl,
3113 .release = kvm_device_release,
3114 KVM_COMPAT(kvm_device_ioctl),
3115 };
3116
kvm_device_from_filp(struct file * filp)3117 struct kvm_device *kvm_device_from_filp(struct file *filp)
3118 {
3119 if (filp->f_op != &kvm_device_fops)
3120 return NULL;
3121
3122 return filp->private_data;
3123 }
3124
3125 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3126 #ifdef CONFIG_KVM_MPIC
3127 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3128 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3129 #endif
3130 };
3131
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)3132 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3133 {
3134 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3135 return -ENOSPC;
3136
3137 if (kvm_device_ops_table[type] != NULL)
3138 return -EEXIST;
3139
3140 kvm_device_ops_table[type] = ops;
3141 return 0;
3142 }
3143
kvm_unregister_device_ops(u32 type)3144 void kvm_unregister_device_ops(u32 type)
3145 {
3146 if (kvm_device_ops_table[type] != NULL)
3147 kvm_device_ops_table[type] = NULL;
3148 }
3149
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3150 static int kvm_ioctl_create_device(struct kvm *kvm,
3151 struct kvm_create_device *cd)
3152 {
3153 struct kvm_device_ops *ops = NULL;
3154 struct kvm_device *dev;
3155 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3156 int type;
3157 int ret;
3158
3159 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3160 return -ENODEV;
3161
3162 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3163 ops = kvm_device_ops_table[type];
3164 if (ops == NULL)
3165 return -ENODEV;
3166
3167 if (test)
3168 return 0;
3169
3170 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171 if (!dev)
3172 return -ENOMEM;
3173
3174 dev->ops = ops;
3175 dev->kvm = kvm;
3176
3177 mutex_lock(&kvm->lock);
3178 ret = ops->create(dev, type);
3179 if (ret < 0) {
3180 mutex_unlock(&kvm->lock);
3181 kfree(dev);
3182 return ret;
3183 }
3184 list_add(&dev->vm_node, &kvm->devices);
3185 mutex_unlock(&kvm->lock);
3186
3187 if (ops->init)
3188 ops->init(dev);
3189
3190 kvm_get_kvm(kvm);
3191 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3192 if (ret < 0) {
3193 kvm_put_kvm(kvm);
3194 mutex_lock(&kvm->lock);
3195 list_del(&dev->vm_node);
3196 mutex_unlock(&kvm->lock);
3197 ops->destroy(dev);
3198 return ret;
3199 }
3200
3201 cd->fd = ret;
3202 return 0;
3203 }
3204
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3205 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3206 {
3207 switch (arg) {
3208 case KVM_CAP_USER_MEMORY:
3209 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3210 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3211 case KVM_CAP_INTERNAL_ERROR_DATA:
3212 #ifdef CONFIG_HAVE_KVM_MSI
3213 case KVM_CAP_SIGNAL_MSI:
3214 #endif
3215 #ifdef CONFIG_HAVE_KVM_IRQFD
3216 case KVM_CAP_IRQFD:
3217 case KVM_CAP_IRQFD_RESAMPLE:
3218 #endif
3219 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3220 case KVM_CAP_CHECK_EXTENSION_VM:
3221 return 1;
3222 #ifdef CONFIG_KVM_MMIO
3223 case KVM_CAP_COALESCED_MMIO:
3224 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3225 #endif
3226 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3227 case KVM_CAP_IRQ_ROUTING:
3228 return KVM_MAX_IRQ_ROUTES;
3229 #endif
3230 #if KVM_ADDRESS_SPACE_NUM > 1
3231 case KVM_CAP_MULTI_ADDRESS_SPACE:
3232 return KVM_ADDRESS_SPACE_NUM;
3233 #endif
3234 default:
3235 break;
3236 }
3237 return kvm_vm_ioctl_check_extension(kvm, arg);
3238 }
3239
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3240 static long kvm_vm_ioctl(struct file *filp,
3241 unsigned int ioctl, unsigned long arg)
3242 {
3243 struct kvm *kvm = filp->private_data;
3244 void __user *argp = (void __user *)arg;
3245 int r;
3246
3247 if (kvm->mm != current->mm || kvm->vm_bugged)
3248 return -EIO;
3249 switch (ioctl) {
3250 case KVM_CREATE_VCPU:
3251 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3252 break;
3253 case KVM_SET_USER_MEMORY_REGION: {
3254 struct kvm_userspace_memory_region kvm_userspace_mem;
3255
3256 r = -EFAULT;
3257 if (copy_from_user(&kvm_userspace_mem, argp,
3258 sizeof(kvm_userspace_mem)))
3259 goto out;
3260
3261 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3262 break;
3263 }
3264 case KVM_GET_DIRTY_LOG: {
3265 struct kvm_dirty_log log;
3266
3267 r = -EFAULT;
3268 if (copy_from_user(&log, argp, sizeof(log)))
3269 goto out;
3270 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3271 break;
3272 }
3273 #ifdef CONFIG_KVM_MMIO
