1 /*
2 * Copyright (C) 2015, 2016 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/list_sort.h>
22 #include <linux/nospec.h>
23
24 #include <asm/kvm_hyp.h>
25
26 #include "vgic.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 struct vgic_global kvm_vgic_global_state __ro_after_init = {
32 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
33 };
34
35 /*
36 * Locking order is always:
37 * kvm->lock (mutex)
38 * its->cmd_lock (mutex)
39 * its->its_lock (mutex)
40 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
41 * kvm->lpi_list_lock must be taken with IRQs disabled
42 * vgic_irq->irq_lock must be taken with IRQs disabled
43 *
44 * As the ap_list_lock might be taken from the timer interrupt handler,
45 * we have to disable IRQs before taking this lock and everything lower
46 * than it.
47 *
48 * If you need to take multiple locks, always take the upper lock first,
49 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
50 * If you are already holding a lock and need to take a higher one, you
51 * have to drop the lower ranking lock first and re-aquire it after having
52 * taken the upper one.
53 *
54 * When taking more than one ap_list_lock at the same time, always take the
55 * lowest numbered VCPU's ap_list_lock first, so:
56 * vcpuX->vcpu_id < vcpuY->vcpu_id:
57 * spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
58 * spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
59 *
60 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
61 * to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
62 * spinlocks for any lock that may be taken while injecting an interrupt.
63 */
64
65 /*
66 * Iterate over the VM's list of mapped LPIs to find the one with a
67 * matching interrupt ID and return a reference to the IRQ structure.
68 */
vgic_get_lpi(struct kvm * kvm,u32 intid)69 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
70 {
71 struct vgic_dist *dist = &kvm->arch.vgic;
72 struct vgic_irq *irq = NULL;
73 unsigned long flags;
74
75 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
76
77 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
78 if (irq->intid != intid)
79 continue;
80
81 /*
82 * This increases the refcount, the caller is expected to
83 * call vgic_put_irq() later once it's finished with the IRQ.
84 */
85 vgic_get_irq_kref(irq);
86 goto out_unlock;
87 }
88 irq = NULL;
89
90 out_unlock:
91 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
92
93 return irq;
94 }
95
96 /*
97 * This looks up the virtual interrupt ID to get the corresponding
98 * struct vgic_irq. It also increases the refcount, so any caller is expected
99 * to call vgic_put_irq() once it's finished with this IRQ.
100 */
vgic_get_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 intid)101 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
102 u32 intid)
103 {
104 /* SGIs and PPIs */
105 if (intid <= VGIC_MAX_PRIVATE) {
106 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
107 return &vcpu->arch.vgic_cpu.private_irqs[intid];
108 }
109
110 /* SPIs */
111 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
112 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
113 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
114 }
115
116 /* LPIs */
117 if (intid >= VGIC_MIN_LPI)
118 return vgic_get_lpi(kvm, intid);
119
120 WARN(1, "Looking up struct vgic_irq for reserved INTID");
121 return NULL;
122 }
123
124 /*
125 * We can't do anything in here, because we lack the kvm pointer to
126 * lock and remove the item from the lpi_list. So we keep this function
127 * empty and use the return value of kref_put() to trigger the freeing.
