1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
alloc_nfs_open_dir_context(struct inode * dir,struct rpc_cred * cred)70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
nfs_opendir(struct inode * inode,struct file * filp)102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 out:
122 put_rpccred(cred);
123 return res;
124 }
125
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131 }
132
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138 };
139
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
145 };
146
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
157
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
164
165 static
nfs_readdir_init_array(struct page * page)166 void nfs_readdir_init_array(struct page *page)
167 {
168 struct nfs_cache_array *array;
169
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
174 }
175
176 /*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179 static
nfs_readdir_clear_array(struct page * page)180 void nfs_readdir_clear_array(struct page *page)
181 {
182 struct nfs_cache_array *array;
183 int i;
184
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
190 }
191
192 /*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 string->len = len;
201 string->name = kmemdup(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
204 /*
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
207 */
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
211 }
212
213 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
219
220 cache_entry = &array->array[array->size];
221
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
226
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
240 }
241
242 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)243 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
244 {
245 loff_t diff = desc->ctx->pos - desc->current_index;
246 unsigned int index;
247
248 if (diff < 0)
249 goto out_eof;
250 if (diff >= array->size) {
251 if (array->eof_index >= 0)
252 goto out_eof;
253 return -EAGAIN;
254 }
255
256 index = (unsigned int)diff;
257 *desc->dir_cookie = array->array[index].cookie;
258 desc->cache_entry_index = index;
259 return 0;
260 out_eof:
261 desc->eof = true;
262 return -EBADCOOKIE;
263 }
264
265 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)266 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
267 {
268 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
269 return false;
270 smp_rmb();
271 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
272 }
273
274 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
276 {
277 int i;
278 loff_t new_pos;
279 int status = -EAGAIN;
280
281 for (i = 0; i < array->size; i++) {
282 if (array->array[i].cookie == *desc->dir_cookie) {
283 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
284 struct nfs_open_dir_context *ctx = desc->file->private_data;
285
286 new_pos = desc->current_index + i;
287 if (ctx->attr_gencount != nfsi->attr_gencount ||
288 !nfs_readdir_inode_mapping_valid(nfsi)) {
289 ctx->duped = 0;
290 ctx->attr_gencount = nfsi->attr_gencount;
291 } else if (new_pos < desc->ctx->pos) {
292 if (ctx->duped > 0
293 && ctx->dup_cookie == *desc->dir_cookie) {
294 if (printk_ratelimit()) {
295 pr_notice("NFS: directory %pD2 contains a readdir loop."
296 "Please contact your server vendor. "
297 "The file: %.*s has duplicate cookie %llu\n",
298 desc->file, array->array[i].string.len,
299 array->array[i].string.name, *desc->dir_cookie);
300 }
301 status = -ELOOP;
302 goto out;
303 }
304 ctx->dup_cookie = *desc->dir_cookie;
305 ctx->duped = -1;
306 }
307 desc->ctx->pos = new_pos;
308 desc->cache_entry_index = i;
309 return 0;
310 }
311 }
312 if (array->eof_index >= 0) {
313 status = -EBADCOOKIE;
314 if (*desc->dir_cookie == array->last_cookie)
315 desc->eof = true;
316 }
317 out:
318 return status;
319 }
320
321 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)322 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
323 {
324 struct nfs_cache_array *array;
325 int status;
326
327 array = kmap(desc->page);
328
329 if (*desc->dir_cookie == 0)
330 status = nfs_readdir_search_for_pos(array, desc);
331 else
332 status = nfs_readdir_search_for_cookie(array, desc);
333
334 if (status == -EAGAIN) {
335 desc->last_cookie = array->last_cookie;
336 desc->current_index += array->size;
337 desc->page_index++;
338 }
339 kunmap(desc->page);
340 return status;
341 }
342
343 /* Fill a page with xdr information before transferring to the cache page */
344 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)345 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
346 struct nfs_entry *entry, struct file *file, struct inode *inode)
347 {
348 struct nfs_open_dir_context *ctx = file->private_data;
349 struct rpc_cred *cred = ctx->cred;
350 unsigned long timestamp, gencount;
351 int error;
352
353 again:
354 timestamp = jiffies;
355 gencount = nfs_inc_attr_generation_counter();
356 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
357 NFS_SERVER(inode)->dtsize, desc->plus);
358 if (error < 0) {
359 /* We requested READDIRPLUS, but the server doesn't grok it */
360 if (error == -ENOTSUPP && desc->plus) {
361 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
362 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
363 desc->plus = false;
364 goto again;
365 }
366 goto error;
367 }
368 desc->timestamp = timestamp;
369 desc->gencount = gencount;
370 error:
371 return error;
372 }
373
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)374 static int xdr_decode(nfs_readdir_descriptor_t *desc,
375 struct nfs_entry *entry, struct xdr_stream *xdr)
376 {
377 int error;
378
379 error = desc->decode(xdr, entry, desc->plus);
380 if (error)
381 return error;
382 entry->fattr->time_start = desc->timestamp;
383 entry->fattr->gencount = desc->gencount;
384 return 0;
385 }
386
387 /* Match file and dirent using either filehandle or fileid
388 * Note: caller is responsible for checking the fsid
389 */
390 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)391 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
392 {
393 struct inode *inode;
394 struct nfs_inode *nfsi;
395
396 if (d_really_is_negative(dentry))
397 return 0;
398
399 inode = d_inode(dentry);
400 if (is_bad_inode(inode) || NFS_STALE(inode))
401 return 0;
402
403 nfsi = NFS_I(inode);
404 if (entry->fattr->fileid != nfsi->fileid)
405 return 0;
406 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
407 return 0;
408 return 1;
409 }
410
411 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
413 {
414 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415 return false;
416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417 return true;
418 if (ctx->pos == 0)
419 return true;
420 return false;
421 }
422
423 /*
424 * This function is called by the lookup and getattr code to request the
425 * use of readdirplus to accelerate any future lookups in the same
426 * directory.
427 */
nfs_advise_use_readdirplus(struct inode * dir)428 void nfs_advise_use_readdirplus(struct inode *dir)
429 {
430 struct nfs_inode *nfsi = NFS_I(dir);
431
432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 !list_empty(&nfsi->open_files))
434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435 }
436
437 /*
438 * This function is mainly for use by nfs_getattr().
439 *
440 * If this is an 'ls -l', we want to force use of readdirplus.
441 * Do this by checking if there is an active file descriptor
442 * and calling nfs_advise_use_readdirplus, then forcing a
443 * cache flush.
444 */
nfs_force_use_readdirplus(struct inode * dir)445 void nfs_force_use_readdirplus(struct inode *dir)
446 {
447 struct nfs_inode *nfsi = NFS_I(dir);
448
449 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
450 !list_empty(&nfsi->open_files)) {
451 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
452 invalidate_mapping_pages(dir->i_mapping, 0, -1);
453 }
454 }
455
456 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry)457 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
458 {
459 struct qstr filename = QSTR_INIT(entry->name, entry->len);
460 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
461 struct dentry *dentry;
462 struct dentry *alias;
463 struct inode *dir = d_inode(parent);
464 struct inode *inode;
465 int status;
466
467 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
468 return;
469 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
470 return;
471 if (filename.len == 0)
472 return;
473 /* Validate that the name doesn't contain any illegal '\0' */
474 if (strnlen(filename.name, filename.len) != filename.len)
475 return;
476 /* ...or '/' */
477 if (strnchr(filename.name, filename.len, '/'))
478 return;
479 if (filename.name[0] == '.') {
480 if (filename.len == 1)
481 return;
482 if (filename.len == 2 && filename.name[1] == '.')
