1 /*
2  * Block rq-qos base io controller
3  *
4  * This works similar to wbt with a few exceptions
5  *
6  * - It's bio based, so the latency covers the whole block layer in addition to
7  *   the actual io.
8  * - We will throttle all IO that comes in here if we need to.
9  * - We use the mean latency over the 100ms window.  This is because writes can
10  *   be particularly fast, which could give us a false sense of the impact of
11  *   other workloads on our protected workload.
12  * - By default there's no throttling, we set the queue_depth to UINT_MAX so
13  *   that we can have as many outstanding bio's as we're allowed to.  Only at
14  *   throttle time do we pay attention to the actual queue depth.
15  *
16  * The hierarchy works like the cpu controller does, we track the latency at
17  * every configured node, and each configured node has it's own independent
18  * queue depth.  This means that we only care about our latency targets at the
19  * peer level.  Some group at the bottom of the hierarchy isn't going to affect
20  * a group at the end of some other path if we're only configred at leaf level.
21  *
22  * Consider the following
23  *
24  *                   root blkg
25  *             /                     \
26  *        fast (target=5ms)     slow (target=10ms)
27  *         /     \                  /        \
28  *       a        b          normal(15ms)   unloved
29  *
30  * "a" and "b" have no target, but their combined io under "fast" cannot exceed
31  * an average latency of 5ms.  If it does then we will throttle the "slow"
32  * group.  In the case of "normal", if it exceeds its 15ms target, we will
33  * throttle "unloved", but nobody else.
34  *
35  * In this example "fast", "slow", and "normal" will be the only groups actually
36  * accounting their io latencies.  We have to walk up the heirarchy to the root
37  * on every submit and complete so we can do the appropriate stat recording and
38  * adjust the queue depth of ourselves if needed.
39  *
40  * There are 2 ways we throttle IO.
41  *
42  * 1) Queue depth throttling.  As we throttle down we will adjust the maximum
43  * number of IO's we're allowed to have in flight.  This starts at (u64)-1 down
44  * to 1.  If the group is only ever submitting IO for itself then this is the
45  * only way we throttle.
46  *
47  * 2) Induced delay throttling.  This is for the case that a group is generating
48  * IO that has to be issued by the root cg to avoid priority inversion. So think
49  * REQ_META or REQ_SWAP.  If we are already at qd == 1 and we're getting a lot
50  * of work done for us on behalf of the root cg and are being asked to scale
51  * down more then we induce a latency at userspace return.  We accumulate the
52  * total amount of time we need to be punished by doing
53  *
54  * total_time += min_lat_nsec - actual_io_completion
55  *
56  * and then at throttle time will do
57  *
58  * throttle_time = min(total_time, NSEC_PER_SEC)
59  *
60  * This induced delay will throttle back the activity that is generating the
61  * root cg issued io's, wethere that's some metadata intensive operation or the
62  * group is using so much memory that it is pushing us into swap.
63  *
64  * Copyright (C) 2018 Josef Bacik
65  */
66 #include <linux/kernel.h>
67 #include <linux/blk_types.h>
68 #include <linux/backing-dev.h>
69 #include <linux/module.h>
70 #include <linux/timer.h>
71 #include <linux/memcontrol.h>
72 #include <linux/sched/loadavg.h>
73 #include <linux/sched/signal.h>
74 #include <trace/events/block.h>
75 #include <linux/blk-mq.h>
76 #include "blk-rq-qos.h"
77 #include "blk-stat.h"
78 #include "blk.h"
79 
80 #define DEFAULT_SCALE_COOKIE 1000000U
81 
82 static struct blkcg_policy blkcg_policy_iolatency;
83 struct iolatency_grp;
84 
85 struct blk_iolatency {
86 	struct rq_qos rqos;
87 	struct timer_list timer;
88 
89 	/*
90 	 * ->enabled is the master enable switch gating the throttling logic and
91 	 * inflight tracking. The number of cgroups which have iolat enabled is
92 	 * tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
93 	 * from ->enable_work with the request_queue frozen. For details, See
94 	 * blkiolatency_enable_work_fn().
