1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135
136 result = audit_reusename(filename);
137 if (result)
138 return result;
139
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
143
144 /*
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
147 */
148 kname = (char *)result->iname;
149 result->name = kname;
150
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
166
167 /*
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
171 */
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
176 }
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
183 }
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
188 }
189 }
190
191 result->refcnt = 1;
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
199 }
200 }
201
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
206 }
207
208 struct filename *
getname(const char __user * filename)209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 struct filename *
getname_kernel(const char * filename)215 getname_kernel(const char * filename)
216 {
217 struct filename *result;
218 int len = strlen(filename) + 1;
219
220 result = __getname();
221 if (unlikely(!result))
222 return ERR_PTR(-ENOMEM);
223
224 if (len <= EMBEDDED_NAME_MAX) {
225 result->name = (char *)result->iname;
226 } else if (len <= PATH_MAX) {
227 const size_t size = offsetof(struct filename, iname[1]);
228 struct filename *tmp;
229
230 tmp = kmalloc(size, GFP_KERNEL);
231 if (unlikely(!tmp)) {
232 __putname(result);
233 return ERR_PTR(-ENOMEM);
234 }
235 tmp->name = (char *)result;
236 result = tmp;
237 } else {
238 __putname(result);
239 return ERR_PTR(-ENAMETOOLONG);
240 }
241 memcpy((char *)result->name, filename, len);
242 result->uptr = NULL;
243 result->aname = NULL;
244 result->refcnt = 1;
245 audit_getname(result);
246
247 return result;
248 }
249
putname(struct filename * name)250 void putname(struct filename *name)
251 {
252 BUG_ON(name->refcnt <= 0);
253
254 if (--name->refcnt > 0)
255 return;
256
257 if (name->name != name->iname) {
258 __putname(name->name);
259 kfree(name);
260 } else
261 __putname(name);
262 }
263
check_acl(struct inode * inode,int mask)264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 struct posix_acl *acl;
268
269 if (mask & MAY_NOT_BLOCK) {
270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 if (!acl)
272 return -EAGAIN;
273 /* no ->get_acl() calls in RCU mode... */
274 if (is_uncached_acl(acl))
275 return -ECHILD;
276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 }
278
279 acl = get_acl(inode, ACL_TYPE_ACCESS);
280 if (IS_ERR(acl))
281 return PTR_ERR(acl);
282 if (acl) {
283 int error = posix_acl_permission(inode, acl, mask);
284 posix_acl_release(acl);
285 return error;
286 }
287 #endif
288
289 return -EAGAIN;
290 }
291
292 /*
293 * This does the basic permission checking
294 */
acl_permission_check(struct inode * inode,int mask)295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 unsigned int mode = inode->i_mode;
298
299 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 mode >>= 6;
301 else {
302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 int error = check_acl(inode, mask);
304 if (error != -EAGAIN)
305 return error;
306 }
307
308 if (in_group_p(inode->i_gid))
309 mode >>= 3;
310 }
311
312 /*
313 * If the DACs are ok we don't need any capability check.
314 */
315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 return 0;
317 return -EACCES;
318 }
319
320 /**
321 * generic_permission - check for access rights on a Posix-like filesystem
322 * @inode: inode to check access rights for
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324 *
325 * Used to check for read/write/execute permissions on a file.
326 * We use "fsuid" for this, letting us set arbitrary permissions
327 * for filesystem access without changing the "normal" uids which
328 * are used for other things.
329 *
330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331 * request cannot be satisfied (eg. requires blocking or too much complexity).
332 * It would then be called again in ref-walk mode.
333 */
generic_permission(struct inode * inode,int mask)334 int generic_permission(struct inode *inode, int mask)
335 {
336 int ret;
337
338 /*
339 * Do the basic permission checks.
340 */
341 ret = acl_permission_check(inode, mask);
342 if (ret != -EACCES)
343 return ret;
344
345 if (S_ISDIR(inode->i_mode)) {
346 /* DACs are overridable for directories */
347 if (!(mask & MAY_WRITE))
348 if (capable_wrt_inode_uidgid(inode,
349 CAP_DAC_READ_SEARCH))
350 return 0;
351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 return 0;
353 return -EACCES;
354 }
355
356 /*
357 * Searching includes executable on directories, else just read.
358 */
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
363 /*
364 * Read/write DACs are always overridable.
365 * Executable DACs are overridable when there is
366 * at least one exec bit set.
367 */
368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 return 0;
371
372 return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375
376 /*
377 * We _really_ want to just do "generic_permission()" without
378 * even looking at the inode->i_op values. So we keep a cache
379 * flag in inode->i_opflags, that says "this has not special
380 * permission function, use the fast case".
381 */
do_inode_permission(struct inode * inode,int mask)382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
387
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
392 }
393 return generic_permission(inode, mask);
394 }
395
396 /**
397 * sb_permission - Check superblock-level permissions
398 * @sb: Superblock of inode to check permission on
399 * @inode: Inode to check permission on
400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401 *
402 * Separate out file-system wide checks from inode-specific permission checks.
403 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 if (unlikely(mask & MAY_WRITE)) {
407 umode_t mode = inode->i_mode;
408
409 /* Nobody gets write access to a read-only fs. */
410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 return -EROFS;
412 }
413 return 0;
414 }
415
416 /**
417 * inode_permission - Check for access rights to a given inode
418 * @inode: Inode to check permission on
419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420 *
421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
422 * this, letting us set arbitrary permissions for filesystem access without
423 * changing the "normal" UIDs which are used for other things.
424 *
425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426 */
inode_permission(struct inode * inode,int mask)427 int inode_permission(struct inode *inode, int mask)
428 {
429 int retval;
430
431 retval = sb_permission(inode->i_sb, inode, mask);
432 if (retval)
433 return retval;
434
435 if (unlikely(mask & MAY_WRITE)) {
436 /*
437 * Nobody gets write access to an immutable file.
438 */
439 if (IS_IMMUTABLE(inode))
440 return -EPERM;
441
442 /*
443 * Updating mtime will likely cause i_uid and i_gid to be
444 * written back improperly if their true value is unknown
445 * to the vfs.
446 */
447 if (HAS_UNMAPPED_ID(inode))
448 return -EACCES;
449 }
450
451 retval = do_inode_permission(inode, mask);
452 if (retval)
453 return retval;
454
455 retval = devcgroup_inode_permission(inode, mask);
456 if (retval)
457 return retval;
458
459 return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
path_get(const struct path * path)469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
path_put(const struct path * path)482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 int total_link_count;
500 struct saved {
501 struct path link;
502 struct delayed_call done;
503 const char *name;
504 unsigned seq;
505 } *stack, internal[EMBEDDED_LEVELS];
506 struct filename *name;
507 struct nameidata *saved;
508 struct inode *link_inode;
509 unsigned root_seq;
510 int dfd;
511 } __randomize_layout;
512
set_nameidata(struct nameidata * p,int dfd,struct filename * name)513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->dfd = dfd;
518 p->name = name;
519 p->total_link_count = old ? old->total_link_count : 0;
520 p->saved = old;
521 current->nameidata = p;
522 }
523
restore_nameidata(void)524 static void restore_nameidata(void)
525 {
526 struct nameidata *now = current->nameidata, *old = now->saved;
527
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal)
532 kfree(now->stack);
533 }
534
__nd_alloc_stack(struct nameidata * nd)535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 struct saved *p;
538
539 if (nd->flags & LOOKUP_RCU) {
540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 GFP_ATOMIC);
542 if (unlikely(!p))
543 return -ECHILD;
544 } else {
545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 GFP_KERNEL);
547 if (unlikely(!p))
548 return -ENOMEM;
549 }
550 memcpy(p, nd->internal, sizeof(nd->internal));
551 nd->stack = p;
552 return 0;
553 }
554
555 /**
556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557 * @path: nameidate to verify
558 *
559 * Rename can sometimes move a file or directory outside of a bind
560 * mount, path_connected allows those cases to be detected.
561 */
path_connected(const struct path * path)562 static bool path_connected(const struct path *path)
563 {
564 struct vfsmount *mnt = path->mnt;
565 struct super_block *sb = mnt->mnt_sb;
566
567 /* Bind mounts and multi-root filesystems can have disconnected paths */
568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 return true;
570
571 return is_subdir(path->dentry, mnt->mnt_root);
572 }
573
nd_alloc_stack(struct nameidata * nd)574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 if (likely(nd->depth != EMBEDDED_LEVELS))
577 return 0;
578 if (likely(nd->stack != nd->internal))
579 return 0;
580 return __nd_alloc_stack(nd);
581 }
582
drop_links(struct nameidata * nd)583 static void drop_links(struct nameidata *nd)
584 {
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
590 }
591 }
592
terminate_walk(struct nameidata * nd)593 static void terminate_walk(struct nameidata *nd)
594 {
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 path_put(&nd->root);
603 nd->root.mnt = NULL;
604 }
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609 rcu_read_unlock();
610 }
611 nd->depth = 0;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)615 static bool legitimize_path(struct nameidata *nd,
616 struct path *path, unsigned seq)
617 {
618 int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 if (unlikely(res)) {
620 if (res > 0)
621 path->mnt = NULL;
622 path->dentry = NULL;
623 return false;
624 }
625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 path->dentry = NULL;
627 return false;
628 }
629 return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631
legitimize_links(struct nameidata * nd)632 static bool legitimize_links(struct nameidata *nd)
633 {
634 int i;
635 for (i = 0; i < nd->depth; i++) {
636 struct saved *last = nd->stack + i;
637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 drop_links(nd);
639 nd->depth = i + 1;
640 return false;
641 }
642 }
643 return true;
644 }
645
646 /*
647 * Path walking has 2 modes, rcu-walk and ref-walk (see
648 * Documentation/filesystems/path-lookup.txt). In situations when we can't
649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
651 * mode. Refcounts are grabbed at the last known good point before rcu-walk
652 * got stuck, so ref-walk may continue from there. If this is not successful
653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
654 * to restart the path walk from the beginning in ref-walk mode.
655 */
656
657 /**
658 * unlazy_walk - try to switch to ref-walk mode.
659 * @nd: nameidata pathwalk data
660 * Returns: 0 on success, -ECHILD on failure
661 *
662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
663 * for ref-walk mode.
664 * Must be called from rcu-walk context.
665 * Nothing should touch nameidata between unlazy_walk() failure and
666 * terminate_walk().
667 */
unlazy_walk(struct nameidata * nd)668 static int unlazy_walk(struct nameidata *nd)
669 {
670 struct dentry *parent = nd->path.dentry;
671
672 BUG_ON(!(nd->flags & LOOKUP_RCU));
673
674 nd->flags &= ~LOOKUP_RCU;
675 if (unlikely(!legitimize_links(nd)))
676 goto out2;
677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 goto out1;
679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 goto out;
682 }
683 rcu_read_unlock();
684 BUG_ON(nd->inode != parent->d_inode);
685 return 0;
686
687 out2:
688 nd->path.mnt = NULL;
689 nd->path.dentry = NULL;
690 out1:
691 if (!(nd->flags & LOOKUP_ROOT))
692 nd->root.mnt = NULL;
693 out:
694 rcu_read_unlock();
695 return -ECHILD;
696 }
697
698 /**
699 * unlazy_child - try to switch to ref-walk mode.
700 * @nd: nameidata pathwalk data
701 * @dentry: child of nd->path.dentry
702 * @seq: seq number to check dentry against
703 * Returns: 0 on success, -ECHILD on failure
704 *
705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
707 * @nd. Must be called from rcu-walk context.
708 * Nothing should touch nameidata between unlazy_child() failure and
709 * terminate_walk().
710 */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 BUG_ON(!(nd->flags & LOOKUP_RCU));
714
715 nd->flags &= ~LOOKUP_RCU;
716 if (unlikely(!legitimize_links(nd)))
717 goto out2;
718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 goto out2;
720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 goto out1;
722
723 /*
724 * We need to move both the parent and the dentry from the RCU domain
725 * to be properly refcounted. And the sequence number in the dentry
726 * validates *both* dentry counters, since we checked the sequence
727 * number of the parent after we got the child sequence number. So we
728 * know the parent must still be valid if the child sequence number is
729 */
730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 goto out;
732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 rcu_read_unlock();
734 dput(dentry);
735 goto drop_root_mnt;
736 }
737 /*
738 * Sequence counts matched. Now make sure that the root is
739 * still valid and get it if required.
740 */
741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 rcu_read_unlock();
744 dput(dentry);
745 return -ECHILD;
746 }
747 }
748
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 drop_root_mnt:
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 return -ECHILD;
762 }
763
d_revalidate(struct dentry * dentry,unsigned int flags)764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 return dentry->d_op->d_revalidate(dentry, flags);
768 else
769 return 1;
770 }
771
772 /**
773 * complete_walk - successful completion of path walk
774 * @nd: pointer nameidata
775 *
776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
777 * Revalidate the final result, unless we'd already done that during
778 * the path walk or the filesystem doesn't ask for it. Return 0 on
779 * success, -error on failure. In case of failure caller does not
780 * need to drop nd->path.
781 */
complete_walk(struct nameidata * nd)782 static int complete_walk(struct nameidata *nd)
783 {
784 struct dentry *dentry = nd->path.dentry;
785 int status;
786
787 if (nd->flags & LOOKUP_RCU) {
788 if (!(nd->flags & LOOKUP_ROOT))
789 nd->root.mnt = NULL;
790 if (unlikely(unlazy_walk(nd)))
791 return -ECHILD;
792 }
793
794 if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 return 0;
796
797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 return 0;
799
800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 if (status > 0)
802 return 0;
803
804 if (!status)
805 status = -ESTALE;
806
807 return status;
808 }
809
set_root(struct nameidata * nd)810 static void set_root(struct nameidata *nd)
811 {
812 struct fs_struct *fs = current->fs;
813
814 if (nd->flags & LOOKUP_RCU) {
815 unsigned seq;
816
817 do {
818 seq = read_seqcount_begin(&fs->seq);
819 nd->root = fs->root;
820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 } while (read_seqcount_retry(&fs->seq, seq));
822 } else {
823 get_fs_root(fs, &nd->root);
824 }
825 }
826
path_put_conditional(struct path * path,struct nameidata * nd)827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 dput(path->dentry);
830 if (path->mnt != nd->path.mnt)
831 mntput(path->mnt);
832 }
833
path_to_nameidata(const struct path * path,struct nameidata * nd)834 static inline void path_to_nameidata(const struct path *path,
835 struct nameidata *nd)
836 {
837 if (!(nd->flags & LOOKUP_RCU)) {
838 dput(nd->path.dentry);
839 if (nd->path.mnt != path->mnt)
840 mntput(nd->path.mnt);
841 }
842 nd->path.mnt = path->mnt;
843 nd->path.dentry = path->dentry;
844 }
845
nd_jump_root(struct nameidata * nd)846 static int nd_jump_root(struct nameidata *nd)
847 {
848 if (nd->flags & LOOKUP_RCU) {
849 struct dentry *d;
850 nd->path = nd->root;
851 d = nd->path.dentry;
852 nd->inode = d->d_inode;
853 nd->seq = nd->root_seq;
854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 return -ECHILD;
856 } else {
857 path_put(&nd->path);
858 nd->path = nd->root;
859 path_get(&nd->path);
860 nd->inode = nd->path.dentry->d_inode;
861 }
862 nd->flags |= LOOKUP_JUMPED;
863 return 0;
864 }
865
866 /*
867 * Helper to directly jump to a known parsed path from ->get_link,
868 * caller must have taken a reference to path beforehand.
869 */
nd_jump_link(struct path * path)870 void nd_jump_link(struct path *path)
871 {
872 struct nameidata *nd = current->nameidata;
873 path_put(&nd->path);
874
875 nd->path = *path;
876 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
878 }
879
put_link(struct nameidata * nd)880 static inline void put_link(struct nameidata *nd)
881 {
882 struct saved *last = nd->stack + --nd->depth;
883 do_delayed_call(&last->done);
884 if (!(nd->flags & LOOKUP_RCU))
885 path_put(&last->link);
886 }
887
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890 int sysctl_protected_fifos __read_mostly;
891 int sysctl_protected_regular __read_mostly;
892
893 /**
894 * may_follow_link - Check symlink following for unsafe situations
895 * @nd: nameidata pathwalk data
896 *
897 * In the case of the sysctl_protected_symlinks sysctl being enabled,
898 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899 * in a sticky world-writable directory. This is to protect privileged
900 * processes from failing races against path names that may change out
901 * from under them by way of other users creating malicious symlinks.
902 * It will permit symlinks to be followed only when outside a sticky
903 * world-writable directory, or when the uid of the symlink and follower
904 * match, or when the directory owner matches the symlink's owner.
905 *
906 * Returns 0 if following the symlink is allowed, -ve on error.
907 */
may_follow_link(struct nameidata * nd)908 static inline int may_follow_link(struct nameidata *nd)
909 {
910 const struct inode *inode;
911 const struct inode *parent;
912 kuid_t puid;
913
914 if (!sysctl_protected_symlinks)
915 return 0;
916
917 /* Allowed if owner and follower match. */
918 inode = nd->link_inode;
919 if (uid_eq(current_cred()->fsuid, inode->i_uid))
920 return 0;
921
922 /* Allowed if parent directory not sticky and world-writable. */
923 parent = nd->inode;
924 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925 return 0;
926
927 /* Allowed if parent directory and link owner match. */
928 puid = parent->i_uid;
929 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930 return 0;
931
932 if (nd->flags & LOOKUP_RCU)
933 return -ECHILD;
934
935 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
936 audit_log_link_denied("follow_link");
937 return -EACCES;
938 }
939
940 /**
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
943 *
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
949 *
950 * Otherwise returns true.
