1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
23 */
24
25 /*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
33 *
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
71 */
72
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76
77 /**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
ubifs_ro_mode(struct ubifs_info * c,int err)82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84 if (!c->ro_error) {
85 c->ro_error = 1;
86 c->no_chk_data_crc = 0;
87 c->vfs_sb->s_flags |= SB_RDONLY;
88 ubifs_warn(c, "switched to read-only mode, error %d", err);
89 dump_stack();
90 }
91 }
92
93 /*
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
97 */
98
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 int len, int even_ebadmsg)
101 {
102 int err;
103
104 err = ubi_read(c->ubi, lnum, buf, offs, len);
105 /*
106 * In case of %-EBADMSG print the error message only if the
107 * @even_ebadmsg is true.
108 */
109 if (err && (err != -EBADMSG || even_ebadmsg)) {
110 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111 len, lnum, offs, err);
112 dump_stack();
113 }
114 return err;
115 }
116
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 int len)
119 {
120 int err;
121
122 ubifs_assert(c, !c->ro_media && !c->ro_mount);
123 if (c->ro_error)
124 return -EROFS;
125 if (!dbg_is_tst_rcvry(c))
126 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127 else
128 err = dbg_leb_write(c, lnum, buf, offs, len);
129 if (err) {
130 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131 len, lnum, offs, err);
132 ubifs_ro_mode(c, err);
133 dump_stack();
134 }
135 return err;
136 }
137
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140 int err;
141
142 ubifs_assert(c, !c->ro_media && !c->ro_mount);
143 if (c->ro_error)
144 return -EROFS;
145 if (!dbg_is_tst_rcvry(c))
146 err = ubi_leb_change(c->ubi, lnum, buf, len);
147 else
148 err = dbg_leb_change(c, lnum, buf, len);
149 if (err) {
150 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151 len, lnum, err);
152 ubifs_ro_mode(c, err);
153 dump_stack();
154 }
155 return err;
156 }
157
ubifs_leb_unmap(struct ubifs_info * c,int lnum)158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160 int err;
161
162 ubifs_assert(c, !c->ro_media && !c->ro_mount);
163 if (c->ro_error)
164 return -EROFS;
165 if (!dbg_is_tst_rcvry(c))
166 err = ubi_leb_unmap(c->ubi, lnum);
167 else
168 err = dbg_leb_unmap(c, lnum);
169 if (err) {
170 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 ubifs_ro_mode(c, err);
172 dump_stack();
173 }
174 return err;
175 }
176
ubifs_leb_map(struct ubifs_info * c,int lnum)177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 int err;
180
181 ubifs_assert(c, !c->ro_media && !c->ro_mount);
182 if (c->ro_error)
183 return -EROFS;
184 if (!dbg_is_tst_rcvry(c))
185 err = ubi_leb_map(c->ubi, lnum);
186 else
187 err = dbg_leb_map(c, lnum);
188 if (err) {
189 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190 ubifs_ro_mode(c, err);
191 dump_stack();
192 }
193 return err;
194 }
195
ubifs_is_mapped(const struct ubifs_info * c,int lnum)196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198 int err;
199
200 err = ubi_is_mapped(c->ubi, lnum);
201 if (err < 0) {
202 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203 lnum, err);
204 dump_stack();
205 }
206 return err;
207 }
208
209 /**
210 * ubifs_check_node - check node.
211 * @c: UBIFS file-system description object
212 * @buf: node to check
213 * @lnum: logical eraseblock number
214 * @offs: offset within the logical eraseblock
215 * @quiet: print no messages
216 * @must_chk_crc: indicates whether to always check the CRC
217 *
218 * This function checks node magic number and CRC checksum. This function also
219 * validates node length to prevent UBIFS from becoming crazy when an attacker
220 * feeds it a file-system image with incorrect nodes. For example, too large
221 * node length in the common header could cause UBIFS to read memory outside of
222 * allocated buffer when checking the CRC checksum.
223 *
224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225 * true, which is controlled by corresponding UBIFS mount option. However, if
226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229 * is checked. This is because during mounting or re-mounting from R/O mode to
230 * R/W mode we may read journal nodes (when replying the journal or doing the
231 * recovery) and the journal nodes may potentially be corrupted, so checking is
232 * required.