95 	 */
96 	bool enabled;
97 	atomic_t enable_cnt;
98 	struct work_struct enable_work;
99 };
100 
BLKIOLATENCY(struct rq_qos * rqos)101 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
102 {
103 	return container_of(rqos, struct blk_iolatency, rqos);
104 }
105 
106 struct child_latency_info {
107 	spinlock_t lock;
108 
109 	/* Last time we adjusted the scale of everybody. */
110 	u64 last_scale_event;
111 
112 	/* The latency that we missed. */
113 	u64 scale_lat;
114 
115 	/* Total io's from all of our children for the last summation. */
116 	u64 nr_samples;
117 
118 	/* The guy who actually changed the latency numbers. */
119 	struct iolatency_grp *scale_grp;
120 
121 	/* Cookie to tell if we need to scale up or down. */
122 	atomic_t scale_cookie;
123 };
124 
125 struct iolatency_grp {
126 	struct blkg_policy_data pd;
127 	struct blk_rq_stat __percpu *stats;
128 	struct blk_iolatency *blkiolat;
129 	struct rq_depth rq_depth;
130 	struct rq_wait rq_wait;
131 	atomic64_t window_start;
132 	atomic_t scale_cookie;
133 	u64 min_lat_nsec;
134 	u64 cur_win_nsec;
135 
136 	/* total running average of our io latency. */
137 	u64 lat_avg;
138 
139 	/* Our current number of IO's for the last summation. */
140 	u64 nr_samples;
141 
142 	struct child_latency_info child_lat;
143 };
144 
145 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
146 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
147 /*
148  * These are the constants used to fake the fixed-point moving average
149  * calculation just like load average.  The call to CALC_LOAD folds
150  * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg.  The sampling
151  * window size is bucketed to try to approximately calculate average
152  * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
153  * elapse immediately.  Note, windows only elapse with IO activity.  Idle
154  * periods extend the most recent window.
155  */
156 #define BLKIOLATENCY_NR_EXP_FACTORS 5
157 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
158 				      (BLKIOLATENCY_NR_EXP_FACTORS - 1))
159 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
160 	2045, // exp(1/600) - 600 samples
161 	2039, // exp(1/240) - 240 samples
162 	2031, // exp(1/120) - 120 samples
163 	2023, // exp(1/80)  - 80 samples
164 	2014, // exp(1/60)  - 60 samples
165 };
166 
pd_to_lat(struct blkg_policy_data * pd)167 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
168 {
169 	return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
170 }
171 
blkg_to_lat(struct blkcg_gq * blkg)172 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
173 {
174 	return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
175 }
176 
lat_to_blkg(struct iolatency_grp * iolat)177 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
178 {
179 	return pd_to_blkg(&iolat->pd);
180 }
181 
iolatency_may_queue(struct iolatency_grp * iolat,wait_queue_entry_t * wait,bool first_block)182 static inline bool iolatency_may_queue(struct iolatency_grp *iolat,
183 				       wait_queue_entry_t *wait,
184 				       bool first_block)
185 {
186 	struct rq_wait *rqw = &iolat->rq_wait;
187 
188 	if (first_block && waitqueue_active(&rqw->wait) &&
189 	    rqw->wait.head.next != &wait->entry)
190 		return false;
191 	return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
192 }
193 
__blkcg_iolatency_throttle(struct rq_qos * rqos,struct iolatency_grp * iolat,spinlock_t * lock,bool issue_as_root,bool use_memdelay)194 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
195 				       struct iolatency_grp *iolat,
196 				       spinlock_t *lock, bool issue_as_root,
197 				       bool use_memdelay)
198 	__releases(lock)
199 	__acquires(lock)
200 {
201 	struct rq_wait *rqw = &iolat->rq_wait;
202 	unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
203 	DEFINE_WAIT(wait);
204 	bool first_block = true;
205 
206 	if (use_delay)
207 		blkcg_schedule_throttle(rqos->q, use_memdelay);
208 
209 	/*
210 	 * To avoid priority inversions we want to just take a slot if we are
211 	 * issuing as root.  If we're being killed off there's no point in
212 	 * delaying things, we may have been killed by OOM so throttling may
213 	 * make recovery take even longer, so just let the IO's through so the
214 	 * task can go away.
215 	 */
216 	if (issue_as_root || fatal_signal_pending(current)) {
217 		atomic_inc(&rqw->inflight);
218 		return;
219 	}
220 
221 	if (iolatency_may_queue(iolat, &wait, first_block))
222 		return;
223 
224 	do {
225 		prepare_to_wait_exclusive(&rqw->wait, &wait,
226 					  TASK_UNINTERRUPTIBLE);
227 
228 		if (iolatency_may_queue(iolat, &wait, first_block))
229 			break;
230 		first_block = false;
231 
232 		if (lock) {
233 			spin_unlock_irq(lock);
234 			io_schedule();
235 			spin_lock_irq(lock);
236 		} else {
237 			io_schedule();
238 		}
239 	} while (1);
240 
241 	finish_wait(&rqw->wait, &wait);
242 }
243 
244 #define SCALE_DOWN_FACTOR 2
245 #define SCALE_UP_FACTOR 4
246 
scale_amount(unsigned long qd,bool up)247 static inline unsigned long scale_amount(unsigned long qd, bool up)
248 {
249 	return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
250 }
251 
252 /*
253  * We scale the qd down faster than we scale up, so we need to use this helper
254  * to adjust the scale_cookie accordingly so we don't prematurely get
255  * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
256  *
257  * Each group has their own local copy of the last scale cookie they saw, so if
258  * the global scale cookie goes up or down they know which way they need to go
259  * based on their last knowledge of it.
