1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14
15 struct lkdtm_list {
16 struct list_head node;
17 };
18
19 /*
20 * Make sure our attempts to over run the kernel stack doesn't trigger
21 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
22 * recurse past the end of THREAD_SIZE by default.
23 */
24 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
25 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
26 #else
27 #define REC_STACK_SIZE (THREAD_SIZE / 8)
28 #endif
29 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
30
31 static int recur_count = REC_NUM_DEFAULT;
32
33 static DEFINE_SPINLOCK(lock_me_up);
34
recursive_loop(int remaining)35 static int recursive_loop(int remaining)
36 {
37 char buf[REC_STACK_SIZE];
38
39 /* Make sure compiler does not optimize this away. */
40 memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
41 if (!remaining)
42 return 0;
43 else
44 return recursive_loop(remaining - 1);
45 }
46
47 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)48 void __init lkdtm_bugs_init(int *recur_param)
49 {
50 if (*recur_param < 0)
51 *recur_param = recur_count;
52 else
53 recur_count = *recur_param;
54 }
55
lkdtm_PANIC(void)56 void lkdtm_PANIC(void)
57 {
58 panic("dumptest");
59 }
60
lkdtm_BUG(void)61 void lkdtm_BUG(void)
62 {
63 BUG();
64 }
65
66 static int warn_counter;
67
lkdtm_WARNING(void)68 void lkdtm_WARNING(void)
69 {
70 WARN(1, "Warning message trigger count: %d\n", warn_counter++);
71 }
72
lkdtm_EXCEPTION(void)73 void lkdtm_EXCEPTION(void)
74 {
75 *((volatile int *) 0) = 0;
76 }
77
lkdtm_LOOP(void)78 void lkdtm_LOOP(void)
79 {
80 for (;;)
81 ;
82 }
83
lkdtm_OVERFLOW(void)84 void lkdtm_OVERFLOW(void)
85 {
86 (void) recursive_loop(recur_count);
87 }
88
__lkdtm_CORRUPT_STACK(void * stack)89 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
90 {
91 memset(stack, '\xff', 64);
92 }
93
94 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)95 noinline void lkdtm_CORRUPT_STACK(void)
96 {
97 /* Use default char array length that triggers stack protection. */
98 char data[8] __aligned(sizeof(void *));
99
100 __lkdtm_CORRUPT_STACK(&data);
101
102 pr_info("Corrupted stack containing char array ...\n");
103 }
104
105 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)106 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
107 {
108 union {
109 unsigned short shorts[4];
110 unsigned long *ptr;
111 } data __aligned(sizeof(void *));
112
113 __lkdtm_CORRUPT_STACK(&data);
114
115 pr_info("Corrupted stack containing union ...\n");
116 }
117
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)118 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
119 {
120 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
121 u32 *p;
122 u32 val = 0x12345678;
123
124 p = (u32 *)(data + 1);
125 if (*p == 0)
126 val = 0x87654321;
127 *p = val;
128 }
129
lkdtm_SOFTLOCKUP(void)130 void lkdtm_SOFTLOCKUP(void)
131 {
132 preempt_disable();
133 for (;;)
134 cpu_relax();
135 }
136
lkdtm_HARDLOCKUP(void)137 void lkdtm_HARDLOCKUP(void)
138 {
139 local_irq_disable();
140 for (;;)
141 cpu_relax();
142 }
143
lkdtm_SPINLOCKUP(void)144 void lkdtm_SPINLOCKUP(void)
145 {
146 /* Must be called twice to trigger. */
147 spin_lock(&lock_me_up);
148 /* Let sparse know we intended to exit holding the lock. */
149 __release(&lock_me_up);
150 }
151
lkdtm_HUNG_TASK(void)152 void lkdtm_HUNG_TASK(void)
153 {
154 set_current_state(TASK_UNINTERRUPTIBLE);
155 schedule();
156 }
157
lkdtm_CORRUPT_LIST_ADD(void)158 void lkdtm_CORRUPT_LIST_ADD(void)
159 {
160 /*
161 * Initially, an empty list via LIST_HEAD:
162 * test_head.next = &test_head
163 * test_head.prev = &test_head
164 */
165 LIST_HEAD(test_head);
166 struct lkdtm_list good, bad;
167 void *target[2] = { };
168 void *redirection = ⌖
169
170 pr_info("attempting good list addition\n");
171
172 /*
173 * Adding to the list performs these actions:
174 * test_head.next->prev = &good.node
175 * good.node.next = test_head.next
176 * good.node.prev = test_head
177 * test_head.next = good.node
178 */
179 list_add(&good.node, &test_head);
180
181 pr_info("attempting corrupted list addition\n");
182 /*
183 * In simulating this "write what where" primitive, the "what" is
184 * the address of &bad.node, and the "where" is the address held
185 * by "redirection".
186 */
187 test_head.next = redirection;
188 list_add(&bad.node, &test_head);
189
190 if (target[0] == NULL && target[1] == NULL)
191 pr_err("Overwrite did not happen, but no BUG?!\n");
192 else
193 pr_err("list_add() corruption not detected!\n");
194 }
195
lkdtm_CORRUPT_LIST_DEL(void)196 void lkdtm_CORRUPT_LIST_DEL(void)
197 {
198 LIST_HEAD(test_head);
199 struct lkdtm_list item;
200 void *target[2] = { };
201 void *redirection = ⌖
202
203 list_add(&item.node, &test_head);
204
205 pr_info("attempting good list removal\n");
206 list_del(&item.node);
207
208 pr_info("attempting corrupted list removal\n");
209 list_add(&item.node, &test_head);
210
211 /* As with the list_add() test above, this corrupts "next". */
212 item.node.next = redirection;
213 list_del(&item.node);
214
215 if (target[0] == NULL && target[1] == NULL)
216 pr_err("Overwrite did not happen, but no BUG?!\n");
217 else
218 pr_err("list_del() corruption not detected!\n");
219 }
220
221 /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
lkdtm_CORRUPT_USER_DS(void)222 void lkdtm_CORRUPT_USER_DS(void)
223 {
224 pr_info("setting bad task size limit\n");
225 set_fs(KERNEL_DS);
226
227 /* Make sure we do not keep running with a KERNEL_DS! */
228 force_sig(SIGKILL, current);
229 }
230
231 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)232 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
233 {
234 const unsigned char *stack = task_stack_page(current);
235 const unsigned char *ptr = stack - 1;
236 volatile unsigned char byte;
237
238 pr_info("attempting bad read from page below current stack\n");
239
240 byte = *ptr;
241
242 pr_err("FAIL: accessed page before stack!\n");
243 }
244
245 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)246 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
247 {
248 const unsigned char *stack = task_stack_page(current);
249 const unsigned char *ptr = stack + THREAD_SIZE;
250 volatile unsigned char byte;
251
252 pr_info("attempting bad read from page above current stack\n");
253
254 byte = *ptr;
255
256 pr_err("FAIL: accessed page after stack!\n");
257 }
258