1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
29 
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32 
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 				   unsigned int tail);
35 
36 struct mcryptd_flush_list {
37 	struct list_head list;
38 	struct mutex lock;
39 };
40 
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42 
43 struct hashd_instance_ctx {
44 	struct crypto_ahash_spawn spawn;
45 	struct mcryptd_queue *queue;
46 };
47 
48 static void mcryptd_queue_worker(struct work_struct *work);
49 
mcryptd_arm_flusher(struct mcryptd_alg_cstate * cstate,unsigned long delay)50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52 	struct mcryptd_flush_list *flist;
53 
54 	if (!cstate->flusher_engaged) {
55 		/* put the flusher on the flush list */
56 		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 		mutex_lock(&flist->lock);
58 		list_add_tail(&cstate->flush_list, &flist->list);
59 		cstate->flusher_engaged = true;
60 		cstate->next_flush = jiffies + delay;
61 		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 			&cstate->flush, delay);
63 		mutex_unlock(&flist->lock);
64 	}
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67 
mcryptd_init_queue(struct mcryptd_queue * queue,unsigned int max_cpu_qlen)68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 			     unsigned int max_cpu_qlen)
70 {
71 	int cpu;
72 	struct mcryptd_cpu_queue *cpu_queue;
73 
74 	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 	if (!queue->cpu_queue)
77 		return -ENOMEM;
78 	for_each_possible_cpu(cpu) {
79 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 		spin_lock_init(&cpu_queue->q_lock);
84 	}
85 	return 0;
86 }
87 
mcryptd_fini_queue(struct mcryptd_queue * queue)88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
89 {
90 	int cpu;
91 	struct mcryptd_cpu_queue *cpu_queue;
92 
93 	for_each_possible_cpu(cpu) {
94 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
95 		BUG_ON(cpu_queue->queue.qlen);
96 	}
97 	free_percpu(queue->cpu_queue);
98 }
99 
mcryptd_enqueue_request(struct mcryptd_queue * queue,struct crypto_async_request * request,struct mcryptd_hash_request_ctx * rctx)100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101 				  struct crypto_async_request *request,
102 				  struct mcryptd_hash_request_ctx *rctx)
103 {
104 	int cpu, err;
105 	struct mcryptd_cpu_queue *cpu_queue;
106 
107 	cpu_queue = raw_cpu_ptr(queue->cpu_queue);
108 	spin_lock(&cpu_queue->q_lock);
109 	cpu = smp_processor_id();
110 	rctx->tag.cpu = smp_processor_id();
111 
112 	err = crypto_enqueue_request(&cpu_queue->queue, request);
113 	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114 		 cpu, cpu_queue, request);
115 	spin_unlock(&cpu_queue->q_lock);
116 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
117 
118 	return err;
119 }
120 
121 /*
122  * Try to opportunisticlly flush the partially completed jobs if
123  * crypto daemon is the only task running.
124  */
mcryptd_opportunistic_flush(void)125 static void mcryptd_opportunistic_flush(void)
126 {
127 	struct mcryptd_flush_list *flist;
128 	struct mcryptd_alg_cstate *cstate;
129 
130 	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
131 	while (single_task_running()) {
132 		mutex_lock(&flist->lock);
133 		cstate = list_first_entry_or_null(&flist->list,
134 				struct mcryptd_alg_cstate, flush_list);
135 		if (!cstate || !cstate->flusher_engaged) {
136 			mutex_unlock(&flist->lock);
137 			return;
138 		}
139 		list_del(&cstate->flush_list);
140 		cstate->flusher_engaged = false;
141 		mutex_unlock(&flist->lock);
142 		cstate->alg_state->flusher(cstate);
143 	}
144 }
145 
146 /*
147  * Called in workqueue context, do one real cryption work (via
148  * req->complete) and reschedule itself if there are more work to
149  * do.