260  */
scale_cookie_change(struct blk_iolatency * blkiolat,struct child_latency_info * lat_info,bool up)261 static void scale_cookie_change(struct blk_iolatency *blkiolat,
262 				struct child_latency_info *lat_info,
263 				bool up)
264 {
265 	unsigned long qd = blk_queue_depth(blkiolat->rqos.q);
266 	unsigned long scale = scale_amount(qd, up);
267 	unsigned long old = atomic_read(&lat_info->scale_cookie);
268 	unsigned long max_scale = qd << 1;
269 	unsigned long diff = 0;
270 
271 	if (old < DEFAULT_SCALE_COOKIE)
272 		diff = DEFAULT_SCALE_COOKIE - old;
273 
274 	if (up) {
275 		if (scale + old > DEFAULT_SCALE_COOKIE)
276 			atomic_set(&lat_info->scale_cookie,
277 				   DEFAULT_SCALE_COOKIE);
278 		else if (diff > qd)
279 			atomic_inc(&lat_info->scale_cookie);
280 		else
281 			atomic_add(scale, &lat_info->scale_cookie);
282 	} else {
283 		/*
284 		 * We don't want to dig a hole so deep that it takes us hours to
285 		 * dig out of it.  Just enough that we don't throttle/unthrottle
286 		 * with jagged workloads but can still unthrottle once pressure
287 		 * has sufficiently dissipated.
288 		 */
289 		if (diff > qd) {
290 			if (diff < max_scale)
291 				atomic_dec(&lat_info->scale_cookie);
292 		} else {
293 			atomic_sub(scale, &lat_info->scale_cookie);
294 		}
295 	}
296 }
297 
298 /*
299  * Change the queue depth of the iolatency_grp.  We add/subtract 1/16th of the
300  * queue depth at a time so we don't get wild swings and hopefully dial in to
301  * fairer distribution of the overall queue depth.
302  */
scale_change(struct iolatency_grp * iolat,bool up)303 static void scale_change(struct iolatency_grp *iolat, bool up)
304 {
305 	unsigned long qd = blk_queue_depth(iolat->blkiolat->rqos.q);
306 	unsigned long scale = scale_amount(qd, up);
307 	unsigned long old = iolat->rq_depth.max_depth;
308 	bool changed = false;
309 
310 	if (old > qd)
311 		old = qd;
312 
313 	if (up) {
314 		if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
315 			return;
316 
317 		if (old < qd) {
318 			changed = true;
319 			old += scale;
320 			old = min(old, qd);
321 			iolat->rq_depth.max_depth = old;
322 			wake_up_all(&iolat->rq_wait.wait);
323 		}
324 	} else if (old > 1) {
325 		old >>= 1;
326 		changed = true;
327 		iolat->rq_depth.max_depth = max(old, 1UL);
328 	}
329 }
330 
331 /* Check our parent and see if the scale cookie has changed. */
check_scale_change(struct iolatency_grp * iolat)332 static void check_scale_change(struct iolatency_grp *iolat)
333 {
334 	struct iolatency_grp *parent;
335 	struct child_latency_info *lat_info;
336 	unsigned int cur_cookie;
337 	unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
338 	u64 scale_lat;
339 	unsigned int old;
340 	int direction = 0;
341 
342 	if (lat_to_blkg(iolat)->parent == NULL)
343 		return;
344 
345 	parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
346 	if (!parent)
347 		return;
348 
349 	lat_info = &parent->child_lat;
350 	cur_cookie = atomic_read(&lat_info->scale_cookie);
351 	scale_lat = READ_ONCE(lat_info->scale_lat);
352 
353 	if (cur_cookie < our_cookie)
354 		direction = -1;
355 	else if (cur_cookie > our_cookie)
356 		direction = 1;
357 	else
358 		return;
359 
360 	old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
361 
362 	/* Somebody beat us to the punch, just bail. */
363 	if (old != our_cookie)
364 		return;
365 
366 	if (direction < 0 && iolat->min_lat_nsec) {
367 		u64 samples_thresh;
368 
369 		if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
370 			return;
371 
372 		/*
373 		 * Sometimes high priority groups are their own worst enemy, so
374 		 * instead of taking it out on some poor other group that did 5%
375 		 * or less of the IO's for the last summation just skip this
376 		 * scale down event.