951 */
safe_hardlink_source(struct inode * inode)952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 umode_t mode = inode->i_mode;
955
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
959
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
963
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
967
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
971
972 return true;
973 }
974
975 /**
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
978 *
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
984 *
985 * Returns 0 if successful, -ve on error.
986 */
may_linkat(struct path * link)987 static int may_linkat(struct path *link)
988 {
989 struct inode *inode = link->dentry->d_inode;
990
991 /* Inode writeback is not safe when the uid or gid are invalid. */
992 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
993 return -EOVERFLOW;
994
995 if (!sysctl_protected_hardlinks)
996 return 0;
997
998 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
999 * otherwise, it must be a safe source.
1000 */
1001 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1002 return 0;
1003
1004 audit_log_link_denied("linkat");
1005 return -EPERM;
1006 }
1007
1008 /**
1009 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1010 * should be allowed, or not, on files that already
1011 * exist.
1012 * @dir_mode: mode bits of directory
1013 * @dir_uid: owner of directory
1014 * @inode: the inode of the file to open
1015 *
1016 * Block an O_CREAT open of a FIFO (or a regular file) when:
1017 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1018 * - the file already exists
1019 * - we are in a sticky directory
1020 * - we don't own the file
1021 * - the owner of the directory doesn't own the file
1022 * - the directory is world writable
1023 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1024 * the directory doesn't have to be world writable: being group writable will
1025 * be enough.
1026 *
1027 * Returns 0 if the open is allowed, -ve on error.
1028 */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1029 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1030 struct inode * const inode)
1031 {
1032 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1033 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1034 likely(!(dir_mode & S_ISVTX)) ||
1035 uid_eq(inode->i_uid, dir_uid) ||
1036 uid_eq(current_fsuid(), inode->i_uid))
1037 return 0;
1038
1039 if (likely(dir_mode & 0002) ||
1040 (dir_mode & 0020 &&
1041 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1042 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1043 return -EACCES;
1044 }
1045 return 0;
1046 }
1047
1048 static __always_inline
get_link(struct nameidata * nd)1049 const char *get_link(struct nameidata *nd)
1050 {
1051 struct saved *last = nd->stack + nd->depth - 1;
1052 struct dentry *dentry = last->link.dentry;
1053 struct inode *inode = nd->link_inode;
1054 int error;
1055 const char *res;
1056
1057 if (!(nd->flags & LOOKUP_RCU)) {
1058 touch_atime(&last->link);
1059 cond_resched();
1060 } else if (atime_needs_update(&last->link, inode)) {
1061 if (unlikely(unlazy_walk(nd)))
1062 return ERR_PTR(-ECHILD);
1063 touch_atime(&last->link);
1064 }
1065
1066 error = security_inode_follow_link(dentry, inode,
1067 nd->flags & LOOKUP_RCU);
1068 if (unlikely(error))
1069 return ERR_PTR(error);
1070
1071 nd->last_type = LAST_BIND;
1072 res = inode->i_link;
1073 if (!res) {
1074 const char * (*get)(struct dentry *, struct inode *,
1075 struct delayed_call *);
1076 get = inode->i_op->get_link;
1077 if (nd->flags & LOOKUP_RCU) {
1078 res = get(NULL, inode, &last->done);
1079 if (res == ERR_PTR(-ECHILD)) {
1080 if (unlikely(unlazy_walk(nd)))
1081 return ERR_PTR(-ECHILD);
1082 res = get(dentry, inode, &last->done);
1083 }
1084 } else {
1085 res = get(dentry, inode, &last->done);
1086 }
1087 if (IS_ERR_OR_NULL(res))
1088 return res;
1089 }
1090 if (*res == '/') {
1091 if (!nd->root.mnt)
1092 set_root(nd);
1093 if (unlikely(nd_jump_root(nd)))
1094 return ERR_PTR(-ECHILD);
1095 while (unlikely(*++res == '/'))
1096 ;
1097 }
1098 if (!*res)
1099 res = NULL;
1100 return res;
1101 }
1102
1103 /*
1104 * follow_up - Find the mountpoint of path's vfsmount
1105 *
1106 * Given a path, find the mountpoint of its source file system.
1107 * Replace @path with the path of the mountpoint in the parent mount.
1108 * Up is towards /.
1109 *
1110 * Return 1 if we went up a level and 0 if we were already at the
1111 * root.
1112 */
follow_up(struct path * path)1113 int follow_up(struct path *path)
1114 {
1115 struct mount *mnt = real_mount(path->mnt);
1116 struct mount *parent;
1117 struct dentry *mountpoint;
1118
1119 read_seqlock_excl(&mount_lock);
1120 parent = mnt->mnt_parent;
1121 if (parent == mnt) {
1122 read_sequnlock_excl(&mount_lock);
1123 return 0;
1124 }
1125 mntget(&parent->mnt);
1126 mountpoint = dget(mnt->mnt_mountpoint);
1127 read_sequnlock_excl(&mount_lock);
1128 dput(path->dentry);
1129 path->dentry = mountpoint;
1130 mntput(path->mnt);
1131 path->mnt = &parent->mnt;
1132 return 1;
1133 }
1134 EXPORT_SYMBOL(follow_up);
1135
1136 /*
1137 * Perform an automount
1138 * - return -EISDIR to tell follow_managed() to stop and return the path we
1139 * were called with.
1140 */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1141 static int follow_automount(struct path *path, struct nameidata *nd,
1142 bool *need_mntput)
1143 {
1144 struct vfsmount *mnt;
1145 int err;
1146
1147 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1148 return -EREMOTE;
1149
1150 /* We don't want to mount if someone's just doing a stat -
1151 * unless they're stat'ing a directory and appended a '/' to
1152 * the name.
1153 *
1154 * We do, however, want to mount if someone wants to open or
1155 * create a file of any type under the mountpoint, wants to
1156 * traverse through the mountpoint or wants to open the
1157 * mounted directory. Also, autofs may mark negative dentries
1158 * as being automount points. These will need the attentions
1159 * of the daemon to instantiate them before they can be used.
1160 */
1161 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1162 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1163 path->dentry->d_inode)
1164 return -EISDIR;
1165
1166 nd->total_link_count++;
1167 if (nd->total_link_count >= 40)
1168 return -ELOOP;
1169
1170 mnt = path->dentry->d_op->d_automount(path);
1171 if (IS_ERR(mnt)) {
1172 /*
1173 * The filesystem is allowed to return -EISDIR here to indicate
1174 * it doesn't want to automount. For instance, autofs would do
1175 * this so that its userspace daemon can mount on this dentry.
1176 *
1177 * However, we can only permit this if it's a terminal point in
1178 * the path being looked up; if it wasn't then the remainder of
1179 * the path is inaccessible and we should say so.
1180 */
1181 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1182 return -EREMOTE;
1183 return PTR_ERR(mnt);
1184 }
1185
1186 if (!mnt) /* mount collision */
1187 return 0;
1188
1189 if (!*need_mntput) {
1190 /* lock_mount() may release path->mnt on error */
1191 mntget(path->mnt);
1192 *need_mntput = true;
1193 }
1194 err = finish_automount(mnt, path);
1195
1196 switch (err) {
1197 case -EBUSY:
1198 /* Someone else made a mount here whilst we were busy */
1199 return 0;
1200 case 0:
1201 path_put(path);
1202 path->mnt = mnt;
1203 path->dentry = dget(mnt->mnt_root);
1204 return 0;
1205 default:
1206 return err;
1207 }
1208
1209 }
1210
1211 /*
1212 * Handle a dentry that is managed in some way.
1213 * - Flagged for transit management (autofs)
1214 * - Flagged as mountpoint
1215 * - Flagged as automount point
1216 *
1217 * This may only be called in refwalk mode.
1218 *
1219 * Serialization is taken care of in namespace.c
1220 */
follow_managed(struct path * path,struct nameidata * nd)1221 static int follow_managed(struct path *path, struct nameidata *nd)
1222 {
1223 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1224 unsigned managed;
1225 bool need_mntput = false;
1226 int ret = 0;
1227
1228 /* Given that we're not holding a lock here, we retain the value in a
1229 * local variable for each dentry as we look at it so that we don't see
1230 * the components of that value change under us */
1231 while (managed = READ_ONCE(path->dentry->d_flags),
1232 managed &= DCACHE_MANAGED_DENTRY,
1233 unlikely(managed != 0)) {
1234 /* Allow the filesystem to manage the transit without i_mutex
1235 * being held. */
1236 if (managed & DCACHE_MANAGE_TRANSIT) {
1237 BUG_ON(!path->dentry->d_op);
1238 BUG_ON(!path->dentry->d_op->d_manage);
1239 ret = path->dentry->d_op->d_manage(path, false);
1240 if (ret < 0)
1241 break;
1242 }
1243
1244 /* Transit to a mounted filesystem. */
1245 if (managed & DCACHE_MOUNTED) {
1246 struct vfsmount *mounted = lookup_mnt(path);
1247 if (mounted) {
1248 dput(path->dentry);
1249 if (need_mntput)
1250 mntput(path->mnt);
1251 path->mnt = mounted;
1252 path->dentry = dget(mounted->mnt_root);
1253 need_mntput = true;
1254 continue;
1255 }
1256
1257 /* Something is mounted on this dentry in another
1258 * namespace and/or whatever was mounted there in this
1259 * namespace got unmounted before lookup_mnt() could
1260 * get it */
1261 }
1262
1263 /* Handle an automount point */
1264 if (managed & DCACHE_NEED_AUTOMOUNT) {
1265 ret = follow_automount(path, nd, &need_mntput);
1266 if (ret < 0)
1267 break;
1268 continue;
1269 }
1270
1271 /* We didn't change the current path point */
1272 break;
1273 }
1274
1275 if (need_mntput && path->mnt == mnt)
1276 mntput(path->mnt);
1277 if (ret == -EISDIR || !ret)
1278 ret = 1;
1279 if (need_mntput)
1280 nd->flags |= LOOKUP_JUMPED;
1281 if (unlikely(ret < 0))
1282 path_put_conditional(path, nd);
1283 return ret;
1284 }
1285
follow_down_one(struct path * path)1286 int follow_down_one(struct path *path)
1287 {
1288 struct vfsmount *mounted;
1289
1290 mounted = lookup_mnt(path);
1291 if (mounted) {
1292 dput(path->dentry);
1293 mntput(path->mnt);
1294 path->mnt = mounted;
1295 path->dentry = dget(mounted->mnt_root);
1296 return 1;
1297 }
1298 return 0;
1299 }
1300 EXPORT_SYMBOL(follow_down_one);
1301
managed_dentry_rcu(const struct path * path)1302 static inline int managed_dentry_rcu(const struct path *path)
1303 {
1304 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1305 path->dentry->d_op->d_manage(path, true) : 0;
1306 }
1307
1308 /*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1314 {
1315 for (;;) {
1316 struct mount *mounted;
1317 /*
1318 * Don't forget we might have a non-mountpoint managed dentry
1319 * that wants to block transit.
1320 */
1321 switch (managed_dentry_rcu(path)) {
1322 case -ECHILD:
1323 default:
1324 return false;
1325 case -EISDIR:
1326 return true;
1327 case 0:
1328 break;
1329 }
1330
1331 if (!d_mountpoint(path->dentry))
1332 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1333
1334 mounted = __lookup_mnt(path->mnt, path->dentry);
1335 if (!mounted)
1336 break;
1337 path->mnt = &mounted->mnt;
1338 path->dentry = mounted->mnt.mnt_root;
1339 nd->flags |= LOOKUP_JUMPED;
1340 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1341 /*
1342 * Update the inode too. We don't need to re-check the
1343 * dentry sequence number here after this d_inode read,
1344 * because a mount-point is always pinned.
1345 */
1346 *inode = path->dentry->d_inode;
1347 }
1348 return !read_seqretry(&mount_lock, nd->m_seq) &&
1349 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1350 }
1351
follow_dotdot_rcu(struct nameidata * nd)1352 static int follow_dotdot_rcu(struct nameidata *nd)
1353 {
1354 struct inode *inode = nd->inode;
1355
1356 while (1) {
1357 if (path_equal(&nd->path, &nd->root))
1358 break;
1359 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1360 struct dentry *old = nd->path.dentry;
1361 struct dentry *parent = old->d_parent;
1362 unsigned seq;
1363
1364 inode = parent->d_inode;
1365 seq = read_seqcount_begin(&parent->d_seq);
1366 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1367 return -ECHILD;
1368 nd->path.dentry = parent;
1369 nd->seq = seq;
1370 if (unlikely(!path_connected(&nd->path)))
1371 return -ECHILD;
1372 break;
1373 } else {
1374 struct mount *mnt = real_mount(nd->path.mnt);
1375 struct mount *mparent = mnt->mnt_parent;
1376 struct dentry *mountpoint = mnt->mnt_mountpoint;
1377 struct inode *inode2 = mountpoint->d_inode;
1378 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1379 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1380 return -ECHILD;
1381 if (&mparent->mnt == nd->path.mnt)
1382 break;
1383 /* we know that mountpoint was pinned */
1384 nd->path.dentry = mountpoint;
1385 nd->path.mnt = &mparent->mnt;
1386 inode = inode2;
1387 nd->seq = seq;
1388 }
1389 }
1390 while (unlikely(d_mountpoint(nd->path.dentry))) {
1391 struct mount *mounted;
1392 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1393 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1394 return -ECHILD;
1395 if (!mounted)
1396 break;
1397 nd->path.mnt = &mounted->mnt;
1398 nd->path.dentry = mounted->mnt.mnt_root;
1399 inode = nd->path.dentry->d_inode;
1400 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1401 }
1402 nd->inode = inode;
1403 return 0;
1404 }
1405
1406 /*
1407 * Follow down to the covering mount currently visible to userspace. At each
1408 * point, the filesystem owning that dentry may be queried as to whether the
1409 * caller is permitted to proceed or not.
1410 */
follow_down(struct path * path)1411 int follow_down(struct path *path)
1412 {
1413 unsigned managed;
1414 int ret;
1415
1416 while (managed = READ_ONCE(path->dentry->d_flags),
1417 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1418 /* Allow the filesystem to manage the transit without i_mutex
1419 * being held.
1420 *
1421 * We indicate to the filesystem if someone is trying to mount
1422 * something here. This gives autofs the chance to deny anyone
1423 * other than its daemon the right to mount on its
1424 * superstructure.
1425 *
1426 * The filesystem may sleep at this point.
1427 */
1428 if (managed & DCACHE_MANAGE_TRANSIT) {
1429 BUG_ON(!path->dentry->d_op);
1430 BUG_ON(!path->dentry->d_op->d_manage);
1431 ret = path->dentry->d_op->d_manage(path, false);
1432 if (ret < 0)
1433 return ret == -EISDIR ? 0 : ret;
1434 }
1435
1436 /* Transit to a mounted filesystem. */
1437 if (managed & DCACHE_MOUNTED) {
1438 struct vfsmount *mounted = lookup_mnt(path);
1439 if (!mounted)
1440 break;
1441 dput(path->dentry);
1442 mntput(path->mnt);
1443 path->mnt = mounted;
1444 path->dentry = dget(mounted->mnt_root);
1445 continue;
1446 }
1447
1448 /* Don't handle automount points here */
1449 break;
1450 }
1451 return 0;
1452 }
1453 EXPORT_SYMBOL(follow_down);
1454
1455 /*
1456 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1457 */
follow_mount(struct path * path)1458 static void follow_mount(struct path *path)
1459 {
1460 while (d_mountpoint(path->dentry)) {
1461 struct vfsmount *mounted = lookup_mnt(path);
1462 if (!mounted)
1463 break;
1464 dput(path->dentry);
1465 mntput(path->mnt);
1466 path->mnt = mounted;
1467 path->dentry = dget(mounted->mnt_root);
1468 }
1469 }
1470
path_parent_directory(struct path * path)1471 static int path_parent_directory(struct path *path)
1472 {
1473 struct dentry *old = path->dentry;
1474 /* rare case of legitimate dget_parent()... */
1475 path->dentry = dget_parent(path->dentry);
1476 dput(old);
1477 if (unlikely(!path_connected(path)))
1478 return -ENOENT;
1479 return 0;
1480 }
1481
follow_dotdot(struct nameidata * nd)1482 static int follow_dotdot(struct nameidata *nd)
1483 {
1484 while(1) {
1485 if (path_equal(&nd->path, &nd->root))
1486 break;
1487 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1488 int ret = path_parent_directory(&nd->path);
1489 if (ret)
1490 return ret;
1491 break;
1492 }
1493 if (!follow_up(&nd->path))
1494 break;
1495 }
1496 follow_mount(&nd->path);
1497 nd->inode = nd->path.dentry->d_inode;
1498 return 0;
1499 }
1500
1501 /*
1502 * This looks up the name in dcache and possibly revalidates the found dentry.
1503 * NULL is returned if the dentry does not exist in the cache.
