1 /*
2 * Copyright (c) 2008 Nuovation System Designs, LLC
3 * Grant Erickson <gerickson@nuovations.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; version 2 of the
8 * License.
9 *
10 */
11
12 #include <linux/edac.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/of_platform.h>
20 #include <linux/types.h>
21
22 #include <asm/dcr.h>
23
24 #include "edac_module.h"
25 #include "ppc4xx_edac.h"
26
27 /*
28 * This file implements a driver for monitoring and handling events
29 * associated with the IMB DDR2 ECC controller found in the AMCC/IBM
30 * 405EX[r], 440SP, 440SPe, 460EX, 460GT and 460SX.
31 *
32 * As realized in the 405EX[r], this controller features:
33 *
34 * - Support for registered- and non-registered DDR1 and DDR2 memory.
35 * - 32-bit or 16-bit memory interface with optional ECC.
36 *
37 * o ECC support includes:
38 *
39 * - 4-bit SEC/DED
40 * - Aligned-nibble error detect
41 * - Bypass mode
42 *
43 * - Two (2) memory banks/ranks.
44 * - Up to 1 GiB per bank/rank in 32-bit mode and up to 512 MiB per
45 * bank/rank in 16-bit mode.
46 *
47 * As realized in the 440SP and 440SPe, this controller changes/adds:
48 *
49 * - 64-bit or 32-bit memory interface with optional ECC.
50 *
51 * o ECC support includes:
52 *
53 * - 8-bit SEC/DED
54 * - Aligned-nibble error detect
55 * - Bypass mode
56 *
57 * - Up to 4 GiB per bank/rank in 64-bit mode and up to 2 GiB
58 * per bank/rank in 32-bit mode.
59 *
60 * As realized in the 460EX and 460GT, this controller changes/adds:
61 *
62 * - 64-bit or 32-bit memory interface with optional ECC.
63 *
64 * o ECC support includes:
65 *
66 * - 8-bit SEC/DED
67 * - Aligned-nibble error detect
68 * - Bypass mode
69 *
70 * - Four (4) memory banks/ranks.
71 * - Up to 16 GiB per bank/rank in 64-bit mode and up to 8 GiB
72 * per bank/rank in 32-bit mode.
73 *
74 * At present, this driver has ONLY been tested against the controller
75 * realization in the 405EX[r] on the AMCC Kilauea and Haleakala
76 * boards (256 MiB w/o ECC memory soldered onto the board) and a
77 * proprietary board based on those designs (128 MiB ECC memory, also
78 * soldered onto the board).
79 *
80 * Dynamic feature detection and handling needs to be added for the
81 * other realizations of this controller listed above.
82 *
83 * Eventually, this driver will likely be adapted to the above variant
84 * realizations of this controller as well as broken apart to handle
85 * the other known ECC-capable controllers prevalent in other 4xx
86 * processors:
87 *
88 * - IBM SDRAM (405GP, 405CR and 405EP) "ibm,sdram-4xx"
89 * - IBM DDR1 (440GP, 440GX, 440EP and 440GR) "ibm,sdram-4xx-ddr"
90 * - Denali DDR1/DDR2 (440EPX and 440GRX) "denali,sdram-4xx-ddr2"
91 *
92 * For this controller, unfortunately, correctable errors report
93 * nothing more than the beat/cycle and byte/lane the correction
94 * occurred on and the check bit group that covered the error.
95 *
96 * In contrast, uncorrectable errors also report the failing address,
97 * the bus master and the transaction direction (i.e. read or write)
98 *
99 * Regardless of whether the error is a CE or a UE, we report the
100 * following pieces of information in the driver-unique message to the
101 * EDAC subsystem:
102 *
103 * - Device tree path
104 * - Bank(s)
105 * - Check bit error group
106 * - Beat(s)/lane(s)
107 */
108
109 /* Preprocessor Definitions */
110
111 #define EDAC_OPSTATE_INT_STR "interrupt"
112 #define EDAC_OPSTATE_POLL_STR "polled"
113 #define EDAC_OPSTATE_UNKNOWN_STR "unknown"
114
115 #define PPC4XX_EDAC_MODULE_NAME "ppc4xx_edac"
116 #define PPC4XX_EDAC_MODULE_REVISION "v1.0.0"
117
118 #define PPC4XX_EDAC_MESSAGE_SIZE 256
119
120 /*
121 * Kernel logging without an EDAC instance
122 */
123 #define ppc4xx_edac_printk(level, fmt, arg...) \
124 edac_printk(level, "PPC4xx MC", fmt, ##arg)
125
126 /*
127 * Kernel logging with an EDAC instance
128 */
129 #define ppc4xx_edac_mc_printk(level, mci, fmt, arg...) \
130 edac_mc_chipset_printk(mci, level, "PPC4xx", fmt, ##arg)
131
132 /*
133 * Macros to convert bank configuration size enumerations into MiB and
134 * page values.
135 */
136 #define SDRAM_MBCF_SZ_MiB_MIN 4
137 #define SDRAM_MBCF_SZ_TO_MiB(n) (SDRAM_MBCF_SZ_MiB_MIN \
138 << (SDRAM_MBCF_SZ_DECODE(n)))
139 #define SDRAM_MBCF_SZ_TO_PAGES(n) (SDRAM_MBCF_SZ_MiB_MIN \
140 << (20 - PAGE_SHIFT + \
141 SDRAM_MBCF_SZ_DECODE(n)))
142
143 /*
144 * The ibm,sdram-4xx-ddr2 Device Control Registers (DCRs) are
145 * indirectly accessed and have a base and length defined by the
146 * device tree. The base can be anything; however, we expect the
147 * length to be precisely two registers, the first for the address
148 * window and the second for the data window.
149 */
150 #define SDRAM_DCR_RESOURCE_LEN 2
151 #define SDRAM_DCR_ADDR_OFFSET 0
152 #define SDRAM_DCR_DATA_OFFSET 1
153
154 /*
155 * Device tree interrupt indices
156 */
157 #define INTMAP_ECCDED_INDEX 0 /* Double-bit Error Detect */
158 #define INTMAP_ECCSEC_INDEX 1 /* Single-bit Error Correct */
159
160 /* Type Definitions */
161
162 /*
163 * PPC4xx SDRAM memory controller private instance data
164 */
165 struct ppc4xx_edac_pdata {
166 dcr_host_t dcr_host; /* Indirect DCR address/data window mapping */
167 struct {
168 int sec; /* Single-bit correctable error IRQ assigned */
169 int ded; /* Double-bit detectable error IRQ assigned */
170 } irqs;
171 };
172
173 /*
174 * Various status data gathered and manipulated when checking and
175 * reporting ECC status.