377 		 */
378 		samples_thresh = lat_info->nr_samples * 5;
379 		samples_thresh = div64_u64(samples_thresh, 100);
380 		if (iolat->nr_samples <= samples_thresh)
381 			return;
382 	}
383 
384 	/* We're as low as we can go. */
385 	if (iolat->rq_depth.max_depth == 1 && direction < 0) {
386 		blkcg_use_delay(lat_to_blkg(iolat));
387 		return;
388 	}
389 
390 	/* We're back to the default cookie, unthrottle all the things. */
391 	if (cur_cookie == DEFAULT_SCALE_COOKIE) {
392 		blkcg_clear_delay(lat_to_blkg(iolat));
393 		iolat->rq_depth.max_depth = UINT_MAX;
394 		wake_up_all(&iolat->rq_wait.wait);
395 		return;
396 	}
397 
398 	scale_change(iolat, direction > 0);
399 }
400 
blkcg_iolatency_throttle(struct rq_qos * rqos,struct bio * bio,spinlock_t * lock)401 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio,
402 				     spinlock_t *lock)
403 {
404 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
405 	struct blkcg *blkcg;
406 	struct blkcg_gq *blkg;
407 	struct request_queue *q = rqos->q;
408 	bool issue_as_root = bio_issue_as_root_blkg(bio);
409 
410 	if (!blkiolat->enabled)
411 		return;
412 
413 	rcu_read_lock();
414 	blkcg = bio_blkcg(bio);
415 	bio_associate_blkcg(bio, &blkcg->css);
416 	blkg = blkg_lookup(blkcg, q);
417 	if (unlikely(!blkg)) {
418 		if (!lock)
419 			spin_lock_irq(q->queue_lock);
420 		blkg = blkg_lookup_create(blkcg, q);
421 		if (IS_ERR(blkg))
422 			blkg = NULL;
423 		if (!lock)
424 			spin_unlock_irq(q->queue_lock);
425 	}
426 	if (!blkg)
427 		goto out;
428 
429 	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
430 	bio_associate_blkg(bio, blkg);
431 out:
432 	rcu_read_unlock();
433 	while (blkg && blkg->parent) {
434 		struct iolatency_grp *iolat = blkg_to_lat(blkg);
435 		if (!iolat) {
436 			blkg = blkg->parent;
437 			continue;
438 		}
439 
440 		check_scale_change(iolat);
441 		__blkcg_iolatency_throttle(rqos, iolat, lock, issue_as_root,
442 				     (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
443 		blkg = blkg->parent;
444 	}
445 	if (!timer_pending(&blkiolat->timer))
446 		mod_timer(&blkiolat->timer, jiffies + HZ);
447 }
448 
iolatency_record_time(struct iolatency_grp * iolat,struct bio_issue * issue,u64 now,bool issue_as_root)449 static void iolatency_record_time(struct iolatency_grp *iolat,
450 				  struct bio_issue *issue, u64 now,
451 				  bool issue_as_root)
452 {
453 	struct blk_rq_stat *rq_stat;
454 	u64 start = bio_issue_time(issue);
455 	u64 req_time;
456 
457 	/*
458 	 * Have to do this so we are truncated to the correct time that our
459 	 * issue is truncated to.
460 	 */
461 	now = __bio_issue_time(now);
462 
463 	if (now <= start)
464 		return;
465 
466 	req_time = now - start;
467 
468 	/*
469 	 * We don't want to count issue_as_root bio's in the cgroups latency
470 	 * statistics as it could skew the numbers downwards.
471 	 */
472 	if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
473 		u64 sub = iolat->min_lat_nsec;
474 		if (req_time < sub)
475 			blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
476 		return;
477 	}
478 
479 	rq_stat = get_cpu_ptr(iolat->stats);
480 	blk_rq_stat_add(rq_stat, req_time);
481 	put_cpu_ptr(rq_stat);
482 }
483 
484 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
485 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
486 
iolatency_check_latencies(struct iolatency_grp * iolat,u64 now)487 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
488 {
489 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
490 	struct iolatency_grp *parent;
491 	struct child_latency_info *lat_info;
492 	struct blk_rq_stat stat;
493 	unsigned long flags;
494 	int cpu, exp_idx;
495 
496 	blk_rq_stat_init(&stat);
497 	preempt_disable();
498 	for_each_online_cpu(cpu) {
499 		struct blk_rq_stat *s;
500 		s = per_cpu_ptr(iolat->stats, cpu);
501 		blk_rq_stat_sum(&stat, s);
502 		blk_rq_stat_init(s);
503 	}
504 	preempt_enable();
505 
506 	parent = blkg_to_lat(blkg->parent);
507 	if (!parent)
508 		return;
509 
510 	lat_info = &parent->child_lat;
511 
512 	/*
513 	 * CALC_LOAD takes in a number stored in fixed point representation.