3274 case KVM_REGISTER_COALESCED_MMIO: {
3275 struct kvm_coalesced_mmio_zone zone;
3276
3277 r = -EFAULT;
3278 if (copy_from_user(&zone, argp, sizeof(zone)))
3279 goto out;
3280 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3281 break;
3282 }
3283 case KVM_UNREGISTER_COALESCED_MMIO: {
3284 struct kvm_coalesced_mmio_zone zone;
3285
3286 r = -EFAULT;
3287 if (copy_from_user(&zone, argp, sizeof(zone)))
3288 goto out;
3289 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3290 break;
3291 }
3292 #endif
3293 case KVM_IRQFD: {
3294 struct kvm_irqfd data;
3295
3296 r = -EFAULT;
3297 if (copy_from_user(&data, argp, sizeof(data)))
3298 goto out;
3299 r = kvm_irqfd(kvm, &data);
3300 break;
3301 }
3302 case KVM_IOEVENTFD: {
3303 struct kvm_ioeventfd data;
3304
3305 r = -EFAULT;
3306 if (copy_from_user(&data, argp, sizeof(data)))
3307 goto out;
3308 r = kvm_ioeventfd(kvm, &data);
3309 break;
3310 }
3311 #ifdef CONFIG_HAVE_KVM_MSI
3312 case KVM_SIGNAL_MSI: {
3313 struct kvm_msi msi;
3314
3315 r = -EFAULT;
3316 if (copy_from_user(&msi, argp, sizeof(msi)))
3317 goto out;
3318 r = kvm_send_userspace_msi(kvm, &msi);
3319 break;
3320 }
3321 #endif
3322 #ifdef __KVM_HAVE_IRQ_LINE
3323 case KVM_IRQ_LINE_STATUS:
3324 case KVM_IRQ_LINE: {
3325 struct kvm_irq_level irq_event;
3326
3327 r = -EFAULT;
3328 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3329 goto out;
3330
3331 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3332 ioctl == KVM_IRQ_LINE_STATUS);
3333 if (r)
3334 goto out;
3335
3336 r = -EFAULT;
3337 if (ioctl == KVM_IRQ_LINE_STATUS) {
3338 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3339 goto out;
3340 }
3341
3342 r = 0;
3343 break;
3344 }
3345 #endif
3346 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3347 case KVM_SET_GSI_ROUTING: {
3348 struct kvm_irq_routing routing;
3349 struct kvm_irq_routing __user *urouting;
3350 struct kvm_irq_routing_entry *entries = NULL;
3351
3352 r = -EFAULT;
3353 if (copy_from_user(&routing, argp, sizeof(routing)))
3354 goto out;
3355 r = -EINVAL;
3356 if (!kvm_arch_can_set_irq_routing(kvm))
3357 goto out;
3358 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3359 goto out;
3360 if (routing.flags)
3361 goto out;
3362 if (routing.nr) {
3363 r = -ENOMEM;
3364 entries = vmalloc(array_size(sizeof(*entries),
3365 routing.nr));
3366 if (!entries)
3367 goto out;
3368 r = -EFAULT;
3369 urouting = argp;
3370 if (copy_from_user(entries, urouting->entries,
3371 routing.nr * sizeof(*entries)))
3372 goto out_free_irq_routing;
3373 }
3374 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3375 routing.flags);
3376 out_free_irq_routing:
3377 vfree(entries);
3378 break;
3379 }
3380 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3381 case KVM_CREATE_DEVICE: {
3382 struct kvm_create_device cd;
3383
3384 r = -EFAULT;
3385 if (copy_from_user(&cd, argp, sizeof(cd)))
3386 goto out;
3387
3388 r = kvm_ioctl_create_device(kvm, &cd);
3389 if (r)
3390 goto out;
3391
3392 r = -EFAULT;
3393 if (copy_to_user(argp, &cd, sizeof(cd)))
3394 goto out;
3395
3396 r = 0;
3397 break;
3398 }
3399 case KVM_CHECK_EXTENSION:
3400 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3401 break;
3402 default:
3403 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3404 }
3405 out:
3406 return r;
3407 }
3408
3409 #ifdef CONFIG_KVM_COMPAT
3410 struct compat_kvm_dirty_log {
3411 __u32 slot;
3412 __u32 padding1;
3413 union {
3414 compat_uptr_t dirty_bitmap; /* one bit per page */
3415 __u64 padding2;
3416 };
3417 };
3418
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3419 static long kvm_vm_compat_ioctl(struct file *filp,
3420 unsigned int ioctl, unsigned long arg)
3421 {
3422 struct kvm *kvm = filp->private_data;
3423 int r;
3424
3425 if (kvm->mm != current->mm || kvm->vm_bugged)
3426 return -EIO;
3427 switch (ioctl) {
3428 case KVM_GET_DIRTY_LOG: {
3429 struct compat_kvm_dirty_log compat_log;
3430 struct kvm_dirty_log log;
3431
3432 if (copy_from_user(&compat_log, (void __user *)arg,
3433 sizeof(compat_log)))
3434 return -EFAULT;
3435 log.slot = compat_log.slot;
3436 log.padding1 = compat_log.padding1;
3437 log.padding2 = compat_log.padding2;
3438 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3439
3440 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3441 break;
3442 }
3443 default:
3444 r = kvm_vm_ioctl(filp, ioctl, arg);
3445 }
3446 return r;
3447 }
3448 #endif
3449
3450 static struct file_operations kvm_vm_fops = {
3451 .release = kvm_vm_release,