176 */
177 struct ppc4xx_ecc_status {
178 u32 ecces;
179 u32 besr;
180 u32 bearh;
181 u32 bearl;
182 u32 wmirq;
183 };
184
185 /* Function Prototypes */
186
187 static int ppc4xx_edac_probe(struct platform_device *device);
188 static int ppc4xx_edac_remove(struct platform_device *device);
189
190 /* Global Variables */
191
192 /*
193 * Device tree node type and compatible tuples this driver can match
194 * on.
195 */
196 static const struct of_device_id ppc4xx_edac_match[] = {
197 {
198 .compatible = "ibm,sdram-4xx-ddr2"
199 },
200 { }
201 };
202 MODULE_DEVICE_TABLE(of, ppc4xx_edac_match);
203
204 static struct platform_driver ppc4xx_edac_driver = {
205 .probe = ppc4xx_edac_probe,
206 .remove = ppc4xx_edac_remove,
207 .driver = {
208 .name = PPC4XX_EDAC_MODULE_NAME,
209 .of_match_table = ppc4xx_edac_match,
210 },
211 };
212
213 /*
214 * TODO: The row and channel parameters likely need to be dynamically
215 * set based on the aforementioned variant controller realizations.
216 */
217 static const unsigned ppc4xx_edac_nr_csrows = 2;
218 static const unsigned ppc4xx_edac_nr_chans = 1;
219
220 /*
221 * Strings associated with PLB master IDs capable of being posted in
222 * SDRAM_BESR or SDRAM_WMIRQ on uncorrectable ECC errors.
223 */
224 static const char * const ppc4xx_plb_masters[9] = {
225 [SDRAM_PLB_M0ID_ICU] = "ICU",
226 [SDRAM_PLB_M0ID_PCIE0] = "PCI-E 0",
227 [SDRAM_PLB_M0ID_PCIE1] = "PCI-E 1",
228 [SDRAM_PLB_M0ID_DMA] = "DMA",
229 [SDRAM_PLB_M0ID_DCU] = "DCU",
230 [SDRAM_PLB_M0ID_OPB] = "OPB",
231 [SDRAM_PLB_M0ID_MAL] = "MAL",
232 [SDRAM_PLB_M0ID_SEC] = "SEC",
233 [SDRAM_PLB_M0ID_AHB] = "AHB"
234 };
235
236 /**
237 * mfsdram - read and return controller register data
238 * @dcr_host: A pointer to the DCR mapping.
239 * @idcr_n: The indirect DCR register to read.
240 *
241 * This routine reads and returns the data associated with the
242 * controller's specified indirect DCR register.
243 *
244 * Returns the read data.
245 */
246 static inline u32
mfsdram(const dcr_host_t * dcr_host,unsigned int idcr_n)247 mfsdram(const dcr_host_t *dcr_host, unsigned int idcr_n)
248 {
249 return __mfdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
250 dcr_host->base + SDRAM_DCR_DATA_OFFSET,
251 idcr_n);
252 }
253
254 /**
255 * mtsdram - write controller register data
256 * @dcr_host: A pointer to the DCR mapping.
257 * @idcr_n: The indirect DCR register to write.
258 * @value: The data to write.
259 *
260 * This routine writes the provided data to the controller's specified
261 * indirect DCR register.
262 */
263 static inline void
mtsdram(const dcr_host_t * dcr_host,unsigned int idcr_n,u32 value)264 mtsdram(const dcr_host_t *dcr_host, unsigned int idcr_n, u32 value)
265 {
266 return __mtdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
267 dcr_host->base + SDRAM_DCR_DATA_OFFSET,
268 idcr_n,
269 value);
270 }
271
272 /**
273 * ppc4xx_edac_check_bank_error - check a bank for an ECC bank error
274 * @status: A pointer to the ECC status structure to check for an
275 * ECC bank error.
276 * @bank: The bank to check for an ECC error.
277 *
278 * This routine determines whether the specified bank has an ECC
279 * error.
280 *
281 * Returns true if the specified bank has an ECC error; otherwise,
282 * false.
283 */
284 static bool
ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status * status,unsigned int bank)285 ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status *status,
286 unsigned int bank)
287 {
288 switch (bank) {
289 case 0:
290 return status->ecces & SDRAM_ECCES_BK0ER;
291 case 1:
292 return status->ecces & SDRAM_ECCES_BK1ER;
293 default:
294 return false;
295 }
296 }
297
298 /**
299 * ppc4xx_edac_generate_bank_message - generate interpretted bank status message
300 * @mci: A pointer to the EDAC memory controller instance associated
301 * with the bank message being generated.
302 * @status: A pointer to the ECC status structure to generate the
303 * message from.
304 * @buffer: A pointer to the buffer in which to generate the
305 * message.
306 * @size: The size, in bytes, of space available in buffer.
307 *
308 * This routine generates to the provided buffer the portion of the
309 * driver-unique report message associated with the ECCESS[BKNER]
310 * field of the specified ECC status.
311 *
312 * Returns the number of characters generated on success; otherwise, <
313 * 0 on error.
314 */
315 static int
ppc4xx_edac_generate_bank_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)316 ppc4xx_edac_generate_bank_message(const struct mem_ctl_info *mci,
317 const struct ppc4xx_ecc_status *status,
318 char *buffer,
319 size_t size)
320 {
321 int n, total = 0;
322 unsigned int row, rows;
323
324 n = snprintf(buffer, size, "%s: Banks: ", mci->dev_name);
325
326 if (n < 0 || n >= size)
327 goto fail;
328
329 buffer += n;
330 size -= n;
331 total += n;
332
333 for (rows = 0, row = 0; row < mci->nr_csrows; row++) {
334 if (ppc4xx_edac_check_bank_error(status, row)) {
335 n = snprintf(buffer, size, "%s%u",
336 (rows++ ? ", " : ""), row);
337
338 if (n < 0 || n >= size)
339 goto fail;
340
341 buffer += n;
342 size -= n;
343 total += n;
344 }
345 }
346
347 n = snprintf(buffer, size, "%s; ", rows ? "" : "None");
348
349 if (n < 0 || n >= size)
350 goto fail;
351
352 buffer += n;
353 size -= n;
354 total += n;
355
356 fail:
357 return total;
358 }
359
360 /**
361 * ppc4xx_edac_generate_checkbit_message - generate interpretted checkbit message
362 * @mci: A pointer to the EDAC memory controller instance associated
363 * with the checkbit message being generated.
364 * @status: A pointer to the ECC status structure to generate the
365 * message from.
366 * @buffer: A pointer to the buffer in which to generate the
367 * message.
368 * @size: The size, in bytes, of space available in buffer.