514 	 * Because we are using this for IO time in ns, the values stored
515 	 * are significantly larger than the FIXED_1 denominator (2048).
516 	 * Therefore, rounding errors in the calculation are negligible and
517 	 * can be ignored.
518 	 */
519 	exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
520 			div64_u64(iolat->cur_win_nsec,
521 				  BLKIOLATENCY_EXP_BUCKET_SIZE));
522 	CALC_LOAD(iolat->lat_avg, iolatency_exp_factors[exp_idx], stat.mean);
523 
524 	/* Everything is ok and we don't need to adjust the scale. */
525 	if (stat.mean <= iolat->min_lat_nsec &&
526 	    atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
527 		return;
528 
529 	/* Somebody beat us to the punch, just bail. */
530 	spin_lock_irqsave(&lat_info->lock, flags);
531 	lat_info->nr_samples -= iolat->nr_samples;
532 	lat_info->nr_samples += stat.nr_samples;
533 	iolat->nr_samples = stat.nr_samples;
534 
535 	if ((lat_info->last_scale_event >= now ||
536 	    now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME) &&
537 	    lat_info->scale_lat <= iolat->min_lat_nsec)
538 		goto out;
539 
540 	if (stat.mean <= iolat->min_lat_nsec &&
541 	    stat.nr_samples >= BLKIOLATENCY_MIN_GOOD_SAMPLES) {
542 		if (lat_info->scale_grp == iolat) {
543 			lat_info->last_scale_event = now;
544 			scale_cookie_change(iolat->blkiolat, lat_info, true);
545 		}
546 	} else if (stat.mean > iolat->min_lat_nsec) {
547 		lat_info->last_scale_event = now;
548 		if (!lat_info->scale_grp ||
549 		    lat_info->scale_lat > iolat->min_lat_nsec) {
550 			WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
551 			lat_info->scale_grp = iolat;
552 		}
553 		scale_cookie_change(iolat->blkiolat, lat_info, false);
554 	}
555 out:
556 	spin_unlock_irqrestore(&lat_info->lock, flags);
557 }
558 
blkcg_iolatency_done_bio(struct rq_qos * rqos,struct bio * bio)559 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
560 {
561 	struct blkcg_gq *blkg;
562 	struct rq_wait *rqw;
563 	struct iolatency_grp *iolat;
564 	u64 window_start;
565 	u64 now = ktime_to_ns(ktime_get());
566 	bool issue_as_root = bio_issue_as_root_blkg(bio);
567 	int inflight = 0;
568 
569 	blkg = bio->bi_blkg;
570 	if (!blkg)
571 		return;
572 
573 	iolat = blkg_to_lat(bio->bi_blkg);
574 	if (!iolat)
575 		return;
576 
577 	if (!iolat->blkiolat->enabled)
578 		return;
579 
580 	while (blkg && blkg->parent) {
581 		iolat = blkg_to_lat(blkg);
582 		if (!iolat) {
583 			blkg = blkg->parent;
584 			continue;
585 		}
586 		rqw = &iolat->rq_wait;
587 
588 		inflight = atomic_dec_return(&rqw->inflight);
589 		WARN_ON_ONCE(inflight < 0);
590 		/*
591 		 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
592 		 * submitted, so do not account for it.