3452 .unlocked_ioctl = kvm_vm_ioctl,
3453 .llseek = noop_llseek,
3454 KVM_COMPAT(kvm_vm_compat_ioctl),
3455 };
3456
kvm_dev_ioctl_create_vm(unsigned long type)3457 static int kvm_dev_ioctl_create_vm(unsigned long type)
3458 {
3459 int r;
3460 struct kvm *kvm;
3461 struct file *file;
3462
3463 kvm = kvm_create_vm(type);
3464 if (IS_ERR(kvm))
3465 return PTR_ERR(kvm);
3466 #ifdef CONFIG_KVM_MMIO
3467 r = kvm_coalesced_mmio_init(kvm);
3468 if (r < 0)
3469 goto put_kvm;
3470 #endif
3471 r = get_unused_fd_flags(O_CLOEXEC);
3472 if (r < 0)
3473 goto put_kvm;
3474
3475 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3476 if (IS_ERR(file)) {
3477 put_unused_fd(r);
3478 r = PTR_ERR(file);
3479 goto put_kvm;
3480 }
3481
3482 /*
3483 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3484 * already set, with ->release() being kvm_vm_release(). In error
3485 * cases it will be called by the final fput(file) and will take
3486 * care of doing kvm_put_kvm(kvm).
3487 */
3488 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3489 put_unused_fd(r);
3490 fput(file);
3491 return -ENOMEM;
3492 }
3493 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3494
3495 fd_install(r, file);
3496 return r;
3497
3498 put_kvm:
3499 kvm_put_kvm(kvm);
3500 return r;
3501 }
3502
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3503 static long kvm_dev_ioctl(struct file *filp,
3504 unsigned int ioctl, unsigned long arg)
3505 {
3506 long r = -EINVAL;
3507
3508 switch (ioctl) {
3509 case KVM_GET_API_VERSION:
3510 if (arg)
3511 goto out;
3512 r = KVM_API_VERSION;
3513 break;
3514 case KVM_CREATE_VM:
3515 r = kvm_dev_ioctl_create_vm(arg);
3516 break;
3517 case KVM_CHECK_EXTENSION:
3518 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3519 break;
3520 case KVM_GET_VCPU_MMAP_SIZE:
3521 if (arg)
3522 goto out;
3523 r = PAGE_SIZE; /* struct kvm_run */
3524 #ifdef CONFIG_X86
3525 r += PAGE_SIZE; /* pio data page */
3526 #endif
3527 #ifdef CONFIG_KVM_MMIO
3528 r += PAGE_SIZE; /* coalesced mmio ring page */
3529 #endif
3530 break;
3531 case KVM_TRACE_ENABLE:
3532 case KVM_TRACE_PAUSE:
3533 case KVM_TRACE_DISABLE:
3534 r = -EOPNOTSUPP;
3535 break;
3536 default:
3537 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3538 }
3539 out:
3540 return r;
3541 }
3542
3543 static struct file_operations kvm_chardev_ops = {
3544 .unlocked_ioctl = kvm_dev_ioctl,
3545 .llseek = noop_llseek,
3546 KVM_COMPAT(kvm_dev_ioctl),
3547 };
3548
3549 static struct miscdevice kvm_dev = {
3550 KVM_MINOR,
3551 "kvm",
3552 &kvm_chardev_ops,
3553 };
3554
hardware_enable_nolock(void * junk)3555 static void hardware_enable_nolock(void *junk)
3556 {
3557 int cpu = raw_smp_processor_id();
3558 int r;
3559
3560 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3561 return;
3562
3563 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3564
3565 r = kvm_arch_hardware_enable();
3566
3567 if (r) {
3568 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3569 atomic_inc(&hardware_enable_failed);
3570 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3571 }
3572 }
3573
kvm_starting_cpu(unsigned int cpu)3574 static int kvm_starting_cpu(unsigned int cpu)
3575 {
3576 raw_spin_lock(&kvm_count_lock);
3577 if (kvm_usage_count)
3578 hardware_enable_nolock(NULL);
3579 raw_spin_unlock(&kvm_count_lock);
3580 return 0;
3581 }
3582
hardware_disable_nolock(void * junk)3583 static void hardware_disable_nolock(void *junk)
3584 {
3585 int cpu = raw_smp_processor_id();
3586
3587 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3588 return;
3589 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3590 kvm_arch_hardware_disable();
3591 }
3592
kvm_dying_cpu(unsigned int cpu)3593 static int kvm_dying_cpu(unsigned int cpu)
3594 {
3595 raw_spin_lock(&kvm_count_lock);
3596 if (kvm_usage_count)
3597 hardware_disable_nolock(NULL);
3598 raw_spin_unlock(&kvm_count_lock);
3599 return 0;
3600 }
3601
hardware_disable_all_nolock(void)3602 static void hardware_disable_all_nolock(void)
3603 {
3604 BUG_ON(!kvm_usage_count);
3605
3606 kvm_usage_count--;
3607 if (!kvm_usage_count)
3608 on_each_cpu(hardware_disable_nolock, NULL, 1);
3609 }
3610
hardware_disable_all(void)3611 static void hardware_disable_all(void)
3612 {
3613 raw_spin_lock(&kvm_count_lock);
3614 hardware_disable_all_nolock();
3615 raw_spin_unlock(&kvm_count_lock);
3616 }
3617
hardware_enable_all(void)3618 static int hardware_enable_all(void)
3619 {
3620 int r = 0;
3621
3622 raw_spin_lock(&kvm_count_lock);
3623
3624 kvm_usage_count++;