233 *
234 * This function returns zero in case of success and %-EUCLEAN in case of bad
235 * CRC or magic.
236 */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238 int offs, int quiet, int must_chk_crc)
239 {
240 int err = -EINVAL, type, node_len, dump_node = 1;
241 uint32_t crc, node_crc, magic;
242 const struct ubifs_ch *ch = buf;
243
244 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
246
247 magic = le32_to_cpu(ch->magic);
248 if (magic != UBIFS_NODE_MAGIC) {
249 if (!quiet)
250 ubifs_err(c, "bad magic %#08x, expected %#08x",
251 magic, UBIFS_NODE_MAGIC);
252 err = -EUCLEAN;
253 goto out;
254 }
255
256 type = ch->node_type;
257 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258 if (!quiet)
259 ubifs_err(c, "bad node type %d", type);
260 goto out;
261 }
262
263 node_len = le32_to_cpu(ch->len);
264 if (node_len + offs > c->leb_size)
265 goto out_len;
266
267 if (c->ranges[type].max_len == 0) {
268 if (node_len != c->ranges[type].len)
269 goto out_len;
270 } else if (node_len < c->ranges[type].min_len ||
271 node_len > c->ranges[type].max_len)
272 goto out_len;
273
274 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275 !c->remounting_rw && c->no_chk_data_crc)
276 return 0;
277
278 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279 node_crc = le32_to_cpu(ch->crc);
280 if (crc != node_crc) {
281 if (!quiet)
282 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283 crc, node_crc);
284 err = -EUCLEAN;
285 goto out;
286 }
287
288 return 0;
289
290 out_len:
291 if (!quiet)
292 ubifs_err(c, "bad node length %d", node_len);
293 if (type == UBIFS_DATA_NODE && node_len > UBIFS_DATA_NODE_SZ)
294 dump_node = 0;
295 out:
296 if (!quiet) {
297 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
298 if (dump_node) {
299 ubifs_dump_node(c, buf);
300 } else {
301 int safe_len = min3(node_len, c->leb_size - offs,
302 (int)UBIFS_MAX_DATA_NODE_SZ);
303 pr_err("\tprevent out-of-bounds memory access\n");
304 pr_err("\ttruncated data node length %d\n", safe_len);
305 pr_err("\tcorrupted data node:\n");
306 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
307 buf, safe_len, 0);
308 }
309 dump_stack();
310 }
311 return err;
312 }
313
314 /**
315 * ubifs_pad - pad flash space.
316 * @c: UBIFS file-system description object
317 * @buf: buffer to put padding to
318 * @pad: how many bytes to pad
319 *
320 * The flash media obliges us to write only in chunks of %c->min_io_size and
321 * when we have to write less data we add padding node to the write-buffer and
322 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
323 * media is being scanned. If the amount of wasted space is not enough to fit a
324 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
325 * pattern (%UBIFS_PADDING_BYTE).
326 *
327 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
328 * used.
329 */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)330 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
331 {
332 uint32_t crc;
333
334 ubifs_assert(c, pad >= 0);
335
336 if (pad >= UBIFS_PAD_NODE_SZ) {
337 struct ubifs_ch *ch = buf;
338 struct ubifs_pad_node *pad_node = buf;
339
340 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
341 ch->node_type = UBIFS_PAD_NODE;
342 ch->group_type = UBIFS_NO_NODE_GROUP;
343 ch->padding[0] = ch->padding[1] = 0;
344 ch->sqnum = 0;
345 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
346 pad -= UBIFS_PAD_NODE_SZ;
347 pad_node->pad_len = cpu_to_le32(pad);
348 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
349 ch->crc = cpu_to_le32(crc);
350 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
351 } else if (pad > 0)
352 /* Too little space, padding node won't fit */
353 memset(buf, UBIFS_PADDING_BYTE, pad);
354 }
355
356 /**
357 * next_sqnum - get next sequence number.