593 		 */
594 		if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
595 			iolatency_record_time(iolat, &bio->bi_issue, now,
596 					      issue_as_root);
597 			window_start = atomic64_read(&iolat->window_start);
598 			if (now > window_start &&
599 			    (now - window_start) >= iolat->cur_win_nsec) {
600 				if (atomic64_cmpxchg(&iolat->window_start,
601 					     window_start, now) == window_start)
602 					iolatency_check_latencies(iolat, now);
603 			}
604 		}
605 		wake_up(&rqw->wait);
606 		blkg = blkg->parent;
607 	}
608 }
609 
blkcg_iolatency_exit(struct rq_qos * rqos)610 static void blkcg_iolatency_exit(struct rq_qos *rqos)
611 {
612 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
613 
614 	del_timer_sync(&blkiolat->timer);
615 	flush_work(&blkiolat->enable_work);
616 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
617 	kfree(blkiolat);
618 }
619 
620 static struct rq_qos_ops blkcg_iolatency_ops = {
621 	.throttle = blkcg_iolatency_throttle,
622 	.done_bio = blkcg_iolatency_done_bio,
623 	.exit = blkcg_iolatency_exit,
624 };
625 
blkiolatency_timer_fn(struct timer_list * t)626 static void blkiolatency_timer_fn(struct timer_list *t)
627 {
628 	struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
629 	struct blkcg_gq *blkg;
630 	struct cgroup_subsys_state *pos_css;
631 	u64 now = ktime_to_ns(ktime_get());
632 
633 	rcu_read_lock();
634 	blkg_for_each_descendant_pre(blkg, pos_css,
635 				     blkiolat->rqos.q->root_blkg) {
636 		struct iolatency_grp *iolat;
637 		struct child_latency_info *lat_info;
638 		unsigned long flags;
639 		u64 cookie;
640 
641 		/*
642 		 * We could be exiting, don't access the pd unless we have a
643 		 * ref on the blkg.
644 		 */
645 		if (!blkg_try_get(blkg))
646 			continue;
647 
648 		iolat = blkg_to_lat(blkg);
649 		if (!iolat)
650 			goto next;
651 
652 		lat_info = &iolat->child_lat;
653 		cookie = atomic_read(&lat_info->scale_cookie);
654 
655 		if (cookie >= DEFAULT_SCALE_COOKIE)
656 			goto next;
657 
658 		spin_lock_irqsave(&lat_info->lock, flags);
659 		if (lat_info->last_scale_event >= now)
660 			goto next_lock;
661 
662 		/*
663 		 * We scaled down but don't have a scale_grp, scale up and carry
664 		 * on.
665 		 */
666 		if (lat_info->scale_grp == NULL) {
667 			scale_cookie_change(iolat->blkiolat, lat_info, true);
668 			goto next_lock;
669 		}
670 
671 		/*
672 		 * It's been 5 seconds since our last scale event, clear the
673 		 * scale grp in case the group that needed the scale down isn't
674 		 * doing any IO currently.
675 		 */
676 		if (now - lat_info->last_scale_event >=
677 		    ((u64)NSEC_PER_SEC * 5))
678 			lat_info->scale_grp = NULL;
679 next_lock:
680 		spin_unlock_irqrestore(&lat_info->lock, flags);
681 next:
682 		blkg_put(blkg);
683 	}
684 	rcu_read_unlock();
685 }
686 
687 /**
688  * blkiolatency_enable_work_fn - Enable or disable iolatency on the device
689  * @work: enable_work of the blk_iolatency of interest
690  *
691  * iolatency needs to keep track of the number of in-flight IOs per cgroup. This
692  * is relatively expensive as it involves walking up the hierarchy twice for
693  * every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
694  * want to disable the in-flight tracking.
695  *
696  * We have to make sure that the counting is balanced - we don't want to leak
697  * the in-flight counts by disabling accounting in the completion path while IOs
698  * are in flight. This is achieved by ensuring that no IO is in flight by
699  * freezing the queue while flipping ->enabled. As this requires a sleepable
700  * context, ->enabled flipping is punted to this work function.
701  */
blkiolatency_enable_work_fn(struct work_struct * work)702 static void blkiolatency_enable_work_fn(struct work_struct *work)
703 {
704 	struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
705 						      enable_work);
706 	bool enabled;
707 
708 	/*
709 	 * There can only be one instance of this function running for @blkiolat
710 	 * and it's guaranteed to be executed at least once after the latest
711 	 * ->enabled_cnt modification. Acting on the latest ->enable_cnt is
712 	 * sufficient.
713 	 *
714 	 * Also, we know @blkiolat is safe to access as ->enable_work is flushed
715 	 * in blkcg_iolatency_exit().