3625 if (kvm_usage_count == 1) {
3626 atomic_set(&hardware_enable_failed, 0);
3627 on_each_cpu(hardware_enable_nolock, NULL, 1);
3628
3629 if (atomic_read(&hardware_enable_failed)) {
3630 hardware_disable_all_nolock();
3631 r = -EBUSY;
3632 }
3633 }
3634
3635 raw_spin_unlock(&kvm_count_lock);
3636
3637 return r;
3638 }
3639
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3640 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3641 void *v)
3642 {
3643 /*
3644 * Some (well, at least mine) BIOSes hang on reboot if
3645 * in vmx root mode.
3646 *
3647 * And Intel TXT required VMX off for all cpu when system shutdown.
3648 */
3649 pr_info("kvm: exiting hardware virtualization\n");
3650 kvm_rebooting = true;
3651 on_each_cpu(hardware_disable_nolock, NULL, 1);
3652 return NOTIFY_OK;
3653 }
3654
3655 static struct notifier_block kvm_reboot_notifier = {
3656 .notifier_call = kvm_reboot,
3657 .priority = 0,
3658 };
3659
kvm_io_bus_destroy(struct kvm_io_bus * bus)3660 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3661 {
3662 int i;
3663
3664 for (i = 0; i < bus->dev_count; i++) {
3665 struct kvm_io_device *pos = bus->range[i].dev;
3666
3667 kvm_iodevice_destructor(pos);
3668 }
3669 kfree(bus);
3670 }
3671
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3672 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3673 const struct kvm_io_range *r2)
3674 {
3675 gpa_t addr1 = r1->addr;
3676 gpa_t addr2 = r2->addr;
3677
3678 if (addr1 < addr2)
3679 return -1;
3680
3681 /* If r2->len == 0, match the exact address. If r2->len != 0,
3682 * accept any overlapping write. Any order is acceptable for
3683 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3684 * we process all of them.
3685 */
3686 if (r2->len) {
3687 addr1 += r1->len;
3688 addr2 += r2->len;
3689 }
3690
3691 if (addr1 > addr2)
3692 return 1;
3693
3694 return 0;
3695 }
3696
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3697 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3698 {
3699 return kvm_io_bus_cmp(p1, p2);
3700 }
3701
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3702 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3703 gpa_t addr, int len)
3704 {
3705 struct kvm_io_range *range, key;
3706 int off;
3707
3708 key = (struct kvm_io_range) {
3709 .addr = addr,
3710 .len = len,
3711 };
3712
3713 range = bsearch(&key, bus->range, bus->dev_count,
3714 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3715 if (range == NULL)
3716 return -ENOENT;
3717
3718 off = range - bus->range;
3719
3720 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3721 off--;
3722
3723 return off;
3724 }
3725
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3726 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3727 struct kvm_io_range *range, const void *val)
3728 {
3729 int idx;
3730
3731 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3732 if (idx < 0)
3733 return -EOPNOTSUPP;
3734
3735 while (idx < bus->dev_count &&
3736 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3737 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3738 range->len, val))
3739 return idx;
3740 idx++;
3741 }
3742
3743 return -EOPNOTSUPP;
3744 }
3745
3746 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3747 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3748 int len, const void *val)
3749 {
3750 struct kvm_io_bus *bus;
3751 struct kvm_io_range range;
3752 int r;
3753
3754 range = (struct kvm_io_range) {
3755 .addr = addr,
3756 .len = len,
3757 };
3758
3759 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3760 if (!bus)
3761 return -ENOMEM;
3762 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3763 return r < 0 ? r : 0;
3764 }
3765
3766 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3767 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3768 gpa_t addr, int len, const void *val, long cookie)
3769 {
3770 struct kvm_io_bus *bus;
3771 struct kvm_io_range range;
3772
3773 range = (struct kvm_io_range) {
3774 .addr = addr,
3775 .len = len,
3776 };
3777
3778 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3779 if (!bus)
3780 return -ENOMEM;
3781
3782 /* First try the device referenced by cookie. */
3783 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3784 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3785 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3786 val))
3787 return cookie;
3788
3789 /*
3790 * cookie contained garbage; fall back to search and return the
3791 * correct cookie value.