369 *
370 * This routine generates to the provided buffer the portion of the
371 * driver-unique report message associated with the ECCESS[CKBER]
372 * field of the specified ECC status.
373 *
374 * Returns the number of characters generated on success; otherwise, <
375 * 0 on error.
376 */
377 static int
ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)378 ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info *mci,
379 const struct ppc4xx_ecc_status *status,
380 char *buffer,
381 size_t size)
382 {
383 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
384 const char *ckber = NULL;
385
386 switch (status->ecces & SDRAM_ECCES_CKBER_MASK) {
387 case SDRAM_ECCES_CKBER_NONE:
388 ckber = "None";
389 break;
390 case SDRAM_ECCES_CKBER_32_ECC_0_3:
391 ckber = "ECC0:3";
392 break;
393 case SDRAM_ECCES_CKBER_32_ECC_4_8:
394 switch (mfsdram(&pdata->dcr_host, SDRAM_MCOPT1) &
395 SDRAM_MCOPT1_WDTH_MASK) {
396 case SDRAM_MCOPT1_WDTH_16:
397 ckber = "ECC0:3";
398 break;
399 case SDRAM_MCOPT1_WDTH_32:
400 ckber = "ECC4:8";
401 break;
402 default:
403 ckber = "Unknown";
404 break;
405 }
406 break;
407 case SDRAM_ECCES_CKBER_32_ECC_0_8:
408 ckber = "ECC0:8";
409 break;
410 default:
411 ckber = "Unknown";
412 break;
413 }
414
415 return snprintf(buffer, size, "Checkbit Error: %s", ckber);
416 }
417
418 /**
419 * ppc4xx_edac_generate_lane_message - generate interpretted byte lane message
420 * @mci: A pointer to the EDAC memory controller instance associated
421 * with the byte lane message being generated.
422 * @status: A pointer to the ECC status structure to generate the
423 * message from.
424 * @buffer: A pointer to the buffer in which to generate the
425 * message.
426 * @size: The size, in bytes, of space available in buffer.
427 *
428 * This routine generates to the provided buffer the portion of the
429 * driver-unique report message associated with the ECCESS[BNCE]
430 * field of the specified ECC status.
431 *
432 * Returns the number of characters generated on success; otherwise, <
433 * 0 on error.
434 */
435 static int
ppc4xx_edac_generate_lane_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)436 ppc4xx_edac_generate_lane_message(const struct mem_ctl_info *mci,
437 const struct ppc4xx_ecc_status *status,
438 char *buffer,
439 size_t size)
440 {
441 int n, total = 0;
442 unsigned int lane, lanes;
443 const unsigned int first_lane = 0;
444 const unsigned int lane_count = 16;
445
446 n = snprintf(buffer, size, "; Byte Lane Errors: ");
447
448 if (n < 0 || n >= size)
449 goto fail;
450
451 buffer += n;
452 size -= n;
453 total += n;
454
455 for (lanes = 0, lane = first_lane; lane < lane_count; lane++) {
456 if ((status->ecces & SDRAM_ECCES_BNCE_ENCODE(lane)) != 0) {
457 n = snprintf(buffer, size,
458 "%s%u",
459 (lanes++ ? ", " : ""), lane);
460
461 if (n < 0 || n >= size)
462 goto fail;
463
464 buffer += n;
465 size -= n;
466 total += n;
467 }
468 }
469
470 n = snprintf(buffer, size, "%s; ", lanes ? "" : "None");
471
472 if (n < 0 || n >= size)
473 goto fail;
474
475 buffer += n;
476 size -= n;
477 total += n;
478
479 fail:
480 return total;
481 }
482
483 /**
484 * ppc4xx_edac_generate_ecc_message - generate interpretted ECC status message
485 * @mci: A pointer to the EDAC memory controller instance associated
486 * with the ECCES message being generated.
487 * @status: A pointer to the ECC status structure to generate the
488 * message from.
489 * @buffer: A pointer to the buffer in which to generate the
490 * message.
491 * @size: The size, in bytes, of space available in buffer.
492 *
493 * This routine generates to the provided buffer the portion of the
494 * driver-unique report message associated with the ECCESS register of
495 * the specified ECC status.
496 *
497 * Returns the number of characters generated on success; otherwise, <
498 * 0 on error.
499 */
500 static int
ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)501 ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info *mci,
502 const struct ppc4xx_ecc_status *status,
503 char *buffer,
504 size_t size)
505 {
506 int n, total = 0;
507
508 n = ppc4xx_edac_generate_bank_message(mci, status, buffer, size);
509
510 if (n < 0 || n >= size)
511 goto fail;
512
513 buffer += n;
514 size -= n;
515 total += n;
516
517 n = ppc4xx_edac_generate_checkbit_message(mci, status, buffer, size);
518
519 if (n < 0 || n >= size)
520 goto fail;
521
522 buffer += n;
523 size -= n;
524 total += n;
525
526 n = ppc4xx_edac_generate_lane_message(mci, status, buffer, size);
527
528 if (n < 0 || n >= size)
529 goto fail;
530
531 buffer += n;
532 size -= n;
533 total += n;
534
535 fail:
536 return total;
537 }
538
539 /**
540 * ppc4xx_edac_generate_plb_message - generate interpretted PLB status message
541 * @mci: A pointer to the EDAC memory controller instance associated
542 * with the PLB message being generated.
543 * @status: A pointer to the ECC status structure to generate the
544 * message from.
545 * @buffer: A pointer to the buffer in which to generate the
546 * message.
547 * @size: The size, in bytes, of space available in buffer.
548 *
549 * This routine generates to the provided buffer the portion of the
550 * driver-unique report message associated with the PLB-related BESR
551 * and/or WMIRQ registers of the specified ECC status.
552 *
553 * Returns the number of characters generated on success; otherwise, <
554 * 0 on error.
555 */
556 static int
ppc4xx_edac_generate_plb_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)557 ppc4xx_edac_generate_plb_message(const struct mem_ctl_info *mci,
558 const struct ppc4xx_ecc_status *status,
559 char *buffer,
560 size_t size)
561 {
562 unsigned int master;
563 bool read;
564
565 if ((status->besr & SDRAM_BESR_MASK) == 0)
566 return 0;
567
568 if ((status->besr & SDRAM_BESR_M0ET_MASK) == SDRAM_BESR_M0ET_NONE)
569 return 0;
570
571 read = ((status->besr & SDRAM_BESR_M0RW_MASK) == SDRAM_BESR_M0RW_READ);
572
573 master = SDRAM_BESR_M0ID_DECODE(status->besr);
574
575 return snprintf(buffer, size,
576 "%s error w/ PLB master %u \"%s\"; ",
577 (read ? "Read" : "Write"),
578 master,
579 (((master >= SDRAM_PLB_M0ID_FIRST) &&
580 (master <= SDRAM_PLB_M0ID_LAST)) ?