716 	 */
717 	enabled = atomic_read(&blkiolat->enable_cnt);
718 	if (enabled != blkiolat->enabled) {
719 		blk_mq_freeze_queue(blkiolat->rqos.q);
720 		blkiolat->enabled = enabled;
721 		blk_mq_unfreeze_queue(blkiolat->rqos.q);
722 	}
723 }
724 
blk_iolatency_init(struct request_queue * q)725 int blk_iolatency_init(struct request_queue *q)
726 {
727 	struct blk_iolatency *blkiolat;
728 	struct rq_qos *rqos;
729 	int ret;
730 
731 	blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
732 	if (!blkiolat)
733 		return -ENOMEM;
734 
735 	rqos = &blkiolat->rqos;
736 	rqos->id = RQ_QOS_CGROUP;
737 	rqos->ops = &blkcg_iolatency_ops;
738 	rqos->q = q;
739 
740 	rq_qos_add(q, rqos);
741 
742 	ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
743 	if (ret) {
744 		rq_qos_del(q, rqos);
745 		kfree(blkiolat);
746 		return ret;
747 	}
748 
749 	timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
750 	INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
751 
752 	return 0;
753 }
754 
iolatency_set_min_lat_nsec(struct blkcg_gq * blkg,u64 val)755 static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
756 {
757 	struct iolatency_grp *iolat = blkg_to_lat(blkg);
758 	struct blk_iolatency *blkiolat = iolat->blkiolat;
759 	u64 oldval = iolat->min_lat_nsec;
760 
761 	iolat->min_lat_nsec = val;
762 	iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
763 	iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
764 				    BLKIOLATENCY_MAX_WIN_SIZE);
765 
766 	if (!oldval && val) {
767 		if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
768 			schedule_work(&blkiolat->enable_work);
769 	}
770 	if (oldval && !val) {
771 		blkcg_clear_delay(blkg);
772 		if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
773 			schedule_work(&blkiolat->enable_work);
774 	}
775 }
776 
iolatency_clear_scaling(struct blkcg_gq * blkg)777 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
778 {
779 	if (blkg->parent) {
780 		struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
781 		struct child_latency_info *lat_info;
782 		if (!iolat)
783 			return;
784 
785 		lat_info = &iolat->child_lat;
786 		spin_lock(&lat_info->lock);
787 		atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
788 		lat_info->last_scale_event = 0;
789 		lat_info->scale_grp = NULL;
790 		lat_info->scale_lat = 0;
791 		spin_unlock(&lat_info->lock);
792 	}
793 }
794 
iolatency_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)795 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
796 			     size_t nbytes, loff_t off)
797 {
798 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
799 	struct blkcg_gq *blkg;
800 	struct blk_iolatency *blkiolat;
801 	struct blkg_conf_ctx ctx;
802 	struct iolatency_grp *iolat;
803 	char *p, *tok;
804 	u64 lat_val = 0;
805 	u64 oldval;
806 	int ret;
807 
808 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
809 	if (ret)
810 		return ret;
811 
812 	iolat = blkg_to_lat(ctx.blkg);
813 	blkiolat = iolat->blkiolat;
814 	p = ctx.body;
815 
816 	ret = -EINVAL;
817 	while ((tok = strsep(&p, " "))) {
818 		char key[16];
819 		char val[21];	/* 18446744073709551616 */
820 
821 		if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
822 			goto out;
823 
824 		if (!strcmp(key, "target")) {
825 			u64 v;
826 
827 			if (!strcmp(val, "max"))
828 				lat_val = 0;
829 			else if (sscanf(val, "%llu", &v) == 1)
830 				lat_val = v * NSEC_PER_USEC;
831 			else
832 				goto out;
833 		} else {
834 			goto out;
835 		}
836 	}
837 
838 	/* Walk up the tree to see if our new val is lower than it should be. */
839 	blkg = ctx.blkg;
840 	oldval = iolat->min_lat_nsec;
841 
842 	iolatency_set_min_lat_nsec(blkg, lat_val);
843 	if (oldval != iolat->min_lat_nsec)
844 		iolatency_clear_scaling(blkg);
845 	ret = 0;
846 out:
847 	blkg_conf_finish(&ctx);
848 	return ret ?: nbytes;
849 }
850 
iolatency_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)851 static u64 iolatency_prfill_limit(struct seq_file *sf,
852 				  struct blkg_policy_data *pd, int off)
853 {
854 	struct iolatency_grp *iolat = pd_to_lat(pd);
855 	const char *dname = blkg_dev_name(pd->blkg);
856 
857 	if (!dname || !iolat->min_lat_nsec)
858 		return 0;
859 	seq_printf(sf, "%s target=%llu\n",
860 		   dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
861 	return 0;
862 }
863 