1504 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1505 static struct dentry *lookup_dcache(const struct qstr *name,
1506 struct dentry *dir,
1507 unsigned int flags)
1508 {
1509 struct dentry *dentry = d_lookup(dir, name);
1510 if (dentry) {
1511 int error = d_revalidate(dentry, flags);
1512 if (unlikely(error <= 0)) {
1513 if (!error)
1514 d_invalidate(dentry);
1515 dput(dentry);
1516 return ERR_PTR(error);
1517 }
1518 }
1519 return dentry;
1520 }
1521
1522 /*
1523 * Parent directory has inode locked exclusive. This is one
1524 * and only case when ->lookup() gets called on non in-lookup
1525 * dentries - as the matter of fact, this only gets called
1526 * when directory is guaranteed to have no in-lookup children
1527 * at all.
1528 */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1529 static struct dentry *__lookup_hash(const struct qstr *name,
1530 struct dentry *base, unsigned int flags)
1531 {
1532 struct dentry *dentry = lookup_dcache(name, base, flags);
1533 struct dentry *old;
1534 struct inode *dir = base->d_inode;
1535
1536 if (dentry)
1537 return dentry;
1538
1539 /* Don't create child dentry for a dead directory. */
1540 if (unlikely(IS_DEADDIR(dir)))
1541 return ERR_PTR(-ENOENT);
1542
1543 dentry = d_alloc(base, name);
1544 if (unlikely(!dentry))
1545 return ERR_PTR(-ENOMEM);
1546
1547 old = dir->i_op->lookup(dir, dentry, flags);
1548 if (unlikely(old)) {
1549 dput(dentry);
1550 dentry = old;
1551 }
1552 return dentry;
1553 }
1554
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1555 static int lookup_fast(struct nameidata *nd,
1556 struct path *path, struct inode **inode,
1557 unsigned *seqp)
1558 {
1559 struct vfsmount *mnt = nd->path.mnt;
1560 struct dentry *dentry, *parent = nd->path.dentry;
1561 int status = 1;
1562 int err;
1563
1564 /*
1565 * Rename seqlock is not required here because in the off chance
1566 * of a false negative due to a concurrent rename, the caller is
1567 * going to fall back to non-racy lookup.
1568 */
1569 if (nd->flags & LOOKUP_RCU) {
1570 unsigned seq;
1571 bool negative;
1572 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1573 if (unlikely(!dentry)) {
1574 if (unlazy_walk(nd))
1575 return -ECHILD;
1576 return 0;
1577 }
1578
1579 /*
1580 * This sequence count validates that the inode matches
1581 * the dentry name information from lookup.
1582 */
1583 *inode = d_backing_inode(dentry);
1584 negative = d_is_negative(dentry);
1585 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1586 return -ECHILD;
1587
1588 /*
1589 * This sequence count validates that the parent had no
1590 * changes while we did the lookup of the dentry above.
1591 *
1592 * The memory barrier in read_seqcount_begin of child is
1593 * enough, we can use __read_seqcount_retry here.
1594 */
1595 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1596 return -ECHILD;
1597
1598 *seqp = seq;
1599 status = d_revalidate(dentry, nd->flags);
1600 if (likely(status > 0)) {
1601 /*
1602 * Note: do negative dentry check after revalidation in
1603 * case that drops it.
1604 */
1605 if (unlikely(negative))
1606 return -ENOENT;
1607 path->mnt = mnt;
1608 path->dentry = dentry;
1609 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1610 return 1;
1611 }
1612 if (unlazy_child(nd, dentry, seq))
1613 return -ECHILD;
1614 if (unlikely(status == -ECHILD))
1615 /* we'd been told to redo it in non-rcu mode */
1616 status = d_revalidate(dentry, nd->flags);
1617 } else {
1618 dentry = __d_lookup(parent, &nd->last);
1619 if (unlikely(!dentry))
1620 return 0;
1621 status = d_revalidate(dentry, nd->flags);
1622 }
1623 if (unlikely(status <= 0)) {
1624 if (!status)
1625 d_invalidate(dentry);
1626 dput(dentry);
1627 return status;
1628 }
1629 if (unlikely(d_is_negative(dentry))) {
1630 dput(dentry);
1631 return -ENOENT;
1632 }
1633
1634 path->mnt = mnt;
1635 path->dentry = dentry;
1636 err = follow_managed(path, nd);
1637 if (likely(err > 0))
1638 *inode = d_backing_inode(path->dentry);
1639 return err;
1640 }
1641
1642 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1643 static struct dentry *__lookup_slow(const struct qstr *name,
1644 struct dentry *dir,
1645 unsigned int flags)
1646 {
1647 struct dentry *dentry, *old;
1648 struct inode *inode = dir->d_inode;
1649 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1650
1651 /* Don't go there if it's already dead */
1652 if (unlikely(IS_DEADDIR(inode)))
1653 return ERR_PTR(-ENOENT);
1654 again:
1655 dentry = d_alloc_parallel(dir, name, &wq);
1656 if (IS_ERR(dentry))
1657 return dentry;
1658 if (unlikely(!d_in_lookup(dentry))) {
1659 if (!(flags & LOOKUP_NO_REVAL)) {
1660 int error = d_revalidate(dentry, flags);
1661 if (unlikely(error <= 0)) {
1662 if (!error) {
1663 d_invalidate(dentry);
1664 dput(dentry);
1665 goto again;
1666 }
1667 dput(dentry);
1668 dentry = ERR_PTR(error);
1669 }
1670 }
1671 } else {
1672 old = inode->i_op->lookup(inode, dentry, flags);
1673 d_lookup_done(dentry);
1674 if (unlikely(old)) {
1675 dput(dentry);
1676 dentry = old;
1677 }
1678 }
1679 return dentry;
1680 }
1681
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1682 static struct dentry *lookup_slow(const struct qstr *name,
1683 struct dentry *dir,
1684 unsigned int flags)
1685 {
1686 struct inode *inode = dir->d_inode;
1687 struct dentry *res;
1688 inode_lock_shared(inode);
1689 res = __lookup_slow(name, dir, flags);
1690 inode_unlock_shared(inode);
1691 return res;
1692 }
1693
may_lookup(struct nameidata * nd)1694 static inline int may_lookup(struct nameidata *nd)
1695 {
1696 if (nd->flags & LOOKUP_RCU) {
1697 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1698 if (err != -ECHILD)
1699 return err;
1700 if (unlazy_walk(nd))
1701 return -ECHILD;
1702 }
1703 return inode_permission(nd->inode, MAY_EXEC);
1704 }
1705
handle_dots(struct nameidata * nd,int type)1706 static inline int handle_dots(struct nameidata *nd, int type)
1707 {
1708 if (type == LAST_DOTDOT) {
1709 if (!nd->root.mnt)
1710 set_root(nd);
1711 if (nd->flags & LOOKUP_RCU) {
1712 return follow_dotdot_rcu(nd);
1713 } else
1714 return follow_dotdot(nd);
1715 }
1716 return 0;
1717 }
1718
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1719 static int pick_link(struct nameidata *nd, struct path *link,
1720 struct inode *inode, unsigned seq)
1721 {
1722 int error;
1723 struct saved *last;
1724 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1725 path_to_nameidata(link, nd);
1726 return -ELOOP;
1727 }
1728 if (!(nd->flags & LOOKUP_RCU)) {
1729 if (link->mnt == nd->path.mnt)
1730 mntget(link->mnt);
1731 }
1732 error = nd_alloc_stack(nd);
1733 if (unlikely(error)) {
1734 if (error == -ECHILD) {
1735 if (unlikely(!legitimize_path(nd, link, seq))) {
1736 drop_links(nd);
1737 nd->depth = 0;
1738 nd->flags &= ~LOOKUP_RCU;
1739 nd->path.mnt = NULL;
1740 nd->path.dentry = NULL;
1741 if (!(nd->flags & LOOKUP_ROOT))
1742 nd->root.mnt = NULL;
1743 rcu_read_unlock();
1744 } else if (likely(unlazy_walk(nd)) == 0)
1745 error = nd_alloc_stack(nd);
1746 }
1747 if (error) {
1748 path_put(link);
1749 return error;
1750 }
1751 }
1752
1753 last = nd->stack + nd->depth++;
1754 last->link = *link;
1755 clear_delayed_call(&last->done);
1756 nd->link_inode = inode;
1757 last->seq = seq;
1758 return 1;
1759 }
1760
1761 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1762
1763 /*
1764 * Do we need to follow links? We _really_ want to be able
1765 * to do this check without having to look at inode->i_op,
1766 * so we keep a cache of "no, this doesn't need follow_link"
1767 * for the common case.
1768 */
step_into(struct nameidata * nd,struct path * path,int flags,struct inode * inode,unsigned seq)1769 static inline int step_into(struct nameidata *nd, struct path *path,
1770 int flags, struct inode *inode, unsigned seq)
1771 {
1772 if (!(flags & WALK_MORE) && nd->depth)
1773 put_link(nd);
1774 if (likely(!d_is_symlink(path->dentry)) ||
1775 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1776 /* not a symlink or should not follow */
1777 path_to_nameidata(path, nd);
1778 nd->inode = inode;
1779 nd->seq = seq;
1780 return 0;
1781 }
1782 /* make sure that d_is_symlink above matches inode */
1783 if (nd->flags & LOOKUP_RCU) {
1784 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1785 return -ECHILD;
1786 }
1787 return pick_link(nd, path, inode, seq);
1788 }
1789
walk_component(struct nameidata * nd,int flags)1790 static int walk_component(struct nameidata *nd, int flags)
1791 {
1792 struct path path;
1793 struct inode *inode;
1794 unsigned seq;
1795 int err;
1796 /*
1797 * "." and ".." are special - ".." especially so because it has
1798 * to be able to know about the current root directory and
1799 * parent relationships.
1800 */
1801 if (unlikely(nd->last_type != LAST_NORM)) {
1802 err = handle_dots(nd, nd->last_type);
1803 if (!(flags & WALK_MORE) && nd->depth)
1804 put_link(nd);
1805 return err;
1806 }
1807 err = lookup_fast(nd, &path, &inode, &seq);
1808 if (unlikely(err <= 0)) {
1809 if (err < 0)
1810 return err;
1811 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1812 nd->flags);
1813 if (IS_ERR(path.dentry))
1814 return PTR_ERR(path.dentry);
1815
1816 path.mnt = nd->path.mnt;
1817 err = follow_managed(&path, nd);
1818 if (unlikely(err < 0))
1819 return err;
1820
1821 if (unlikely(d_is_negative(path.dentry))) {
1822 path_to_nameidata(&path, nd);
1823 return -ENOENT;
1824 }
1825
1826 seq = 0; /* we are already out of RCU mode */
1827 inode = d_backing_inode(path.dentry);
1828 }
1829
1830 return step_into(nd, &path, flags, inode, seq);
1831 }
1832
1833 /*
1834 * We can do the critical dentry name comparison and hashing
1835 * operations one word at a time, but we are limited to:
1836 *
1837 * - Architectures with fast unaligned word accesses. We could
1838 * do a "get_unaligned()" if this helps and is sufficiently
1839 * fast.
1840 *
1841 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1842 * do not trap on the (extremely unlikely) case of a page
1843 * crossing operation.
1844 *
1845 * - Furthermore, we need an efficient 64-bit compile for the
1846 * 64-bit case in order to generate the "number of bytes in
1847 * the final mask". Again, that could be replaced with a
1848 * efficient population count instruction or similar.
1849 */
1850 #ifdef CONFIG_DCACHE_WORD_ACCESS
1851
1852 #include <asm/word-at-a-time.h>
1853
1854 #ifdef HASH_MIX
1855
1856 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1857
1858 #elif defined(CONFIG_64BIT)
1859 /*
1860 * Register pressure in the mixing function is an issue, particularly
1861 * on 32-bit x86, but almost any function requires one state value and
1862 * one temporary. Instead, use a function designed for two state values
1863 * and no temporaries.
1864 *
1865 * This function cannot create a collision in only two iterations, so
1866 * we have two iterations to achieve avalanche. In those two iterations,
1867 * we have six layers of mixing, which is enough to spread one bit's
1868 * influence out to 2^6 = 64 state bits.
1869 *
1870 * Rotate constants are scored by considering either 64 one-bit input
1871 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1872 * probability of that delta causing a change to each of the 128 output
1873 * bits, using a sample of random initial states.
1874 *
1875 * The Shannon entropy of the computed probabilities is then summed
1876 * to produce a score. Ideally, any input change has a 50% chance of
1877 * toggling any given output bit.
1878 *
1879 * Mixing scores (in bits) for (12,45):
1880 * Input delta: 1-bit 2-bit
1881 * 1 round: 713.3 42542.6
1882 * 2 rounds: 2753.7 140389.8
1883 * 3 rounds: 5954.1 233458.2
1884 * 4 rounds: 7862.6 256672.2
1885 * Perfect: 8192 258048
1886 * (64*128) (64*63/2 * 128)
1887 */
1888 #define HASH_MIX(x, y, a) \
1889 ( x ^= (a), \
1890 y ^= x, x = rol64(x,12),\
1891 x += y, y = rol64(y,45),\
1892 y *= 9 )
1893
1894 /*
1895 * Fold two longs into one 32-bit hash value. This must be fast, but
1896 * latency isn't quite as critical, as there is a fair bit of additional
1897 * work done before the hash value is used.
1898 */
fold_hash(unsigned long x,unsigned long y)1899 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1900 {
1901 y ^= x * GOLDEN_RATIO_64;
1902 y *= GOLDEN_RATIO_64;
1903 return y >> 32;
1904 }
1905
1906 #else /* 32-bit case */
1907
1908 /*
1909 * Mixing scores (in bits) for (7,20):
1910 * Input delta: 1-bit 2-bit
1911 * 1 round: 330.3 9201.6
1912 * 2 rounds: 1246.4 25475.4
1913 * 3 rounds: 1907.1 31295.1
1914 * 4 rounds: 2042.3 31718.6
1915 * Perfect: 2048 31744
1916 * (32*64) (32*31/2 * 64)
1917 */
1918 #define HASH_MIX(x, y, a) \
1919 ( x ^= (a), \
1920 y ^= x, x = rol32(x, 7),\
1921 x += y, y = rol32(y,20),\
1922 y *= 9 )
1923
fold_hash(unsigned long x,unsigned long y)1924 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1925 {
1926 /* Use arch-optimized multiply if one exists */
1927 return __hash_32(y ^ __hash_32(x));
1928 }
1929
1930 #endif
1931
1932 /*
1933 * Return the hash of a string of known length. This is carfully
1934 * designed to match hash_name(), which is the more critical function.
1935 * In particular, we must end by hashing a final word containing 0..7
1936 * payload bytes, to match the way that hash_name() iterates until it
1937 * finds the delimiter after the name.
1938 */
full_name_hash(const void * salt,const char * name,unsigned int len)1939 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1940 {
1941 unsigned long a, x = 0, y = (unsigned long)salt;
1942
1943 for (;;) {
1944 if (!len)
1945 goto done;
1946 a = load_unaligned_zeropad(name);
1947 if (len < sizeof(unsigned long))
1948 break;
1949 HASH_MIX(x, y, a);
1950 name += sizeof(unsigned long);
1951 len -= sizeof(unsigned long);
1952 }
1953 x ^= a & bytemask_from_count(len);
1954 done:
1955 return fold_hash(x, y);
1956 }
1957 EXPORT_SYMBOL(full_name_hash);
1958
1959 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)1960 u64 hashlen_string(const void *salt, const char *name)
1961 {
1962 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1963 unsigned long adata, mask, len;
1964 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1965
1966 len = 0;
1967 goto inside;
1968
1969 do {
1970 HASH_MIX(x, y, a);
1971 len += sizeof(unsigned long);
1972 inside:
1973 a = load_unaligned_zeropad(name+len);
1974 } while (!has_zero(a, &adata, &constants));
1975
1976 adata = prep_zero_mask(a, adata, &constants);
1977 mask = create_zero_mask(adata);
1978 x ^= a & zero_bytemask(mask);
1979
1980 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1981 }
1982 EXPORT_SYMBOL(hashlen_string);
1983
1984 /*
1985 * Calculate the length and hash of the path component, and
1986 * return the "hash_len" as the result.
1987 */
hash_name(const void * salt,const char * name)1988 static inline u64 hash_name(const void *salt, const char *name)
1989 {
1990 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1991 unsigned long adata, bdata, mask, len;
1992 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1993
1994 len = 0;
1995 goto inside;
1996
1997 do {
1998 HASH_MIX(x, y, a);
1999 len += sizeof(unsigned long);
2000 inside:
2001 a = load_unaligned_zeropad(name+len);
2002 b = a ^ REPEAT_BYTE('/');
2003 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2004
2005 adata = prep_zero_mask(a, adata, &constants);
2006 bdata = prep_zero_mask(b, bdata, &constants);
2007 mask = create_zero_mask(adata | bdata);
2008 x ^= a & zero_bytemask(mask);
2009
2010 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2011 }
2012
2013 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2014
2015 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2016 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2017 {
2018 unsigned long hash = init_name_hash(salt);
2019 while (len--)
2020 hash = partial_name_hash((unsigned char)*name++, hash);
2021 return end_name_hash(hash);
2022 }
2023 EXPORT_SYMBOL(full_name_hash);
2024
2025 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2026 u64 hashlen_string(const void *salt, const char *name)
2027 {
2028 unsigned long hash = init_name_hash(salt);
2029 unsigned long len = 0, c;
2030
2031 c = (unsigned char)*name;
2032 while (c) {
2033 len++;
2034 hash = partial_name_hash(c, hash);
2035 c = (unsigned char)name[len];
2036 }
2037 return hashlen_create(end_name_hash(hash), len);
2038 }
2039 EXPORT_SYMBOL(hashlen_string);
2040
2041 /*
2042 * We know there's a real path component here of at least
2043 * one character.