358 * @c: UBIFS file-system description object
359 */
next_sqnum(struct ubifs_info * c)360 static unsigned long long next_sqnum(struct ubifs_info *c)
361 {
362 unsigned long long sqnum;
363
364 spin_lock(&c->cnt_lock);
365 sqnum = ++c->max_sqnum;
366 spin_unlock(&c->cnt_lock);
367
368 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
369 if (sqnum >= SQNUM_WATERMARK) {
370 ubifs_err(c, "sequence number overflow %llu, end of life",
371 sqnum);
372 ubifs_ro_mode(c, -EINVAL);
373 }
374 ubifs_warn(c, "running out of sequence numbers, end of life soon");
375 }
376
377 return sqnum;
378 }
379
380 /**
381 * ubifs_prepare_node - prepare node to be written to flash.
382 * @c: UBIFS file-system description object
383 * @node: the node to pad
384 * @len: node length
385 * @pad: if the buffer has to be padded
386 *
387 * This function prepares node at @node to be written to the media - it
388 * calculates node CRC, fills the common header, and adds proper padding up to
389 * the next minimum I/O unit if @pad is not zero.
390 */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)391 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
392 {
393 uint32_t crc;
394 struct ubifs_ch *ch = node;
395 unsigned long long sqnum = next_sqnum(c);
396
397 ubifs_assert(c, len >= UBIFS_CH_SZ);
398
399 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
400 ch->len = cpu_to_le32(len);
401 ch->group_type = UBIFS_NO_NODE_GROUP;
402 ch->sqnum = cpu_to_le64(sqnum);
403 ch->padding[0] = ch->padding[1] = 0;
404 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
405 ch->crc = cpu_to_le32(crc);
406
407 if (pad) {
408 len = ALIGN(len, 8);
409 pad = ALIGN(len, c->min_io_size) - len;
410 ubifs_pad(c, node + len, pad);
411 }
412 }
413
414 /**
415 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
416 * @c: UBIFS file-system description object
417 * @node: the node to pad
418 * @len: node length
419 * @last: indicates the last node of the group
420 *
421 * This function prepares node at @node to be written to the media - it
422 * calculates node CRC and fills the common header.
423 */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)424 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
425 {
426 uint32_t crc;
427 struct ubifs_ch *ch = node;
428 unsigned long long sqnum = next_sqnum(c);
429
430 ubifs_assert(c, len >= UBIFS_CH_SZ);
431
432 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
433 ch->len = cpu_to_le32(len);
434 if (last)
435 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
436 else
437 ch->group_type = UBIFS_IN_NODE_GROUP;
438 ch->sqnum = cpu_to_le64(sqnum);
439 ch->padding[0] = ch->padding[1] = 0;
440 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
441 ch->crc = cpu_to_le32(crc);
442 }
443
444 /**
445 * wbuf_timer_callback - write-buffer timer callback function.
446 * @timer: timer data (write-buffer descriptor)
447 *
448 * This function is called when the write-buffer timer expires.
449 */
wbuf_timer_callback_nolock(struct hrtimer * timer)450 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
451 {
452 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
453
454 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
455 wbuf->need_sync = 1;
456 wbuf->c->need_wbuf_sync = 1;
457 ubifs_wake_up_bgt(wbuf->c);
458 return HRTIMER_NORESTART;
459 }
460
461 /**
462 * new_wbuf_timer - start new write-buffer timer.
463 * @c: UBIFS file-system description object
464 * @wbuf: write-buffer descriptor
465 */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)466 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
467 {
468 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
469 unsigned long long delta = dirty_writeback_interval;
470
471 /* centi to milli, milli to nano, then 10% */
472 delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
473
474 ubifs_assert(c, !hrtimer_active(&wbuf->timer));
475 ubifs_assert(c, delta <= ULONG_MAX);
476
477 if (wbuf->no_timer)
478 return;
479 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
480 dbg_jhead(wbuf->jhead),
481 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
482 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
483 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
484 HRTIMER_MODE_REL);
485 }
486
487 /**
488 * cancel_wbuf_timer - cancel write-buffer timer.
489 * @wbuf: write-buffer descriptor
490 */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)491 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
492 {
493 if (wbuf->no_timer)
494 return;
495 wbuf->need_sync = 0;
496 hrtimer_cancel(&wbuf->timer);
497 }
498
499 /**
500 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
501 * @wbuf: write-buffer to synchronize
502 *
503 * This function synchronizes write-buffer @buf and returns zero in case of
504 * success or a negative error code in case of failure.