3792 */
3793 return __kvm_io_bus_write(vcpu, bus, &range, val);
3794 }
3795
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3796 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3797 struct kvm_io_range *range, void *val)
3798 {
3799 int idx;
3800
3801 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3802 if (idx < 0)
3803 return -EOPNOTSUPP;
3804
3805 while (idx < bus->dev_count &&
3806 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3807 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3808 range->len, val))
3809 return idx;
3810 idx++;
3811 }
3812
3813 return -EOPNOTSUPP;
3814 }
3815 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3816
3817 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3818 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3819 int len, void *val)
3820 {
3821 struct kvm_io_bus *bus;
3822 struct kvm_io_range range;
3823 int r;
3824
3825 range = (struct kvm_io_range) {
3826 .addr = addr,
3827 .len = len,
3828 };
3829
3830 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3831 if (!bus)
3832 return -ENOMEM;
3833 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3834 return r < 0 ? r : 0;
3835 }
3836
3837
3838 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3839 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3840 int len, struct kvm_io_device *dev)
3841 {
3842 int i;
3843 struct kvm_io_bus *new_bus, *bus;
3844 struct kvm_io_range range;
3845
3846 bus = kvm_get_bus(kvm, bus_idx);
3847 if (!bus)
3848 return -ENOMEM;
3849
3850 /* exclude ioeventfd which is limited by maximum fd */
3851 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3852 return -ENOSPC;
3853
3854 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3855 sizeof(struct kvm_io_range)), GFP_KERNEL);
3856 if (!new_bus)
3857 return -ENOMEM;
3858
3859 range = (struct kvm_io_range) {
3860 .addr = addr,
3861 .len = len,
3862 .dev = dev,
3863 };
3864
3865 for (i = 0; i < bus->dev_count; i++)
3866 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3867 break;
3868
3869 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3870 new_bus->dev_count++;
3871 new_bus->range[i] = range;
3872 memcpy(new_bus->range + i + 1, bus->range + i,
3873 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3874 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3875 synchronize_srcu_expedited(&kvm->srcu);
3876 kfree(bus);
3877
3878 return 0;
3879 }
3880
3881 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3882 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3883 struct kvm_io_device *dev)
3884 {
3885 int i, j;
3886 struct kvm_io_bus *new_bus, *bus;
3887
3888 bus = kvm_get_bus(kvm, bus_idx);
3889 if (!bus)
3890 return;
3891
3892 for (i = 0; i < bus->dev_count; i++)
3893 if (bus->range[i].dev == dev) {
3894 break;
3895 }
3896
3897 if (i == bus->dev_count)
3898 return;
3899
3900 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3901 sizeof(struct kvm_io_range)), GFP_KERNEL);
3902 if (new_bus) {
3903 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3904 new_bus->dev_count--;
3905 memcpy(new_bus->range + i, bus->range + i + 1,
3906 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3907 } else {
3908 pr_err("kvm: failed to shrink bus, removing it completely\n");
3909 for (j = 0; j < bus->dev_count; j++) {
3910 if (j == i)
3911 continue;
3912 kvm_iodevice_destructor(bus->range[j].dev);
3913 }
3914 }
3915
3916 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3917 synchronize_srcu_expedited(&kvm->srcu);
3918 kfree(bus);
3919 return;
3920 }
3921
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)3922 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3923 gpa_t addr)
3924 {
3925 struct kvm_io_bus *bus;
3926 int dev_idx, srcu_idx;
3927 struct kvm_io_device *iodev = NULL;
3928
3929 srcu_idx = srcu_read_lock(&kvm->srcu);
3930
3931 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3932 if (!bus)
3933 goto out_unlock;
3934
3935 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3936 if (dev_idx < 0)
3937 goto out_unlock;
3938
3939 iodev = bus->range[dev_idx].dev;
3940
3941 out_unlock:
3942 srcu_read_unlock(&kvm->srcu, srcu_idx);
3943
3944 return iodev;
3945 }
3946 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3947
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)3948 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3949 int (*get)(void *, u64 *), int (*set)(void *, u64),
3950 const char *fmt)
3951 {
3952 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3953 inode->i_private;
3954
3955 /* The debugfs files are a reference to the kvm struct which
3956 * is still valid when kvm_destroy_vm is called.
3957 * To avoid the race between open and the removal of the debugfs
3958 * directory we test against the users count.