483 return;
484 }
485 filename.hash = full_name_hash(parent, filename.name, filename.len);
486
487 dentry = d_lookup(parent, &filename);
488 again:
489 if (!dentry) {
490 dentry = d_alloc_parallel(parent, &filename, &wq);
491 if (IS_ERR(dentry))
492 return;
493 }
494 if (!d_in_lookup(dentry)) {
495 /* Is there a mountpoint here? If so, just exit */
496 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
497 &entry->fattr->fsid))
498 goto out;
499 if (nfs_same_file(dentry, entry)) {
500 if (!entry->fh->size)
501 goto out;
502 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
503 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
504 if (!status)
505 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
506 goto out;
507 } else {
508 d_invalidate(dentry);
509 dput(dentry);
510 dentry = NULL;
511 goto again;
512 }
513 }
514 if (!entry->fh->size) {
515 d_lookup_done(dentry);
516 goto out;
517 }
518
519 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
520 alias = d_splice_alias(inode, dentry);
521 d_lookup_done(dentry);
522 if (alias) {
523 if (IS_ERR(alias))
524 goto out;
525 dput(dentry);
526 dentry = alias;
527 }
528 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
529 out:
530 dput(dentry);
531 }
532
533 /* Perform conversion from xdr to cache array */
534 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)535 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
536 struct page **xdr_pages, struct page *page, unsigned int buflen)
537 {
538 struct xdr_stream stream;
539 struct xdr_buf buf;
540 struct page *scratch;
541 struct nfs_cache_array *array;
542 unsigned int count = 0;
543 int status;
544
545 scratch = alloc_page(GFP_KERNEL);
546 if (scratch == NULL)
547 return -ENOMEM;
548
549 if (buflen == 0)
550 goto out_nopages;
551
552 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
553 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
554
555 do {
556 if (entry->label)
557 entry->label->len = NFS4_MAXLABELLEN;
558
559 status = xdr_decode(desc, entry, &stream);
560 if (status != 0) {
561 if (status == -EAGAIN)
562 status = 0;
563 break;
564 }
565
566 count++;
567
568 if (desc->plus)
569 nfs_prime_dcache(file_dentry(desc->file), entry);
570
571 status = nfs_readdir_add_to_array(entry, page);
572 if (status != 0)
573 break;
574 } while (!entry->eof);
575
576 out_nopages:
577 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
578 array = kmap(page);
579 array->eof_index = array->size;
580 status = 0;
581 kunmap(page);
582 }
583
584 put_page(scratch);
585 return status;
586 }
587
588 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)589 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
590 {
591 unsigned int i;
592 for (i = 0; i < npages; i++)
593 put_page(pages[i]);
594 }
595
596 /*
597 * nfs_readdir_large_page will allocate pages that must be freed with a call
598 * to nfs_readdir_free_pagearray
599 */
600 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)601 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
602 {
603 unsigned int i;
604
605 for (i = 0; i < npages; i++) {
606 struct page *page = alloc_page(GFP_KERNEL);
607 if (page == NULL)
608 goto out_freepages;
609 pages[i] = page;
610 }
611 return 0;
612
613 out_freepages:
614 nfs_readdir_free_pages(pages, i);
615 return -ENOMEM;
616 }
617
618 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)619 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
620 {
621 struct page *pages[NFS_MAX_READDIR_PAGES];
622 struct nfs_entry entry;
623 struct file *file = desc->file;
624 struct nfs_cache_array *array;
625 int status = -ENOMEM;
626 unsigned int array_size = ARRAY_SIZE(pages);
627
628 nfs_readdir_init_array(page);
629
630 entry.prev_cookie = 0;
631 entry.cookie = desc->last_cookie;
632 entry.eof = 0;
633 entry.fh = nfs_alloc_fhandle();
634 entry.fattr = nfs_alloc_fattr();
635 entry.server = NFS_SERVER(inode);
636 if (entry.fh == NULL || entry.fattr == NULL)
637 goto out;
638
639 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
640 if (IS_ERR(entry.label)) {
641 status = PTR_ERR(entry.label);
642 goto out;
643 }
644
645 array = kmap(page);
646
647 status = nfs_readdir_alloc_pages(pages, array_size);
648 if (status < 0)
649 goto out_release_array;
650 do {
651 unsigned int pglen;
652 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
653
654 if (status < 0)
655 break;
656 pglen = status;
657 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
658 if (status < 0) {
659 if (status == -ENOSPC)
660 status = 0;
661 break;
662 }
663 } while (array->eof_index < 0);
664
665 nfs_readdir_free_pages(pages, array_size);
666 out_release_array:
667 kunmap(page);
668 nfs4_label_free(entry.label);
669 out:
670 nfs_free_fattr(entry.fattr);
671 nfs_free_fhandle(entry.fh);
672 return status;
673 }
674
675 /*
676 * Now we cache directories properly, by converting xdr information
677 * to an array that can be used for lookups later. This results in
678 * fewer cache pages, since we can store more information on each page.
679 * We only need to convert from xdr once so future lookups are much simpler
680 */
681 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)682 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
683 {
684 struct inode *inode = file_inode(desc->file);
685 int ret;
686
687 ret = nfs_readdir_xdr_to_array(desc, page, inode);
688 if (ret < 0)
689 goto error;
690 SetPageUptodate(page);
691
692 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
693 /* Should never happen */
694 nfs_zap_mapping(inode, inode->i_mapping);
695 }
696 unlock_page(page);
697 return 0;
698 error:
699 nfs_readdir_clear_array(page);
700 unlock_page(page);
701 return ret;
702 }
703
704 static
cache_page_release(nfs_readdir_descriptor_t * desc)705 void cache_page_release(nfs_readdir_descriptor_t *desc)
706 {
707 put_page(desc->page);
708 desc->page = NULL;
709 }
710
711 static
get_cache_page(nfs_readdir_descriptor_t * desc)712 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
713 {
714 return read_cache_page(desc->file->f_mapping,
715 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
716 }
717
718 /*
719 * Returns 0 if desc->dir_cookie was found on page desc->page_index
720 * and locks the page to prevent removal from the page cache.
721 */
722 static
find_and_lock_cache_page(nfs_readdir_descriptor_t * desc)723 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
724 {
725 int res;
726
727 desc->page = get_cache_page(desc);
728 if (IS_ERR(desc->page))
729 return PTR_ERR(desc->page);
730 res = lock_page_killable(desc->page);
731 if (res != 0)
732 goto error;
733 res = -EAGAIN;
734 if (desc->page->mapping != NULL) {
735 res = nfs_readdir_search_array(desc);
736 if (res == 0)
737 return 0;
738 }
739 unlock_page(desc->page);
740 error:
741 cache_page_release(desc);
742 return res;
743 }
744
745 /* Search for desc->dir_cookie from the beginning of the page cache */
746 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)747 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
748 {
749 int res;
750
751 if (desc->page_index == 0) {
752 desc->current_index = 0;
753 desc->last_cookie = 0;
754 }
755 do {
756 res = find_and_lock_cache_page(desc);
757 } while (res == -EAGAIN);
758 return res;
759 }
760
761 /*
762 * Once we've found the start of the dirent within a page: fill 'er up...
763 */
764 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)765 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
766 {
767 struct file *file = desc->file;
768 int i = 0;
769 int res = 0;
770 struct nfs_cache_array *array = NULL;
771 struct nfs_open_dir_context *ctx = file->private_data;
772
773 array = kmap(desc->page);
774 for (i = desc->cache_entry_index; i < array->size; i++) {
775 struct nfs_cache_array_entry *ent;
776
777 ent = &array->array[i];
778 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
779 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
780 desc->eof = true;
781 break;
782 }
783 desc->ctx->pos++;
784 if (i < (array->size-1))
785 *desc->dir_cookie = array->array[i+1].cookie;
786 else
787 *desc->dir_cookie = array->last_cookie;
788 if (ctx->duped != 0)
789 ctx->duped = 1;
790 }
791 if (array->eof_index >= 0)
792 desc->eof = true;
793
794 kunmap(desc->page);
795 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
796 (unsigned long long)*desc->dir_cookie, res);
797 return res;
798 }
799
800 /*
801 * If we cannot find a cookie in our cache, we suspect that this is
802 * because it points to a deleted file, so we ask the server to return
803 * whatever it thinks is the next entry. We then feed this to filldir.
804 * If all goes well, we should then be able to find our way round the
805 * cache on the next call to readdir_search_pagecache();
806 *
807 * NOTE: we cannot add the anonymous page to the pagecache because
808 * the data it contains might not be page aligned. Besides,
809 * we should already have a complete representation of the
810 * directory in the page cache by the time we get here.
811 */
812 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)813 int uncached_readdir(nfs_readdir_descriptor_t *desc)
814 {
815 struct page *page = NULL;
816 int status;
817 struct inode *inode = file_inode(desc->file);
818 struct nfs_open_dir_context *ctx = desc->file->private_data;
819
820 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
821 (unsigned long long)*desc->dir_cookie);
822
823 page = alloc_page(GFP_HIGHUSER);
824 if (!page) {
825 status = -ENOMEM;
826 goto out;
827 }
828
829 desc->page_index = 0;
830 desc->last_cookie = *desc->dir_cookie;
831 desc->page = page;
832 ctx->duped = 0;
833
834 status = nfs_readdir_xdr_to_array(desc, page, inode);
835 if (status < 0)
836 goto out_release;
837
838 status = nfs_do_filldir(desc);
839
840 out_release:
841 nfs_readdir_clear_array(desc->page);
842 cache_page_release(desc);
843 out:
844 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
845 __func__, status);
846 return status;
847 }
848
849 /* The file offset position represents the dirent entry number. A
850 last cookie cache takes care of the common case of reading the
851 whole directory.