581 ppc4xx_plb_masters[master] : "UNKNOWN"));
582 }
583
584 /**
585 * ppc4xx_edac_generate_message - generate interpretted status message
586 * @mci: A pointer to the EDAC memory controller instance associated
587 * with the driver-unique message being generated.
588 * @status: A pointer to the ECC status structure to generate the
589 * message from.
590 * @buffer: A pointer to the buffer in which to generate the
591 * message.
592 * @size: The size, in bytes, of space available in buffer.
593 *
594 * This routine generates to the provided buffer the driver-unique
595 * EDAC report message from the specified ECC status.
596 */
597 static void
ppc4xx_edac_generate_message(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status,char * buffer,size_t size)598 ppc4xx_edac_generate_message(const struct mem_ctl_info *mci,
599 const struct ppc4xx_ecc_status *status,
600 char *buffer,
601 size_t size)
602 {
603 int n;
604
605 if (buffer == NULL || size == 0)
606 return;
607
608 n = ppc4xx_edac_generate_ecc_message(mci, status, buffer, size);
609
610 if (n < 0 || n >= size)
611 return;
612
613 buffer += n;
614 size -= n;
615
616 ppc4xx_edac_generate_plb_message(mci, status, buffer, size);
617 }
618
619 #ifdef DEBUG
620 /**
621 * ppc4xx_ecc_dump_status - dump controller ECC status registers
622 * @mci: A pointer to the EDAC memory controller instance
623 * associated with the status being dumped.
624 * @status: A pointer to the ECC status structure to generate the
625 * dump from.
626 *
627 * This routine dumps to the kernel log buffer the raw and
628 * interpretted specified ECC status.
629 */
630 static void
ppc4xx_ecc_dump_status(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status)631 ppc4xx_ecc_dump_status(const struct mem_ctl_info *mci,
632 const struct ppc4xx_ecc_status *status)
633 {
634 char message[PPC4XX_EDAC_MESSAGE_SIZE];
635
636 ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
637
638 ppc4xx_edac_mc_printk(KERN_INFO, mci,
639 "\n"
640 "\tECCES: 0x%08x\n"
641 "\tWMIRQ: 0x%08x\n"
642 "\tBESR: 0x%08x\n"
643 "\tBEAR: 0x%08x%08x\n"
644 "\t%s\n",
645 status->ecces,
646 status->wmirq,
647 status->besr,
648 status->bearh,
649 status->bearl,
650 message);
651 }
652 #endif /* DEBUG */
653
654 /**
655 * ppc4xx_ecc_get_status - get controller ECC status
656 * @mci: A pointer to the EDAC memory controller instance
657 * associated with the status being retrieved.
658 * @status: A pointer to the ECC status structure to populate the
659 * ECC status with.
660 *
661 * This routine reads and masks, as appropriate, all the relevant
662 * status registers that deal with ibm,sdram-4xx-ddr2 ECC errors.
663 * While we read all of them, for correctable errors, we only expect
664 * to deal with ECCES. For uncorrectable errors, we expect to deal
665 * with all of them.
666 */
667 static void
ppc4xx_ecc_get_status(const struct mem_ctl_info * mci,struct ppc4xx_ecc_status * status)668 ppc4xx_ecc_get_status(const struct mem_ctl_info *mci,
669 struct ppc4xx_ecc_status *status)
670 {
671 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
672 const dcr_host_t *dcr_host = &pdata->dcr_host;
673
674 status->ecces = mfsdram(dcr_host, SDRAM_ECCES) & SDRAM_ECCES_MASK;
675 status->wmirq = mfsdram(dcr_host, SDRAM_WMIRQ) & SDRAM_WMIRQ_MASK;
676 status->besr = mfsdram(dcr_host, SDRAM_BESR) & SDRAM_BESR_MASK;
677 status->bearl = mfsdram(dcr_host, SDRAM_BEARL);
678 status->bearh = mfsdram(dcr_host, SDRAM_BEARH);
679 }
680
681 /**
682 * ppc4xx_ecc_clear_status - clear controller ECC status
683 * @mci: A pointer to the EDAC memory controller instance
684 * associated with the status being cleared.
685 * @status: A pointer to the ECC status structure containing the
686 * values to write to clear the ECC status.
687 *
688 * This routine clears--by writing the masked (as appropriate) status
689 * values back to--the status registers that deal with
690 * ibm,sdram-4xx-ddr2 ECC errors.
691 */
692 static void
ppc4xx_ecc_clear_status(const struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status)693 ppc4xx_ecc_clear_status(const struct mem_ctl_info *mci,
694 const struct ppc4xx_ecc_status *status)
695 {
696 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
697 const dcr_host_t *dcr_host = &pdata->dcr_host;
698
699 mtsdram(dcr_host, SDRAM_ECCES, status->ecces & SDRAM_ECCES_MASK);
700 mtsdram(dcr_host, SDRAM_WMIRQ, status->wmirq & SDRAM_WMIRQ_MASK);
701 mtsdram(dcr_host, SDRAM_BESR, status->besr & SDRAM_BESR_MASK);
702 mtsdram(dcr_host, SDRAM_BEARL, 0);
703 mtsdram(dcr_host, SDRAM_BEARH, 0);
704 }
705
706 /**
707 * ppc4xx_edac_handle_ce - handle controller correctable ECC error (CE)
708 * @mci: A pointer to the EDAC memory controller instance
709 * associated with the correctable error being handled and reported.
710 * @status: A pointer to the ECC status structure associated with
711 * the correctable error being handled and reported.
712 *
713 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
714 * correctable error. Per the aforementioned discussion, there's not
715 * enough status available to use the full EDAC correctable error
716 * interface, so we just pass driver-unique message to the "no info"
717 * interface.
718 */
719 static void
ppc4xx_edac_handle_ce(struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status)720 ppc4xx_edac_handle_ce(struct mem_ctl_info *mci,
721 const struct ppc4xx_ecc_status *status)
722 {
723 int row;
724 char message[PPC4XX_EDAC_MESSAGE_SIZE];
725
726 ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
727
728 for (row = 0; row < mci->nr_csrows; row++)
729 if (ppc4xx_edac_check_bank_error(status, row))
730 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
731 0, 0, 0,
732 row, 0, -1,
733 message, "");
734 }
735
736 /**
737 * ppc4xx_edac_handle_ue - handle controller uncorrectable ECC error (UE)
738 * @mci: A pointer to the EDAC memory controller instance
739 * associated with the uncorrectable error being handled and
740 * reported.