3959 */
3960 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3961 return -ENOENT;
3962
3963 if (simple_attr_open(inode, file, get,
3964 stat_data->mode & S_IWUGO ? set : NULL,
3965 fmt)) {
3966 kvm_put_kvm(stat_data->kvm);
3967 return -ENOMEM;
3968 }
3969
3970 return 0;
3971 }
3972
kvm_debugfs_release(struct inode * inode,struct file * file)3973 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3974 {
3975 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3976 inode->i_private;
3977
3978 simple_attr_release(inode, file);
3979 kvm_put_kvm(stat_data->kvm);
3980
3981 return 0;
3982 }
3983
vm_stat_get_per_vm(void * data,u64 * val)3984 static int vm_stat_get_per_vm(void *data, u64 *val)
3985 {
3986 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3987
3988 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3989
3990 return 0;
3991 }
3992
vm_stat_clear_per_vm(void * data,u64 val)3993 static int vm_stat_clear_per_vm(void *data, u64 val)
3994 {
3995 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3996
3997 if (val)
3998 return -EINVAL;
3999
4000 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4001
4002 return 0;
4003 }
4004
vm_stat_get_per_vm_open(struct inode * inode,struct file * file)4005 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4006 {
4007 __simple_attr_check_format("%llu\n", 0ull);
4008 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4009 vm_stat_clear_per_vm, "%llu\n");
4010 }
4011
4012 static const struct file_operations vm_stat_get_per_vm_fops = {
4013 .owner = THIS_MODULE,
4014 .open = vm_stat_get_per_vm_open,
4015 .release = kvm_debugfs_release,
4016 .read = simple_attr_read,
4017 .write = simple_attr_write,
4018 .llseek = no_llseek,
4019 };
4020
vcpu_stat_get_per_vm(void * data,u64 * val)4021 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4022 {
4023 int i;
4024 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4025 struct kvm_vcpu *vcpu;
4026
4027 *val = 0;
4028
4029 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4030 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4031
4032 return 0;
4033 }
4034
vcpu_stat_clear_per_vm(void * data,u64 val)4035 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4036 {
4037 int i;
4038 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4039 struct kvm_vcpu *vcpu;
4040
4041 if (val)
4042 return -EINVAL;
4043
4044 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4045 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4046
4047 return 0;
4048 }
4049
vcpu_stat_get_per_vm_open(struct inode * inode,struct file * file)4050 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4051 {
4052 __simple_attr_check_format("%llu\n", 0ull);
4053 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4054 vcpu_stat_clear_per_vm, "%llu\n");
4055 }
4056
4057 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4058 .owner = THIS_MODULE,
4059 .open = vcpu_stat_get_per_vm_open,
4060 .release = kvm_debugfs_release,
4061 .read = simple_attr_read,
4062 .write = simple_attr_write,
4063 .llseek = no_llseek,
4064 };
4065
4066 static const struct file_operations *stat_fops_per_vm[] = {
4067 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4068 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4069 };
4070
vm_stat_get(void * _offset,u64 * val)4071 static int vm_stat_get(void *_offset, u64 *val)
4072 {
4073 unsigned offset = (long)_offset;
4074 struct kvm *kvm;
4075 struct kvm_stat_data stat_tmp = {.offset = offset};
4076 u64 tmp_val;
4077
4078 *val = 0;
4079 mutex_lock(&kvm_lock);
4080 list_for_each_entry(kvm, &vm_list, vm_list) {
4081 stat_tmp.kvm = kvm;
4082 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4083 *val += tmp_val;
4084 }
4085 mutex_unlock(&kvm_lock);
4086 return 0;
4087 }
4088
vm_stat_clear(void * _offset,u64 val)4089 static int vm_stat_clear(void *_offset, u64 val)
4090 {
4091 unsigned offset = (long)_offset;
4092 struct kvm *kvm;
4093 struct kvm_stat_data stat_tmp = {.offset = offset};
4094
4095 if (val)
4096 return -EINVAL;
4097
4098 mutex_lock(&kvm_lock);
4099 list_for_each_entry(kvm, &vm_list, vm_list) {
4100 stat_tmp.kvm = kvm;
4101 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4102 }
4103 mutex_unlock(&kvm_lock);
4104
4105 return 0;
4106 }
4107
4108 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4109
vcpu_stat_get(void * _offset,u64 * val)4110 static int vcpu_stat_get(void *_offset, u64 *val)
4111 {
4112 unsigned offset = (long)_offset;
4113 struct kvm *kvm;
4114 struct kvm_stat_data stat_tmp = {.offset = offset};
4115 u64 tmp_val;
4116
4117 *val = 0;
4118 mutex_lock(&kvm_lock);
4119 list_for_each_entry(kvm, &vm_list, vm_list) {
4120 stat_tmp.kvm = kvm;