150  */
mcryptd_queue_worker(struct work_struct * work)151 static void mcryptd_queue_worker(struct work_struct *work)
152 {
153 	struct mcryptd_cpu_queue *cpu_queue;
154 	struct crypto_async_request *req, *backlog;
155 	int i;
156 
157 	/*
158 	 * Need to loop through more than once for multi-buffer to
159 	 * be effective.
160 	 */
161 
162 	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
163 	i = 0;
164 	while (i < MCRYPTD_BATCH || single_task_running()) {
165 
166 		spin_lock_bh(&cpu_queue->q_lock);
167 		backlog = crypto_get_backlog(&cpu_queue->queue);
168 		req = crypto_dequeue_request(&cpu_queue->queue);
169 		spin_unlock_bh(&cpu_queue->q_lock);
170 
171 		if (!req) {
172 			mcryptd_opportunistic_flush();
173 			return;
174 		}
175 
176 		if (backlog)
177 			backlog->complete(backlog, -EINPROGRESS);
178 		req->complete(req, 0);
179 		if (!cpu_queue->queue.qlen)
180 			return;
181 		++i;
182 	}
183 	if (cpu_queue->queue.qlen)
184 		queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
185 }
186 
mcryptd_flusher(struct work_struct * __work)187 void mcryptd_flusher(struct work_struct *__work)
188 {
189 	struct	mcryptd_alg_cstate	*alg_cpu_state;
190 	struct	mcryptd_alg_state	*alg_state;
191 	struct	mcryptd_flush_list	*flist;
192 	int	cpu;
193 
194 	cpu = smp_processor_id();
195 	alg_cpu_state = container_of(to_delayed_work(__work),
196 				     struct mcryptd_alg_cstate, flush);
197 	alg_state = alg_cpu_state->alg_state;
198 	if (alg_cpu_state->cpu != cpu)
199 		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
200 				cpu, alg_cpu_state->cpu);
201 
202 	if (alg_cpu_state->flusher_engaged) {
203 		flist = per_cpu_ptr(mcryptd_flist, cpu);
204 		mutex_lock(&flist->lock);
205 		list_del(&alg_cpu_state->flush_list);
206 		alg_cpu_state->flusher_engaged = false;
207 		mutex_unlock(&flist->lock);
208 		alg_state->flusher(alg_cpu_state);
209 	}
210 }
211 EXPORT_SYMBOL_GPL(mcryptd_flusher);
212 
mcryptd_get_queue(struct crypto_tfm * tfm)213 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
214 {
215 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
216 	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
217 
218 	return ictx->queue;
219 }
220 
mcryptd_alloc_instance(struct crypto_alg * alg,unsigned int head,unsigned int tail)221 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
222 				   unsigned int tail)
223 {
224 	char *p;
225 	struct crypto_instance *inst;
226 	int err;
227 
228 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
229 	if (!p)
230 		return ERR_PTR(-ENOMEM);
231 
232 	inst = (void *)(p + head);
233 
234 	err = -ENAMETOOLONG;
235 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
236 		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
237 		goto out_free_inst;
238 
239 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
240 
241 	inst->alg.cra_priority = alg->cra_priority + 50;
242 	inst->alg.cra_blocksize = alg->cra_blocksize;
243 	inst->alg.cra_alignmask = alg->cra_alignmask;
244 
245 out:
246 	return p;
247 
248 out_free_inst:
249 	kfree(p);
250 	p = ERR_PTR(err);
251 	goto out;
252 }
253 
mcryptd_check_internal(struct rtattr ** tb,u32 * type,u32 * mask)254 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
255 					  u32 *mask)
256 {
257 	struct crypto_attr_type *algt;
258 
259 	algt = crypto_get_attr_type(tb);
260 	if (IS_ERR(algt))
261 		return false;
262 
263 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
264 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
265 
266 	if (*type & *mask & CRYPTO_ALG_INTERNAL)
267 		return true;
268 	else
269 		return false;
270 }
271 
mcryptd_hash_init_tfm(struct crypto_tfm * tfm)272 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
273 {
274 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
275 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
276 	struct crypto_ahash_spawn *spawn = &ictx->spawn;
277 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
278 	struct crypto_ahash *hash;
279 
280 	hash = crypto_spawn_ahash(spawn);
281 	if (IS_ERR(hash))
282 		return PTR_ERR(hash);
283 
284 	ctx->child = hash;