505 *
506 * Note, although write-buffers are of @c->max_write_size, this function does
507 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
508 * if the write-buffer is only partially filled with data, only the used part
509 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
510 * This way we waste less space.
511 */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)512 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
513 {
514 struct ubifs_info *c = wbuf->c;
515 int err, dirt, sync_len;
516
517 cancel_wbuf_timer_nolock(wbuf);
518 if (!wbuf->used || wbuf->lnum == -1)
519 /* Write-buffer is empty or not seeked */
520 return 0;
521
522 dbg_io("LEB %d:%d, %d bytes, jhead %s",
523 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
524 ubifs_assert(c, !(wbuf->avail & 7));
525 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
526 ubifs_assert(c, wbuf->size >= c->min_io_size);
527 ubifs_assert(c, wbuf->size <= c->max_write_size);
528 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
529 ubifs_assert(c, !c->ro_media && !c->ro_mount);
530 if (c->leb_size - wbuf->offs >= c->max_write_size)
531 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
532
533 if (c->ro_error)
534 return -EROFS;
535
536 /*
537 * Do not write whole write buffer but write only the minimum necessary
538 * amount of min. I/O units.
539 */
540 sync_len = ALIGN(wbuf->used, c->min_io_size);
541 dirt = sync_len - wbuf->used;
542 if (dirt)
543 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
544 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
545 if (err)
546 return err;
547
548 spin_lock(&wbuf->lock);
549 wbuf->offs += sync_len;
550 /*
551 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
552 * But our goal is to optimize writes and make sure we write in
553 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
554 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
555 * sure that @wbuf->offs + @wbuf->size is aligned to
556 * @c->max_write_size. This way we make sure that after next
557 * write-buffer flush we are again at the optimal offset (aligned to
558 * @c->max_write_size).
559 */
560 if (c->leb_size - wbuf->offs < c->max_write_size)
561 wbuf->size = c->leb_size - wbuf->offs;
562 else if (wbuf->offs & (c->max_write_size - 1))
563 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
564 else
565 wbuf->size = c->max_write_size;
566 wbuf->avail = wbuf->size;
567 wbuf->used = 0;
568 wbuf->next_ino = 0;
569 spin_unlock(&wbuf->lock);
570
571 if (wbuf->sync_callback)
572 err = wbuf->sync_callback(c, wbuf->lnum,
573 c->leb_size - wbuf->offs, dirt);
574 return err;
575 }
576
577 /**
578 * ubifs_wbuf_seek_nolock - seek write-buffer.
579 * @wbuf: write-buffer
580 * @lnum: logical eraseblock number to seek to
581 * @offs: logical eraseblock offset to seek to
582 *
583 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
584 * The write-buffer has to be empty. Returns zero in case of success and a
585 * negative error code in case of failure.
586 */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)587 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
588 {
589 const struct ubifs_info *c = wbuf->c;
590
591 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
592 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
593 ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
594 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
595 ubifs_assert(c, lnum != wbuf->lnum);
596 ubifs_assert(c, wbuf->used == 0);
597
598 spin_lock(&wbuf->lock);
599 wbuf->lnum = lnum;
600 wbuf->offs = offs;
601 if (c->leb_size - wbuf->offs < c->max_write_size)
602 wbuf->size = c->leb_size - wbuf->offs;
603 else if (wbuf->offs & (c->max_write_size - 1))
604 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
605 else
606 wbuf->size = c->max_write_size;
607 wbuf->avail = wbuf->size;
608 wbuf->used = 0;
609 spin_unlock(&wbuf->lock);
610
611 return 0;
612 }
613
614 /**
615 * ubifs_bg_wbufs_sync - synchronize write-buffers.
616 * @c: UBIFS file-system description object
617 *
618 * This function is called by background thread to synchronize write-buffers.
619 * Returns zero in case of success and a negative error code in case of
620 * failure.