128 */
vgic_irq_release(struct kref * ref)129 static void vgic_irq_release(struct kref *ref)
130 {
131 }
132
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)133 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
134 {
135 struct vgic_dist *dist = &kvm->arch.vgic;
136 unsigned long flags;
137
138 if (irq->intid < VGIC_MIN_LPI)
139 return;
140
141 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
142 if (!kref_put(&irq->refcount, vgic_irq_release)) {
143 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
144 return;
145 };
146
147 list_del(&irq->lpi_list);
148 dist->lpi_list_count--;
149 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
150
151 kfree(irq);
152 }
153
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)154 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
155 {
156 WARN_ON(irq_set_irqchip_state(irq->host_irq,
157 IRQCHIP_STATE_PENDING,
158 pending));
159 }
160
vgic_get_phys_line_level(struct vgic_irq * irq)161 bool vgic_get_phys_line_level(struct vgic_irq *irq)
162 {
163 bool line_level;
164
165 BUG_ON(!irq->hw);
166
167 if (irq->get_input_level)
168 return irq->get_input_level(irq->intid);
169
170 WARN_ON(irq_get_irqchip_state(irq->host_irq,
171 IRQCHIP_STATE_PENDING,
172 &line_level));
173 return line_level;
174 }
175
176 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)177 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
178 {
179
180 BUG_ON(!irq->hw);
181 WARN_ON(irq_set_irqchip_state(irq->host_irq,
182 IRQCHIP_STATE_ACTIVE,
183 active));
184 }
185
186 /**
187 * kvm_vgic_target_oracle - compute the target vcpu for an irq
188 *
189 * @irq: The irq to route. Must be already locked.
190 *
191 * Based on the current state of the interrupt (enabled, pending,
192 * active, vcpu and target_vcpu), compute the next vcpu this should be
193 * given to. Return NULL if this shouldn't be injected at all.
194 *
195 * Requires the IRQ lock to be held.
196 */
vgic_target_oracle(struct vgic_irq * irq)197 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
198 {
199 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
200
201 /* If the interrupt is active, it must stay on the current vcpu */
202 if (irq->active)
203 return irq->vcpu ? : irq->target_vcpu;
204
205 /*
206 * If the IRQ is not active but enabled and pending, we should direct
207 * it to its configured target VCPU.
208 * If the distributor is disabled, pending interrupts shouldn't be
209 * forwarded.
210 */
211 if (irq->enabled && irq_is_pending(irq)) {
212 if (unlikely(irq->target_vcpu &&
213 !irq->target_vcpu->kvm->arch.vgic.enabled))
214 return NULL;
215
216 return irq->target_vcpu;
217 }
218
219 /* If neither active nor pending and enabled, then this IRQ should not
220 * be queued to any VCPU.
221 */
222 return NULL;
223 }
224
225 /*
226 * The order of items in the ap_lists defines how we'll pack things in LRs as
227 * well, the first items in the list being the first things populated in the
228 * LRs.
229 *
230 * A hard rule is that active interrupts can never be pushed out of the LRs
231 * (and therefore take priority) since we cannot reliably trap on deactivation
232 * of IRQs and therefore they have to be present in the LRs.
233 *
234 * Otherwise things should be sorted by the priority field and the GIC
235 * hardware support will take care of preemption of priority groups etc.
236 *
237 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
238 * to sort "b" before "a".
239 */
vgic_irq_cmp(void * priv,struct list_head * a,struct list_head * b)240 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
241 {
242 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
243 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
244 bool penda, pendb;
245 int ret;
246
247 /*
248 * list_sort may call this function with the same element when
249 * the list is fairly long.
250 */
251 if (unlikely(irqa == irqb))
252 return 0;
253
254 spin_lock(&irqa->irq_lock);
255 spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
256
257 if (irqa->active || irqb->active) {
258 ret = (int)irqb->active - (int)irqa->active;
259 goto out;
260 }
261
262 penda = irqa->enabled && irq_is_pending(irqa);
263 pendb = irqb->enabled && irq_is_pending(irqb);
264
265 if (!penda || !pendb) {
266 ret = (int)pendb - (int)penda;
267 goto out;
268 }
269
270 /* Both pending and enabled, sort by priority */
271 ret = irqa->priority - irqb->priority;
272 out:
273 spin_unlock(&irqb->irq_lock);
274 spin_unlock(&irqa->irq_lock);
275 return ret;
276 }
277
278 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)279 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
280 {
281 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
282
283 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
284
285 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
286 }
287
288 /*
289 * Only valid injection if changing level for level-triggered IRQs or for a
290 * rising edge, and in-kernel connected IRQ lines can only be controlled by
291 * their owner.