852 */
nfs_readdir(struct file * file,struct dir_context * ctx)853 static int nfs_readdir(struct file *file, struct dir_context *ctx)
854 {
855 struct dentry *dentry = file_dentry(file);
856 struct inode *inode = d_inode(dentry);
857 nfs_readdir_descriptor_t my_desc,
858 *desc = &my_desc;
859 struct nfs_open_dir_context *dir_ctx = file->private_data;
860 int res = 0;
861
862 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
863 file, (long long)ctx->pos);
864 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
865
866 /*
867 * ctx->pos points to the dirent entry number.
868 * *desc->dir_cookie has the cookie for the next entry. We have
869 * to either find the entry with the appropriate number or
870 * revalidate the cookie.
871 */
872 memset(desc, 0, sizeof(*desc));
873
874 desc->file = file;
875 desc->ctx = ctx;
876 desc->dir_cookie = &dir_ctx->dir_cookie;
877 desc->decode = NFS_PROTO(inode)->decode_dirent;
878 desc->plus = nfs_use_readdirplus(inode, ctx);
879
880 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
881 res = nfs_revalidate_mapping(inode, file->f_mapping);
882 if (res < 0)
883 goto out;
884
885 do {
886 res = readdir_search_pagecache(desc);
887
888 if (res == -EBADCOOKIE) {
889 res = 0;
890 /* This means either end of directory */
891 if (*desc->dir_cookie && !desc->eof) {
892 /* Or that the server has 'lost' a cookie */
893 res = uncached_readdir(desc);
894 if (res == 0)
895 continue;
896 }
897 break;
898 }
899 if (res == -ETOOSMALL && desc->plus) {
900 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
901 nfs_zap_caches(inode);
902 desc->page_index = 0;
903 desc->plus = false;
904 desc->eof = false;
905 continue;
906 }
907 if (res < 0)
908 break;
909
910 res = nfs_do_filldir(desc);
911 unlock_page(desc->page);
912 cache_page_release(desc);
913 if (res < 0)
914 break;
915 } while (!desc->eof);
916 out:
917 if (res > 0)
918 res = 0;
919 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
920 return res;
921 }
922
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)923 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
924 {
925 struct inode *inode = file_inode(filp);
926 struct nfs_open_dir_context *dir_ctx = filp->private_data;
927
928 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
929 filp, offset, whence);
930
931 switch (whence) {
932 default:
933 return -EINVAL;
934 case SEEK_SET:
935 if (offset < 0)
936 return -EINVAL;
937 inode_lock(inode);
938 break;
939 case SEEK_CUR:
940 if (offset == 0)
941 return filp->f_pos;
942 inode_lock(inode);
943 offset += filp->f_pos;
944 if (offset < 0) {
945 inode_unlock(inode);
946 return -EINVAL;
947 }
948 }
949 if (offset != filp->f_pos) {
950 filp->f_pos = offset;
951 dir_ctx->dir_cookie = 0;
952 dir_ctx->duped = 0;
953 }
954 inode_unlock(inode);
955 return offset;
956 }
957
958 /*
959 * All directory operations under NFS are synchronous, so fsync()
960 * is a dummy operation.
961 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)962 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
963 int datasync)
964 {
965 struct inode *inode = file_inode(filp);
966
967 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
968
969 inode_lock(inode);
970 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
971 inode_unlock(inode);
972 return 0;
973 }
974
975 /**
976 * nfs_force_lookup_revalidate - Mark the directory as having changed
977 * @dir - pointer to directory inode
978 *
979 * This forces the revalidation code in nfs_lookup_revalidate() to do a
980 * full lookup on all child dentries of 'dir' whenever a change occurs
981 * on the server that might have invalidated our dcache.
982 *
983 * The caller should be holding dir->i_lock
984 */
nfs_force_lookup_revalidate(struct inode * dir)985 void nfs_force_lookup_revalidate(struct inode *dir)
986 {
987 NFS_I(dir)->cache_change_attribute++;
988 }
989 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
990
991 /*
992 * A check for whether or not the parent directory has changed.
993 * In the case it has, we assume that the dentries are untrustworthy
994 * and may need to be looked up again.
995 * If rcu_walk prevents us from performing a full check, return 0.
996 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)997 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
998 int rcu_walk)
999 {
1000 if (IS_ROOT(dentry))
1001 return 1;
1002 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1003 return 0;
1004 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1005 return 0;
1006 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1007 if (nfs_mapping_need_revalidate_inode(dir)) {
1008 if (rcu_walk)
1009 return 0;
1010 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1011 return 0;
1012 }
1013 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1014 return 0;
1015 return 1;
1016 }
1017
1018 /*
1019 * Use intent information to check whether or not we're going to do
1020 * an O_EXCL create using this path component.
1021 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1022 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1023 {
1024 if (NFS_PROTO(dir)->version == 2)
1025 return 0;
1026 return flags & LOOKUP_EXCL;
1027 }
1028
1029 /*
1030 * Inode and filehandle revalidation for lookups.
1031 *
1032 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1033 * or if the intent information indicates that we're about to open this
1034 * particular file and the "nocto" mount flag is not set.
1035 *
1036 */
1037 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1038 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1039 {
1040 struct nfs_server *server = NFS_SERVER(inode);
1041 int ret;
1042
1043 if (IS_AUTOMOUNT(inode))
1044 return 0;
1045
1046 if (flags & LOOKUP_OPEN) {
1047 switch (inode->i_mode & S_IFMT) {
1048 case S_IFREG:
1049 /* A NFSv4 OPEN will revalidate later */
1050 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1051 goto out;
1052 /* Fallthrough */
1053 case S_IFDIR:
1054 if (server->flags & NFS_MOUNT_NOCTO)
1055 break;
1056 /* NFS close-to-open cache consistency validation */
1057 goto out_force;
1058 }
1059 }
1060
1061 /* VFS wants an on-the-wire revalidation */
1062 if (flags & LOOKUP_REVAL)
1063 goto out_force;
1064 out:
1065 return (inode->i_nlink == 0) ? -ESTALE : 0;
1066 out_force:
1067 if (flags & LOOKUP_RCU)
1068 return -ECHILD;
1069 ret = __nfs_revalidate_inode(server, inode);
1070 if (ret != 0)
1071 return ret;
1072 goto out;
1073 }
1074
1075 /*
1076 * We judge how long we want to trust negative
1077 * dentries by looking at the parent inode mtime.
1078 *
1079 * If parent mtime has changed, we revalidate, else we wait for a
1080 * period corresponding to the parent's attribute cache timeout value.
1081 *
1082 * If LOOKUP_RCU prevents us from performing a full check, return 1
1083 * suggesting a reval is needed.
1084 *
1085 * Note that when creating a new file, or looking up a rename target,
1086 * then it shouldn't be necessary to revalidate a negative dentry.
1087 */
1088 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1089 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1090 unsigned int flags)
1091 {
1092 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1093 return 0;
1094 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1095 return 1;
1096 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1097 }
1098
1099 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1100 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1101 struct inode *inode, int error)
1102 {
1103 switch (error) {
1104 case 1:
1105 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1106 __func__, dentry);
1107 return 1;
1108 case 0:
1109 nfs_mark_for_revalidate(dir);
1110 if (inode && S_ISDIR(inode->i_mode)) {
1111 /* Purge readdir caches. */
1112 nfs_zap_caches(inode);
1113 /*
1114 * We can't d_drop the root of a disconnected tree:
1115 * its d_hash is on the s_anon list and d_drop() would hide
1116 * it from shrink_dcache_for_unmount(), leading to busy
1117 * inodes on unmount and further oopses.