285 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
286 				 sizeof(struct mcryptd_hash_request_ctx) +
287 				 crypto_ahash_reqsize(hash));
288 	return 0;
289 }
290 
mcryptd_hash_exit_tfm(struct crypto_tfm * tfm)291 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
292 {
293 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
294 
295 	crypto_free_ahash(ctx->child);
296 }
297 
mcryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)298 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
299 				   const u8 *key, unsigned int keylen)
300 {
301 	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
302 	struct crypto_ahash *child = ctx->child;
303 	int err;
304 
305 	crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
306 	crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
307 				      CRYPTO_TFM_REQ_MASK);
308 	err = crypto_ahash_setkey(child, key, keylen);
309 	crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
310 				       CRYPTO_TFM_RES_MASK);
311 	return err;
312 }
313 
mcryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t complete)314 static int mcryptd_hash_enqueue(struct ahash_request *req,
315 				crypto_completion_t complete)
316 {
317 	int ret;
318 
319 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
320 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
321 	struct mcryptd_queue *queue =
322 		mcryptd_get_queue(crypto_ahash_tfm(tfm));
323 
324 	rctx->complete = req->base.complete;
325 	req->base.complete = complete;
326 
327 	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
328 
329 	return ret;
330 }
331 
mcryptd_hash_init(struct crypto_async_request * req_async,int err)332 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
333 {
334 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
335 	struct crypto_ahash *child = ctx->child;
336 	struct ahash_request *req = ahash_request_cast(req_async);
337 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
338 	struct ahash_request *desc = &rctx->areq;
339 
340 	if (unlikely(err == -EINPROGRESS))
341 		goto out;
342 
343 	ahash_request_set_tfm(desc, child);
344 	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
345 						rctx->complete, req_async);
346 
347 	rctx->out = req->result;
348 	err = crypto_ahash_init(desc);
349 
350 out:
351 	local_bh_disable();
352 	rctx->complete(&req->base, err);
353 	local_bh_enable();
354 }
355 
mcryptd_hash_init_enqueue(struct ahash_request * req)356 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
357 {
358 	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
359 }
360 
mcryptd_hash_update(struct crypto_async_request * req_async,int err)361 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
362 {
363 	struct ahash_request *req = ahash_request_cast(req_async);
364 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
365 
366 	if (unlikely(err == -EINPROGRESS))
367 		goto out;
368 
369 	rctx->out = req->result;
370 	err = crypto_ahash_update(&rctx->areq);
371 	if (err) {
372 		req->base.complete = rctx->complete;
373 		goto out;
374 	}
375 
376 	return;
377 out:
378 	local_bh_disable();
379 	rctx->complete(&req->base, err);
380 	local_bh_enable();
381 }
382 
mcryptd_hash_update_enqueue(struct ahash_request * req)383 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
384 {
385 	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
386 }
387 
mcryptd_hash_final(struct crypto_async_request * req_async,int err)388 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
389 {
390 	struct ahash_request *req = ahash_request_cast(req_async);
391 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
392 
393 	if (unlikely(err == -EINPROGRESS))
394 		goto out;
395 
396 	rctx->out = req->result;
397 	err = crypto_ahash_final(&rctx->areq);
398 	if (err) {
399 		req->base.complete = rctx->complete;
400 		goto out;
401 	}
402 
403 	return;
404 out:
405 	local_bh_disable();
406 	rctx->complete(&req->base, err);
407 	local_bh_enable();
408 }
409 
mcryptd_hash_final_enqueue(struct ahash_request * req)410 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
411 {