292 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)293 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
294 {
295 if (irq->owner != owner)
296 return false;
297
298 switch (irq->config) {
299 case VGIC_CONFIG_LEVEL:
300 return irq->line_level != level;
301 case VGIC_CONFIG_EDGE:
302 return level;
303 }
304
305 return false;
306 }
307
308 /*
309 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
310 * Do the queuing if necessary, taking the right locks in the right order.
311 * Returns true when the IRQ was queued, false otherwise.
312 *
313 * Needs to be entered with the IRQ lock already held, but will return
314 * with all locks dropped.
315 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)316 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
317 unsigned long flags)
318 {
319 struct kvm_vcpu *vcpu;
320
321 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
322
323 retry:
324 vcpu = vgic_target_oracle(irq);
325 if (irq->vcpu || !vcpu) {
326 /*
327 * If this IRQ is already on a VCPU's ap_list, then it
328 * cannot be moved or modified and there is no more work for
329 * us to do.
330 *
331 * Otherwise, if the irq is not pending and enabled, it does
332 * not need to be inserted into an ap_list and there is also
333 * no more work for us to do.
334 */
335 spin_unlock_irqrestore(&irq->irq_lock, flags);
336
337 /*
338 * We have to kick the VCPU here, because we could be
339 * queueing an edge-triggered interrupt for which we
340 * get no EOI maintenance interrupt. In that case,
341 * while the IRQ is already on the VCPU's AP list, the
342 * VCPU could have EOI'ed the original interrupt and
343 * won't see this one until it exits for some other
344 * reason.
345 */
346 if (vcpu) {
347 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
348 kvm_vcpu_kick(vcpu);
349 }
350 return false;
351 }
352
353 /*
354 * We must unlock the irq lock to take the ap_list_lock where
355 * we are going to insert this new pending interrupt.
356 */
357 spin_unlock_irqrestore(&irq->irq_lock, flags);
358
359 /* someone can do stuff here, which we re-check below */
360
361 spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
362 spin_lock(&irq->irq_lock);
363
364 /*
365 * Did something change behind our backs?
366 *
367 * There are two cases:
368 * 1) The irq lost its pending state or was disabled behind our
369 * backs and/or it was queued to another VCPU's ap_list.
370 * 2) Someone changed the affinity on this irq behind our
371 * backs and we are now holding the wrong ap_list_lock.
372 *
373 * In both cases, drop the locks and retry.
374 */
375
376 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
377 spin_unlock(&irq->irq_lock);
378 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
379
380 spin_lock_irqsave(&irq->irq_lock, flags);
381 goto retry;
382 }
383
384 /*
385 * Grab a reference to the irq to reflect the fact that it is
386 * now in the ap_list.
387 */
388 vgic_get_irq_kref(irq);
389 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
390 irq->vcpu = vcpu;
391
392 spin_unlock(&irq->irq_lock);
393 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
394
395 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
396 kvm_vcpu_kick(vcpu);
397
398 return true;
399 }
400
401 /**
402 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
403 * @kvm: The VM structure pointer
404 * @cpuid: The CPU for PPIs
405 * @intid: The INTID to inject a new state to.
406 * @level: Edge-triggered: true: to trigger the interrupt
407 * false: to ignore the call
408 * Level-sensitive true: raise the input signal
409 * false: lower the input signal
410 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
411 * that the caller is allowed to inject this IRQ. Userspace
412 * injections will have owner == NULL.
413 *
414 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
415 * level-sensitive interrupts. You can think of the level parameter as 1
416 * being HIGH and 0 being LOW and all devices being active-HIGH.