1118 */
1119 if (IS_ROOT(dentry))
1120 return 1;
1121 }
1122 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1123 __func__, dentry);
1124 return 0;
1125 }
1126 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1127 __func__, dentry, error);
1128 return error;
1129 }
1130
1131 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1132 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1133 unsigned int flags)
1134 {
1135 int ret = 1;
1136 if (nfs_neg_need_reval(dir, dentry, flags)) {
1137 if (flags & LOOKUP_RCU)
1138 return -ECHILD;
1139 ret = 0;
1140 }
1141 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1142 }
1143
1144 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1145 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1146 struct inode *inode)
1147 {
1148 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1149 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1150 }
1151
1152 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1153 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1154 struct inode *inode)
1155 {
1156 struct nfs_fh *fhandle;
1157 struct nfs_fattr *fattr;
1158 struct nfs4_label *label;
1159 int ret;
1160
1161 ret = -ENOMEM;
1162 fhandle = nfs_alloc_fhandle();
1163 fattr = nfs_alloc_fattr();
1164 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1165 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1166 goto out;
1167
1168 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1169 if (ret < 0) {
1170 if (ret == -ESTALE || ret == -ENOENT)
1171 ret = 0;
1172 goto out;
1173 }
1174 ret = 0;
1175 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1176 goto out;
1177 if (nfs_refresh_inode(inode, fattr) < 0)
1178 goto out;
1179
1180 nfs_setsecurity(inode, fattr, label);
1181 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1182
1183 /* set a readdirplus hint that we had a cache miss */
1184 nfs_force_use_readdirplus(dir);
1185 ret = 1;
1186 out:
1187 nfs_free_fattr(fattr);
1188 nfs_free_fhandle(fhandle);
1189 nfs4_label_free(label);
1190 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1191 }
1192
1193 /*
1194 * This is called every time the dcache has a lookup hit,
1195 * and we should check whether we can really trust that
1196 * lookup.
1197 *
1198 * NOTE! The hit can be a negative hit too, don't assume
1199 * we have an inode!
1200 *
1201 * If the parent directory is seen to have changed, we throw out the
1202 * cached dentry and do a new lookup.
1203 */
1204 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1205 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1206 unsigned int flags)
1207 {
1208 struct inode *inode;
1209 int error;
1210
1211 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1212 inode = d_inode(dentry);
1213
1214 if (!inode)
1215 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1216
1217 if (is_bad_inode(inode)) {
1218 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1219 __func__, dentry);
1220 goto out_bad;
1221 }
1222
1223 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1224 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1225
1226 /* Force a full look up iff the parent directory has changed */
1227 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1228 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1229 error = nfs_lookup_verify_inode(inode, flags);
1230 if (error) {
1231 if (error == -ESTALE)
1232 nfs_zap_caches(dir);
1233 goto out_bad;
1234 }
1235 nfs_advise_use_readdirplus(dir);
1236 goto out_valid;
1237 }
1238
1239 if (flags & LOOKUP_RCU)
1240 return -ECHILD;
1241
1242 if (NFS_STALE(inode))
1243 goto out_bad;
1244
1245 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1246 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1247 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1248 return error;
1249 out_valid:
1250 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1251 out_bad:
1252 if (flags & LOOKUP_RCU)
1253 return -ECHILD;
1254 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1255 }
1256
1257 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1258 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1259 int (*reval)(struct inode *, struct dentry *, unsigned int))
1260 {
1261 struct dentry *parent;
1262 struct inode *dir;
1263 int ret;
1264
1265 if (flags & LOOKUP_RCU) {
1266 parent = READ_ONCE(dentry->d_parent);
1267 dir = d_inode_rcu(parent);
1268 if (!dir)
1269 return -ECHILD;
1270 ret = reval(dir, dentry, flags);
1271 if (parent != READ_ONCE(dentry->d_parent))
1272 return -ECHILD;
1273 } else {
1274 parent = dget_parent(dentry);
1275 ret = reval(d_inode(parent), dentry, flags);
1276 dput(parent);
1277 }
1278 return ret;
1279 }
1280
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1281 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1282 {
1283 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1284 }
1285
1286 /*
1287 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1288 * when we don't really care about the dentry name. This is called when a
1289 * pathwalk ends on a dentry that was not found via a normal lookup in the
1290 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1291 *
1292 * In this situation, we just want to verify that the inode itself is OK
1293 * since the dentry might have changed on the server.
1294 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1295 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1296 {
1297 struct inode *inode = d_inode(dentry);
1298 int error = 0;
1299
1300 /*
1301 * I believe we can only get a negative dentry here in the case of a
1302 * procfs-style symlink. Just assume it's correct for now, but we may
1303 * eventually need to do something more here.
1304 */
1305 if (!inode) {
1306 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1307 __func__, dentry);
1308 return 1;
1309 }
1310
1311 if (is_bad_inode(inode)) {
1312 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1313 __func__, dentry);
1314 return 0;
1315 }
1316
1317 error = nfs_lookup_verify_inode(inode, flags);
1318 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1319 __func__, inode->i_ino, error ? "invalid" : "valid");
1320 return !error;
1321 }
1322
1323 /*
1324 * This is called from dput() when d_count is going to 0.
1325 */
nfs_dentry_delete(const struct dentry * dentry)1326 static int nfs_dentry_delete(const struct dentry *dentry)
1327 {
1328 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1329 dentry, dentry->d_flags);
1330
1331 /* Unhash any dentry with a stale inode */
1332 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1333 return 1;
1334
1335 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1336 /* Unhash it, so that ->d_iput() would be called */
1337 return 1;
1338 }
1339 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1340 /* Unhash it, so that ancestors of killed async unlink
1341 * files will be cleaned up during umount */
1342 return 1;
1343 }
1344 return 0;
1345
1346 }
1347
1348 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1349 static void nfs_drop_nlink(struct inode *inode)
1350 {
1351 spin_lock(&inode->i_lock);
1352 /* drop the inode if we're reasonably sure this is the last link */
1353 if (inode->i_nlink > 0)
1354 drop_nlink(inode);
1355 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1356 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1357 | NFS_INO_INVALID_CTIME
1358 | NFS_INO_INVALID_OTHER
1359 | NFS_INO_REVAL_FORCED;
1360 spin_unlock(&inode->i_lock);
1361 }
1362
1363 /*
1364 * Called when the dentry loses inode.
1365 * We use it to clean up silly-renamed files.
1366 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1367 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1368 {
1369 if (S_ISDIR(inode->i_mode))
1370 /* drop any readdir cache as it could easily be old */
1371 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1372
1373 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1374 nfs_complete_unlink(dentry, inode);
1375 nfs_drop_nlink(inode);
1376 }
1377 iput(inode);
1378 }
1379
nfs_d_release(struct dentry * dentry)1380 static void nfs_d_release(struct dentry *dentry)
1381 {
1382 /* free cached devname value, if it survived that far */
1383 if (unlikely(dentry->d_fsdata)) {
1384 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1385 WARN_ON(1);
1386 else
1387 kfree(dentry->d_fsdata);
1388 }
1389 }
1390
1391 const struct dentry_operations nfs_dentry_operations = {
1392 .d_revalidate = nfs_lookup_revalidate,
1393 .d_weak_revalidate = nfs_weak_revalidate,
1394 .d_delete = nfs_dentry_delete,
1395 .d_iput = nfs_dentry_iput,
1396 .d_automount = nfs_d_automount,
1397 .d_release = nfs_d_release,
1398 };
1399 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1400
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1401 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1402 {
1403 struct dentry *res;
1404 struct inode *inode = NULL;
1405 struct nfs_fh *fhandle = NULL;
1406 struct nfs_fattr *fattr = NULL;
1407 struct nfs4_label *label = NULL;
1408 int error;
1409
1410 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1411 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1412
1413 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1414 return ERR_PTR(-ENAMETOOLONG);
1415
1416 /*
1417 * If we're doing an exclusive create, optimize away the lookup
1418 * but don't hash the dentry.