741 * @status: A pointer to the ECC status structure associated with
742 * the uncorrectable error being handled and reported.
743 *
744 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
745 * uncorrectable error.
746 */
747 static void
ppc4xx_edac_handle_ue(struct mem_ctl_info * mci,const struct ppc4xx_ecc_status * status)748 ppc4xx_edac_handle_ue(struct mem_ctl_info *mci,
749 const struct ppc4xx_ecc_status *status)
750 {
751 const u64 bear = ((u64)status->bearh << 32 | status->bearl);
752 const unsigned long page = bear >> PAGE_SHIFT;
753 const unsigned long offset = bear & ~PAGE_MASK;
754 int row;
755 char message[PPC4XX_EDAC_MESSAGE_SIZE];
756
757 ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
758
759 for (row = 0; row < mci->nr_csrows; row++)
760 if (ppc4xx_edac_check_bank_error(status, row))
761 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
762 page, offset, 0,
763 row, 0, -1,
764 message, "");
765 }
766
767 /**
768 * ppc4xx_edac_check - check controller for ECC errors
769 * @mci: A pointer to the EDAC memory controller instance
770 * associated with the ibm,sdram-4xx-ddr2 controller being
771 * checked.
772 *
773 * This routine is used to check and post ECC errors and is called by
774 * both the EDAC polling thread and this driver's CE and UE interrupt
775 * handler.
776 */
777 static void
ppc4xx_edac_check(struct mem_ctl_info * mci)778 ppc4xx_edac_check(struct mem_ctl_info *mci)
779 {
780 #ifdef DEBUG
781 static unsigned int count;
782 #endif
783 struct ppc4xx_ecc_status status;
784
785 ppc4xx_ecc_get_status(mci, &status);
786
787 #ifdef DEBUG
788 if (count++ % 30 == 0)
789 ppc4xx_ecc_dump_status(mci, &status);
790 #endif
791
792 if (status.ecces & SDRAM_ECCES_UE)
793 ppc4xx_edac_handle_ue(mci, &status);
794
795 if (status.ecces & SDRAM_ECCES_CE)
796 ppc4xx_edac_handle_ce(mci, &status);
797
798 ppc4xx_ecc_clear_status(mci, &status);
799 }
800
801 /**
802 * ppc4xx_edac_isr - SEC (CE) and DED (UE) interrupt service routine
803 * @irq: The virtual interrupt number being serviced.
804 * @dev_id: A pointer to the EDAC memory controller instance
805 * associated with the interrupt being handled.
806 *
807 * This routine implements the interrupt handler for both correctable
808 * (CE) and uncorrectable (UE) ECC errors for the ibm,sdram-4xx-ddr2
809 * controller. It simply calls through to the same routine used during
810 * polling to check, report and clear the ECC status.
811 *
812 * Unconditionally returns IRQ_HANDLED.
813 */
814 static irqreturn_t
ppc4xx_edac_isr(int irq,void * dev_id)815 ppc4xx_edac_isr(int irq, void *dev_id)
816 {
817 struct mem_ctl_info *mci = dev_id;
818
819 ppc4xx_edac_check(mci);
820
821 return IRQ_HANDLED;
822 }
823
824 /**
825 * ppc4xx_edac_get_dtype - return the controller memory width
826 * @mcopt1: The 32-bit Memory Controller Option 1 register value
827 * currently set for the controller, from which the width
828 * is derived.
829 *
830 * This routine returns the EDAC device type width appropriate for the
831 * current controller configuration.
832 *
833 * TODO: This needs to be conditioned dynamically through feature
834 * flags or some such when other controller variants are supported as
835 * the 405EX[r] is 16-/32-bit and the others are 32-/64-bit with the
836 * 16- and 64-bit field definition/value/enumeration (b1) overloaded
837 * among them.
838 *
839 * Returns a device type width enumeration.
840 */
ppc4xx_edac_get_dtype(u32 mcopt1)841 static enum dev_type ppc4xx_edac_get_dtype(u32 mcopt1)
842 {
843 switch (mcopt1 & SDRAM_MCOPT1_WDTH_MASK) {
844 case SDRAM_MCOPT1_WDTH_16:
845 return DEV_X2;
846 case SDRAM_MCOPT1_WDTH_32:
847 return DEV_X4;
848 default:
849 return DEV_UNKNOWN;
850 }
851 }
852
853 /**
854 * ppc4xx_edac_get_mtype - return controller memory type
855 * @mcopt1: The 32-bit Memory Controller Option 1 register value
856 * currently set for the controller, from which the memory type
857 * is derived.
858 *
859 * This routine returns the EDAC memory type appropriate for the
860 * current controller configuration.
861 *
862 * Returns a memory type enumeration.
863 */
ppc4xx_edac_get_mtype(u32 mcopt1)864 static enum mem_type ppc4xx_edac_get_mtype(u32 mcopt1)
865 {
866 bool rden = ((mcopt1 & SDRAM_MCOPT1_RDEN_MASK) == SDRAM_MCOPT1_RDEN);
867
868 switch (mcopt1 & SDRAM_MCOPT1_DDR_TYPE_MASK) {
869 case SDRAM_MCOPT1_DDR2_TYPE:
870 return rden ? MEM_RDDR2 : MEM_DDR2;
871 case SDRAM_MCOPT1_DDR1_TYPE:
872 return rden ? MEM_RDDR : MEM_DDR;
873 default:
874 return MEM_UNKNOWN;
875 }
876 }
877
878 /**
879 * ppc4xx_edac_init_csrows - initialize driver instance rows
880 * @mci: A pointer to the EDAC memory controller instance
881 * associated with the ibm,sdram-4xx-ddr2 controller for which
882 * the csrows (i.e. banks/ranks) are being initialized.
883 * @mcopt1: The 32-bit Memory Controller Option 1 register value
884 * currently set for the controller, from which bank width
885 * and memory typ information is derived.
886 *
887 * This routine initializes the virtual "chip select rows" associated
888 * with the EDAC memory controller instance. An ibm,sdram-4xx-ddr2
889 * controller bank/rank is mapped to a row.
890 *
891 * Returns 0 if OK; otherwise, -EINVAL if the memory bank size
892 * configuration cannot be determined.