2044 */
hash_name(const void * salt,const char * name)2045 static inline u64 hash_name(const void *salt, const char *name)
2046 {
2047 unsigned long hash = init_name_hash(salt);
2048 unsigned long len = 0, c;
2049
2050 c = (unsigned char)*name;
2051 do {
2052 len++;
2053 hash = partial_name_hash(c, hash);
2054 c = (unsigned char)name[len];
2055 } while (c && c != '/');
2056 return hashlen_create(end_name_hash(hash), len);
2057 }
2058
2059 #endif
2060
2061 /*
2062 * Name resolution.
2063 * This is the basic name resolution function, turning a pathname into
2064 * the final dentry. We expect 'base' to be positive and a directory.
2065 *
2066 * Returns 0 and nd will have valid dentry and mnt on success.
2067 * Returns error and drops reference to input namei data on failure.
2068 */
link_path_walk(const char * name,struct nameidata * nd)2069 static int link_path_walk(const char *name, struct nameidata *nd)
2070 {
2071 int err;
2072
2073 if (IS_ERR(name))
2074 return PTR_ERR(name);
2075 while (*name=='/')
2076 name++;
2077 if (!*name)
2078 return 0;
2079
2080 /* At this point we know we have a real path component. */
2081 for(;;) {
2082 u64 hash_len;
2083 int type;
2084
2085 err = may_lookup(nd);
2086 if (err)
2087 return err;
2088
2089 hash_len = hash_name(nd->path.dentry, name);
2090
2091 type = LAST_NORM;
2092 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2093 case 2:
2094 if (name[1] == '.') {
2095 type = LAST_DOTDOT;
2096 nd->flags |= LOOKUP_JUMPED;
2097 }
2098 break;
2099 case 1:
2100 type = LAST_DOT;
2101 }
2102 if (likely(type == LAST_NORM)) {
2103 struct dentry *parent = nd->path.dentry;
2104 nd->flags &= ~LOOKUP_JUMPED;
2105 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2106 struct qstr this = { { .hash_len = hash_len }, .name = name };
2107 err = parent->d_op->d_hash(parent, &this);
2108 if (err < 0)
2109 return err;
2110 hash_len = this.hash_len;
2111 name = this.name;
2112 }
2113 }
2114
2115 nd->last.hash_len = hash_len;
2116 nd->last.name = name;
2117 nd->last_type = type;
2118
2119 name += hashlen_len(hash_len);
2120 if (!*name)
2121 goto OK;
2122 /*
2123 * If it wasn't NUL, we know it was '/'. Skip that
2124 * slash, and continue until no more slashes.
2125 */
2126 do {
2127 name++;
2128 } while (unlikely(*name == '/'));
2129 if (unlikely(!*name)) {
2130 OK:
2131 /* pathname body, done */
2132 if (!nd->depth)
2133 return 0;
2134 name = nd->stack[nd->depth - 1].name;
2135 /* trailing symlink, done */
2136 if (!name)
2137 return 0;
2138 /* last component of nested symlink */
2139 err = walk_component(nd, WALK_FOLLOW);
2140 } else {
2141 /* not the last component */
2142 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2143 }
2144 if (err < 0)
2145 return err;
2146
2147 if (err) {
2148 const char *s = get_link(nd);
2149
2150 if (IS_ERR(s))
2151 return PTR_ERR(s);
2152 err = 0;
2153 if (unlikely(!s)) {
2154 /* jumped */
2155 put_link(nd);
2156 } else {
2157 nd->stack[nd->depth - 1].name = name;
2158 name = s;
2159 continue;
2160 }
2161 }
2162 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2163 if (nd->flags & LOOKUP_RCU) {
2164 if (unlazy_walk(nd))
2165 return -ECHILD;
2166 }
2167 return -ENOTDIR;
2168 }
2169 }
2170 }
2171
2172 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2173 static const char *path_init(struct nameidata *nd, unsigned flags)
2174 {
2175 const char *s = nd->name->name;
2176
2177 if (!*s)
2178 flags &= ~LOOKUP_RCU;
2179 if (flags & LOOKUP_RCU)
2180 rcu_read_lock();
2181
2182 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2183 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2184 nd->depth = 0;
2185 if (flags & LOOKUP_ROOT) {
2186 struct dentry *root = nd->root.dentry;
2187 struct inode *inode = root->d_inode;
2188 if (*s && unlikely(!d_can_lookup(root)))
2189 return ERR_PTR(-ENOTDIR);
2190 nd->path = nd->root;
2191 nd->inode = inode;
2192 if (flags & LOOKUP_RCU) {
2193 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2194 nd->root_seq = nd->seq;
2195 nd->m_seq = read_seqbegin(&mount_lock);
2196 } else {
2197 path_get(&nd->path);
2198 }
2199 return s;
2200 }
2201
2202 nd->root.mnt = NULL;
2203 nd->path.mnt = NULL;
2204 nd->path.dentry = NULL;
2205
2206 nd->m_seq = read_seqbegin(&mount_lock);
2207 if (*s == '/') {
2208 set_root(nd);
2209 if (likely(!nd_jump_root(nd)))
2210 return s;
2211 return ERR_PTR(-ECHILD);
2212 } else if (nd->dfd == AT_FDCWD) {
2213 if (flags & LOOKUP_RCU) {
2214 struct fs_struct *fs = current->fs;
2215 unsigned seq;
2216
2217 do {
2218 seq = read_seqcount_begin(&fs->seq);
2219 nd->path = fs->pwd;
2220 nd->inode = nd->path.dentry->d_inode;
2221 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2222 } while (read_seqcount_retry(&fs->seq, seq));
2223 } else {
2224 get_fs_pwd(current->fs, &nd->path);
2225 nd->inode = nd->path.dentry->d_inode;
2226 }
2227 return s;
2228 } else {
2229 /* Caller must check execute permissions on the starting path component */
2230 struct fd f = fdget_raw(nd->dfd);
2231 struct dentry *dentry;
2232
2233 if (!f.file)
2234 return ERR_PTR(-EBADF);
2235
2236 dentry = f.file->f_path.dentry;
2237
2238 if (*s && unlikely(!d_can_lookup(dentry))) {
2239 fdput(f);
2240 return ERR_PTR(-ENOTDIR);
2241 }
2242
2243 nd->path = f.file->f_path;
2244 if (flags & LOOKUP_RCU) {
2245 nd->inode = nd->path.dentry->d_inode;
2246 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2247 } else {
2248 path_get(&nd->path);
2249 nd->inode = nd->path.dentry->d_inode;
2250 }
2251 fdput(f);
2252 return s;
2253 }
2254 }
2255
trailing_symlink(struct nameidata * nd)2256 static const char *trailing_symlink(struct nameidata *nd)
2257 {
2258 const char *s;
2259 int error = may_follow_link(nd);
2260 if (unlikely(error))
2261 return ERR_PTR(error);
2262 nd->flags |= LOOKUP_PARENT;
2263 nd->stack[0].name = NULL;
2264 s = get_link(nd);
2265 return s ? s : "";
2266 }
2267
lookup_last(struct nameidata * nd)2268 static inline int lookup_last(struct nameidata *nd)
2269 {
2270 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2271 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2272
2273 nd->flags &= ~LOOKUP_PARENT;
2274 return walk_component(nd, 0);
2275 }
2276
handle_lookup_down(struct nameidata * nd)2277 static int handle_lookup_down(struct nameidata *nd)
2278 {
2279 struct path path = nd->path;
2280 struct inode *inode = nd->inode;
2281 unsigned seq = nd->seq;
2282 int err;
2283
2284 if (nd->flags & LOOKUP_RCU) {
2285 /*
2286 * don't bother with unlazy_walk on failure - we are
2287 * at the very beginning of walk, so we lose nothing
2288 * if we simply redo everything in non-RCU mode
2289 */
2290 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2291 return -ECHILD;
2292 } else {
2293 dget(path.dentry);
2294 err = follow_managed(&path, nd);
2295 if (unlikely(err < 0))
2296 return err;
2297 inode = d_backing_inode(path.dentry);
2298 seq = 0;
2299 }
2300 path_to_nameidata(&path, nd);
2301 nd->inode = inode;
2302 nd->seq = seq;
2303 return 0;
2304 }
2305
2306 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2307 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2308 {
2309 const char *s = path_init(nd, flags);
2310 int err;
2311
2312 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2313 err = handle_lookup_down(nd);
2314 if (unlikely(err < 0))
2315 s = ERR_PTR(err);
2316 }
2317
2318 while (!(err = link_path_walk(s, nd))
2319 && ((err = lookup_last(nd)) > 0)) {
2320 s = trailing_symlink(nd);
2321 }
2322 if (!err)
2323 err = complete_walk(nd);
2324
2325 if (!err && nd->flags & LOOKUP_DIRECTORY)
2326 if (!d_can_lookup(nd->path.dentry))
2327 err = -ENOTDIR;
2328 if (!err) {
2329 *path = nd->path;
2330 nd->path.mnt = NULL;
2331 nd->path.dentry = NULL;
2332 }
2333 terminate_walk(nd);
2334 return err;
2335 }
2336
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2337 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2338 struct path *path, struct path *root)
2339 {
2340 int retval;
2341 struct nameidata nd;
2342 if (IS_ERR(name))
2343 return PTR_ERR(name);
2344 if (unlikely(root)) {
2345 nd.root = *root;
2346 flags |= LOOKUP_ROOT;
2347 }
2348 set_nameidata(&nd, dfd, name);
2349 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2350 if (unlikely(retval == -ECHILD))
2351 retval = path_lookupat(&nd, flags, path);
2352 if (unlikely(retval == -ESTALE))
2353 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2354
2355 if (likely(!retval))
2356 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2357 restore_nameidata();
2358 putname(name);
2359 return retval;
2360 }
2361
2362 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2363 static int path_parentat(struct nameidata *nd, unsigned flags,
2364 struct path *parent)
2365 {
2366 const char *s = path_init(nd, flags);
2367 int err = link_path_walk(s, nd);
2368 if (!err)
2369 err = complete_walk(nd);
2370 if (!err) {
2371 *parent = nd->path;
2372 nd->path.mnt = NULL;
2373 nd->path.dentry = NULL;
2374 }
2375 terminate_walk(nd);
2376 return err;
2377 }
2378
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2379 static struct filename *filename_parentat(int dfd, struct filename *name,
2380 unsigned int flags, struct path *parent,
2381 struct qstr *last, int *type)
2382 {
2383 int retval;
2384 struct nameidata nd;
2385
2386 if (IS_ERR(name))
2387 return name;
2388 set_nameidata(&nd, dfd, name);
2389 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2390 if (unlikely(retval == -ECHILD))
2391 retval = path_parentat(&nd, flags, parent);
2392 if (unlikely(retval == -ESTALE))
2393 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2394 if (likely(!retval)) {
2395 *last = nd.last;
2396 *type = nd.last_type;
2397 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2398 } else {
2399 putname(name);
2400 name = ERR_PTR(retval);
2401 }
2402 restore_nameidata();
2403 return name;
2404 }
2405
2406 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2407 struct dentry *kern_path_locked(const char *name, struct path *path)
2408 {
2409 struct filename *filename;
2410 struct dentry *d;
2411 struct qstr last;
2412 int type;
2413
2414 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2415 &last, &type);
2416 if (IS_ERR(filename))
2417 return ERR_CAST(filename);
2418 if (unlikely(type != LAST_NORM)) {
2419 path_put(path);
2420 putname(filename);
2421 return ERR_PTR(-EINVAL);
2422 }
2423 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2424 d = __lookup_hash(&last, path->dentry, 0);
2425 if (IS_ERR(d)) {
2426 inode_unlock(path->dentry->d_inode);
2427 path_put(path);
2428 }
2429 putname(filename);
2430 return d;
2431 }
2432
kern_path(const char * name,unsigned int flags,struct path * path)2433 int kern_path(const char *name, unsigned int flags, struct path *path)
2434 {
2435 return filename_lookup(AT_FDCWD, getname_kernel(name),
2436 flags, path, NULL);
2437 }
2438 EXPORT_SYMBOL(kern_path);
2439
2440 /**
2441 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2442 * @dentry: pointer to dentry of the base directory
2443 * @mnt: pointer to vfs mount of the base directory
2444 * @name: pointer to file name
2445 * @flags: lookup flags
2446 * @path: pointer to struct path to fill
2447 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2448 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2449 const char *name, unsigned int flags,
2450 struct path *path)
2451 {
2452 struct path root = {.mnt = mnt, .dentry = dentry};
2453 /* the first argument of filename_lookup() is ignored with root */
2454 return filename_lookup(AT_FDCWD, getname_kernel(name),
2455 flags , path, &root);
2456 }
2457 EXPORT_SYMBOL(vfs_path_lookup);
2458
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2459 static int lookup_one_len_common(const char *name, struct dentry *base,
2460 int len, struct qstr *this)
2461 {
2462 this->name = name;
2463 this->len = len;
2464 this->hash = full_name_hash(base, name, len);
2465 if (!len)
2466 return -EACCES;
2467
2468 if (unlikely(name[0] == '.')) {
2469 if (len < 2 || (len == 2 && name[1] == '.'))
2470 return -EACCES;
2471 }
2472
2473 while (len--) {
2474 unsigned int c = *(const unsigned char *)name++;
2475 if (c == '/' || c == '\0')
2476 return -EACCES;
2477 }
2478 /*
2479 * See if the low-level filesystem might want
2480 * to use its own hash..
2481 */
2482 if (base->d_flags & DCACHE_OP_HASH) {
2483 int err = base->d_op->d_hash(base, this);
2484 if (err < 0)
2485 return err;
2486 }
2487
2488 return inode_permission(base->d_inode, MAY_EXEC);
2489 }
2490
2491 /**
2492 * try_lookup_one_len - filesystem helper to lookup single pathname component
2493 * @name: pathname component to lookup
2494 * @base: base directory to lookup from
2495 * @len: maximum length @len should be interpreted to
2496 *
2497 * Look up a dentry by name in the dcache, returning NULL if it does not
2498 * currently exist. The function does not try to create a dentry.
2499 *
2500 * Note that this routine is purely a helper for filesystem usage and should
2501 * not be called by generic code.
2502 *
2503 * The caller must hold base->i_mutex.
2504 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2505 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2506 {
2507 struct qstr this;
2508 int err;
2509
2510 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2511
2512 err = lookup_one_len_common(name, base, len, &this);
2513 if (err)
2514 return ERR_PTR(err);
2515
2516 return lookup_dcache(&this, base, 0);
2517 }
2518 EXPORT_SYMBOL(try_lookup_one_len);
2519
2520 /**
2521 * lookup_one_len - filesystem helper to lookup single pathname component
2522 * @name: pathname component to lookup
2523 * @base: base directory to lookup from
2524 * @len: maximum length @len should be interpreted to
2525 *
2526 * Note that this routine is purely a helper for filesystem usage and should
2527 * not be called by generic code.
2528 *
2529 * The caller must hold base->i_mutex.
2530 */
lookup_one_len(const char * name,struct dentry * base,int len)2531 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2532 {
2533 struct dentry *dentry;
2534 struct qstr this;
2535 int err;
2536
2537 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2538
2539 err = lookup_one_len_common(name, base, len, &this);
2540 if (err)
2541 return ERR_PTR(err);
2542
2543 dentry = lookup_dcache(&this, base, 0);
2544 return dentry ? dentry : __lookup_slow(&this, base, 0);
2545 }
2546 EXPORT_SYMBOL(lookup_one_len);
2547
2548 /**
2549 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2550 * @name: pathname component to lookup
2551 * @base: base directory to lookup from
2552 * @len: maximum length @len should be interpreted to
2553 *
2554 * Note that this routine is purely a helper for filesystem usage and should
2555 * not be called by generic code.
2556 *
2557 * Unlike lookup_one_len, it should be called without the parent
2558 * i_mutex held, and will take the i_mutex itself if necessary.
2559 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2560 struct dentry *lookup_one_len_unlocked(const char *name,
2561 struct dentry *base, int len)
2562 {
2563 struct qstr this;
2564 int err;
2565 struct dentry *ret;
2566
2567 err = lookup_one_len_common(name, base, len, &this);
2568 if (err)
2569 return ERR_PTR(err);
2570
2571 ret = lookup_dcache(&this, base, 0);
2572 if (!ret)
2573 ret = lookup_slow(&this, base, 0);
2574 return ret;
2575 }
2576 EXPORT_SYMBOL(lookup_one_len_unlocked);
2577
2578 /*
2579 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2580 * on negatives. Returns known positive or ERR_PTR(); that's what
2581 * most of the users want. Note that pinned negative with unlocked parent
2582 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2583 * need to be very careful; pinned positives have ->d_inode stable, so
2584 * this one avoids such problems.