1419 */
1420 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1421 return NULL;
1422
1423 res = ERR_PTR(-ENOMEM);
1424 fhandle = nfs_alloc_fhandle();
1425 fattr = nfs_alloc_fattr();
1426 if (fhandle == NULL || fattr == NULL)
1427 goto out;
1428
1429 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1430 if (IS_ERR(label))
1431 goto out;
1432
1433 trace_nfs_lookup_enter(dir, dentry, flags);
1434 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1435 if (error == -ENOENT)
1436 goto no_entry;
1437 if (error < 0) {
1438 res = ERR_PTR(error);
1439 goto out_label;
1440 }
1441 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1442 res = ERR_CAST(inode);
1443 if (IS_ERR(res))
1444 goto out_label;
1445
1446 /* Notify readdir to use READDIRPLUS */
1447 nfs_force_use_readdirplus(dir);
1448
1449 no_entry:
1450 res = d_splice_alias(inode, dentry);
1451 if (res != NULL) {
1452 if (IS_ERR(res))
1453 goto out_label;
1454 dentry = res;
1455 }
1456 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1457 out_label:
1458 trace_nfs_lookup_exit(dir, dentry, flags, error);
1459 nfs4_label_free(label);
1460 out:
1461 nfs_free_fattr(fattr);
1462 nfs_free_fhandle(fhandle);
1463 return res;
1464 }
1465 EXPORT_SYMBOL_GPL(nfs_lookup);
1466
1467 #if IS_ENABLED(CONFIG_NFS_V4)
1468 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1469
1470 const struct dentry_operations nfs4_dentry_operations = {
1471 .d_revalidate = nfs4_lookup_revalidate,
1472 .d_weak_revalidate = nfs_weak_revalidate,
1473 .d_delete = nfs_dentry_delete,
1474 .d_iput = nfs_dentry_iput,
1475 .d_automount = nfs_d_automount,
1476 .d_release = nfs_d_release,
1477 };
1478 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1479
flags_to_mode(int flags)1480 static fmode_t flags_to_mode(int flags)
1481 {
1482 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1483 if ((flags & O_ACCMODE) != O_WRONLY)
1484 res |= FMODE_READ;
1485 if ((flags & O_ACCMODE) != O_RDONLY)
1486 res |= FMODE_WRITE;
1487 return res;
1488 }
1489
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1490 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1491 {
1492 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1493 }
1494
do_open(struct inode * inode,struct file * filp)1495 static int do_open(struct inode *inode, struct file *filp)
1496 {
1497 nfs_fscache_open_file(inode, filp);
1498 return 0;
1499 }
1500
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1501 static int nfs_finish_open(struct nfs_open_context *ctx,
1502 struct dentry *dentry,
1503 struct file *file, unsigned open_flags)
1504 {
1505 int err;
1506
1507 err = finish_open(file, dentry, do_open);
1508 if (err)
1509 goto out;
1510 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1511 nfs_file_set_open_context(file, ctx);
1512 else
1513 err = -EOPENSTALE;
1514 out:
1515 return err;
1516 }
1517
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1518 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1519 struct file *file, unsigned open_flags,
1520 umode_t mode)
1521 {
1522 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1523 struct nfs_open_context *ctx;
1524 struct dentry *res;
1525 struct iattr attr = { .ia_valid = ATTR_OPEN };
1526 struct inode *inode;
1527 unsigned int lookup_flags = 0;
1528 bool switched = false;
1529 int created = 0;
1530 int err;
1531
1532 /* Expect a negative dentry */
1533 BUG_ON(d_inode(dentry));
1534
1535 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1536 dir->i_sb->s_id, dir->i_ino, dentry);
1537
1538 err = nfs_check_flags(open_flags);
1539 if (err)
1540 return err;
1541
1542 /* NFS only supports OPEN on regular files */
1543 if ((open_flags & O_DIRECTORY)) {
1544 if (!d_in_lookup(dentry)) {
1545 /*
1546 * Hashed negative dentry with O_DIRECTORY: dentry was
1547 * revalidated and is fine, no need to perform lookup
1548 * again
1549 */
1550 return -ENOENT;
1551 }
1552 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1553 goto no_open;
1554 }
1555
1556 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1557 return -ENAMETOOLONG;
1558
1559 if (open_flags & O_CREAT) {
1560 struct nfs_server *server = NFS_SERVER(dir);
1561
1562 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1563 mode &= ~current_umask();
1564
1565 attr.ia_valid |= ATTR_MODE;
1566 attr.ia_mode = mode;
1567 }
1568 if (open_flags & O_TRUNC) {
1569 attr.ia_valid |= ATTR_SIZE;
1570 attr.ia_size = 0;
1571 }
1572
1573 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1574 d_drop(dentry);
1575 switched = true;
1576 dentry = d_alloc_parallel(dentry->d_parent,
1577 &dentry->d_name, &wq);
1578 if (IS_ERR(dentry))
1579 return PTR_ERR(dentry);
1580 if (unlikely(!d_in_lookup(dentry)))
1581 return finish_no_open(file, dentry);
1582 }
1583
1584 ctx = create_nfs_open_context(dentry, open_flags, file);
1585 err = PTR_ERR(ctx);
1586 if (IS_ERR(ctx))
1587 goto out;
1588
1589 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1590 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1591 if (created)
1592 file->f_mode |= FMODE_CREATED;
1593 if (IS_ERR(inode)) {
1594 err = PTR_ERR(inode);
1595 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1596 put_nfs_open_context(ctx);
1597 d_drop(dentry);
1598 switch (err) {
1599 case -ENOENT:
1600 d_splice_alias(NULL, dentry);
1601 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1602 break;
1603 case -EISDIR:
1604 case -ENOTDIR:
1605 goto no_open;
1606 case -ELOOP:
1607 if (!(open_flags & O_NOFOLLOW))
1608 goto no_open;
1609 break;
1610 /* case -EINVAL: */
1611 default:
1612 break;
1613 }
1614 goto out;
1615 }
1616
1617 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1618 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1619 put_nfs_open_context(ctx);
1620 out:
1621 if (unlikely(switched)) {
1622 d_lookup_done(dentry);
1623 dput(dentry);
1624 }
1625 return err;
1626
1627 no_open:
1628 res = nfs_lookup(dir, dentry, lookup_flags);
1629 if (!res) {
1630 inode = d_inode(dentry);
1631 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1632 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1633 res = ERR_PTR(-ENOTDIR);
1634 else if (inode && S_ISREG(inode->i_mode))
1635 res = ERR_PTR(-EOPENSTALE);
1636 } else if (!IS_ERR(res)) {
1637 inode = d_inode(res);
1638 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1639 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1640 dput(res);
1641 res = ERR_PTR(-ENOTDIR);
1642 } else if (inode && S_ISREG(inode->i_mode)) {
1643 dput(res);
1644 res = ERR_PTR(-EOPENSTALE);
1645 }
1646 }
1647 if (switched) {
1648 d_lookup_done(dentry);
1649 if (!res)
1650 res = dentry;
1651 else
1652 dput(dentry);
1653 }
1654 if (IS_ERR(res))
1655 return PTR_ERR(res);
1656 return finish_no_open(file, res);
1657 }
1658 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1659
1660 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1661 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1662 unsigned int flags)
1663 {
1664 struct inode *inode;
1665
1666 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1667 goto full_reval;
1668 if (d_mountpoint(dentry))
1669 goto full_reval;
1670
1671 inode = d_inode(dentry);
1672
1673 /* We can't create new files in nfs_open_revalidate(), so we
1674 * optimize away revalidation of negative dentries.
1675 */
1676 if (inode == NULL)
1677 goto full_reval;
1678
1679 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1680 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1681
1682 /* NFS only supports OPEN on regular files */
1683 if (!S_ISREG(inode->i_mode))
1684 goto full_reval;
1685
1686 /* We cannot do exclusive creation on a positive dentry */
1687 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1688 goto reval_dentry;
1689
1690 /* Check if the directory changed */
1691 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1692 goto reval_dentry;
1693
1694 /* Let f_op->open() actually open (and revalidate) the file */
1695 return 1;
1696 reval_dentry:
1697 if (flags & LOOKUP_RCU)
1698 return -ECHILD;
1699 return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1700
1701 full_reval:
1702 return nfs_do_lookup_revalidate(dir, dentry, flags);
1703 }
1704
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1705 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1706 {
1707 return __nfs_lookup_revalidate(dentry, flags,
1708 nfs4_do_lookup_revalidate);
1709 }
1710
1711 #endif /* CONFIG_NFSV4 */
1712
1713 /*
1714 * Code common to create, mkdir, and mknod.