412 	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
413 }
414 
mcryptd_hash_finup(struct crypto_async_request * req_async,int err)415 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
416 {
417 	struct ahash_request *req = ahash_request_cast(req_async);
418 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
419 
420 	if (unlikely(err == -EINPROGRESS))
421 		goto out;
422 	rctx->out = req->result;
423 	err = crypto_ahash_finup(&rctx->areq);
424 
425 	if (err) {
426 		req->base.complete = rctx->complete;
427 		goto out;
428 	}
429 
430 	return;
431 out:
432 	local_bh_disable();
433 	rctx->complete(&req->base, err);
434 	local_bh_enable();
435 }
436 
mcryptd_hash_finup_enqueue(struct ahash_request * req)437 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
438 {
439 	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
440 }
441 
mcryptd_hash_digest(struct crypto_async_request * req_async,int err)442 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
443 {
444 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
445 	struct crypto_ahash *child = ctx->child;
446 	struct ahash_request *req = ahash_request_cast(req_async);
447 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
448 	struct ahash_request *desc = &rctx->areq;
449 
450 	if (unlikely(err == -EINPROGRESS))
451 		goto out;
452 
453 	ahash_request_set_tfm(desc, child);
454 	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
455 						rctx->complete, req_async);
456 
457 	rctx->out = req->result;
458 	err = crypto_ahash_init(desc) ?: crypto_ahash_finup(desc);
459 
460 out:
461 	local_bh_disable();
462 	rctx->complete(&req->base, err);
463 	local_bh_enable();
464 }
465 
mcryptd_hash_digest_enqueue(struct ahash_request * req)466 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
467 {
468 	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
469 }
470 
mcryptd_hash_export(struct ahash_request * req,void * out)471 static int mcryptd_hash_export(struct ahash_request *req, void *out)
472 {
473 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
474 
475 	return crypto_ahash_export(&rctx->areq, out);
476 }
477 
mcryptd_hash_import(struct ahash_request * req,const void * in)478 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
479 {
480 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
481 
482 	return crypto_ahash_import(&rctx->areq, in);
483 }
484 
mcryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct mcryptd_queue * queue)485 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
486 			      struct mcryptd_queue *queue)
487 {
488 	struct hashd_instance_ctx *ctx;
489 	struct ahash_instance *inst;
490 	struct hash_alg_common *halg;
491 	struct crypto_alg *alg;
492 	u32 type = 0;
493 	u32 mask = 0;
494 	int err;
495 
496 	if (!mcryptd_check_internal(tb, &type, &mask))
497 		return -EINVAL;
498 
499 	halg = ahash_attr_alg(tb[1], type, mask);
500 	if (IS_ERR(halg))
501 		return PTR_ERR(halg);
502 
503 	alg = &halg->base;
504 	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
505 	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
506 					sizeof(*ctx));
507 	err = PTR_ERR(inst);
508 	if (IS_ERR(inst))
509 		goto out_put_alg;
510 
511 	ctx = ahash_instance_ctx(inst);
512 	ctx->queue = queue;
513 
514 	err = crypto_init_ahash_spawn(&ctx->spawn, halg,
515 				      ahash_crypto_instance(inst));
516 	if (err)
517 		goto out_free_inst;
518 
519 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
520 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
521 				   CRYPTO_ALG_OPTIONAL_KEY));
522 
523 	inst->alg.halg.digestsize = halg->digestsize;
524 	inst->alg.halg.statesize = halg->statesize;
525 	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
526 
527 	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
528 	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
529 
530 	inst->alg.init   = mcryptd_hash_init_enqueue;
531 	inst->alg.update = mcryptd_hash_update_enqueue;
532 	inst->alg.final  = mcryptd_hash_final_enqueue;
533 	inst->alg.finup  = mcryptd_hash_finup_enqueue;
534 	inst->alg.export = mcryptd_hash_export;
535 	inst->alg.import = mcryptd_hash_import;