621 */
ubifs_bg_wbufs_sync(struct ubifs_info * c)622 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
623 {
624 int err, i;
625
626 ubifs_assert(c, !c->ro_media && !c->ro_mount);
627 if (!c->need_wbuf_sync)
628 return 0;
629 c->need_wbuf_sync = 0;
630
631 if (c->ro_error) {
632 err = -EROFS;
633 goto out_timers;
634 }
635
636 dbg_io("synchronize");
637 for (i = 0; i < c->jhead_cnt; i++) {
638 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
639
640 cond_resched();
641
642 /*
643 * If the mutex is locked then wbuf is being changed, so
644 * synchronization is not necessary.
645 */
646 if (mutex_is_locked(&wbuf->io_mutex))
647 continue;
648
649 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
650 if (!wbuf->need_sync) {
651 mutex_unlock(&wbuf->io_mutex);
652 continue;
653 }
654
655 err = ubifs_wbuf_sync_nolock(wbuf);
656 mutex_unlock(&wbuf->io_mutex);
657 if (err) {
658 ubifs_err(c, "cannot sync write-buffer, error %d", err);
659 ubifs_ro_mode(c, err);
660 goto out_timers;
661 }
662 }
663
664 return 0;
665
666 out_timers:
667 /* Cancel all timers to prevent repeated errors */
668 for (i = 0; i < c->jhead_cnt; i++) {
669 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
670
671 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
672 cancel_wbuf_timer_nolock(wbuf);
673 mutex_unlock(&wbuf->io_mutex);
674 }
675 return err;
676 }
677
678 /**
679 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
680 * @wbuf: write-buffer
681 * @buf: node to write
682 * @len: node length
683 *
684 * This function writes data to flash via write-buffer @wbuf. This means that
685 * the last piece of the node won't reach the flash media immediately if it
686 * does not take whole max. write unit (@c->max_write_size). Instead, the node
687 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
688 * because more data are appended to the write-buffer).
689 *
690 * This function returns zero in case of success and a negative error code in
691 * case of failure. If the node cannot be written because there is no more
692 * space in this logical eraseblock, %-ENOSPC is returned.
693 */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)694 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
695 {
696 struct ubifs_info *c = wbuf->c;
697 int err, written, n, aligned_len = ALIGN(len, 8);
698
699 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
700 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
701 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
702 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
703 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
704 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
705 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
706 ubifs_assert(c, wbuf->size >= c->min_io_size);
707 ubifs_assert(c, wbuf->size <= c->max_write_size);
708 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
709 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
710 ubifs_assert(c, !c->ro_media && !c->ro_mount);
711 ubifs_assert(c, !c->space_fixup);
712 if (c->leb_size - wbuf->offs >= c->max_write_size)
713 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
714
715 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
716 err = -ENOSPC;
717 goto out;
718 }
719
720 cancel_wbuf_timer_nolock(wbuf);
721
722 if (c->ro_error)
723 return -EROFS;
724
725 if (aligned_len <= wbuf->avail) {
726 /*
727 * The node is not very large and fits entirely within
728 * write-buffer.
729 */
730 memcpy(wbuf->buf + wbuf->used, buf, len);
731 if (aligned_len > len) {
732 ubifs_assert(c, aligned_len - len < 8);
733 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
734 }
735
736 if (aligned_len == wbuf->avail) {
737 dbg_io("flush jhead %s wbuf to LEB %d:%d",
738 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
739 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
740 wbuf->offs, wbuf->size);
741 if (err)
742 goto out;
743
744 spin_lock(&wbuf->lock);
745 wbuf->offs += wbuf->size;
746 if (c->leb_size - wbuf->offs >= c->max_write_size)
747 wbuf->size = c->max_write_size;
748 else
749 wbuf->size = c->leb_size - wbuf->offs;
750 wbuf->avail = wbuf->size;
751 wbuf->used = 0;
752 wbuf->next_ino = 0;
753 spin_unlock(&wbuf->lock);
754 } else {
755 spin_lock(&wbuf->lock);
756 wbuf->avail -= aligned_len;
757 wbuf->used += aligned_len;
758 spin_unlock(&wbuf->lock);
759 }
760
761 goto exit;
762 }
763
764 written = 0;
765
766 if (wbuf->used) {
767 /*
768 * The node is large enough and does not fit entirely within
769 * current available space. We have to fill and flush
770 * write-buffer and switch to the next max. write unit.