1715 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1716 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1717 struct nfs_fattr *fattr,
1718 struct nfs4_label *label)
1719 {
1720 struct dentry *parent = dget_parent(dentry);
1721 struct inode *dir = d_inode(parent);
1722 struct inode *inode;
1723 struct dentry *d;
1724 int error = -EACCES;
1725
1726 d_drop(dentry);
1727
1728 /* We may have been initialized further down */
1729 if (d_really_is_positive(dentry))
1730 goto out;
1731 if (fhandle->size == 0) {
1732 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1733 if (error)
1734 goto out_error;
1735 }
1736 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1737 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1738 struct nfs_server *server = NFS_SB(dentry->d_sb);
1739 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1740 fattr, NULL, NULL);
1741 if (error < 0)
1742 goto out_error;
1743 }
1744 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1745 d = d_splice_alias(inode, dentry);
1746 if (IS_ERR(d)) {
1747 error = PTR_ERR(d);
1748 goto out_error;
1749 }
1750 dput(d);
1751 out:
1752 dput(parent);
1753 return 0;
1754 out_error:
1755 nfs_mark_for_revalidate(dir);
1756 dput(parent);
1757 return error;
1758 }
1759 EXPORT_SYMBOL_GPL(nfs_instantiate);
1760
1761 /*
1762 * Following a failed create operation, we drop the dentry rather
1763 * than retain a negative dentry. This avoids a problem in the event
1764 * that the operation succeeded on the server, but an error in the
1765 * reply path made it appear to have failed.
1766 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1767 int nfs_create(struct inode *dir, struct dentry *dentry,
1768 umode_t mode, bool excl)
1769 {
1770 struct iattr attr;
1771 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1772 int error;
1773
1774 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1775 dir->i_sb->s_id, dir->i_ino, dentry);
1776
1777 attr.ia_mode = mode;
1778 attr.ia_valid = ATTR_MODE;
1779
1780 trace_nfs_create_enter(dir, dentry, open_flags);
1781 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1782 trace_nfs_create_exit(dir, dentry, open_flags, error);
1783 if (error != 0)
1784 goto out_err;
1785 return 0;
1786 out_err:
1787 d_drop(dentry);
1788 return error;
1789 }
1790 EXPORT_SYMBOL_GPL(nfs_create);
1791
1792 /*
1793 * See comments for nfs_proc_create regarding failed operations.
1794 */
1795 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1796 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1797 {
1798 struct iattr attr;
1799 int status;
1800
1801 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1802 dir->i_sb->s_id, dir->i_ino, dentry);
1803
1804 attr.ia_mode = mode;
1805 attr.ia_valid = ATTR_MODE;
1806
1807 trace_nfs_mknod_enter(dir, dentry);
1808 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1809 trace_nfs_mknod_exit(dir, dentry, status);
1810 if (status != 0)
1811 goto out_err;
1812 return 0;
1813 out_err:
1814 d_drop(dentry);
1815 return status;
1816 }
1817 EXPORT_SYMBOL_GPL(nfs_mknod);
1818
1819 /*
1820 * See comments for nfs_proc_create regarding failed operations.
1821 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1822 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1823 {
1824 struct iattr attr;
1825 int error;
1826
1827 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1828 dir->i_sb->s_id, dir->i_ino, dentry);
1829
1830 attr.ia_valid = ATTR_MODE;
1831 attr.ia_mode = mode | S_IFDIR;
1832
1833 trace_nfs_mkdir_enter(dir, dentry);
1834 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1835 trace_nfs_mkdir_exit(dir, dentry, error);
1836 if (error != 0)
1837 goto out_err;
1838 return 0;
1839 out_err:
1840 d_drop(dentry);
1841 return error;
1842 }
1843 EXPORT_SYMBOL_GPL(nfs_mkdir);
1844
nfs_dentry_handle_enoent(struct dentry * dentry)1845 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1846 {
1847 if (simple_positive(dentry))
1848 d_delete(dentry);
1849 }
1850
nfs_rmdir(struct inode * dir,struct dentry * dentry)1851 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1852 {
1853 int error;
1854
1855 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1856 dir->i_sb->s_id, dir->i_ino, dentry);
1857
1858 trace_nfs_rmdir_enter(dir, dentry);
1859 if (d_really_is_positive(dentry)) {
1860 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1861 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1862 /* Ensure the VFS deletes this inode */
1863 switch (error) {
1864 case 0:
1865 clear_nlink(d_inode(dentry));
1866 break;
1867 case -ENOENT:
1868 nfs_dentry_handle_enoent(dentry);
1869 }
1870 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1871 } else
1872 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1873 trace_nfs_rmdir_exit(dir, dentry, error);
1874
1875 return error;
1876 }
1877 EXPORT_SYMBOL_GPL(nfs_rmdir);
1878
1879 /*
1880 * Remove a file after making sure there are no pending writes,
1881 * and after checking that the file has only one user.
1882 *
1883 * We invalidate the attribute cache and free the inode prior to the operation
1884 * to avoid possible races if the server reuses the inode.
1885 */
nfs_safe_remove(struct dentry * dentry)1886 static int nfs_safe_remove(struct dentry *dentry)
1887 {
1888 struct inode *dir = d_inode(dentry->d_parent);
1889 struct inode *inode = d_inode(dentry);
1890 int error = -EBUSY;
1891
1892 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1893
1894 /* If the dentry was sillyrenamed, we simply call d_delete() */
1895 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1896 error = 0;
1897 goto out;
1898 }
1899
1900 trace_nfs_remove_enter(dir, dentry);
1901 if (inode != NULL) {
1902 error = NFS_PROTO(dir)->remove(dir, dentry);
1903 if (error == 0)
1904 nfs_drop_nlink(inode);
1905 } else
1906 error = NFS_PROTO(dir)->remove(dir, dentry);
1907 if (error == -ENOENT)
1908 nfs_dentry_handle_enoent(dentry);
1909 trace_nfs_remove_exit(dir, dentry, error);
1910 out:
1911 return error;
1912 }
1913
1914 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1915 * belongs to an active ".nfs..." file and we return -EBUSY.
1916 *
1917 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1918 */
nfs_unlink(struct inode * dir,struct dentry * dentry)1919 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1920 {
1921 int error;
1922 int need_rehash = 0;
1923
1924 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1925 dir->i_ino, dentry);
1926
1927 trace_nfs_unlink_enter(dir, dentry);
1928 spin_lock(&dentry->d_lock);
1929 if (d_count(dentry) > 1) {
1930 spin_unlock(&dentry->d_lock);
1931 /* Start asynchronous writeout of the inode */
1932 write_inode_now(d_inode(dentry), 0);
1933 error = nfs_sillyrename(dir, dentry);
1934 goto out;
1935 }
1936 if (!d_unhashed(dentry)) {
1937 __d_drop(dentry);
1938 need_rehash = 1;
1939 }
1940 spin_unlock(&dentry->d_lock);
1941 error = nfs_safe_remove(dentry);
1942 if (!error || error == -ENOENT) {
1943 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1944 } else if (need_rehash)
1945 d_rehash(dentry);
1946 out:
1947 trace_nfs_unlink_exit(dir, dentry, error);
1948 return error;
1949 }
1950 EXPORT_SYMBOL_GPL(nfs_unlink);
1951
1952 /*
1953 * To create a symbolic link, most file systems instantiate a new inode,
1954 * add a page to it containing the path, then write it out to the disk
1955 * using prepare_write/commit_write.
1956 *
1957 * Unfortunately the NFS client can't create the in-core inode first
1958 * because it needs a file handle to create an in-core inode (see
1959 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1960 * symlink request has completed on the server.
1961 *
1962 * So instead we allocate a raw page, copy the symname into it, then do
1963 * the SYMLINK request with the page as the buffer. If it succeeds, we
1964 * now have a new file handle and can instantiate an in-core NFS inode
1965 * and move the raw page into its mapping.
1966 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1967 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1968 {
1969 struct page *page;
1970 char *kaddr;
1971 struct iattr attr;
1972 unsigned int pathlen = strlen(symname);
1973 int error;
1974
1975 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1976 dir->i_ino, dentry, symname);
1977
1978 if (pathlen > PAGE_SIZE)
1979 return -ENAMETOOLONG;
1980
1981 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1982 attr.ia_valid = ATTR_MODE;
1983
1984 page = alloc_page(GFP_USER);
1985 if (!page)
1986 return -ENOMEM;
1987
1988 kaddr = page_address(page);
1989 memcpy(kaddr, symname, pathlen);
1990 if (pathlen < PAGE_SIZE)
1991 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1992
1993 trace_nfs_symlink_enter(dir, dentry);
1994 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1995 trace_nfs_symlink_exit(dir, dentry, error);
1996 if (error != 0) {
1997 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1998 dir->i_sb->s_id, dir->i_ino,
1999 dentry, symname, error);
2000 d_drop(dentry);
2001 __free_page(page);
2002 return error;
2003 }
2004
2005 /*
2006 * No big deal if we can't add this page to the page cache here.