iolatency_print_limit(struct seq_file * sf,void * v)864 static int iolatency_print_limit(struct seq_file *sf, void *v)
865 {
866 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
867 			  iolatency_prfill_limit,
868 			  &blkcg_policy_iolatency, seq_cft(sf)->private, false);
869 	return 0;
870 }
871 
iolatency_pd_stat(struct blkg_policy_data * pd,char * buf,size_t size)872 static size_t iolatency_pd_stat(struct blkg_policy_data *pd, char *buf,
873 				size_t size)
874 {
875 	struct iolatency_grp *iolat = pd_to_lat(pd);
876 	unsigned long long avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
877 	unsigned long long cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
878 
879 	if (iolat->rq_depth.max_depth == UINT_MAX)
880 		return scnprintf(buf, size, " depth=max avg_lat=%llu win=%llu",
881 				 avg_lat, cur_win);
882 
883 	return scnprintf(buf, size, " depth=%u avg_lat=%llu win=%llu",
884 			 iolat->rq_depth.max_depth, avg_lat, cur_win);
885 }
886 
887 
iolatency_pd_alloc(gfp_t gfp,int node)888 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp, int node)
889 {
890 	struct iolatency_grp *iolat;
891 
892 	iolat = kzalloc_node(sizeof(*iolat), gfp, node);
893 	if (!iolat)
894 		return NULL;
895 	iolat->stats = __alloc_percpu_gfp(sizeof(struct blk_rq_stat),
896 				       __alignof__(struct blk_rq_stat), gfp);
897 	if (!iolat->stats) {
898 		kfree(iolat);
899 		return NULL;
900 	}
901 	return &iolat->pd;
902 }
903 
iolatency_pd_init(struct blkg_policy_data * pd)904 static void iolatency_pd_init(struct blkg_policy_data *pd)
905 {
906 	struct iolatency_grp *iolat = pd_to_lat(pd);
907 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
908 	struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
909 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
910 	u64 now = ktime_to_ns(ktime_get());
911 	int cpu;
912 
913 	for_each_possible_cpu(cpu) {
914 		struct blk_rq_stat *stat;
915 		stat = per_cpu_ptr(iolat->stats, cpu);
916 		blk_rq_stat_init(stat);
917 	}
918 
919 	rq_wait_init(&iolat->rq_wait);
920 	spin_lock_init(&iolat->child_lat.lock);
921 	iolat->rq_depth.queue_depth = blk_queue_depth(blkg->q);
922 	iolat->rq_depth.max_depth = UINT_MAX;
923 	iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
924 	iolat->blkiolat = blkiolat;
925 	iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
926 	atomic64_set(&iolat->window_start, now);
927 
928 	/*
929 	 * We init things in list order, so the pd for the parent may not be
930 	 * init'ed yet for whatever reason.
931 	 */
932 	if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
933 		struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
934 		atomic_set(&iolat->scale_cookie,
935 			   atomic_read(&parent->child_lat.scale_cookie));
936 	} else {
937 		atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
938 	}
939 
940 	atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
941 }
942 
iolatency_pd_offline(struct blkg_policy_data * pd)943 static void iolatency_pd_offline(struct blkg_policy_data *pd)
944 {
945 	struct iolatency_grp *iolat = pd_to_lat(pd);
946 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
947 
948 	iolatency_set_min_lat_nsec(blkg, 0);
949 	iolatency_clear_scaling(blkg);
950 }
951 
iolatency_pd_free(struct blkg_policy_data * pd)952 static void iolatency_pd_free(struct blkg_policy_data *pd)
953 {
954 	struct iolatency_grp *iolat = pd_to_lat(pd);
955 	free_percpu(iolat->stats);
956 	kfree(iolat);
957 }
958 
959 static struct cftype iolatency_files[] = {
960 	{
961 		.name = "latency",
962 		.flags = CFTYPE_NOT_ON_ROOT,
963 		.seq_show = iolatency_print_limit,
964 		.write = iolatency_set_limit,
965 	},
966 	{}
967 };
968 
969 static struct blkcg_policy blkcg_policy_iolatency = {
970 	.dfl_cftypes	= iolatency_files,
971 	.pd_alloc_fn	= iolatency_pd_alloc,
972 	.pd_init_fn	= iolatency_pd_init,
973 	.pd_offline_fn	= iolatency_pd_offline,
974 	.pd_free_fn	= iolatency_pd_free,
975 	.pd_stat_fn	= iolatency_pd_stat,
976 };
977 
iolatency_init(void)978 static int __init iolatency_init(void)
979 {
980 	return blkcg_policy_register(&blkcg_policy_iolatency);
981 }
982 
iolatency_exit(void)983 static void __exit iolatency_exit(void)
984 {
985 	return blkcg_policy_unregister(&blkcg_policy_iolatency);
986 }
987 
988 module_init(iolatency_init);
989 module_exit(iolatency_exit);
990