417 */
kvm_vgic_inject_irq(struct kvm * kvm,int cpuid,unsigned int intid,bool level,void * owner)418 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
419 bool level, void *owner)
420 {
421 struct kvm_vcpu *vcpu;
422 struct vgic_irq *irq;
423 unsigned long flags;
424 int ret;
425
426 trace_vgic_update_irq_pending(cpuid, intid, level);
427
428 ret = vgic_lazy_init(kvm);
429 if (ret)
430 return ret;
431
432 vcpu = kvm_get_vcpu(kvm, cpuid);
433 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
434 return -EINVAL;
435
436 irq = vgic_get_irq(kvm, vcpu, intid);
437 if (!irq)
438 return -EINVAL;
439
440 spin_lock_irqsave(&irq->irq_lock, flags);
441
442 if (!vgic_validate_injection(irq, level, owner)) {
443 /* Nothing to see here, move along... */
444 spin_unlock_irqrestore(&irq->irq_lock, flags);
445 vgic_put_irq(kvm, irq);
446 return 0;
447 }
448
449 if (irq->config == VGIC_CONFIG_LEVEL)
450 irq->line_level = level;
451 else
452 irq->pending_latch = true;
453
454 vgic_queue_irq_unlock(kvm, irq, flags);
455 vgic_put_irq(kvm, irq);
456
457 return 0;
458 }
459
460 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,bool (* get_input_level)(int vindid))461 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
462 unsigned int host_irq,
463 bool (*get_input_level)(int vindid))
464 {
465 struct irq_desc *desc;
466 struct irq_data *data;
467
468 /*
469 * Find the physical IRQ number corresponding to @host_irq
470 */
471 desc = irq_to_desc(host_irq);
472 if (!desc) {
473 kvm_err("%s: no interrupt descriptor\n", __func__);
474 return -EINVAL;
475 }
476 data = irq_desc_get_irq_data(desc);
477 while (data->parent_data)
478 data = data->parent_data;
479
480 irq->hw = true;
481 irq->host_irq = host_irq;
482 irq->hwintid = data->hwirq;
483 irq->get_input_level = get_input_level;
484 return 0;
485 }
486
487 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)488 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
489 {
490 irq->hw = false;
491 irq->hwintid = 0;
492 irq->get_input_level = NULL;
493 }
494
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,bool (* get_input_level)(int vindid))495 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
496 u32 vintid, bool (*get_input_level)(int vindid))
497 {
498 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
499 unsigned long flags;
500 int ret;
501
502 BUG_ON(!irq);
503
504 spin_lock_irqsave(&irq->irq_lock, flags);
505 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
506 spin_unlock_irqrestore(&irq->irq_lock, flags);
507 vgic_put_irq(vcpu->kvm, irq);
508
509 return ret;
510 }
511
512 /**
513 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
514 * @vcpu: The VCPU pointer
515 * @vintid: The INTID of the interrupt
516 *
517 * Reset the active and pending states of a mapped interrupt. Kernel
518 * subsystems injecting mapped interrupts should reset their interrupt lines
519 * when we are doing a reset of the VM.
520 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)521 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
522 {
523 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
524 unsigned long flags;
525
526 if (!irq->hw)
527 goto out;
528
529 spin_lock_irqsave(&irq->irq_lock, flags);
530 irq->active = false;
531 irq->pending_latch = false;
532 irq->line_level = false;
533 spin_unlock_irqrestore(&irq->irq_lock, flags);
534 out:
535 vgic_put_irq(vcpu->kvm, irq);
536 }
537
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)538 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
539 {
540 struct vgic_irq *irq;
541 unsigned long flags;
542
543 if (!vgic_initialized(vcpu->kvm))
544 return -EAGAIN;
545
546 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
547 BUG_ON(!irq);
548
549 spin_lock_irqsave(&irq->irq_lock, flags);
550 kvm_vgic_unmap_irq(irq);
551 spin_unlock_irqrestore(&irq->irq_lock, flags);
552 vgic_put_irq(vcpu->kvm, irq);
553
554 return 0;
555 }
556
557 /**
558 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
559 *
560 * @vcpu: Pointer to the VCPU (used for PPIs)
561 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
562 * @owner: Opaque pointer to the owner
563 *
564 * Returns 0 if intid is not already used by another in-kernel device and the
565 * owner is set, otherwise returns an error code.