2585 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2586 struct dentry *lookup_positive_unlocked(const char *name,
2587 struct dentry *base, int len)
2588 {
2589 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2590 if (!IS_ERR(ret) && d_is_negative(ret)) {
2591 dput(ret);
2592 ret = ERR_PTR(-ENOENT);
2593 }
2594 return ret;
2595 }
2596 EXPORT_SYMBOL(lookup_positive_unlocked);
2597
2598 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2599 int path_pts(struct path *path)
2600 {
2601 /* Find something mounted on "pts" in the same directory as
2602 * the input path.
2603 */
2604 struct dentry *child, *parent;
2605 struct qstr this;
2606 int ret;
2607
2608 ret = path_parent_directory(path);
2609 if (ret)
2610 return ret;
2611
2612 parent = path->dentry;
2613 this.name = "pts";
2614 this.len = 3;
2615 child = d_hash_and_lookup(parent, &this);
2616 if (IS_ERR_OR_NULL(child))
2617 return -ENOENT;
2618
2619 path->dentry = child;
2620 dput(parent);
2621 follow_mount(path);
2622 return 0;
2623 }
2624 #endif
2625
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2626 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2627 struct path *path, int *empty)
2628 {
2629 return filename_lookup(dfd, getname_flags(name, flags, empty),
2630 flags, path, NULL);
2631 }
2632 EXPORT_SYMBOL(user_path_at_empty);
2633
2634 /**
2635 * mountpoint_last - look up last component for umount
2636 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2637 *
2638 * This is a special lookup_last function just for umount. In this case, we
2639 * need to resolve the path without doing any revalidation.
2640 *
2641 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2642 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2643 * in almost all cases, this lookup will be served out of the dcache. The only
2644 * cases where it won't are if nd->last refers to a symlink or the path is
2645 * bogus and it doesn't exist.
2646 *
2647 * Returns:
2648 * -error: if there was an error during lookup. This includes -ENOENT if the
2649 * lookup found a negative dentry.
2650 *
2651 * 0: if we successfully resolved nd->last and found it to not to be a
2652 * symlink that needs to be followed.
2653 *
2654 * 1: if we successfully resolved nd->last and found it to be a symlink
2655 * that needs to be followed.
2656 */
2657 static int
mountpoint_last(struct nameidata * nd)2658 mountpoint_last(struct nameidata *nd)
2659 {
2660 int error = 0;
2661 struct dentry *dir = nd->path.dentry;
2662 struct path path;
2663
2664 /* If we're in rcuwalk, drop out of it to handle last component */
2665 if (nd->flags & LOOKUP_RCU) {
2666 if (unlazy_walk(nd))
2667 return -ECHILD;
2668 }
2669
2670 nd->flags &= ~LOOKUP_PARENT;
2671
2672 if (unlikely(nd->last_type != LAST_NORM)) {
2673 error = handle_dots(nd, nd->last_type);
2674 if (error)
2675 return error;
2676 path.dentry = dget(nd->path.dentry);
2677 } else {
2678 path.dentry = d_lookup(dir, &nd->last);
2679 if (!path.dentry) {
2680 /*
2681 * No cached dentry. Mounted dentries are pinned in the
2682 * cache, so that means that this dentry is probably
2683 * a symlink or the path doesn't actually point
2684 * to a mounted dentry.
2685 */
2686 path.dentry = lookup_slow(&nd->last, dir,
2687 nd->flags | LOOKUP_NO_REVAL);
2688 if (IS_ERR(path.dentry))
2689 return PTR_ERR(path.dentry);
2690 }
2691 }
2692 if (d_is_negative(path.dentry)) {
2693 dput(path.dentry);
2694 return -ENOENT;
2695 }
2696 path.mnt = nd->path.mnt;
2697 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2698 }
2699
2700 /**
2701 * path_mountpoint - look up a path to be umounted
2702 * @nd: lookup context
2703 * @flags: lookup flags
2704 * @path: pointer to container for result
2705 *
2706 * Look up the given name, but don't attempt to revalidate the last component.
2707 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2708 */
2709 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2710 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2711 {
2712 const char *s = path_init(nd, flags);
2713 int err;
2714
2715 while (!(err = link_path_walk(s, nd)) &&
2716 (err = mountpoint_last(nd)) > 0) {
2717 s = trailing_symlink(nd);
2718 }
2719 if (!err) {
2720 *path = nd->path;
2721 nd->path.mnt = NULL;
2722 nd->path.dentry = NULL;
2723 follow_mount(path);
2724 }
2725 terminate_walk(nd);
2726 return err;
2727 }
2728
2729 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2730 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2731 unsigned int flags)
2732 {
2733 struct nameidata nd;
2734 int error;
2735 if (IS_ERR(name))
2736 return PTR_ERR(name);
2737 set_nameidata(&nd, dfd, name);
2738 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2739 if (unlikely(error == -ECHILD))
2740 error = path_mountpoint(&nd, flags, path);
2741 if (unlikely(error == -ESTALE))
2742 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2743 if (likely(!error))
2744 audit_inode(name, path->dentry, 0);
2745 restore_nameidata();
2746 putname(name);
2747 return error;
2748 }
2749
2750 /**
2751 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2752 * @dfd: directory file descriptor
2753 * @name: pathname from userland
2754 * @flags: lookup flags
2755 * @path: pointer to container to hold result
2756 *
2757 * A umount is a special case for path walking. We're not actually interested
2758 * in the inode in this situation, and ESTALE errors can be a problem. We
2759 * simply want track down the dentry and vfsmount attached at the mountpoint
2760 * and avoid revalidating the last component.
2761 *
2762 * Returns 0 and populates "path" on success.
2763 */
2764 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2765 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2766 struct path *path)
2767 {
2768 return filename_mountpoint(dfd, getname(name), path, flags);
2769 }
2770
2771 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2772 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2773 unsigned int flags)
2774 {
2775 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2776 }
2777 EXPORT_SYMBOL(kern_path_mountpoint);
2778
__check_sticky(struct inode * dir,struct inode * inode)2779 int __check_sticky(struct inode *dir, struct inode *inode)
2780 {
2781 kuid_t fsuid = current_fsuid();
2782
2783 if (uid_eq(inode->i_uid, fsuid))
2784 return 0;
2785 if (uid_eq(dir->i_uid, fsuid))
2786 return 0;
2787 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2788 }
2789 EXPORT_SYMBOL(__check_sticky);
2790
2791 /*
2792 * Check whether we can remove a link victim from directory dir, check
2793 * whether the type of victim is right.
2794 * 1. We can't do it if dir is read-only (done in permission())
2795 * 2. We should have write and exec permissions on dir
2796 * 3. We can't remove anything from append-only dir
2797 * 4. We can't do anything with immutable dir (done in permission())
2798 * 5. If the sticky bit on dir is set we should either
2799 * a. be owner of dir, or
2800 * b. be owner of victim, or
2801 * c. have CAP_FOWNER capability
2802 * 6. If the victim is append-only or immutable we can't do antyhing with
2803 * links pointing to it.
2804 * 7. If the victim has an unknown uid or gid we can't change the inode.
2805 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2806 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2807 * 10. We can't remove a root or mountpoint.
2808 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2809 * nfs_async_unlink().
2810 */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2811 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2812 {
2813 struct inode *inode = d_backing_inode(victim);
2814 int error;
2815
2816 if (d_is_negative(victim))
2817 return -ENOENT;
2818 BUG_ON(!inode);
2819
2820 BUG_ON(victim->d_parent->d_inode != dir);
2821
2822 /* Inode writeback is not safe when the uid or gid are invalid. */
2823 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2824 return -EOVERFLOW;
2825
2826 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2827
2828 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2829 if (error)
2830 return error;
2831 if (IS_APPEND(dir))
2832 return -EPERM;
2833
2834 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2835 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2836 return -EPERM;
2837 if (isdir) {
2838 if (!d_is_dir(victim))
2839 return -ENOTDIR;
2840 if (IS_ROOT(victim))
2841 return -EBUSY;
2842 } else if (d_is_dir(victim))
2843 return -EISDIR;
2844 if (IS_DEADDIR(dir))
2845 return -ENOENT;
2846 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2847 return -EBUSY;
2848 return 0;
2849 }
2850
2851 /* Check whether we can create an object with dentry child in directory
2852 * dir.
2853 * 1. We can't do it if child already exists (open has special treatment for
2854 * this case, but since we are inlined it's OK)
2855 * 2. We can't do it if dir is read-only (done in permission())
2856 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2857 * 4. We should have write and exec permissions on dir
2858 * 5. We can't do it if dir is immutable (done in permission())
2859 */
may_create(struct inode * dir,struct dentry * child)2860 static inline int may_create(struct inode *dir, struct dentry *child)
2861 {
2862 struct user_namespace *s_user_ns;
2863 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2864 if (child->d_inode)
2865 return -EEXIST;
2866 if (IS_DEADDIR(dir))
2867 return -ENOENT;
2868 s_user_ns = dir->i_sb->s_user_ns;
2869 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2870 !kgid_has_mapping(s_user_ns, current_fsgid()))
2871 return -EOVERFLOW;
2872 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2873 }
2874
2875 /*
2876 * p1 and p2 should be directories on the same fs.
2877 */
lock_rename(struct dentry * p1,struct dentry * p2)2878 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2879 {
2880 struct dentry *p;
2881
2882 if (p1 == p2) {
2883 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2884 return NULL;
2885 }
2886
2887 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2888
2889 p = d_ancestor(p2, p1);
2890 if (p) {
2891 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2892 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2893 return p;
2894 }
2895
2896 p = d_ancestor(p1, p2);
2897 if (p) {
2898 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2899 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2900 return p;
2901 }
2902
2903 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2904 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2905 return NULL;
2906 }
2907 EXPORT_SYMBOL(lock_rename);
2908
unlock_rename(struct dentry * p1,struct dentry * p2)2909 void unlock_rename(struct dentry *p1, struct dentry *p2)
2910 {
2911 inode_unlock(p1->d_inode);
2912 if (p1 != p2) {
2913 inode_unlock(p2->d_inode);
2914 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2915 }
2916 }
2917 EXPORT_SYMBOL(unlock_rename);
2918
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2919 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2920 bool want_excl)
2921 {
2922 int error = may_create(dir, dentry);
2923 if (error)
2924 return error;
2925
2926 if (!dir->i_op->create)
2927 return -EACCES; /* shouldn't it be ENOSYS? */
2928 mode &= S_IALLUGO;
2929 mode |= S_IFREG;
2930 error = security_inode_create(dir, dentry, mode);
2931 if (error)
2932 return error;
2933 error = dir->i_op->create(dir, dentry, mode, want_excl);
2934 if (!error)
2935 fsnotify_create(dir, dentry);
2936 return error;
2937 }
2938 EXPORT_SYMBOL(vfs_create);
2939
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)2940 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2941 int (*f)(struct dentry *, umode_t, void *),
2942 void *arg)
2943 {
2944 struct inode *dir = dentry->d_parent->d_inode;
2945 int error = may_create(dir, dentry);
2946 if (error)
2947 return error;
2948
2949 mode &= S_IALLUGO;
2950 mode |= S_IFREG;
2951 error = security_inode_create(dir, dentry, mode);
2952 if (error)
2953 return error;
2954 error = f(dentry, mode, arg);
2955 if (!error)
2956 fsnotify_create(dir, dentry);
2957 return error;
2958 }
2959 EXPORT_SYMBOL(vfs_mkobj);
2960
may_open_dev(const struct path * path)2961 bool may_open_dev(const struct path *path)
2962 {
2963 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2964 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2965 }
2966
may_open(const struct path * path,int acc_mode,int flag)2967 static int may_open(const struct path *path, int acc_mode, int flag)
2968 {
2969 struct dentry *dentry = path->dentry;
2970 struct inode *inode = dentry->d_inode;
2971 int error;
2972
2973 if (!inode)
2974 return -ENOENT;
2975
2976 switch (inode->i_mode & S_IFMT) {
2977 case S_IFLNK:
2978 return -ELOOP;
2979 case S_IFDIR:
2980 if (acc_mode & MAY_WRITE)
2981 return -EISDIR;
2982 break;
2983 case S_IFBLK:
2984 case S_IFCHR:
2985 if (!may_open_dev(path))
2986 return -EACCES;
2987 /*FALLTHRU*/
2988 case S_IFIFO:
2989 case S_IFSOCK:
2990 flag &= ~O_TRUNC;
2991 break;
2992 }
2993
2994 error = inode_permission(inode, MAY_OPEN | acc_mode);
2995 if (error)
2996 return error;
2997
2998 /*
2999 * An append-only file must be opened in append mode for writing.
3000 */
3001 if (IS_APPEND(inode)) {
3002 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3003 return -EPERM;
3004 if (flag & O_TRUNC)
3005 return -EPERM;
3006 }
3007
3008 /* O_NOATIME can only be set by the owner or superuser */
3009 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3010 return -EPERM;
3011
3012 return 0;
3013 }
3014
handle_truncate(struct file * filp)3015 static int handle_truncate(struct file *filp)
3016 {
3017 const struct path *path = &filp->f_path;
3018 struct inode *inode = path->dentry->d_inode;
3019 int error = get_write_access(inode);
3020 if (error)
3021 return error;
3022 /*
3023 * Refuse to truncate files with mandatory locks held on them.
3024 */
3025 error = locks_verify_locked(filp);
3026 if (!error)
3027 error = security_path_truncate(path);
3028 if (!error) {
3029 error = do_truncate(path->dentry, 0,
3030 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3031 filp);
3032 }
3033 put_write_access(inode);
3034 return error;
3035 }
3036
open_to_namei_flags(int flag)3037 static inline int open_to_namei_flags(int flag)
3038 {
3039 if ((flag & O_ACCMODE) == 3)
3040 flag--;
3041 return flag;
3042 }
3043
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3044 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3045 {
3046 struct user_namespace *s_user_ns;
3047 int error = security_path_mknod(dir, dentry, mode, 0);
3048 if (error)
3049 return error;
3050
3051 s_user_ns = dir->dentry->d_sb->s_user_ns;
3052 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3053 !kgid_has_mapping(s_user_ns, current_fsgid()))
3054 return -EOVERFLOW;
3055
3056 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3057 if (error)
3058 return error;
3059
3060 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3061 }
3062
3063 /*
3064 * Attempt to atomically look up, create and open a file from a negative
3065 * dentry.
3066 *
3067 * Returns 0 if successful. The file will have been created and attached to
3068 * @file by the filesystem calling finish_open().
3069 *
3070 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3071 * be set. The caller will need to perform the open themselves. @path will
3072 * have been updated to point to the new dentry. This may be negative.
3073 *
3074 * Returns an error code otherwise.
3075 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode)3076 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3077 struct path *path, struct file *file,
3078 const struct open_flags *op,
3079 int open_flag, umode_t mode)
3080 {
3081 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3082 struct inode *dir = nd->path.dentry->d_inode;
3083 int error;
3084
3085 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3086 open_flag &= ~O_TRUNC;
3087
3088 if (nd->flags & LOOKUP_DIRECTORY)
3089 open_flag |= O_DIRECTORY;
3090
3091 file->f_path.dentry = DENTRY_NOT_SET;
3092 file->f_path.mnt = nd->path.mnt;
3093 error = dir->i_op->atomic_open(dir, dentry, file,
3094 open_to_namei_flags(open_flag), mode);
3095 d_lookup_done(dentry);
3096 if (!error) {
3097 if (file->f_mode & FMODE_OPENED) {
3098 /*
3099 * We didn't have the inode before the open, so check open
3100 * permission here.
3101 */
3102 int acc_mode = op->acc_mode;
3103 if (file->f_mode & FMODE_CREATED) {
3104 WARN_ON(!(open_flag & O_CREAT));
3105 fsnotify_create(dir, dentry);
3106 acc_mode = 0;
3107 }
3108 error = may_open(&file->f_path, acc_mode, open_flag);
3109 if (WARN_ON(error > 0))
3110 error = -EINVAL;
3111 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3112 error = -EIO;
3113 } else {
3114 if (file->f_path.dentry) {
3115 dput(dentry);
3116 dentry = file->f_path.dentry;
3117 }
3118 if (file->f_mode & FMODE_CREATED)
3119 fsnotify_create(dir, dentry);
3120 if (unlikely(d_is_negative(dentry))) {
3121 error = -ENOENT;
3122 } else {
3123 path->dentry = dentry;
3124 path->mnt = nd->path.mnt;
3125 return 0;
3126 }
3127 }
3128 }
3129 dput(dentry);
3130 return error;
3131 }
3132
3133 /*
3134 * Look up and maybe create and open the last component.
3135 *
3136 * Must be called with parent locked (exclusive in O_CREAT case).
3137 *
3138 * Returns 0 on success, that is, if
3139 * the file was successfully atomically created (if necessary) and opened, or
3140 * the file was not completely opened at this time, though lookups and
3141 * creations were performed.
3142 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3143 * In the latter case dentry returned in @path might be negative if O_CREAT
3144 * hadn't been specified.
3145 *
3146 * An error code is returned on failure.