893 */
ppc4xx_edac_init_csrows(struct mem_ctl_info * mci,u32 mcopt1)894 static int ppc4xx_edac_init_csrows(struct mem_ctl_info *mci, u32 mcopt1)
895 {
896 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
897 int status = 0;
898 enum mem_type mtype;
899 enum dev_type dtype;
900 enum edac_type edac_mode;
901 int row, j;
902 u32 mbxcf, size, nr_pages;
903
904 /* Establish the memory type and width */
905
906 mtype = ppc4xx_edac_get_mtype(mcopt1);
907 dtype = ppc4xx_edac_get_dtype(mcopt1);
908
909 /* Establish EDAC mode */
910
911 if (mci->edac_cap & EDAC_FLAG_SECDED)
912 edac_mode = EDAC_SECDED;
913 else if (mci->edac_cap & EDAC_FLAG_EC)
914 edac_mode = EDAC_EC;
915 else
916 edac_mode = EDAC_NONE;
917
918 /*
919 * Initialize each chip select row structure which correspond
920 * 1:1 with a controller bank/rank.
921 */
922
923 for (row = 0; row < mci->nr_csrows; row++) {
924 struct csrow_info *csi = mci->csrows[row];
925
926 /*
927 * Get the configuration settings for this
928 * row/bank/rank and skip disabled banks.
929 */
930
931 mbxcf = mfsdram(&pdata->dcr_host, SDRAM_MBXCF(row));
932
933 if ((mbxcf & SDRAM_MBCF_BE_MASK) != SDRAM_MBCF_BE_ENABLE)
934 continue;
935
936 /* Map the bank configuration size setting to pages. */
937
938 size = mbxcf & SDRAM_MBCF_SZ_MASK;
939
940 switch (size) {
941 case SDRAM_MBCF_SZ_4MB:
942 case SDRAM_MBCF_SZ_8MB:
943 case SDRAM_MBCF_SZ_16MB:
944 case SDRAM_MBCF_SZ_32MB:
945 case SDRAM_MBCF_SZ_64MB:
946 case SDRAM_MBCF_SZ_128MB:
947 case SDRAM_MBCF_SZ_256MB:
948 case SDRAM_MBCF_SZ_512MB:
949 case SDRAM_MBCF_SZ_1GB:
950 case SDRAM_MBCF_SZ_2GB:
951 case SDRAM_MBCF_SZ_4GB:
952 case SDRAM_MBCF_SZ_8GB:
953 nr_pages = SDRAM_MBCF_SZ_TO_PAGES(size);
954 break;
955 default:
956 ppc4xx_edac_mc_printk(KERN_ERR, mci,
957 "Unrecognized memory bank %d "
958 "size 0x%08x\n",
959 row, SDRAM_MBCF_SZ_DECODE(size));
960 status = -EINVAL;
961 goto done;
962 }
963
964 /*
965 * It's unclear exactly what grain should be set to
966 * here. The SDRAM_ECCES register allows resolution of
967 * an error down to a nibble which would potentially
968 * argue for a grain of '1' byte, even though we only
969 * know the associated address for uncorrectable
970 * errors. This value is not used at present for
971 * anything other than error reporting so getting it
972 * wrong should be of little consequence. Other
973 * possible values would be the PLB width (16), the
974 * page size (PAGE_SIZE) or the memory width (2 or 4).
975 */
976 for (j = 0; j < csi->nr_channels; j++) {
977 struct dimm_info *dimm = csi->channels[j]->dimm;
978
979 dimm->nr_pages = nr_pages / csi->nr_channels;
980 dimm->grain = 1;
981
982 dimm->mtype = mtype;
983 dimm->dtype = dtype;
984
985 dimm->edac_mode = edac_mode;
986 }
987 }
988
989 done:
990 return status;
991 }
992
993 /**
994 * ppc4xx_edac_mc_init - initialize driver instance
995 * @mci: A pointer to the EDAC memory controller instance being
996 * initialized.
997 * @op: A pointer to the OpenFirmware device tree node associated
998 * with the controller this EDAC instance is bound to.
999 * @dcr_host: A pointer to the DCR data containing the DCR mapping
1000 * for this controller instance.
1001 * @mcopt1: The 32-bit Memory Controller Option 1 register value
1002 * currently set for the controller, from which ECC capabilities
1003 * and scrub mode are derived.
1004 *
1005 * This routine performs initialization of the EDAC memory controller
1006 * instance and related driver-private data associated with the
1007 * ibm,sdram-4xx-ddr2 memory controller the instance is bound to.
1008 *
1009 * Returns 0 if OK; otherwise, < 0 on error.
1010 */
ppc4xx_edac_mc_init(struct mem_ctl_info * mci,struct platform_device * op,const dcr_host_t * dcr_host,u32 mcopt1)1011 static int ppc4xx_edac_mc_init(struct mem_ctl_info *mci,
1012 struct platform_device *op,
1013 const dcr_host_t *dcr_host, u32 mcopt1)
1014 {
1015 int status = 0;
1016 const u32 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1017 struct ppc4xx_edac_pdata *pdata = NULL;
1018 const struct device_node *np = op->dev.of_node;
1019
1020 if (of_match_device(ppc4xx_edac_match, &op->dev) == NULL)
1021 return -EINVAL;
1022
1023 /* Initial driver pointers and private data */
1024
1025 mci->pdev = &op->dev;
1026
1027 dev_set_drvdata(mci->pdev, mci);
1028
1029 pdata = mci->pvt_info;
1030
1031 pdata->dcr_host = *dcr_host;
1032
1033 /* Initialize controller capabilities and configuration */
1034
1035 mci->mtype_cap = (MEM_FLAG_DDR | MEM_FLAG_RDDR |
1036 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2);
1037
1038 mci->edac_ctl_cap = (EDAC_FLAG_NONE |
1039 EDAC_FLAG_EC |
1040 EDAC_FLAG_SECDED);
1041
1042 mci->scrub_cap = SCRUB_NONE;
1043 mci->scrub_mode = SCRUB_NONE;
1044
1045 /*
1046 * Update the actual capabilites based on the MCOPT1[MCHK]
1047 * settings. Scrubbing is only useful if reporting is enabled.
1048 */
1049
1050 switch (memcheck) {
1051 case SDRAM_MCOPT1_MCHK_CHK:
1052 mci->edac_cap = EDAC_FLAG_EC;
1053 break;
1054 case SDRAM_MCOPT1_MCHK_CHK_REP:
1055 mci->edac_cap = (EDAC_FLAG_EC | EDAC_FLAG_SECDED);
1056 mci->scrub_mode = SCRUB_SW_SRC;
1057 break;
1058 default:
1059 mci->edac_cap = EDAC_FLAG_NONE;
1060 break;
1061 }
1062
1063 /* Initialize strings */
1064
1065 mci->mod_name = PPC4XX_EDAC_MODULE_NAME;
1066 mci->ctl_name = ppc4xx_edac_match->compatible,
1067 mci->dev_name = np->full_name;
1068
1069 /* Initialize callbacks */
1070
1071 mci->edac_check = ppc4xx_edac_check;
1072 mci->ctl_page_to_phys = NULL;
1073
1074 /* Initialize chip select rows */
1075
1076 status = ppc4xx_edac_init_csrows(mci, mcopt1);
1077
1078 if (status)
1079 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1080 "Failed to initialize rows!\n");
1081
1082 return status;
1083 }
1084
1085 /**
1086 * ppc4xx_edac_register_irq - setup and register controller interrupts
1087 * @op: A pointer to the OpenFirmware device tree node associated
1088 * with the controller this EDAC instance is bound to.