566 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)567 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
568 {
569 struct vgic_irq *irq;
570 unsigned long flags;
571 int ret = 0;
572
573 if (!vgic_initialized(vcpu->kvm))
574 return -EAGAIN;
575
576 /* SGIs and LPIs cannot be wired up to any device */
577 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
578 return -EINVAL;
579
580 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
581 spin_lock_irqsave(&irq->irq_lock, flags);
582 if (irq->owner && irq->owner != owner)
583 ret = -EEXIST;
584 else
585 irq->owner = owner;
586 spin_unlock_irqrestore(&irq->irq_lock, flags);
587
588 return ret;
589 }
590
591 /**
592 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
593 *
594 * @vcpu: The VCPU pointer
595 *
596 * Go over the list of "interesting" interrupts, and prune those that we
597 * won't have to consider in the near future.
598 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)599 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
600 {
601 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
602 struct vgic_irq *irq, *tmp;
603
604 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
605
606 retry:
607 spin_lock(&vgic_cpu->ap_list_lock);
608
609 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
610 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
611 bool target_vcpu_needs_kick = false;
612
613 spin_lock(&irq->irq_lock);
614
615 BUG_ON(vcpu != irq->vcpu);
616
617 target_vcpu = vgic_target_oracle(irq);
618
619 if (!target_vcpu) {
620 /*
621 * We don't need to process this interrupt any
622 * further, move it off the list.
623 */
624 list_del(&irq->ap_list);
625 irq->vcpu = NULL;
626 spin_unlock(&irq->irq_lock);
627
628 /*
629 * This vgic_put_irq call matches the
630 * vgic_get_irq_kref in vgic_queue_irq_unlock,
631 * where we added the LPI to the ap_list. As
632 * we remove the irq from the list, we drop
633 * also drop the refcount.
634 */
635 vgic_put_irq(vcpu->kvm, irq);
636 continue;
637 }
638
639 if (target_vcpu == vcpu) {
640 /* We're on the right CPU */
641 spin_unlock(&irq->irq_lock);
642 continue;
643 }
644
645 /* This interrupt looks like it has to be migrated. */
646
647 spin_unlock(&irq->irq_lock);
648 spin_unlock(&vgic_cpu->ap_list_lock);
649
650 /*
651 * Ensure locking order by always locking the smallest
652 * ID first.
653 */
654 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
655 vcpuA = vcpu;
656 vcpuB = target_vcpu;
657 } else {
658 vcpuA = target_vcpu;
659 vcpuB = vcpu;
660 }
661
662 spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
663 spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
664 SINGLE_DEPTH_NESTING);
665 spin_lock(&irq->irq_lock);
666
667 /*
668 * If the affinity has been preserved, move the
669 * interrupt around. Otherwise, it means things have
670 * changed while the interrupt was unlocked, and we
671 * need to replay this.
672 *
673 * In all cases, we cannot trust the list not to have
674 * changed, so we restart from the beginning.