771 */
772 dbg_io("flush jhead %s wbuf to LEB %d:%d",
773 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
774 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
775 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
776 wbuf->size);
777 if (err)
778 goto out;
779
780 wbuf->offs += wbuf->size;
781 len -= wbuf->avail;
782 aligned_len -= wbuf->avail;
783 written += wbuf->avail;
784 } else if (wbuf->offs & (c->max_write_size - 1)) {
785 /*
786 * The write-buffer offset is not aligned to
787 * @c->max_write_size and @wbuf->size is less than
788 * @c->max_write_size. Write @wbuf->size bytes to make sure the
789 * following writes are done in optimal @c->max_write_size
790 * chunks.
791 */
792 dbg_io("write %d bytes to LEB %d:%d",
793 wbuf->size, wbuf->lnum, wbuf->offs);
794 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
795 wbuf->size);
796 if (err)
797 goto out;
798
799 wbuf->offs += wbuf->size;
800 len -= wbuf->size;
801 aligned_len -= wbuf->size;
802 written += wbuf->size;
803 }
804
805 /*
806 * The remaining data may take more whole max. write units, so write the
807 * remains multiple to max. write unit size directly to the flash media.
808 * We align node length to 8-byte boundary because we anyway flash wbuf
809 * if the remaining space is less than 8 bytes.
810 */
811 n = aligned_len >> c->max_write_shift;
812 if (n) {
813 int m = n - 1;
814
815 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
816 wbuf->offs);
817
818 if (m) {
819 /* '(n-1)<<c->max_write_shift < len' is always true. */
820 m <<= c->max_write_shift;
821 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
822 wbuf->offs, m);
823 if (err)
824 goto out;
825 wbuf->offs += m;
826 aligned_len -= m;
827 len -= m;
828 written += m;
829 }
830
831 /*
832 * The non-written len of buf may be less than 'n' because
833 * parameter 'len' is not 8 bytes aligned, so here we read
834 * min(len, n) bytes from buf.
835 */
836 n = 1 << c->max_write_shift;
837 memcpy(wbuf->buf, buf + written, min(len, n));
838 if (n > len) {
839 ubifs_assert(c, n - len < 8);
840 ubifs_pad(c, wbuf->buf + len, n - len);
841 }
842
843 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
844 if (err)
845 goto out;
846 wbuf->offs += n;
847 aligned_len -= n;
848 len -= min(len, n);
849 written += n;
850 }
851
852 spin_lock(&wbuf->lock);
853 if (aligned_len) {
854 /*
855 * And now we have what's left and what does not take whole
856 * max. write unit, so write it to the write-buffer and we are
857 * done.
858 */
859 memcpy(wbuf->buf, buf + written, len);
860 if (aligned_len > len) {
861 ubifs_assert(c, aligned_len - len < 8);
862 ubifs_pad(c, wbuf->buf + len, aligned_len - len);
863 }
864 }
865
866 if (c->leb_size - wbuf->offs >= c->max_write_size)
867 wbuf->size = c->max_write_size;
868 else
869 wbuf->size = c->leb_size - wbuf->offs;
870 wbuf->avail = wbuf->size - aligned_len;
871 wbuf->used = aligned_len;
872 wbuf->next_ino = 0;
873 spin_unlock(&wbuf->lock);
874
875 exit:
876 if (wbuf->sync_callback) {
877 int free = c->leb_size - wbuf->offs - wbuf->used;
878
879 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
880 if (err)
881 goto out;
882 }
883
884 if (wbuf->used)
885 new_wbuf_timer_nolock(c, wbuf);
886
887 return 0;
888
889 out:
890 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
891 len, wbuf->lnum, wbuf->offs, err);
892 ubifs_dump_node(c, buf);
893 dump_stack();
894 ubifs_dump_leb(c, wbuf->lnum);
895 return err;
896 }
897
898 /**
899 * ubifs_write_node - write node to the media.