3147 */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write)3148 static int lookup_open(struct nameidata *nd, struct path *path,
3149 struct file *file,
3150 const struct open_flags *op,
3151 bool got_write)
3152 {
3153 struct dentry *dir = nd->path.dentry;
3154 struct inode *dir_inode = dir->d_inode;
3155 int open_flag = op->open_flag;
3156 struct dentry *dentry;
3157 int error, create_error = 0;
3158 umode_t mode = op->mode;
3159 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3160
3161 if (unlikely(IS_DEADDIR(dir_inode)))
3162 return -ENOENT;
3163
3164 file->f_mode &= ~FMODE_CREATED;
3165 dentry = d_lookup(dir, &nd->last);
3166 for (;;) {
3167 if (!dentry) {
3168 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3169 if (IS_ERR(dentry))
3170 return PTR_ERR(dentry);
3171 }
3172 if (d_in_lookup(dentry))
3173 break;
3174
3175 error = d_revalidate(dentry, nd->flags);
3176 if (likely(error > 0))
3177 break;
3178 if (error)
3179 goto out_dput;
3180 d_invalidate(dentry);
3181 dput(dentry);
3182 dentry = NULL;
3183 }
3184 if (dentry->d_inode) {
3185 /* Cached positive dentry: will open in f_op->open */
3186 goto out_no_open;
3187 }
3188
3189 /*
3190 * Checking write permission is tricky, bacuse we don't know if we are
3191 * going to actually need it: O_CREAT opens should work as long as the
3192 * file exists. But checking existence breaks atomicity. The trick is
3193 * to check access and if not granted clear O_CREAT from the flags.
3194 *
3195 * Another problem is returing the "right" error value (e.g. for an
3196 * O_EXCL open we want to return EEXIST not EROFS).
3197 */
3198 if (open_flag & O_CREAT) {
3199 if (!IS_POSIXACL(dir->d_inode))
3200 mode &= ~current_umask();
3201 if (unlikely(!got_write)) {
3202 create_error = -EROFS;
3203 open_flag &= ~O_CREAT;
3204 if (open_flag & (O_EXCL | O_TRUNC))
3205 goto no_open;
3206 /* No side effects, safe to clear O_CREAT */
3207 } else {
3208 create_error = may_o_create(&nd->path, dentry, mode);
3209 if (create_error) {
3210 open_flag &= ~O_CREAT;
3211 if (open_flag & O_EXCL)
3212 goto no_open;
3213 }
3214 }
3215 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3216 unlikely(!got_write)) {
3217 /*
3218 * No O_CREATE -> atomicity not a requirement -> fall
3219 * back to lookup + open
3220 */
3221 goto no_open;
3222 }
3223
3224 if (dir_inode->i_op->atomic_open) {
3225 error = atomic_open(nd, dentry, path, file, op, open_flag,
3226 mode);
3227 if (unlikely(error == -ENOENT) && create_error)
3228 error = create_error;
3229 return error;
3230 }
3231
3232 no_open:
3233 if (d_in_lookup(dentry)) {
3234 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3235 nd->flags);
3236 d_lookup_done(dentry);
3237 if (unlikely(res)) {
3238 if (IS_ERR(res)) {
3239 error = PTR_ERR(res);
3240 goto out_dput;
3241 }
3242 dput(dentry);
3243 dentry = res;
3244 }
3245 }
3246
3247 /* Negative dentry, just create the file */
3248 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3249 file->f_mode |= FMODE_CREATED;
3250 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3251 if (!dir_inode->i_op->create) {
3252 error = -EACCES;
3253 goto out_dput;
3254 }
3255 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3256 open_flag & O_EXCL);
3257 if (error)
3258 goto out_dput;
3259 fsnotify_create(dir_inode, dentry);
3260 }
3261 if (unlikely(create_error) && !dentry->d_inode) {
3262 error = create_error;
3263 goto out_dput;
3264 }
3265 out_no_open:
3266 path->dentry = dentry;
3267 path->mnt = nd->path.mnt;
3268 return 0;
3269
3270 out_dput:
3271 dput(dentry);
3272 return error;
3273 }
3274
3275 /*
3276 * Handle the last step of open()
3277 */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op)3278 static int do_last(struct nameidata *nd,
3279 struct file *file, const struct open_flags *op)
3280 {
3281 struct dentry *dir = nd->path.dentry;
3282 kuid_t dir_uid = nd->inode->i_uid;
3283 umode_t dir_mode = nd->inode->i_mode;
3284 int open_flag = op->open_flag;
3285 bool will_truncate = (open_flag & O_TRUNC) != 0;
3286 bool got_write = false;
3287 int acc_mode = op->acc_mode;
3288 unsigned seq;
3289 struct inode *inode;
3290 struct path path;
3291 int error;
3292
3293 nd->flags &= ~LOOKUP_PARENT;
3294 nd->flags |= op->intent;
3295
3296 if (nd->last_type != LAST_NORM) {
3297 error = handle_dots(nd, nd->last_type);
3298 if (unlikely(error))
3299 return error;
3300 goto finish_open;
3301 }
3302
3303 if (!(open_flag & O_CREAT)) {
3304 if (nd->last.name[nd->last.len])
3305 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3306 /* we _can_ be in RCU mode here */
3307 error = lookup_fast(nd, &path, &inode, &seq);
3308 if (likely(error > 0))
3309 goto finish_lookup;
3310
3311 if (error < 0)
3312 return error;
3313
3314 BUG_ON(nd->inode != dir->d_inode);
3315 BUG_ON(nd->flags & LOOKUP_RCU);
3316 } else {
3317 /* create side of things */
3318 /*
3319 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3320 * has been cleared when we got to the last component we are
3321 * about to look up
3322 */
3323 error = complete_walk(nd);
3324 if (error)
3325 return error;
3326
3327 audit_inode(nd->name, dir, LOOKUP_PARENT);
3328 /* trailing slashes? */
3329 if (unlikely(nd->last.name[nd->last.len]))
3330 return -EISDIR;
3331 }
3332
3333 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3334 error = mnt_want_write(nd->path.mnt);
3335 if (!error)
3336 got_write = true;
3337 /*
3338 * do _not_ fail yet - we might not need that or fail with
3339 * a different error; let lookup_open() decide; we'll be
3340 * dropping this one anyway.
3341 */
3342 }
3343 if (open_flag & O_CREAT)
3344 inode_lock(dir->d_inode);
3345 else
3346 inode_lock_shared(dir->d_inode);
3347 error = lookup_open(nd, &path, file, op, got_write);
3348 if (open_flag & O_CREAT)
3349 inode_unlock(dir->d_inode);
3350 else
3351 inode_unlock_shared(dir->d_inode);
3352
3353 if (error)
3354 goto out;
3355
3356 if (file->f_mode & FMODE_OPENED) {
3357 if ((file->f_mode & FMODE_CREATED) ||
3358 !S_ISREG(file_inode(file)->i_mode))
3359 will_truncate = false;
3360
3361 audit_inode(nd->name, file->f_path.dentry, 0);
3362 goto opened;
3363 }
3364
3365 if (file->f_mode & FMODE_CREATED) {
3366 /* Don't check for write permission, don't truncate */
3367 open_flag &= ~O_TRUNC;
3368 will_truncate = false;
3369 acc_mode = 0;
3370 path_to_nameidata(&path, nd);
3371 goto finish_open_created;
3372 }
3373
3374 /*
3375 * If atomic_open() acquired write access it is dropped now due to
3376 * possible mount and symlink following (this might be optimized away if
3377 * necessary...)
3378 */
3379 if (got_write) {
3380 mnt_drop_write(nd->path.mnt);
3381 got_write = false;
3382 }
3383
3384 error = follow_managed(&path, nd);
3385 if (unlikely(error < 0))
3386 return error;
3387
3388 if (unlikely(d_is_negative(path.dentry))) {
3389 path_to_nameidata(&path, nd);
3390 return -ENOENT;
3391 }
3392
3393 /*
3394 * create/update audit record if it already exists.
3395 */
3396 audit_inode(nd->name, path.dentry, 0);
3397
3398 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3399 path_to_nameidata(&path, nd);
3400 return -EEXIST;
3401 }
3402
3403 seq = 0; /* out of RCU mode, so the value doesn't matter */
3404 inode = d_backing_inode(path.dentry);
3405 finish_lookup:
3406 error = step_into(nd, &path, 0, inode, seq);
3407 if (unlikely(error))
3408 return error;
3409 finish_open:
3410 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3411 error = complete_walk(nd);
3412 if (error)
3413 return error;
3414 audit_inode(nd->name, nd->path.dentry, 0);
3415 if (open_flag & O_CREAT) {
3416 error = -EISDIR;
3417 if (d_is_dir(nd->path.dentry))
3418 goto out;
3419 error = may_create_in_sticky(dir_mode, dir_uid,
3420 d_backing_inode(nd->path.dentry));
3421 if (unlikely(error))
3422 goto out;
3423 }
3424 error = -ENOTDIR;
3425 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3426 goto out;
3427 if (!d_is_reg(nd->path.dentry))
3428 will_truncate = false;
3429
3430 if (will_truncate) {
3431 error = mnt_want_write(nd->path.mnt);
3432 if (error)
3433 goto out;
3434 got_write = true;
3435 }
3436 finish_open_created:
3437 error = may_open(&nd->path, acc_mode, open_flag);
3438 if (error)
3439 goto out;
3440 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3441 error = vfs_open(&nd->path, file);
3442 if (error)
3443 goto out;
3444 opened:
3445 error = ima_file_check(file, op->acc_mode);
3446 if (!error && will_truncate)
3447 error = handle_truncate(file);
3448 out:
3449 if (unlikely(error > 0)) {
3450 WARN_ON(1);
3451 error = -EINVAL;
3452 }
3453 if (got_write)
3454 mnt_drop_write(nd->path.mnt);
3455 return error;
3456 }
3457
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3458 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3459 {
3460 struct dentry *child = NULL;
3461 struct inode *dir = dentry->d_inode;
3462 struct inode *inode;
3463 int error;
3464
3465 /* we want directory to be writable */
3466 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3467 if (error)
3468 goto out_err;
3469 error = -EOPNOTSUPP;
3470 if (!dir->i_op->tmpfile)
3471 goto out_err;
3472 error = -ENOMEM;
3473 child = d_alloc(dentry, &slash_name);
3474 if (unlikely(!child))
3475 goto out_err;
3476 if (!IS_POSIXACL(dir))
3477 mode &= ~current_umask();
3478 error = dir->i_op->tmpfile(dir, child, mode);
3479 if (error)
3480 goto out_err;
3481 error = -ENOENT;
3482 inode = child->d_inode;
3483 if (unlikely(!inode))
3484 goto out_err;
3485 if (!(open_flag & O_EXCL)) {
3486 spin_lock(&inode->i_lock);
3487 inode->i_state |= I_LINKABLE;
3488 spin_unlock(&inode->i_lock);
3489 }
3490 return child;
3491
3492 out_err:
3493 dput(child);
3494 return ERR_PTR(error);
3495 }
3496 EXPORT_SYMBOL(vfs_tmpfile);
3497
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3498 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3499 const struct open_flags *op,
3500 struct file *file)
3501 {
3502 struct dentry *child;
3503 struct path path;
3504 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3505 if (unlikely(error))
3506 return error;
3507 error = mnt_want_write(path.mnt);
3508 if (unlikely(error))
3509 goto out;
3510 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3511 error = PTR_ERR(child);
3512 if (IS_ERR(child))
3513 goto out2;
3514 dput(path.dentry);
3515 path.dentry = child;
3516 audit_inode(nd->name, child, 0);
3517 /* Don't check for other permissions, the inode was just created */
3518 error = may_open(&path, 0, op->open_flag);
3519 if (error)
3520 goto out2;
3521 file->f_path.mnt = path.mnt;
3522 error = finish_open(file, child, NULL);
3523 out2:
3524 mnt_drop_write(path.mnt);
3525 out:
3526 path_put(&path);
3527 return error;
3528 }
3529
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3530 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3531 {
3532 struct path path;
3533 int error = path_lookupat(nd, flags, &path);
3534 if (!error) {
3535 audit_inode(nd->name, path.dentry, 0);
3536 error = vfs_open(&path, file);
3537 path_put(&path);
3538 }
3539 return error;
3540 }
3541
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3542 static struct file *path_openat(struct nameidata *nd,
3543 const struct open_flags *op, unsigned flags)
3544 {
3545 struct file *file;
3546 int error;
3547
3548 file = alloc_empty_file(op->open_flag, current_cred());
3549 if (IS_ERR(file))
3550 return file;
3551
3552 if (unlikely(file->f_flags & __O_TMPFILE)) {
3553 error = do_tmpfile(nd, flags, op, file);
3554 } else if (unlikely(file->f_flags & O_PATH)) {
3555 error = do_o_path(nd, flags, file);
3556 } else {
3557 const char *s = path_init(nd, flags);
3558 while (!(error = link_path_walk(s, nd)) &&
3559 (error = do_last(nd, file, op)) > 0) {
3560 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3561 s = trailing_symlink(nd);
3562 }
3563 terminate_walk(nd);
3564 }
3565 if (likely(!error)) {
3566 if (likely(file->f_mode & FMODE_OPENED))
3567 return file;
3568 WARN_ON(1);
3569 error = -EINVAL;
3570 }
3571 fput(file);
3572 if (error == -EOPENSTALE) {
3573 if (flags & LOOKUP_RCU)
3574 error = -ECHILD;
3575 else
3576 error = -ESTALE;
3577 }
3578 return ERR_PTR(error);
3579 }
3580
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3581 struct file *do_filp_open(int dfd, struct filename *pathname,
3582 const struct open_flags *op)
3583 {
3584 struct nameidata nd;
3585 int flags = op->lookup_flags;
3586 struct file *filp;
3587
3588 set_nameidata(&nd, dfd, pathname);
3589 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3590 if (unlikely(filp == ERR_PTR(-ECHILD)))
3591 filp = path_openat(&nd, op, flags);
3592 if (unlikely(filp == ERR_PTR(-ESTALE)))
3593 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3594 restore_nameidata();
3595 return filp;
3596 }
3597
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3598 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3599 const char *name, const struct open_flags *op)
3600 {
3601 struct nameidata nd;
3602 struct file *file;
3603 struct filename *filename;
3604 int flags = op->lookup_flags | LOOKUP_ROOT;
3605
3606 nd.root.mnt = mnt;
3607 nd.root.dentry = dentry;
3608
3609 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3610 return ERR_PTR(-ELOOP);
3611
3612 filename = getname_kernel(name);
3613 if (IS_ERR(filename))
3614 return ERR_CAST(filename);
3615
3616 set_nameidata(&nd, -1, filename);
3617 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3618 if (unlikely(file == ERR_PTR(-ECHILD)))
3619 file = path_openat(&nd, op, flags);
3620 if (unlikely(file == ERR_PTR(-ESTALE)))
3621 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3622 restore_nameidata();
3623 putname(filename);
3624 return file;
3625 }
3626
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3627 static struct dentry *filename_create(int dfd, struct filename *name,
3628 struct path *path, unsigned int lookup_flags)
3629 {
3630 struct dentry *dentry = ERR_PTR(-EEXIST);
3631 struct qstr last;
3632 int type;
3633 int err2;
3634 int error;
3635 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3636
3637 /*
3638 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3639 * other flags passed in are ignored!
3640 */
3641 lookup_flags &= LOOKUP_REVAL;
3642
3643 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3644 if (IS_ERR(name))
3645 return ERR_CAST(name);
3646
3647 /*
3648 * Yucky last component or no last component at all?
3649 * (foo/., foo/.., /////)
3650 */
3651 if (unlikely(type != LAST_NORM))
3652 goto out;
3653
3654 /* don't fail immediately if it's r/o, at least try to report other errors */
3655 err2 = mnt_want_write(path->mnt);
3656 /*
3657 * Do the final lookup.
3658 */
3659 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3660 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3661 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3662 if (IS_ERR(dentry))
3663 goto unlock;
3664
3665 error = -EEXIST;
3666 if (d_is_positive(dentry))
3667 goto fail;
3668
3669 /*
3670 * Special case - lookup gave negative, but... we had foo/bar/
3671 * From the vfs_mknod() POV we just have a negative dentry -
3672 * all is fine. Let's be bastards - you had / on the end, you've
3673 * been asking for (non-existent) directory. -ENOENT for you.