2007 * READLINK will get the missing page from the server if needed.
2008 */
2009 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2010 GFP_KERNEL)) {
2011 SetPageUptodate(page);
2012 unlock_page(page);
2013 /*
2014 * add_to_page_cache_lru() grabs an extra page refcount.
2015 * Drop it here to avoid leaking this page later.
2016 */
2017 put_page(page);
2018 } else
2019 __free_page(page);
2020
2021 return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(nfs_symlink);
2024
2025 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2026 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2027 {
2028 struct inode *inode = d_inode(old_dentry);
2029 int error;
2030
2031 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2032 old_dentry, dentry);
2033
2034 trace_nfs_link_enter(inode, dir, dentry);
2035 d_drop(dentry);
2036 if (S_ISREG(inode->i_mode))
2037 nfs_sync_inode(inode);
2038 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2039 if (error == 0) {
2040 ihold(inode);
2041 d_add(dentry, inode);
2042 }
2043 trace_nfs_link_exit(inode, dir, dentry, error);
2044 return error;
2045 }
2046 EXPORT_SYMBOL_GPL(nfs_link);
2047
2048 /*
2049 * RENAME
2050 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2051 * different file handle for the same inode after a rename (e.g. when
2052 * moving to a different directory). A fail-safe method to do so would
2053 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2054 * rename the old file using the sillyrename stuff. This way, the original
2055 * file in old_dir will go away when the last process iput()s the inode.
2056 *
2057 * FIXED.
2058 *
2059 * It actually works quite well. One needs to have the possibility for
2060 * at least one ".nfs..." file in each directory the file ever gets
2061 * moved or linked to which happens automagically with the new
2062 * implementation that only depends on the dcache stuff instead of
2063 * using the inode layer
2064 *
2065 * Unfortunately, things are a little more complicated than indicated
2066 * above. For a cross-directory move, we want to make sure we can get
2067 * rid of the old inode after the operation. This means there must be
2068 * no pending writes (if it's a file), and the use count must be 1.
2069 * If these conditions are met, we can drop the dentries before doing
2070 * the rename.
2071 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2072 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2073 struct inode *new_dir, struct dentry *new_dentry,
2074 unsigned int flags)
2075 {
2076 struct inode *old_inode = d_inode(old_dentry);
2077 struct inode *new_inode = d_inode(new_dentry);
2078 struct dentry *dentry = NULL, *rehash = NULL;
2079 struct rpc_task *task;
2080 int error = -EBUSY;
2081
2082 if (flags)
2083 return -EINVAL;
2084
2085 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2086 old_dentry, new_dentry,
2087 d_count(new_dentry));
2088
2089 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2090 /*
2091 * For non-directories, check whether the target is busy and if so,
2092 * make a copy of the dentry and then do a silly-rename. If the
2093 * silly-rename succeeds, the copied dentry is hashed and becomes
2094 * the new target.
2095 */
2096 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2097 /*
2098 * To prevent any new references to the target during the
2099 * rename, we unhash the dentry in advance.
2100 */
2101 if (!d_unhashed(new_dentry)) {
2102 d_drop(new_dentry);
2103 rehash = new_dentry;
2104 }
2105
2106 if (d_count(new_dentry) > 2) {
2107 int err;
2108
2109 /* copy the target dentry's name */
2110 dentry = d_alloc(new_dentry->d_parent,
2111 &new_dentry->d_name);
2112 if (!dentry)
2113 goto out;
2114
2115 /* silly-rename the existing target ... */
2116 err = nfs_sillyrename(new_dir, new_dentry);
2117 if (err)
2118 goto out;
2119
2120 new_dentry = dentry;
2121 rehash = NULL;
2122 new_inode = NULL;
2123 }
2124 }
2125
2126 if (S_ISREG(old_inode->i_mode))
2127 nfs_sync_inode(old_inode);
2128 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2129 if (IS_ERR(task)) {
2130 error = PTR_ERR(task);
2131 goto out;
2132 }
2133
2134 error = rpc_wait_for_completion_task(task);
2135 if (error != 0) {
2136 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2137 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2138 smp_wmb();
2139 } else
2140 error = task->tk_status;
2141 rpc_put_task(task);
2142 /* Ensure the inode attributes are revalidated */
2143 if (error == 0) {
2144 spin_lock(&old_inode->i_lock);
2145 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2146 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2147 | NFS_INO_INVALID_CTIME
2148 | NFS_INO_REVAL_FORCED;
2149 spin_unlock(&old_inode->i_lock);
2150 }
2151 out:
2152 if (rehash)
2153 d_rehash(rehash);
2154 trace_nfs_rename_exit(old_dir, old_dentry,
2155 new_dir, new_dentry, error);
2156 if (!error) {
2157 if (new_inode != NULL)
2158 nfs_drop_nlink(new_inode);
2159 /*
2160 * The d_move() should be here instead of in an async RPC completion
2161 * handler because we need the proper locks to move the dentry. If
2162 * we're interrupted by a signal, the async RPC completion handler
2163 * should mark the directories for revalidation.
2164 */
2165 d_move(old_dentry, new_dentry);
2166 nfs_set_verifier(old_dentry,
2167 nfs_save_change_attribute(new_dir));
2168 } else if (error == -ENOENT)
2169 nfs_dentry_handle_enoent(old_dentry);
2170
2171 /* new dentry created? */
2172 if (dentry)
2173 dput(dentry);
2174 return error;
2175 }
2176 EXPORT_SYMBOL_GPL(nfs_rename);
2177
2178 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2179 static LIST_HEAD(nfs_access_lru_list);
2180 static atomic_long_t nfs_access_nr_entries;
2181
2182 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2183 module_param(nfs_access_max_cachesize, ulong, 0644);
2184 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2185
nfs_access_free_entry(struct nfs_access_entry * entry)2186 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2187 {
2188 put_rpccred(entry->cred);
2189 kfree_rcu(entry, rcu_head);
2190 smp_mb__before_atomic();
2191 atomic_long_dec(&nfs_access_nr_entries);
2192 smp_mb__after_atomic();
2193 }
2194
nfs_access_free_list(struct list_head * head)2195 static void nfs_access_free_list(struct list_head *head)
2196 {
2197 struct nfs_access_entry *cache;
2198
2199 while (!list_empty(head)) {
2200 cache = list_entry(head->next, struct nfs_access_entry, lru);
2201 list_del(&cache->lru);
2202 nfs_access_free_entry(cache);
2203 }
2204 }
2205
2206 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2207 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2208 {
2209 LIST_HEAD(head);
2210 struct nfs_inode *nfsi, *next;
2211 struct nfs_access_entry *cache;
2212 long freed = 0;
2213
2214 spin_lock(&nfs_access_lru_lock);
2215 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2216 struct inode *inode;
2217
2218 if (nr_to_scan-- == 0)
2219 break;
2220 inode = &nfsi->vfs_inode;
2221 spin_lock(&inode->i_lock);
2222 if (list_empty(&nfsi->access_cache_entry_lru))
2223 goto remove_lru_entry;
2224 cache = list_entry(nfsi->access_cache_entry_lru.next,
2225 struct nfs_access_entry, lru);
2226 list_move(&cache->lru, &head);
2227 rb_erase(&cache->rb_node, &nfsi->access_cache);
2228 freed++;
2229 if (!list_empty(&nfsi->access_cache_entry_lru))
2230 list_move_tail(&nfsi->access_cache_inode_lru,
2231 &nfs_access_lru_list);
2232 else {
2233 remove_lru_entry:
2234 list_del_init(&nfsi->access_cache_inode_lru);
2235 smp_mb__before_atomic();
2236 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2237 smp_mb__after_atomic();
2238 }
2239 spin_unlock(&inode->i_lock);
2240 }
2241 spin_unlock(&nfs_access_lru_lock);
2242 nfs_access_free_list(&head);
2243 return freed;
2244 }
2245
2246 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2247 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2248 {
2249 int nr_to_scan = sc->nr_to_scan;
2250 gfp_t gfp_mask = sc->gfp_mask;
2251
2252 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2253 return SHRINK_STOP;
2254 return nfs_do_access_cache_scan(nr_to_scan);
2255 }
2256
2257
2258 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2259 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2260 {
2261 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2262 }
2263
2264 static void
nfs_access_cache_enforce_limit(void)2265 nfs_access_cache_enforce_limit(void)
2266 {
2267 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2268 unsigned long diff;
2269 unsigned int nr_to_scan;
2270
2271 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2272 return;
2273 nr_to_scan = 100;
2274 diff = nr_entries - nfs_access_max_cachesize;
2275 if (diff < nr_to_scan)
2276 nr_to_scan = diff;
2277 nfs_do_access_cache_scan(nr_to_scan);
2278 }
2279
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2280 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2281 {