900 * @c: UBIFS file-system description object
901 * @buf: the node to write
902 * @len: node length
903 * @lnum: logical eraseblock number
904 * @offs: offset within the logical eraseblock
905 *
906 * This function automatically fills node magic number, assigns sequence
907 * number, and calculates node CRC checksum. The length of the @buf buffer has
908 * to be aligned to the minimal I/O unit size. This function automatically
909 * appends padding node and padding bytes if needed. Returns zero in case of
910 * success and a negative error code in case of failure.
911 */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)912 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
913 int offs)
914 {
915 int err, buf_len = ALIGN(len, c->min_io_size);
916
917 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
918 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
919 buf_len);
920 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
921 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
922 ubifs_assert(c, !c->ro_media && !c->ro_mount);
923 ubifs_assert(c, !c->space_fixup);
924
925 if (c->ro_error)
926 return -EROFS;
927
928 ubifs_prepare_node(c, buf, len, 1);
929 err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
930 if (err)
931 ubifs_dump_node(c, buf);
932
933 return err;
934 }
935
936 /**
937 * ubifs_read_node_wbuf - read node from the media or write-buffer.
938 * @wbuf: wbuf to check for un-written data
939 * @buf: buffer to read to
940 * @type: node type
941 * @len: node length
942 * @lnum: logical eraseblock number
943 * @offs: offset within the logical eraseblock
944 *
945 * This function reads a node of known type and length, checks it and stores
946 * in @buf. If the node partially or fully sits in the write-buffer, this
947 * function takes data from the buffer, otherwise it reads the flash media.
948 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
949 * error code in case of failure.
950 */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)951 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
952 int lnum, int offs)
953 {
954 const struct ubifs_info *c = wbuf->c;
955 int err, rlen, overlap;
956 struct ubifs_ch *ch = buf;
957
958 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
959 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
960 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
961 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
962 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
963
964 spin_lock(&wbuf->lock);
965 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
966 if (!overlap) {
967 /* We may safely unlock the write-buffer and read the data */
968 spin_unlock(&wbuf->lock);
969 return ubifs_read_node(c, buf, type, len, lnum, offs);
970 }
971
972 /* Don't read under wbuf */
973 rlen = wbuf->offs - offs;
974 if (rlen < 0)
975 rlen = 0;
976
977 /* Copy the rest from the write-buffer */
978 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
979 spin_unlock(&wbuf->lock);
980
981 if (rlen > 0) {
982 /* Read everything that goes before write-buffer */
983 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
984 if (err && err != -EBADMSG)
985 return err;
986 }
987
988 if (type != ch->node_type) {
989 ubifs_err(c, "bad node type (%d but expected %d)",
990 ch->node_type, type);
991 goto out;
992 }
993
994 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
995 if (err) {
996 ubifs_err(c, "expected node type %d", type);
997 return err;
998 }
999
1000 rlen = le32_to_cpu(ch->len);
1001 if (rlen != len) {
1002 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1003 goto out;
1004 }
1005
1006 return 0;
1007
1008 out:
1009 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1010 ubifs_dump_node(c, buf);
1011 dump_stack();
1012 return -EINVAL;
1013 }
1014
1015 /**
1016 * ubifs_read_node - read node.
1017 * @c: UBIFS file-system description object
1018 * @buf: buffer to read to
1019 * @type: node type
1020 * @len: node length (not aligned)
1021 * @lnum: logical eraseblock number
1022 * @offs: offset within the logical eraseblock
1023 *
1024 * This function reads a node of known type and and length, checks it and
1025 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1026 * and a negative error code in case of failure.
1027 */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1028 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1029 int lnum, int offs)
1030 {
1031 int err, l;
1032 struct ubifs_ch *ch = buf;
1033
1034 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1035 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1036 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1037 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1038 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1039
1040 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1041 if (err && err != -EBADMSG)
1042 return err;
1043
1044 if (type != ch->node_type) {
1045 ubifs_errc(c, "bad node type (%d but expected %d)",
1046 ch->node_type, type);
1047 goto out;
1048 }
1049
1050 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1051 if (err) {
1052 ubifs_errc(c, "expected node type %d", type);
1053 return err;
1054 }
1055
1056 l = le32_to_cpu(ch->len);
1057 if (l != len) {
1058 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1059 goto out;
1060 }
1061
1062 return 0;
1063
1064 out:
1065 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1066 offs, ubi_is_mapped(c->ubi, lnum));
1067 if (!c->probing) {
1068 ubifs_dump_node(c, buf);
1069 dump_stack();
1070 }
1071 return -EINVAL;
1072 }
1073
1074 /**
1075 * ubifs_wbuf_init - initialize write-buffer.