4121 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4122 *val += tmp_val;
4123 }
4124 mutex_unlock(&kvm_lock);
4125 return 0;
4126 }
4127
vcpu_stat_clear(void * _offset,u64 val)4128 static int vcpu_stat_clear(void *_offset, u64 val)
4129 {
4130 unsigned offset = (long)_offset;
4131 struct kvm *kvm;
4132 struct kvm_stat_data stat_tmp = {.offset = offset};
4133
4134 if (val)
4135 return -EINVAL;
4136
4137 mutex_lock(&kvm_lock);
4138 list_for_each_entry(kvm, &vm_list, vm_list) {
4139 stat_tmp.kvm = kvm;
4140 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4141 }
4142 mutex_unlock(&kvm_lock);
4143
4144 return 0;
4145 }
4146
4147 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4148 "%llu\n");
4149
4150 static const struct file_operations *stat_fops[] = {
4151 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4152 [KVM_STAT_VM] = &vm_stat_fops,
4153 };
4154
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4155 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4156 {
4157 struct kobj_uevent_env *env;
4158 unsigned long long created, active;
4159
4160 if (!kvm_dev.this_device || !kvm)
4161 return;
4162
4163 mutex_lock(&kvm_lock);
4164 if (type == KVM_EVENT_CREATE_VM) {
4165 kvm_createvm_count++;
4166 kvm_active_vms++;
4167 } else if (type == KVM_EVENT_DESTROY_VM) {
4168 kvm_active_vms--;
4169 }
4170 created = kvm_createvm_count;
4171 active = kvm_active_vms;
4172 mutex_unlock(&kvm_lock);
4173
4174 env = kzalloc(sizeof(*env), GFP_KERNEL);
4175 if (!env)
4176 return;
4177
4178 add_uevent_var(env, "CREATED=%llu", created);
4179 add_uevent_var(env, "COUNT=%llu", active);
4180
4181 if (type == KVM_EVENT_CREATE_VM) {
4182 add_uevent_var(env, "EVENT=create");
4183 kvm->userspace_pid = task_pid_nr(current);
4184 } else if (type == KVM_EVENT_DESTROY_VM) {
4185 add_uevent_var(env, "EVENT=destroy");
4186 }
4187 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4188
4189 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4190 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4191
4192 if (p) {
4193 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4194 if (!IS_ERR(tmp))
4195 add_uevent_var(env, "STATS_PATH=%s", tmp);
4196 kfree(p);
4197 }
4198 }
4199 /* no need for checks, since we are adding at most only 5 keys */
4200 env->envp[env->envp_idx++] = NULL;
4201 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4202 kfree(env);
4203 }
4204
kvm_init_debug(void)4205 static void kvm_init_debug(void)
4206 {
4207 struct kvm_stats_debugfs_item *p;
4208
4209 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4210
4211 kvm_debugfs_num_entries = 0;
4212 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4213 int mode = p->mode ? p->mode : 0644;
4214 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4215 (void *)(long)p->offset,
4216 stat_fops[p->kind]);
4217 }
4218 }
4219
kvm_suspend(void)4220 static int kvm_suspend(void)
4221 {
4222 if (kvm_usage_count)
4223 hardware_disable_nolock(NULL);
4224 return 0;
4225 }
4226
kvm_resume(void)4227 static void kvm_resume(void)
4228 {
4229 if (kvm_usage_count) {
4230 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4231 hardware_enable_nolock(NULL);
4232 }
4233 }
4234
4235 static struct syscore_ops kvm_syscore_ops = {
4236 .suspend = kvm_suspend,
4237 .resume = kvm_resume,
4238 };
4239
4240 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4241 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4242 {
4243 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4244 }
4245
kvm_sched_in(struct preempt_notifier * pn,int cpu)4246 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4247 {
4248 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4249
4250 if (vcpu->preempted)
4251 vcpu->preempted = false;
4252
4253 kvm_arch_sched_in(vcpu, cpu);
4254
4255 kvm_arch_vcpu_load(vcpu, cpu);
4256 }
4257
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4258 static void kvm_sched_out(struct preempt_notifier *pn,
4259 struct task_struct *next)
4260 {
4261 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4262
4263 if (current->state == TASK_RUNNING)
4264 vcpu->preempted = true;
4265 kvm_arch_vcpu_put(vcpu);
4266 }
4267
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4268 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4269 struct module *module)
4270 {
4271 int r;
4272 int cpu;
4273
4274 r = kvm_arch_init(opaque);
4275 if (r)
4276 goto out_fail;
4277
4278 /*
4279 * kvm_arch_init makes sure there's at most one caller
4280 * for architectures that support multiple implementations,
4281 * like intel and amd on x86.
4282 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4283 * conflicts in case kvm is already setup for another implementation.