3674 */
3675 if (unlikely(!is_dir && last.name[last.len])) {
3676 error = -ENOENT;
3677 goto fail;
3678 }
3679 if (unlikely(err2)) {
3680 error = err2;
3681 goto fail;
3682 }
3683 putname(name);
3684 return dentry;
3685 fail:
3686 dput(dentry);
3687 dentry = ERR_PTR(error);
3688 unlock:
3689 inode_unlock(path->dentry->d_inode);
3690 if (!err2)
3691 mnt_drop_write(path->mnt);
3692 out:
3693 path_put(path);
3694 putname(name);
3695 return dentry;
3696 }
3697
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3698 struct dentry *kern_path_create(int dfd, const char *pathname,
3699 struct path *path, unsigned int lookup_flags)
3700 {
3701 return filename_create(dfd, getname_kernel(pathname),
3702 path, lookup_flags);
3703 }
3704 EXPORT_SYMBOL(kern_path_create);
3705
done_path_create(struct path * path,struct dentry * dentry)3706 void done_path_create(struct path *path, struct dentry *dentry)
3707 {
3708 dput(dentry);
3709 inode_unlock(path->dentry->d_inode);
3710 mnt_drop_write(path->mnt);
3711 path_put(path);
3712 }
3713 EXPORT_SYMBOL(done_path_create);
3714
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3715 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3716 struct path *path, unsigned int lookup_flags)
3717 {
3718 return filename_create(dfd, getname(pathname), path, lookup_flags);
3719 }
3720 EXPORT_SYMBOL(user_path_create);
3721
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3722 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3723 {
3724 int error = may_create(dir, dentry);
3725
3726 if (error)
3727 return error;
3728
3729 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3730 return -EPERM;
3731
3732 if (!dir->i_op->mknod)
3733 return -EPERM;
3734
3735 error = devcgroup_inode_mknod(mode, dev);
3736 if (error)
3737 return error;
3738
3739 error = security_inode_mknod(dir, dentry, mode, dev);
3740 if (error)
3741 return error;
3742
3743 error = dir->i_op->mknod(dir, dentry, mode, dev);
3744 if (!error)
3745 fsnotify_create(dir, dentry);
3746 return error;
3747 }
3748 EXPORT_SYMBOL(vfs_mknod);
3749
may_mknod(umode_t mode)3750 static int may_mknod(umode_t mode)
3751 {
3752 switch (mode & S_IFMT) {
3753 case S_IFREG:
3754 case S_IFCHR:
3755 case S_IFBLK:
3756 case S_IFIFO:
3757 case S_IFSOCK:
3758 case 0: /* zero mode translates to S_IFREG */
3759 return 0;
3760 case S_IFDIR:
3761 return -EPERM;
3762 default:
3763 return -EINVAL;
3764 }
3765 }
3766
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3767 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3768 unsigned int dev)
3769 {
3770 struct dentry *dentry;
3771 struct path path;
3772 int error;
3773 unsigned int lookup_flags = 0;
3774
3775 error = may_mknod(mode);
3776 if (error)
3777 return error;
3778 retry:
3779 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3780 if (IS_ERR(dentry))
3781 return PTR_ERR(dentry);
3782
3783 if (!IS_POSIXACL(path.dentry->d_inode))
3784 mode &= ~current_umask();
3785 error = security_path_mknod(&path, dentry, mode, dev);
3786 if (error)
3787 goto out;
3788 switch (mode & S_IFMT) {
3789 case 0: case S_IFREG:
3790 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3791 if (!error)
3792 ima_post_path_mknod(dentry);
3793 break;
3794 case S_IFCHR: case S_IFBLK:
3795 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3796 new_decode_dev(dev));
3797 break;
3798 case S_IFIFO: case S_IFSOCK:
3799 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3800 break;
3801 }
3802 out:
3803 done_path_create(&path, dentry);
3804 if (retry_estale(error, lookup_flags)) {
3805 lookup_flags |= LOOKUP_REVAL;
3806 goto retry;
3807 }
3808 return error;
3809 }
3810
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3811 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3812 unsigned int, dev)
3813 {
3814 return do_mknodat(dfd, filename, mode, dev);
3815 }
3816
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3817 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3818 {
3819 return do_mknodat(AT_FDCWD, filename, mode, dev);
3820 }
3821
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3822 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3823 {
3824 int error = may_create(dir, dentry);
3825 unsigned max_links = dir->i_sb->s_max_links;
3826
3827 if (error)
3828 return error;
3829
3830 if (!dir->i_op->mkdir)
3831 return -EPERM;
3832
3833 mode &= (S_IRWXUGO|S_ISVTX);
3834 error = security_inode_mkdir(dir, dentry, mode);
3835 if (error)
3836 return error;
3837
3838 if (max_links && dir->i_nlink >= max_links)
3839 return -EMLINK;
3840
3841 error = dir->i_op->mkdir(dir, dentry, mode);
3842 if (!error)
3843 fsnotify_mkdir(dir, dentry);
3844 return error;
3845 }
3846 EXPORT_SYMBOL(vfs_mkdir);
3847
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3848 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3849 {
3850 struct dentry *dentry;
3851 struct path path;
3852 int error;
3853 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3854
3855 retry:
3856 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3857 if (IS_ERR(dentry))
3858 return PTR_ERR(dentry);
3859
3860 if (!IS_POSIXACL(path.dentry->d_inode))
3861 mode &= ~current_umask();
3862 error = security_path_mkdir(&path, dentry, mode);
3863 if (!error)
3864 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3865 done_path_create(&path, dentry);
3866 if (retry_estale(error, lookup_flags)) {
3867 lookup_flags |= LOOKUP_REVAL;
3868 goto retry;
3869 }
3870 return error;
3871 }
3872
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3873 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3874 {
3875 return do_mkdirat(dfd, pathname, mode);
3876 }
3877
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3878 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3879 {
3880 return do_mkdirat(AT_FDCWD, pathname, mode);
3881 }
3882
vfs_rmdir(struct inode * dir,struct dentry * dentry)3883 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3884 {
3885 int error = may_delete(dir, dentry, 1);
3886
3887 if (error)
3888 return error;
3889
3890 if (!dir->i_op->rmdir)
3891 return -EPERM;
3892
3893 dget(dentry);
3894 inode_lock(dentry->d_inode);
3895
3896 error = -EBUSY;
3897 if (is_local_mountpoint(dentry))
3898 goto out;
3899
3900 error = security_inode_rmdir(dir, dentry);
3901 if (error)
3902 goto out;
3903
3904 error = dir->i_op->rmdir(dir, dentry);
3905 if (error)
3906 goto out;
3907
3908 shrink_dcache_parent(dentry);
3909 dentry->d_inode->i_flags |= S_DEAD;
3910 dont_mount(dentry);
3911 detach_mounts(dentry);
3912
3913 out:
3914 inode_unlock(dentry->d_inode);
3915 dput(dentry);
3916 if (!error)
3917 d_delete(dentry);
3918 return error;
3919 }
3920 EXPORT_SYMBOL(vfs_rmdir);
3921
do_rmdir(int dfd,const char __user * pathname)3922 long do_rmdir(int dfd, const char __user *pathname)
3923 {
3924 int error = 0;
3925 struct filename *name;
3926 struct dentry *dentry;
3927 struct path path;
3928 struct qstr last;
3929 int type;
3930 unsigned int lookup_flags = 0;
3931 retry:
3932 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3933 &path, &last, &type);
3934 if (IS_ERR(name))
3935 return PTR_ERR(name);
3936
3937 switch (type) {
3938 case LAST_DOTDOT:
3939 error = -ENOTEMPTY;
3940 goto exit1;
3941 case LAST_DOT:
3942 error = -EINVAL;
3943 goto exit1;
3944 case LAST_ROOT:
3945 error = -EBUSY;
3946 goto exit1;
3947 }
3948
3949 error = mnt_want_write(path.mnt);
3950 if (error)
3951 goto exit1;
3952
3953 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3954 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3955 error = PTR_ERR(dentry);
3956 if (IS_ERR(dentry))
3957 goto exit2;
3958 if (!dentry->d_inode) {
3959 error = -ENOENT;
3960 goto exit3;
3961 }
3962 error = security_path_rmdir(&path, dentry);
3963 if (error)
3964 goto exit3;
3965 error = vfs_rmdir(path.dentry->d_inode, dentry);
3966 exit3:
3967 dput(dentry);
3968 exit2:
3969 inode_unlock(path.dentry->d_inode);
3970 mnt_drop_write(path.mnt);
3971 exit1:
3972 path_put(&path);
3973 putname(name);
3974 if (retry_estale(error, lookup_flags)) {
3975 lookup_flags |= LOOKUP_REVAL;
3976 goto retry;
3977 }
3978 return error;
3979 }
3980
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3981 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3982 {
3983 return do_rmdir(AT_FDCWD, pathname);
3984 }
3985
3986 /**
3987 * vfs_unlink - unlink a filesystem object
3988 * @dir: parent directory
3989 * @dentry: victim
3990 * @delegated_inode: returns victim inode, if the inode is delegated.
3991 *
3992 * The caller must hold dir->i_mutex.
3993 *
3994 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3995 * return a reference to the inode in delegated_inode. The caller
3996 * should then break the delegation on that inode and retry. Because
3997 * breaking a delegation may take a long time, the caller should drop
3998 * dir->i_mutex before doing so.
3999 *
4000 * Alternatively, a caller may pass NULL for delegated_inode. This may
4001 * be appropriate for callers that expect the underlying filesystem not
4002 * to be NFS exported.
4003 */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4004 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4005 {
4006 struct inode *target = dentry->d_inode;
4007 int error = may_delete(dir, dentry, 0);
4008
4009 if (error)
4010 return error;
4011
4012 if (!dir->i_op->unlink)
4013 return -EPERM;
4014
4015 inode_lock(target);
4016 if (is_local_mountpoint(dentry))
4017 error = -EBUSY;
4018 else {
4019 error = security_inode_unlink(dir, dentry);
4020 if (!error) {
4021 error = try_break_deleg(target, delegated_inode);
4022 if (error)
4023 goto out;
4024 error = dir->i_op->unlink(dir, dentry);
4025 if (!error) {
4026 dont_mount(dentry);
4027 detach_mounts(dentry);
4028 }
4029 }
4030 }
4031 out:
4032 inode_unlock(target);
4033
4034 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4035 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4036 fsnotify_link_count(target);
4037 d_delete(dentry);
4038 }
4039
4040 return error;
4041 }
4042 EXPORT_SYMBOL(vfs_unlink);
4043
4044 /*
4045 * Make sure that the actual truncation of the file will occur outside its
4046 * directory's i_mutex. Truncate can take a long time if there is a lot of
4047 * writeout happening, and we don't want to prevent access to the directory
4048 * while waiting on the I/O.
4049 */
do_unlinkat(int dfd,struct filename * name)4050 long do_unlinkat(int dfd, struct filename *name)
4051 {
4052 int error;
4053 struct dentry *dentry;
4054 struct path path;
4055 struct qstr last;
4056 int type;
4057 struct inode *inode = NULL;
4058 struct inode *delegated_inode = NULL;
4059 unsigned int lookup_flags = 0;
4060 retry:
4061 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4062 if (IS_ERR(name))
4063 return PTR_ERR(name);
4064
4065 error = -EISDIR;
4066 if (type != LAST_NORM)
4067 goto exit1;
4068
4069 error = mnt_want_write(path.mnt);
4070 if (error)
4071 goto exit1;
4072 retry_deleg:
4073 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4074 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4075 error = PTR_ERR(dentry);
4076 if (!IS_ERR(dentry)) {
4077 /* Why not before? Because we want correct error value */
4078 if (last.name[last.len])
4079 goto slashes;
4080 inode = dentry->d_inode;
4081 if (d_is_negative(dentry))
4082 goto slashes;
4083 ihold(inode);
4084 error = security_path_unlink(&path, dentry);
4085 if (error)
4086 goto exit2;
4087 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4088 exit2:
4089 dput(dentry);
4090 }
4091 inode_unlock(path.dentry->d_inode);
4092 if (inode)
4093 iput(inode); /* truncate the inode here */
4094 inode = NULL;
4095 if (delegated_inode) {
4096 error = break_deleg_wait(&delegated_inode);
4097 if (!error)
4098 goto retry_deleg;
4099 }
4100 mnt_drop_write(path.mnt);
4101 exit1:
4102 path_put(&path);
4103 if (retry_estale(error, lookup_flags)) {
4104 lookup_flags |= LOOKUP_REVAL;
4105 inode = NULL;
4106 goto retry;
4107 }
4108 putname(name);
4109 return error;
4110
4111 slashes:
4112 if (d_is_negative(dentry))
4113 error = -ENOENT;
4114 else if (d_is_dir(dentry))
4115 error = -EISDIR;
4116 else
4117 error = -ENOTDIR;
4118 goto exit2;
4119 }
4120
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4121 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4122 {
4123 if ((flag & ~AT_REMOVEDIR) != 0)
4124 return -EINVAL;
4125
4126 if (flag & AT_REMOVEDIR)
4127 return do_rmdir(dfd, pathname);
4128
4129 return do_unlinkat(dfd, getname(pathname));
4130 }
4131
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4132 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4133 {
4134 return do_unlinkat(AT_FDCWD, getname(pathname));
4135 }
4136
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4137 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4138 {
4139 int error = may_create(dir, dentry);
4140
4141 if (error)
4142 return error;
4143
4144 if (!dir->i_op->symlink)
4145 return -EPERM;
4146
4147 error = security_inode_symlink(dir, dentry, oldname);
4148 if (error)
4149 return error;
4150
4151 error = dir->i_op->symlink(dir, dentry, oldname);
4152 if (!error)
4153 fsnotify_create(dir, dentry);
4154 return error;
4155 }
4156 EXPORT_SYMBOL(vfs_symlink);
4157
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4158 long do_symlinkat(const char __user *oldname, int newdfd,
4159 const char __user *newname)
4160 {
4161 int error;
4162 struct filename *from;
4163 struct dentry *dentry;
4164 struct path path;
4165 unsigned int lookup_flags = 0;
4166
4167 from = getname(oldname);
4168 if (IS_ERR(from))
4169 return PTR_ERR(from);
4170 retry:
4171 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4172 error = PTR_ERR(dentry);
4173 if (IS_ERR(dentry))
4174 goto out_putname;
4175
4176 error = security_path_symlink(&path, dentry, from->name);
4177 if (!error)
4178 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4179 done_path_create(&path, dentry);
4180 if (retry_estale(error, lookup_flags)) {
4181 lookup_flags |= LOOKUP_REVAL;
4182 goto retry;
4183 }
4184 out_putname:
4185 putname(from);
4186 return error;
4187 }
4188
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4189 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4190 int, newdfd, const char __user *, newname)
4191 {
4192 return do_symlinkat(oldname, newdfd, newname);
4193 }
4194
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4195 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4196 {
4197 return do_symlinkat(oldname, AT_FDCWD, newname);
4198 }
4199
4200 /**
4201 * vfs_link - create a new link
4202 * @old_dentry: object to be linked
4203 * @dir: new parent
4204 * @new_dentry: where to create the new link
4205 * @delegated_inode: returns inode needing a delegation break
4206 *
4207 * The caller must hold dir->i_mutex
4208 *
4209 * If vfs_link discovers a delegation on the to-be-linked file in need
4210 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4211 * inode in delegated_inode. The caller should then break the delegation
4212 * and retry. Because breaking a delegation may take a long time, the
4213 * caller should drop the i_mutex before doing so.
4214 *
4215 * Alternatively, a caller may pass NULL for delegated_inode. This may
4216 * be appropriate for callers that expect the underlying filesystem not
4217 * to be NFS exported.
4218 */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4219 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4220 {
4221 struct inode *inode = old_dentry->d_inode;
4222 unsigned max_links = dir->i_sb->s_max_links;
4223 int error;
4224
4225 if (!inode)
4226 return -ENOENT;
4227
4228 error = may_create(dir, new_dentry);
4229 if (error)
4230 return error;
4231
4232 if (dir->i_sb != inode->i_sb)
4233 return -EXDEV;
4234
4235 /*
4236 * A link to an append-only or immutable file cannot be created.
4237 */
4238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4239 return -EPERM;
4240 /*
4241 * Updating the link count will likely cause i_uid and i_gid to
4242 * be writen back improperly if their true value is unknown to
4243 * the vfs.
4244 */
4245 if (HAS_UNMAPPED_ID(inode))
4246 return -EPERM;
4247 if (!dir->i_op->link)
4248 return -EPERM;
4249 if (S_ISDIR(inode->i_mode))
4250 return -EPERM;
4251
4252 error = security_inode_link(old_dentry, dir, new_dentry);
4253 if (error)
4254 return error;
4255
4256 inode_lock(inode);
4257 /* Make sure we don't allow creating hardlink to an unlinked file */
4258 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4259 error = -ENOENT;
4260 else if (max_links && inode->i_nlink >= max_links)
4261 error = -EMLINK;
4262 else {
4263 error = try_break_deleg(inode, delegated_inode);
4264 if (!error)
4265 error = dir->i_op->link(old_dentry, dir, new_dentry);
4266 }
4267
4268 if (!error && (inode->i_state & I_LINKABLE)) {
4269 spin_lock(&inode->i_lock);
4270 inode->i_state &= ~I_LINKABLE;
4271 spin_unlock(&inode->i_lock);
4272 }
4273 inode_unlock(inode);
4274 if (!error)
4275 fsnotify_link(dir, inode, new_dentry);
4276 return error;
4277 }
4278 EXPORT_SYMBOL(vfs_link);
4279
4280 /*
4281 * Hardlinks are often used in delicate situations. We avoid
4282 * security-related surprises by not following symlinks on the
4283 * newname. --KAB
4284 *
4285 * We don't follow them on the oldname either to be compatible
4286 * with linux 2.0, and to avoid hard-linking to directories
4287 * and other special files. --ADM
4288 */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4289 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4290 const char __user *newname, int flags)
4291 {
4292 struct dentry *new_dentry;
4293 struct path old_path, new_path;
4294 struct inode *delegated_inode = NULL;
4295 int how = 0;
4296 int error;
4297
4298 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4299 return -EINVAL;
4300 /*
4301 * To use null names we require CAP_DAC_READ_SEARCH
4302 * This ensures that not everyone will be able to create
4303 * handlink using the passed filedescriptor.