1089 * @mci: A pointer to the EDAC memory controller instance
1090 * associated with the ibm,sdram-4xx-ddr2 controller for which
1091 * interrupts are being registered.
1092 *
1093 * This routine parses the correctable (CE) and uncorrectable error (UE)
1094 * interrupts from the device tree node and maps and assigns them to
1095 * the associated EDAC memory controller instance.
1096 *
1097 * Returns 0 if OK; otherwise, -ENODEV if the interrupts could not be
1098 * mapped and assigned.
1099 */
ppc4xx_edac_register_irq(struct platform_device * op,struct mem_ctl_info * mci)1100 static int ppc4xx_edac_register_irq(struct platform_device *op,
1101 struct mem_ctl_info *mci)
1102 {
1103 int status = 0;
1104 int ded_irq, sec_irq;
1105 struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1106 struct device_node *np = op->dev.of_node;
1107
1108 ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX);
1109 sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX);
1110
1111 if (!ded_irq || !sec_irq) {
1112 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1113 "Unable to map interrupts.\n");
1114 status = -ENODEV;
1115 goto fail;
1116 }
1117
1118 status = request_irq(ded_irq,
1119 ppc4xx_edac_isr,
1120 0,
1121 "[EDAC] MC ECCDED",
1122 mci);
1123
1124 if (status < 0) {
1125 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1126 "Unable to request irq %d for ECC DED",
1127 ded_irq);
1128 status = -ENODEV;
1129 goto fail1;
1130 }
1131
1132 status = request_irq(sec_irq,
1133 ppc4xx_edac_isr,
1134 0,
1135 "[EDAC] MC ECCSEC",
1136 mci);
1137
1138 if (status < 0) {
1139 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1140 "Unable to request irq %d for ECC SEC",
1141 sec_irq);
1142 status = -ENODEV;
1143 goto fail2;
1144 }
1145
1146 ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCDED irq is %d\n", ded_irq);
1147 ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCSEC irq is %d\n", sec_irq);
1148
1149 pdata->irqs.ded = ded_irq;
1150 pdata->irqs.sec = sec_irq;
1151
1152 return 0;
1153
1154 fail2:
1155 free_irq(sec_irq, mci);
1156
1157 fail1:
1158 free_irq(ded_irq, mci);
1159
1160 fail:
1161 return status;
1162 }
1163
1164 /**
1165 * ppc4xx_edac_map_dcrs - locate and map controller registers
1166 * @np: A pointer to the device tree node containing the DCR
1167 * resources to map.
1168 * @dcr_host: A pointer to the DCR data to populate with the
1169 * DCR mapping.
1170 *
1171 * This routine attempts to locate in the device tree and map the DCR
1172 * register resources associated with the controller's indirect DCR
1173 * address and data windows.
1174 *
1175 * Returns 0 if the DCRs were successfully mapped; otherwise, < 0 on
1176 * error.
1177 */
ppc4xx_edac_map_dcrs(const struct device_node * np,dcr_host_t * dcr_host)1178 static int ppc4xx_edac_map_dcrs(const struct device_node *np,
1179 dcr_host_t *dcr_host)
1180 {
1181 unsigned int dcr_base, dcr_len;
1182
1183 if (np == NULL || dcr_host == NULL)
1184 return -EINVAL;
1185
1186 /* Get the DCR resource extent and sanity check the values. */
1187
1188 dcr_base = dcr_resource_start(np, 0);
1189 dcr_len = dcr_resource_len(np, 0);
1190
1191 if (dcr_base == 0 || dcr_len == 0) {
1192 ppc4xx_edac_printk(KERN_ERR,
1193 "Failed to obtain DCR property.\n");
1194 return -ENODEV;
1195 }
1196
1197 if (dcr_len != SDRAM_DCR_RESOURCE_LEN) {
1198 ppc4xx_edac_printk(KERN_ERR,
1199 "Unexpected DCR length %d, expected %d.\n",
1200 dcr_len, SDRAM_DCR_RESOURCE_LEN);
1201 return -ENODEV;
1202 }
1203
1204 /* Attempt to map the DCR extent. */
1205
1206 *dcr_host = dcr_map(np, dcr_base, dcr_len);
1207
1208 if (!DCR_MAP_OK(*dcr_host)) {
1209 ppc4xx_edac_printk(KERN_INFO, "Failed to map DCRs.\n");
1210 return -ENODEV;
1211 }
1212
1213 return 0;
1214 }
1215
1216 /**
1217 * ppc4xx_edac_probe - check controller and bind driver
1218 * @op: A pointer to the OpenFirmware device tree node associated
1219 * with the controller being probed for driver binding.
1220 *
1221 * This routine probes a specific ibm,sdram-4xx-ddr2 controller
1222 * instance for binding with the driver.
1223 *
1224 * Returns 0 if the controller instance was successfully bound to the
1225 * driver; otherwise, < 0 on error.
1226 */
ppc4xx_edac_probe(struct platform_device * op)1227 static int ppc4xx_edac_probe(struct platform_device *op)
1228 {
1229 int status = 0;
1230 u32 mcopt1, memcheck;
1231 dcr_host_t dcr_host;
1232 const struct device_node *np = op->dev.of_node;
1233 struct mem_ctl_info *mci = NULL;
1234 struct edac_mc_layer layers[2];
1235 static int ppc4xx_edac_instance;
1236
1237 /*
1238 * At this point, we only support the controller realized on
1239 * the AMCC PPC 405EX[r]. Reject anything else.
1240 */
1241
1242 if (!of_device_is_compatible(np, "ibm,sdram-405ex") &&
1243 !of_device_is_compatible(np, "ibm,sdram-405exr")) {
1244 ppc4xx_edac_printk(KERN_NOTICE,
1245 "Only the PPC405EX[r] is supported.\n");
1246 return -ENODEV;
1247 }
1248
1249 /*
1250 * Next, get the DCR property and attempt to map it so that we
1251 * can probe the controller.
1252 */
1253
1254 status = ppc4xx_edac_map_dcrs(np, &dcr_host);
1255
1256 if (status)
1257 return status;
1258
1259 /*
1260 * First determine whether ECC is enabled at all. If not,
1261 * there is no useful checking or monitoring that can be done
1262 * for this controller.