675 */
676 if (target_vcpu == vgic_target_oracle(irq)) {
677 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
678
679 list_del(&irq->ap_list);
680 irq->vcpu = target_vcpu;
681 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
682 target_vcpu_needs_kick = true;
683 }
684
685 spin_unlock(&irq->irq_lock);
686 spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
687 spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
688
689 if (target_vcpu_needs_kick) {
690 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
691 kvm_vcpu_kick(target_vcpu);
692 }
693
694 goto retry;
695 }
696
697 spin_unlock(&vgic_cpu->ap_list_lock);
698 }
699
vgic_fold_lr_state(struct kvm_vcpu * vcpu)700 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
701 {
702 if (kvm_vgic_global_state.type == VGIC_V2)
703 vgic_v2_fold_lr_state(vcpu);
704 else
705 vgic_v3_fold_lr_state(vcpu);
706 }
707
708 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)709 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
710 struct vgic_irq *irq, int lr)
711 {
712 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
713
714 if (kvm_vgic_global_state.type == VGIC_V2)
715 vgic_v2_populate_lr(vcpu, irq, lr);
716 else
717 vgic_v3_populate_lr(vcpu, irq, lr);
718 }
719
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)720 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
721 {
722 if (kvm_vgic_global_state.type == VGIC_V2)
723 vgic_v2_clear_lr(vcpu, lr);
724 else
725 vgic_v3_clear_lr(vcpu, lr);
726 }
727
vgic_set_underflow(struct kvm_vcpu * vcpu)728 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
729 {
730 if (kvm_vgic_global_state.type == VGIC_V2)
731 vgic_v2_set_underflow(vcpu);
732 else
733 vgic_v3_set_underflow(vcpu);
734 }
735
736 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)737 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
738 bool *multi_sgi)
739 {
740 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
741 struct vgic_irq *irq;
742 int count = 0;
743
744 *multi_sgi = false;
745
746 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
747
748 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
749 int w;
750
751 spin_lock(&irq->irq_lock);
752 /* GICv2 SGIs can count for more than one... */
753 w = vgic_irq_get_lr_count(irq);
754 spin_unlock(&irq->irq_lock);
755
756 count += w;
757 *multi_sgi |= (w > 1);
758 }
759 return count;
760 }
761
762 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)763 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
764 {
765 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
766 struct vgic_irq *irq;
767 int count;
768 bool multi_sgi;
769 u8 prio = 0xff;
770
771 DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
772
773 count = compute_ap_list_depth(vcpu, &multi_sgi);
774 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
775 vgic_sort_ap_list(vcpu);
776
777 count = 0;
778
779 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
780 spin_lock(&irq->irq_lock);
781
782 /*
783 * If we have multi-SGIs in the pipeline, we need to
784 * guarantee that they are all seen before any IRQ of
785 * lower priority. In that case, we need to filter out
786 * these interrupts by exiting early. This is easy as
787 * the AP list has been sorted already.
788 */
789 if (multi_sgi && irq->priority > prio) {
790 spin_unlock(&irq->irq_lock);
791 break;
792 }
793
794 if (likely(vgic_target_oracle(irq) == vcpu)) {
795 vgic_populate_lr(vcpu, irq, count++);
796
797 if (irq->source)
798 prio = irq->priority;
799 }
800
801 spin_unlock(&irq->irq_lock);
802
803 if (count == kvm_vgic_global_state.nr_lr) {
804 if (!list_is_last(&irq->ap_list,
805 &vgic_cpu->ap_list_head))
806 vgic_set_underflow(vcpu);
807 break;
808 }
809 }
810
811 vcpu->arch.vgic_cpu.used_lrs = count;
812
813 /* Nuke remaining LRs */
814 for ( ; count < kvm_vgic_global_state.nr_lr; count++)
815 vgic_clear_lr(vcpu, count);
816 }
817
can_access_vgic_from_kernel(void)818 static inline bool can_access_vgic_from_kernel(void)
819 {
820 /*
821 * GICv2 can always be accessed from the kernel because it is
822 * memory-mapped, and VHE systems can access GICv3 EL2 system
823 * registers.