4304 */
4305 if (flags & AT_EMPTY_PATH) {
4306 if (!capable(CAP_DAC_READ_SEARCH))
4307 return -ENOENT;
4308 how = LOOKUP_EMPTY;
4309 }
4310
4311 if (flags & AT_SYMLINK_FOLLOW)
4312 how |= LOOKUP_FOLLOW;
4313 retry:
4314 error = user_path_at(olddfd, oldname, how, &old_path);
4315 if (error)
4316 return error;
4317
4318 new_dentry = user_path_create(newdfd, newname, &new_path,
4319 (how & LOOKUP_REVAL));
4320 error = PTR_ERR(new_dentry);
4321 if (IS_ERR(new_dentry))
4322 goto out;
4323
4324 error = -EXDEV;
4325 if (old_path.mnt != new_path.mnt)
4326 goto out_dput;
4327 error = may_linkat(&old_path);
4328 if (unlikely(error))
4329 goto out_dput;
4330 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4331 if (error)
4332 goto out_dput;
4333 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4334 out_dput:
4335 done_path_create(&new_path, new_dentry);
4336 if (delegated_inode) {
4337 error = break_deleg_wait(&delegated_inode);
4338 if (!error) {
4339 path_put(&old_path);
4340 goto retry;
4341 }
4342 }
4343 if (retry_estale(error, how)) {
4344 path_put(&old_path);
4345 how |= LOOKUP_REVAL;
4346 goto retry;
4347 }
4348 out:
4349 path_put(&old_path);
4350
4351 return error;
4352 }
4353
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4354 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4355 int, newdfd, const char __user *, newname, int, flags)
4356 {
4357 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4358 }
4359
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4360 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4361 {
4362 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4363 }
4364
4365 /**
4366 * vfs_rename - rename a filesystem object
4367 * @old_dir: parent of source
4368 * @old_dentry: source
4369 * @new_dir: parent of destination
4370 * @new_dentry: destination
4371 * @delegated_inode: returns an inode needing a delegation break
4372 * @flags: rename flags
4373 *
4374 * The caller must hold multiple mutexes--see lock_rename()).
4375 *
4376 * If vfs_rename discovers a delegation in need of breaking at either
4377 * the source or destination, it will return -EWOULDBLOCK and return a
4378 * reference to the inode in delegated_inode. The caller should then
4379 * break the delegation and retry. Because breaking a delegation may
4380 * take a long time, the caller should drop all locks before doing
4381 * so.
4382 *
4383 * Alternatively, a caller may pass NULL for delegated_inode. This may
4384 * be appropriate for callers that expect the underlying filesystem not
4385 * to be NFS exported.
4386 *
4387 * The worst of all namespace operations - renaming directory. "Perverted"
4388 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4389 * Problems:
4390 *
4391 * a) we can get into loop creation.
4392 * b) race potential - two innocent renames can create a loop together.
4393 * That's where 4.4 screws up. Current fix: serialization on
4394 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4395 * story.
4396 * c) we have to lock _four_ objects - parents and victim (if it exists),
4397 * and source (if it is not a directory).
4398 * And that - after we got ->i_mutex on parents (until then we don't know
4399 * whether the target exists). Solution: try to be smart with locking
4400 * order for inodes. We rely on the fact that tree topology may change
4401 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4402 * move will be locked. Thus we can rank directories by the tree
4403 * (ancestors first) and rank all non-directories after them.
4404 * That works since everybody except rename does "lock parent, lookup,
4405 * lock child" and rename is under ->s_vfs_rename_mutex.
4406 * HOWEVER, it relies on the assumption that any object with ->lookup()
4407 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4408 * we'd better make sure that there's no link(2) for them.
4409 * d) conversion from fhandle to dentry may come in the wrong moment - when
4410 * we are removing the target. Solution: we will have to grab ->i_mutex
4411 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4412 * ->i_mutex on parents, which works but leads to some truly excessive
4413 * locking].
4414 */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4415 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4416 struct inode *new_dir, struct dentry *new_dentry,
4417 struct inode **delegated_inode, unsigned int flags)
4418 {
4419 int error;
4420 bool is_dir = d_is_dir(old_dentry);
4421 struct inode *source = old_dentry->d_inode;
4422 struct inode *target = new_dentry->d_inode;
4423 bool new_is_dir = false;
4424 unsigned max_links = new_dir->i_sb->s_max_links;
4425 struct name_snapshot old_name;
4426
4427 if (source == target)
4428 return 0;
4429
4430 error = may_delete(old_dir, old_dentry, is_dir);
4431 if (error)
4432 return error;
4433
4434 if (!target) {
4435 error = may_create(new_dir, new_dentry);
4436 } else {
4437 new_is_dir = d_is_dir(new_dentry);
4438
4439 if (!(flags & RENAME_EXCHANGE))
4440 error = may_delete(new_dir, new_dentry, is_dir);
4441 else
4442 error = may_delete(new_dir, new_dentry, new_is_dir);
4443 }
4444 if (error)
4445 return error;
4446
4447 if (!old_dir->i_op->rename)
4448 return -EPERM;
4449
4450 /*
4451 * If we are going to change the parent - check write permissions,
4452 * we'll need to flip '..'.
4453 */
4454 if (new_dir != old_dir) {
4455 if (is_dir) {
4456 error = inode_permission(source, MAY_WRITE);
4457 if (error)
4458 return error;
4459 }
4460 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4461 error = inode_permission(target, MAY_WRITE);
4462 if (error)
4463 return error;
4464 }
4465 }
4466
4467 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4468 flags);
4469 if (error)
4470 return error;
4471
4472 take_dentry_name_snapshot(&old_name, old_dentry);
4473 dget(new_dentry);
4474 if (!is_dir || (flags & RENAME_EXCHANGE))
4475 lock_two_nondirectories(source, target);
4476 else if (target)
4477 inode_lock(target);
4478
4479 error = -EBUSY;
4480 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4481 goto out;
4482
4483 if (max_links && new_dir != old_dir) {
4484 error = -EMLINK;
4485 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4486 goto out;
4487 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4488 old_dir->i_nlink >= max_links)
4489 goto out;
4490 }
4491 if (!is_dir) {
4492 error = try_break_deleg(source, delegated_inode);
4493 if (error)
4494 goto out;
4495 }
4496 if (target && !new_is_dir) {
4497 error = try_break_deleg(target, delegated_inode);
4498 if (error)
4499 goto out;
4500 }
4501 error = old_dir->i_op->rename(old_dir, old_dentry,
4502 new_dir, new_dentry, flags);
4503 if (error)
4504 goto out;
4505
4506 if (!(flags & RENAME_EXCHANGE) && target) {
4507 if (is_dir) {
4508 shrink_dcache_parent(new_dentry);
4509 target->i_flags |= S_DEAD;
4510 }
4511 dont_mount(new_dentry);
4512 detach_mounts(new_dentry);
4513 }
4514 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4515 if (!(flags & RENAME_EXCHANGE))
4516 d_move(old_dentry, new_dentry);
4517 else
4518 d_exchange(old_dentry, new_dentry);
4519 }
4520 out:
4521 if (!is_dir || (flags & RENAME_EXCHANGE))
4522 unlock_two_nondirectories(source, target);
4523 else if (target)
4524 inode_unlock(target);
4525 dput(new_dentry);
4526 if (!error) {
4527 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4528 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4529 if (flags & RENAME_EXCHANGE) {
4530 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4531 new_is_dir, NULL, new_dentry);
4532 }
4533 }
4534 release_dentry_name_snapshot(&old_name);
4535
4536 return error;
4537 }
4538 EXPORT_SYMBOL(vfs_rename);
4539
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4540 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4541 const char __user *newname, unsigned int flags)
4542 {
4543 struct dentry *old_dentry, *new_dentry;
4544 struct dentry *trap;
4545 struct path old_path, new_path;
4546 struct qstr old_last, new_last;
4547 int old_type, new_type;
4548 struct inode *delegated_inode = NULL;
4549 struct filename *from;
4550 struct filename *to;
4551 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4552 bool should_retry = false;
4553 int error;
4554
4555 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4556 return -EINVAL;
4557
4558 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4559 (flags & RENAME_EXCHANGE))
4560 return -EINVAL;
4561
4562 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4563 return -EPERM;
4564
4565 if (flags & RENAME_EXCHANGE)
4566 target_flags = 0;
4567
4568 retry:
4569 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4570 &old_path, &old_last, &old_type);
4571 if (IS_ERR(from)) {
4572 error = PTR_ERR(from);
4573 goto exit;
4574 }
4575
4576 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4577 &new_path, &new_last, &new_type);
4578 if (IS_ERR(to)) {
4579 error = PTR_ERR(to);
4580 goto exit1;
4581 }
4582
4583 error = -EXDEV;
4584 if (old_path.mnt != new_path.mnt)
4585 goto exit2;
4586
4587 error = -EBUSY;
4588 if (old_type != LAST_NORM)
4589 goto exit2;
4590
4591 if (flags & RENAME_NOREPLACE)
4592 error = -EEXIST;
4593 if (new_type != LAST_NORM)
4594 goto exit2;
4595
4596 error = mnt_want_write(old_path.mnt);
4597 if (error)
4598 goto exit2;
4599
4600 retry_deleg:
4601 trap = lock_rename(new_path.dentry, old_path.dentry);
4602
4603 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4604 error = PTR_ERR(old_dentry);
4605 if (IS_ERR(old_dentry))
4606 goto exit3;
4607 /* source must exist */
4608 error = -ENOENT;
4609 if (d_is_negative(old_dentry))
4610 goto exit4;
4611 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4612 error = PTR_ERR(new_dentry);
4613 if (IS_ERR(new_dentry))
4614 goto exit4;
4615 error = -EEXIST;
4616 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4617 goto exit5;
4618 if (flags & RENAME_EXCHANGE) {
4619 error = -ENOENT;
4620 if (d_is_negative(new_dentry))
4621 goto exit5;
4622
4623 if (!d_is_dir(new_dentry)) {
4624 error = -ENOTDIR;
4625 if (new_last.name[new_last.len])
4626 goto exit5;
4627 }
4628 }
4629 /* unless the source is a directory trailing slashes give -ENOTDIR */
4630 if (!d_is_dir(old_dentry)) {
4631 error = -ENOTDIR;
4632 if (old_last.name[old_last.len])
4633 goto exit5;
4634 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4635 goto exit5;
4636 }
4637 /* source should not be ancestor of target */
4638 error = -EINVAL;
4639 if (old_dentry == trap)
4640 goto exit5;
4641 /* target should not be an ancestor of source */
4642 if (!(flags & RENAME_EXCHANGE))
4643 error = -ENOTEMPTY;
4644 if (new_dentry == trap)
4645 goto exit5;
4646
4647 error = security_path_rename(&old_path, old_dentry,
4648 &new_path, new_dentry, flags);
4649 if (error)
4650 goto exit5;
4651 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4652 new_path.dentry->d_inode, new_dentry,
4653 &delegated_inode, flags);
4654 exit5:
4655 dput(new_dentry);
4656 exit4:
4657 dput(old_dentry);
4658 exit3:
4659 unlock_rename(new_path.dentry, old_path.dentry);
4660 if (delegated_inode) {
4661 error = break_deleg_wait(&delegated_inode);
4662 if (!error)
4663 goto retry_deleg;
4664 }
4665 mnt_drop_write(old_path.mnt);
4666 exit2:
4667 if (retry_estale(error, lookup_flags))
4668 should_retry = true;
4669 path_put(&new_path);
4670 putname(to);
4671 exit1:
4672 path_put(&old_path);
4673 putname(from);
4674 if (should_retry) {
4675 should_retry = false;
4676 lookup_flags |= LOOKUP_REVAL;
4677 goto retry;
4678 }
4679 exit:
4680 return error;
4681 }
4682
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4683 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4684 int, newdfd, const char __user *, newname, unsigned int, flags)
4685 {
4686 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4687 }
4688
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4690 int, newdfd, const char __user *, newname)
4691 {
4692 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4693 }
4694
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4695 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4696 {
4697 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4698 }
4699
vfs_whiteout(struct inode * dir,struct dentry * dentry)4700 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4701 {
4702 int error = may_create(dir, dentry);
4703 if (error)
4704 return error;
4705
4706 if (!dir->i_op->mknod)
4707 return -EPERM;
4708
4709 return dir->i_op->mknod(dir, dentry,
4710 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4711 }
4712 EXPORT_SYMBOL(vfs_whiteout);
4713
readlink_copy(char __user * buffer,int buflen,const char * link)4714 int readlink_copy(char __user *buffer, int buflen, const char *link)
4715 {
4716 int len = PTR_ERR(link);
4717 if (IS_ERR(link))
4718 goto out;
4719
4720 len = strlen(link);
4721 if (len > (unsigned) buflen)
4722 len = buflen;
4723 if (copy_to_user(buffer, link, len))
4724 len = -EFAULT;
4725 out:
4726 return len;
4727 }
4728
4729 /**
4730 * vfs_readlink - copy symlink body into userspace buffer
4731 * @dentry: dentry on which to get symbolic link
4732 * @buffer: user memory pointer
4733 * @buflen: size of buffer
4734 *
4735 * Does not touch atime. That's up to the caller if necessary
4736 *
4737 * Does not call security hook.
4738 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4739 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4740 {
4741 struct inode *inode = d_inode(dentry);
4742 DEFINE_DELAYED_CALL(done);
4743 const char *link;
4744 int res;
4745
4746 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4747 if (unlikely(inode->i_op->readlink))
4748 return inode->i_op->readlink(dentry, buffer, buflen);
4749
4750 if (!d_is_symlink(dentry))
4751 return -EINVAL;
4752
4753 spin_lock(&inode->i_lock);
4754 inode->i_opflags |= IOP_DEFAULT_READLINK;
4755 spin_unlock(&inode->i_lock);
4756 }
4757
4758 link = inode->i_link;
4759 if (!link) {
4760 link = inode->i_op->get_link(dentry, inode, &done);
4761 if (IS_ERR(link))
4762 return PTR_ERR(link);
4763 }
4764 res = readlink_copy(buffer, buflen, link);
4765 do_delayed_call(&done);
4766 return res;
4767 }
4768 EXPORT_SYMBOL(vfs_readlink);
4769
4770 /**
4771 * vfs_get_link - get symlink body
4772 * @dentry: dentry on which to get symbolic link
4773 * @done: caller needs to free returned data with this
4774 *
4775 * Calls security hook and i_op->get_link() on the supplied inode.
4776 *
4777 * It does not touch atime. That's up to the caller if necessary.
4778 *
4779 * Does not work on "special" symlinks like /proc/$$/fd/N
4780 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4781 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4782 {
4783 const char *res = ERR_PTR(-EINVAL);
4784 struct inode *inode = d_inode(dentry);
4785
4786 if (d_is_symlink(dentry)) {
4787 res = ERR_PTR(security_inode_readlink(dentry));
4788 if (!res)
4789 res = inode->i_op->get_link(dentry, inode, done);
4790 }
4791 return res;
4792 }
4793 EXPORT_SYMBOL(vfs_get_link);
4794
4795 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4796 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4797 struct delayed_call *callback)
4798 {
4799 char *kaddr;
4800 struct page *page;
4801 struct address_space *mapping = inode->i_mapping;
4802
4803 if (!dentry) {
4804 page = find_get_page(mapping, 0);
4805 if (!page)
4806 return ERR_PTR(-ECHILD);
4807 if (!PageUptodate(page)) {
4808 put_page(page);
4809 return ERR_PTR(-ECHILD);
4810 }
4811 } else {
4812 page = read_mapping_page(mapping, 0, NULL);
4813 if (IS_ERR(page))
4814 return (char*)page;
4815 }
4816 set_delayed_call(callback, page_put_link, page);
4817 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4818 kaddr = page_address(page);
4819 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4820 return kaddr;
4821 }
4822
4823 EXPORT_SYMBOL(page_get_link);
4824
page_put_link(void * arg)4825 void page_put_link(void *arg)
4826 {
4827 put_page(arg);
4828 }
4829 EXPORT_SYMBOL(page_put_link);
4830
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4831 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4832 {
4833 DEFINE_DELAYED_CALL(done);
4834 int res = readlink_copy(buffer, buflen,
4835 page_get_link(dentry, d_inode(dentry),
4836 &done));
4837 do_delayed_call(&done);
4838 return res;
4839 }
4840 EXPORT_SYMBOL(page_readlink);
4841
4842 /*
4843 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4844 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4845 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4846 {
4847 struct address_space *mapping = inode->i_mapping;
4848 struct page *page;
4849 void *fsdata = NULL;
4850 int err;
4851 unsigned int flags = 0;
4852 if (nofs)
4853 flags |= AOP_FLAG_NOFS;
4854
4855 retry:
4856 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4857 flags, &page, &fsdata);
4858 if (err)
4859 goto fail;
4860
4861 memcpy(page_address(page), symname, len-1);
4862
4863 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4864 page, fsdata);
4865 if (err < 0)
4866 goto fail;
4867 if (err < len-1)
4868 goto retry;
4869
4870 mark_inode_dirty(inode);
4871 return 0;
4872 fail:
4873 return err;
4874 }
4875 EXPORT_SYMBOL(__page_symlink);
4876
page_symlink(struct inode * inode,const char * symname,int len)4877 int page_symlink(struct inode *inode, const char *symname, int len)
4878 {
4879 return __page_symlink(inode, symname, len,
4880 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4881 }
4882 EXPORT_SYMBOL(page_symlink);
4883
4884 const struct inode_operations page_symlink_inode_operations = {
4885 .get_link = page_get_link,
4886 };
4887 EXPORT_SYMBOL(page_symlink_inode_operations);
4888