1263 */
1264
1265 mcopt1 = mfsdram(&dcr_host, SDRAM_MCOPT1);
1266 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1267
1268 if (memcheck == SDRAM_MCOPT1_MCHK_NON) {
1269 ppc4xx_edac_printk(KERN_INFO, "%pOF: No ECC memory detected or "
1270 "ECC is disabled.\n", np);
1271 status = -ENODEV;
1272 goto done;
1273 }
1274
1275 /*
1276 * At this point, we know ECC is enabled, allocate an EDAC
1277 * controller instance and perform the appropriate
1278 * initialization.
1279 */
1280 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1281 layers[0].size = ppc4xx_edac_nr_csrows;
1282 layers[0].is_virt_csrow = true;
1283 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1284 layers[1].size = ppc4xx_edac_nr_chans;
1285 layers[1].is_virt_csrow = false;
1286 mci = edac_mc_alloc(ppc4xx_edac_instance, ARRAY_SIZE(layers), layers,
1287 sizeof(struct ppc4xx_edac_pdata));
1288 if (mci == NULL) {
1289 ppc4xx_edac_printk(KERN_ERR, "%pOF: "
1290 "Failed to allocate EDAC MC instance!\n",
1291 np);
1292 status = -ENOMEM;
1293 goto done;
1294 }
1295
1296 status = ppc4xx_edac_mc_init(mci, op, &dcr_host, mcopt1);
1297
1298 if (status) {
1299 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1300 "Failed to initialize instance!\n");
1301 goto fail;
1302 }
1303
1304 /*
1305 * We have a valid, initialized EDAC instance bound to the
1306 * controller. Attempt to register it with the EDAC subsystem
1307 * and, if necessary, register interrupts.
1308 */
1309
1310 if (edac_mc_add_mc(mci)) {
1311 ppc4xx_edac_mc_printk(KERN_ERR, mci,
1312 "Failed to add instance!\n");
1313 status = -ENODEV;
1314 goto fail;
1315 }
1316
1317 if (edac_op_state == EDAC_OPSTATE_INT) {
1318 status = ppc4xx_edac_register_irq(op, mci);
1319
1320 if (status)
1321 goto fail1;
1322 }
1323
1324 ppc4xx_edac_instance++;
1325
1326 return 0;
1327
1328 fail1:
1329 edac_mc_del_mc(mci->pdev);
1330
1331 fail:
1332 edac_mc_free(mci);
1333
1334 done:
1335 return status;
1336 }
1337
1338 /**
1339 * ppc4xx_edac_remove - unbind driver from controller
1340 * @op: A pointer to the OpenFirmware device tree node associated
1341 * with the controller this EDAC instance is to be unbound/removed
1342 * from.
1343 *
1344 * This routine unbinds the EDAC memory controller instance associated
1345 * with the specified ibm,sdram-4xx-ddr2 controller described by the
1346 * OpenFirmware device tree node passed as a parameter.
1347 *
1348 * Unconditionally returns 0.
1349 */
1350 static int
ppc4xx_edac_remove(struct platform_device * op)1351 ppc4xx_edac_remove(struct platform_device *op)
1352 {
1353 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
1354 struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1355
1356 if (edac_op_state == EDAC_OPSTATE_INT) {
1357 free_irq(pdata->irqs.sec, mci);
1358 free_irq(pdata->irqs.ded, mci);
1359 }
1360
1361 dcr_unmap(pdata->dcr_host, SDRAM_DCR_RESOURCE_LEN);
1362
1363 edac_mc_del_mc(mci->pdev);
1364 edac_mc_free(mci);
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * ppc4xx_edac_opstate_init - initialize EDAC reporting method
1371 *
1372 * This routine ensures that the EDAC memory controller reporting
1373 * method is mapped to a sane value as the EDAC core defines the value
1374 * to EDAC_OPSTATE_INVAL by default. We don't call the global
1375 * opstate_init as that defaults to polling and we want interrupt as
1376 * the default.
1377 */
1378 static inline void __init
ppc4xx_edac_opstate_init(void)1379 ppc4xx_edac_opstate_init(void)
1380 {
1381 switch (edac_op_state) {
1382 case EDAC_OPSTATE_POLL:
1383 case EDAC_OPSTATE_INT:
1384 break;
1385 default:
1386 edac_op_state = EDAC_OPSTATE_INT;
1387 break;
1388 }
1389
1390 ppc4xx_edac_printk(KERN_INFO, "Reporting type: %s\n",
1391 ((edac_op_state == EDAC_OPSTATE_POLL) ?
1392 EDAC_OPSTATE_POLL_STR :
1393 ((edac_op_state == EDAC_OPSTATE_INT) ?
1394 EDAC_OPSTATE_INT_STR :
1395 EDAC_OPSTATE_UNKNOWN_STR)));
1396 }
1397
1398 /**
1399 * ppc4xx_edac_init - driver/module insertion entry point
1400 *
1401 * This routine is the driver/module insertion entry point. It
1402 * initializes the EDAC memory controller reporting state and
1403 * registers the driver as an OpenFirmware device tree platform
1404 * driver.
1405 */
1406 static int __init
ppc4xx_edac_init(void)1407 ppc4xx_edac_init(void)
1408 {
1409 ppc4xx_edac_printk(KERN_INFO, PPC4XX_EDAC_MODULE_REVISION "\n");
1410
1411 ppc4xx_edac_opstate_init();
1412
1413 return platform_driver_register(&ppc4xx_edac_driver);
1414 }
1415
1416 /**
1417 * ppc4xx_edac_exit - driver/module removal entry point
1418 *
1419 * This routine is the driver/module removal entry point. It
1420 * unregisters the driver as an OpenFirmware device tree platform
1421 * driver.
1422 */
1423 static void __exit
ppc4xx_edac_exit(void)1424 ppc4xx_edac_exit(void)
1425 {
1426 platform_driver_unregister(&ppc4xx_edac_driver);
1427 }
1428
1429 module_init(ppc4xx_edac_init);
1430 module_exit(ppc4xx_edac_exit);
1431
1432 MODULE_LICENSE("GPL v2");
1433 MODULE_AUTHOR("Grant Erickson <gerickson@nuovations.com>");
1434 MODULE_DESCRIPTION("EDAC MC Driver for the PPC4xx IBM DDR2 Memory Controller");
1435 module_param(edac_op_state, int, 0444);
1436 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting State: "
1437 "0=" EDAC_OPSTATE_POLL_STR ", 2=" EDAC_OPSTATE_INT_STR);
1438