1076 * @c: UBIFS file-system description object
1077 * @wbuf: write-buffer to initialize
1078 *
1079 * This function initializes write-buffer. Returns zero in case of success
1080 * %-ENOMEM in case of failure.
1081 */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1082 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1083 {
1084 size_t size;
1085
1086 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1087 if (!wbuf->buf)
1088 return -ENOMEM;
1089
1090 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1091 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1092 if (!wbuf->inodes) {
1093 kfree(wbuf->buf);
1094 wbuf->buf = NULL;
1095 return -ENOMEM;
1096 }
1097
1098 wbuf->used = 0;
1099 wbuf->lnum = wbuf->offs = -1;
1100 /*
1101 * If the LEB starts at the max. write size aligned address, then
1102 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1103 * set it to something smaller so that it ends at the closest max.
1104 * write size boundary.
1105 */
1106 size = c->max_write_size - (c->leb_start % c->max_write_size);
1107 wbuf->avail = wbuf->size = size;
1108 wbuf->sync_callback = NULL;
1109 mutex_init(&wbuf->io_mutex);
1110 spin_lock_init(&wbuf->lock);
1111 wbuf->c = c;
1112 wbuf->next_ino = 0;
1113
1114 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1115 wbuf->timer.function = wbuf_timer_callback_nolock;
1116 return 0;
1117 }
1118
1119 /**
1120 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1121 * @wbuf: the write-buffer where to add
1122 * @inum: the inode number
1123 *
1124 * This function adds an inode number to the inode array of the write-buffer.
1125 */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1126 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1127 {
1128 if (!wbuf->buf)
1129 /* NOR flash or something similar */
1130 return;
1131
1132 spin_lock(&wbuf->lock);
1133 if (wbuf->used)
1134 wbuf->inodes[wbuf->next_ino++] = inum;
1135 spin_unlock(&wbuf->lock);
1136 }
1137
1138 /**
1139 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1140 * @wbuf: the write-buffer
1141 * @inum: the inode number
1142 *
1143 * This function returns with %1 if the write-buffer contains some data from the
1144 * given inode otherwise it returns with %0.
1145 */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1146 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1147 {
1148 int i, ret = 0;
1149
1150 spin_lock(&wbuf->lock);
1151 for (i = 0; i < wbuf->next_ino; i++)
1152 if (inum == wbuf->inodes[i]) {
1153 ret = 1;
1154 break;
1155 }
1156 spin_unlock(&wbuf->lock);
1157
1158 return ret;
1159 }
1160
1161 /**
1162 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1163 * @c: UBIFS file-system description object
1164 * @inode: inode to synchronize
1165 *
1166 * This function synchronizes write-buffers which contain nodes belonging to
1167 * @inode. Returns zero in case of success and a negative error code in case of
1168 * failure.
1169 */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1170 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1171 {
1172 int i, err = 0;
1173
1174 for (i = 0; i < c->jhead_cnt; i++) {
1175 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1176
1177 if (i == GCHD)
1178 /*
1179 * GC head is special, do not look at it. Even if the
1180 * head contains something related to this inode, it is
1181 * a _copy_ of corresponding on-flash node which sits
1182 * somewhere else.
1183 */
1184 continue;
1185
1186 if (!wbuf_has_ino(wbuf, inode->i_ino))
1187 continue;
1188
1189 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1190 if (wbuf_has_ino(wbuf, inode->i_ino))
1191 err = ubifs_wbuf_sync_nolock(wbuf);
1192 mutex_unlock(&wbuf->io_mutex);
1193
1194 if (err) {
1195 ubifs_ro_mode(c, err);
1196 return err;
1197 }
1198 }
1199 return 0;
1200 }
1201