824 */
825 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
826 }
827
vgic_save_state(struct kvm_vcpu * vcpu)828 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
829 {
830 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
831 vgic_v2_save_state(vcpu);
832 else
833 __vgic_v3_save_state(vcpu);
834 }
835
836 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)837 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
838 {
839 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
840
841 WARN_ON(vgic_v4_sync_hwstate(vcpu));
842
843 /* An empty ap_list_head implies used_lrs == 0 */
844 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
845 return;
846
847 if (can_access_vgic_from_kernel())
848 vgic_save_state(vcpu);
849
850 if (vgic_cpu->used_lrs)
851 vgic_fold_lr_state(vcpu);
852 vgic_prune_ap_list(vcpu);
853 }
854
vgic_restore_state(struct kvm_vcpu * vcpu)855 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
856 {
857 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
858 vgic_v2_restore_state(vcpu);
859 else
860 __vgic_v3_restore_state(vcpu);
861 }
862
863 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)864 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
865 {
866 WARN_ON(vgic_v4_flush_hwstate(vcpu));
867
868 /*
869 * If there are no virtual interrupts active or pending for this
870 * VCPU, then there is no work to do and we can bail out without
871 * taking any lock. There is a potential race with someone injecting
872 * interrupts to the VCPU, but it is a benign race as the VCPU will
873 * either observe the new interrupt before or after doing this check,
874 * and introducing additional synchronization mechanism doesn't change
875 * this.
876 */
877 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
878 return;
879
880 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
881
882 spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
883 vgic_flush_lr_state(vcpu);
884 spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
885
886 if (can_access_vgic_from_kernel())
887 vgic_restore_state(vcpu);
888 }
889
kvm_vgic_load(struct kvm_vcpu * vcpu)890 void kvm_vgic_load(struct kvm_vcpu *vcpu)
891 {
892 if (unlikely(!vgic_initialized(vcpu->kvm)))
893 return;
894
895 if (kvm_vgic_global_state.type == VGIC_V2)
896 vgic_v2_load(vcpu);
897 else
898 vgic_v3_load(vcpu);
899 }
900
kvm_vgic_put(struct kvm_vcpu * vcpu)901 void kvm_vgic_put(struct kvm_vcpu *vcpu)
902 {
903 if (unlikely(!vgic_initialized(vcpu->kvm)))
904 return;
905
906 if (kvm_vgic_global_state.type == VGIC_V2)
907 vgic_v2_put(vcpu);
908 else
909 vgic_v3_put(vcpu);
910 }
911
kvm_vgic_vmcr_sync(struct kvm_vcpu * vcpu)912 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
913 {
914 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
915 return;
916
917 if (kvm_vgic_global_state.type == VGIC_V2)
918 vgic_v2_vmcr_sync(vcpu);
919 else
920 vgic_v3_vmcr_sync(vcpu);
921 }
922
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)923 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
924 {
925 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
926 struct vgic_irq *irq;
927 bool pending = false;
928 unsigned long flags;
929
930 if (!vcpu->kvm->arch.vgic.enabled)
931 return false;
932
933 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
934 return true;
935
936 spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
937
938 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
939 spin_lock(&irq->irq_lock);
940 pending = irq_is_pending(irq) && irq->enabled;
941 spin_unlock(&irq->irq_lock);
942
943 if (pending)
944 break;
945 }
946
947 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
948
949 return pending;
950 }
951
vgic_kick_vcpus(struct kvm * kvm)952 void vgic_kick_vcpus(struct kvm *kvm)
953 {
954 struct kvm_vcpu *vcpu;
955 int c;
956
957 /*
958 * We've injected an interrupt, time to find out who deserves
959 * a good kick...
960 */
961 kvm_for_each_vcpu(c, vcpu, kvm) {
962 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
963 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
964 kvm_vcpu_kick(vcpu);
965 }
966 }
967 }
968
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)969 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
970 {
971 struct vgic_irq *irq;
972 bool map_is_active;
973 unsigned long flags;
974
975 if (!vgic_initialized(vcpu->kvm))
976 return false;
977
978 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
979 spin_lock_irqsave(&irq->irq_lock, flags);
980 map_is_active = irq->hw && irq->active;
981 spin_unlock_irqrestore(&irq->irq_lock, flags);
982 vgic_put_irq(vcpu->kvm, irq);
983
984 return map_is_active;
985 }
986
987