4284 */
4285 r = kvm_irqfd_init();
4286 if (r)
4287 goto out_irqfd;
4288
4289 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4290 r = -ENOMEM;
4291 goto out_free_0;
4292 }
4293
4294 r = kvm_arch_hardware_setup();
4295 if (r < 0)
4296 goto out_free_0a;
4297
4298 for_each_online_cpu(cpu) {
4299 smp_call_function_single(cpu,
4300 kvm_arch_check_processor_compat,
4301 &r, 1);
4302 if (r < 0)
4303 goto out_free_1;
4304 }
4305
4306 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4307 kvm_starting_cpu, kvm_dying_cpu);
4308 if (r)
4309 goto out_free_2;
4310 register_reboot_notifier(&kvm_reboot_notifier);
4311
4312 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4313 if (!vcpu_align)
4314 vcpu_align = __alignof__(struct kvm_vcpu);
4315 kvm_vcpu_cache =
4316 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4317 SLAB_ACCOUNT,
4318 offsetof(struct kvm_vcpu, arch),
4319 sizeof_field(struct kvm_vcpu, arch),
4320 NULL);
4321 if (!kvm_vcpu_cache) {
4322 r = -ENOMEM;
4323 goto out_free_3;
4324 }
4325
4326 r = kvm_async_pf_init();
4327 if (r)
4328 goto out_free;
4329
4330 kvm_chardev_ops.owner = module;
4331 kvm_vm_fops.owner = module;
4332 kvm_vcpu_fops.owner = module;
4333
4334 r = misc_register(&kvm_dev);
4335 if (r) {
4336 pr_err("kvm: misc device register failed\n");
4337 goto out_unreg;
4338 }
4339
4340 register_syscore_ops(&kvm_syscore_ops);
4341
4342 kvm_preempt_ops.sched_in = kvm_sched_in;
4343 kvm_preempt_ops.sched_out = kvm_sched_out;
4344
4345 kvm_init_debug();
4346
4347 r = kvm_vfio_ops_init();
4348 WARN_ON(r);
4349
4350 return 0;
4351
4352 out_unreg:
4353 kvm_async_pf_deinit();
4354 out_free:
4355 kmem_cache_destroy(kvm_vcpu_cache);
4356 out_free_3:
4357 unregister_reboot_notifier(&kvm_reboot_notifier);
4358 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4359 out_free_2:
4360 out_free_1:
4361 kvm_arch_hardware_unsetup();
4362 out_free_0a:
4363 free_cpumask_var(cpus_hardware_enabled);
4364 out_free_0:
4365 kvm_irqfd_exit();
4366 out_irqfd:
4367 kvm_arch_exit();
4368 out_fail:
4369 return r;
4370 }
4371 EXPORT_SYMBOL_GPL(kvm_init);
4372
kvm_exit(void)4373 void kvm_exit(void)
4374 {
4375 debugfs_remove_recursive(kvm_debugfs_dir);
4376 misc_deregister(&kvm_dev);
4377 kmem_cache_destroy(kvm_vcpu_cache);
4378 kvm_async_pf_deinit();
4379 unregister_syscore_ops(&kvm_syscore_ops);
4380 unregister_reboot_notifier(&kvm_reboot_notifier);
4381 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4382 on_each_cpu(hardware_disable_nolock, NULL, 1);
4383 kvm_arch_hardware_unsetup();
4384 kvm_arch_exit();
4385 kvm_irqfd_exit();
4386 free_cpumask_var(cpus_hardware_enabled);
4387 kvm_vfio_ops_exit();
4388 }
4389 EXPORT_SYMBOL_GPL(kvm_exit);
4390
4391 struct kvm_vm_worker_thread_context {
4392 struct kvm *kvm;
4393 struct task_struct *parent;
4394 struct completion init_done;
4395 kvm_vm_thread_fn_t thread_fn;
4396 uintptr_t data;
4397 int err;
4398 };
4399
kvm_vm_worker_thread(void * context)4400 static int kvm_vm_worker_thread(void *context)
4401 {
4402 /*
4403 * The init_context is allocated on the stack of the parent thread, so
4404 * we have to locally copy anything that is needed beyond initialization
4405 */
4406 struct kvm_vm_worker_thread_context *init_context = context;
4407 struct kvm *kvm = init_context->kvm;
4408 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4409 uintptr_t data = init_context->data;
4410 int err;
4411
4412 err = kthread_park(current);
4413 /* kthread_park(current) is never supposed to return an error */
4414 WARN_ON(err != 0);
4415 if (err)
4416 goto init_complete;
4417
4418 err = cgroup_attach_task_all(init_context->parent, current);
4419 if (err) {
4420 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4421 __func__, err);
4422 goto init_complete;
4423 }
4424
4425 set_user_nice(current, task_nice(init_context->parent));
4426
4427 init_complete:
4428 init_context->err = err;
4429 complete(&init_context->init_done);
4430 init_context = NULL;
4431
4432 if (err)
4433 return err;
4434
4435 /* Wait to be woken up by the spawner before proceeding. */
4436 kthread_parkme();
4437
4438 if (!kthread_should_stop())
4439 err = thread_fn(kvm, data);
4440
4441 return err;
4442 }
4443
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)4444 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4445 uintptr_t data, const char *name,
4446 struct task_struct **thread_ptr)
4447 {
4448 struct kvm_vm_worker_thread_context init_context = {};
4449 struct task_struct *thread;
4450
4451 *thread_ptr = NULL;
4452 init_context.kvm = kvm;
4453 init_context.parent = current;
4454 init_context.thread_fn = thread_fn;
4455 init_context.data = data;
4456 init_completion(&init_context.init_done);
4457
4458 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4459 "%s-%d", name, task_pid_nr(current));
4460 if (IS_ERR(thread))
4461 return PTR_ERR(thread);
4462
4463 /* kthread_run is never supposed to return NULL */
4464 WARN_ON(thread == NULL);
4465
4466 wait_for_completion(&init_context.init_done);
4467
4468 if (!init_context.err)
4469 *thread_ptr = thread;
4470
4471 return init_context.err;
4472 }
4473