536 	if (crypto_hash_alg_has_setkey(halg))
537 		inst->alg.setkey = mcryptd_hash_setkey;
538 	inst->alg.digest = mcryptd_hash_digest_enqueue;
539 
540 	err = ahash_register_instance(tmpl, inst);
541 	if (err) {
542 		crypto_drop_ahash(&ctx->spawn);
543 out_free_inst:
544 		kfree(inst);
545 	}
546 
547 out_put_alg:
548 	crypto_mod_put(alg);
549 	return err;
550 }
551 
552 static struct mcryptd_queue mqueue;
553 
mcryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)554 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
555 {
556 	struct crypto_attr_type *algt;
557 
558 	algt = crypto_get_attr_type(tb);
559 	if (IS_ERR(algt))
560 		return PTR_ERR(algt);
561 
562 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
563 	case CRYPTO_ALG_TYPE_DIGEST:
564 		return mcryptd_create_hash(tmpl, tb, &mqueue);
565 	break;
566 	}
567 
568 	return -EINVAL;
569 }
570 
mcryptd_free(struct crypto_instance * inst)571 static void mcryptd_free(struct crypto_instance *inst)
572 {
573 	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
574 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
575 
576 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
577 	case CRYPTO_ALG_TYPE_AHASH:
578 		crypto_drop_ahash(&hctx->spawn);
579 		kfree(ahash_instance(inst));
580 		return;
581 	default:
582 		crypto_drop_spawn(&ctx->spawn);
583 		kfree(inst);
584 	}
585 }
586 
587 static struct crypto_template mcryptd_tmpl = {
588 	.name = "mcryptd",
589 	.create = mcryptd_create,
590 	.free = mcryptd_free,
591 	.module = THIS_MODULE,
592 };
593 
mcryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)594 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
595 					u32 type, u32 mask)
596 {
597 	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
598 	struct crypto_ahash *tfm;
599 
600 	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
601 		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
602 		return ERR_PTR(-EINVAL);
603 	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
604 	if (IS_ERR(tfm))
605 		return ERR_CAST(tfm);
606 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
607 		crypto_free_ahash(tfm);
608 		return ERR_PTR(-EINVAL);
609 	}
610 
611 	return __mcryptd_ahash_cast(tfm);
612 }
613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
614 
mcryptd_ahash_child(struct mcryptd_ahash * tfm)615 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
616 {
617 	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
618 
619 	return ctx->child;
620 }
621 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
622 
mcryptd_ahash_desc(struct ahash_request * req)623 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
624 {
625 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
626 	return &rctx->areq;
627 }
628 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
629 
mcryptd_free_ahash(struct mcryptd_ahash * tfm)630 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
631 {
632 	crypto_free_ahash(&tfm->base);
633 }
634 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
635 
mcryptd_init(void)636 static int __init mcryptd_init(void)
637 {
638 	int err, cpu;
639 	struct mcryptd_flush_list *flist;
640 
641 	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
642 	for_each_possible_cpu(cpu) {
643 		flist = per_cpu_ptr(mcryptd_flist, cpu);
644 		INIT_LIST_HEAD(&flist->list);
645 		mutex_init(&flist->lock);
646 	}
647 
648 	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
649 	if (err) {
650 		free_percpu(mcryptd_flist);
651 		return err;
652 	}
653 
654 	err = crypto_register_template(&mcryptd_tmpl);
655 	if (err) {
656 		mcryptd_fini_queue(&mqueue);
657 		free_percpu(mcryptd_flist);
658 	}
659 
660 	return err;
661 }
662 
mcryptd_exit(void)663 static void __exit mcryptd_exit(void)
664 {
665 	mcryptd_fini_queue(&mqueue);
666 	crypto_unregister_template(&mcryptd_tmpl);
667 	free_percpu(mcryptd_flist);
668 }
669 
670 subsys_initcall(mcryptd_init);
671 module_exit(mcryptd_exit);
672 
673 MODULE_LICENSE("GPL");
674 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
675 MODULE_ALIAS_CRYPTO("mcryptd");
676