2282 struct rb_root *root_node = &nfsi->access_cache;
2283 struct rb_node *n;
2284 struct nfs_access_entry *entry;
2285
2286 /* Unhook entries from the cache */
2287 while ((n = rb_first(root_node)) != NULL) {
2288 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2289 rb_erase(n, root_node);
2290 list_move(&entry->lru, head);
2291 }
2292 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2293 }
2294
nfs_access_zap_cache(struct inode * inode)2295 void nfs_access_zap_cache(struct inode *inode)
2296 {
2297 LIST_HEAD(head);
2298
2299 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2300 return;
2301 /* Remove from global LRU init */
2302 spin_lock(&nfs_access_lru_lock);
2303 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2304 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2305
2306 spin_lock(&inode->i_lock);
2307 __nfs_access_zap_cache(NFS_I(inode), &head);
2308 spin_unlock(&inode->i_lock);
2309 spin_unlock(&nfs_access_lru_lock);
2310 nfs_access_free_list(&head);
2311 }
2312 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2313
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)2314 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2315 {
2316 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2317 struct nfs_access_entry *entry;
2318
2319 while (n != NULL) {
2320 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2321
2322 if (cred < entry->cred)
2323 n = n->rb_left;
2324 else if (cred > entry->cred)
2325 n = n->rb_right;
2326 else
2327 return entry;
2328 }
2329 return NULL;
2330 }
2331
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res,bool may_block)2332 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2333 {
2334 struct nfs_inode *nfsi = NFS_I(inode);
2335 struct nfs_access_entry *cache;
2336 bool retry = true;
2337 int err;
2338
2339 spin_lock(&inode->i_lock);
2340 for(;;) {
2341 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2342 goto out_zap;
2343 cache = nfs_access_search_rbtree(inode, cred);
2344 err = -ENOENT;
2345 if (cache == NULL)
2346 goto out;
2347 /* Found an entry, is our attribute cache valid? */
2348 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2349 break;
2350 err = -ECHILD;
2351 if (!may_block)
2352 goto out;
2353 if (!retry)
2354 goto out_zap;
2355 spin_unlock(&inode->i_lock);
2356 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2357 if (err)
2358 return err;
2359 spin_lock(&inode->i_lock);
2360 retry = false;
2361 }
2362 res->cred = cache->cred;
2363 res->mask = cache->mask;
2364 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2365 err = 0;
2366 out:
2367 spin_unlock(&inode->i_lock);
2368 return err;
2369 out_zap:
2370 spin_unlock(&inode->i_lock);
2371 nfs_access_zap_cache(inode);
2372 return -ENOENT;
2373 }
2374
nfs_access_get_cached_rcu(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)2375 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2376 {
2377 /* Only check the most recently returned cache entry,
2378 * but do it without locking.
2379 */
2380 struct nfs_inode *nfsi = NFS_I(inode);
2381 struct nfs_access_entry *cache;
2382 int err = -ECHILD;
2383 struct list_head *lh;
2384
2385 rcu_read_lock();
2386 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2387 goto out;
2388 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2389 cache = list_entry(lh, struct nfs_access_entry, lru);
2390 if (lh == &nfsi->access_cache_entry_lru ||
2391 cred != cache->cred)
2392 cache = NULL;
2393 if (cache == NULL)
2394 goto out;
2395 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2396 goto out;
2397 res->cred = cache->cred;
2398 res->mask = cache->mask;
2399 err = 0;
2400 out:
2401 rcu_read_unlock();
2402 return err;
2403 }
2404
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2405 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2406 {
2407 struct nfs_inode *nfsi = NFS_I(inode);
2408 struct rb_root *root_node = &nfsi->access_cache;
2409 struct rb_node **p = &root_node->rb_node;
2410 struct rb_node *parent = NULL;
2411 struct nfs_access_entry *entry;
2412
2413 spin_lock(&inode->i_lock);
2414 while (*p != NULL) {
2415 parent = *p;
2416 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2417
2418 if (set->cred < entry->cred)
2419 p = &parent->rb_left;
2420 else if (set->cred > entry->cred)
2421 p = &parent->rb_right;
2422 else
2423 goto found;
2424 }
2425 rb_link_node(&set->rb_node, parent, p);
2426 rb_insert_color(&set->rb_node, root_node);
2427 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2428 spin_unlock(&inode->i_lock);
2429 return;
2430 found:
2431 rb_replace_node(parent, &set->rb_node, root_node);
2432 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2433 list_del(&entry->lru);
2434 spin_unlock(&inode->i_lock);
2435 nfs_access_free_entry(entry);
2436 }
2437
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2438 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2439 {
2440 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2441 if (cache == NULL)
2442 return;
2443 RB_CLEAR_NODE(&cache->rb_node);
2444 cache->cred = get_rpccred(set->cred);
2445 cache->mask = set->mask;
2446
2447 /* The above field assignments must be visible
2448 * before this item appears on the lru. We cannot easily
2449 * use rcu_assign_pointer, so just force the memory barrier.
2450 */
2451 smp_wmb();
2452 nfs_access_add_rbtree(inode, cache);
2453
2454 /* Update accounting */
2455 smp_mb__before_atomic();
2456 atomic_long_inc(&nfs_access_nr_entries);
2457 smp_mb__after_atomic();
2458
2459 /* Add inode to global LRU list */
2460 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2461 spin_lock(&nfs_access_lru_lock);
2462 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2463 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2464 &nfs_access_lru_list);
2465 spin_unlock(&nfs_access_lru_lock);
2466 }
2467 nfs_access_cache_enforce_limit();
2468 }
2469 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2470
2471 #define NFS_MAY_READ (NFS_ACCESS_READ)
2472 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2473 NFS_ACCESS_EXTEND | \
2474 NFS_ACCESS_DELETE)
2475 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2476 NFS_ACCESS_EXTEND)
2477 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2478 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2479 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2480 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2481 nfs_access_calc_mask(u32 access_result, umode_t umode)
2482 {
2483 int mask = 0;
2484
2485 if (access_result & NFS_MAY_READ)
2486 mask |= MAY_READ;
2487 if (S_ISDIR(umode)) {
2488 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2489 mask |= MAY_WRITE;
2490 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2491 mask |= MAY_EXEC;
2492 } else if (S_ISREG(umode)) {
2493 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2494 mask |= MAY_WRITE;
2495 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2496 mask |= MAY_EXEC;
2497 } else if (access_result & NFS_MAY_WRITE)
2498 mask |= MAY_WRITE;
2499 return mask;
2500 }
2501
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2502 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2503 {
2504 entry->mask = access_result;
2505 }
2506 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2507
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)2508 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2509 {
2510 struct nfs_access_entry cache;
2511 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2512 int cache_mask;
2513 int status;
2514
2515 trace_nfs_access_enter(inode);
2516
2517 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2518 if (status != 0)
2519 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2520 if (status == 0)
2521 goto out_cached;
2522
2523 status = -ECHILD;
2524 if (!may_block)
2525 goto out;
2526
2527 /*
2528 * Determine which access bits we want to ask for...
2529 */
2530 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2531 if (S_ISDIR(inode->i_mode))
2532 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2533 else
2534 cache.mask |= NFS_ACCESS_EXECUTE;
2535 cache.cred = cred;
2536 status = NFS_PROTO(inode)->access(inode, &cache);
2537 if (status != 0) {
2538 if (status == -ESTALE) {
2539 nfs_zap_caches(inode);
2540 if (!S_ISDIR(inode->i_mode))
2541 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2542 }
2543 goto out;
2544 }
2545 nfs_access_add_cache(inode, &cache);
2546 out_cached:
2547 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2548 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2549 status = -EACCES;
2550 out:
2551 trace_nfs_access_exit(inode, status);
2552 return status;
2553 }
2554
nfs_open_permission_mask(int openflags)2555 static int nfs_open_permission_mask(int openflags)
2556 {
2557 int mask = 0;
2558
2559 if (openflags & __FMODE_EXEC) {
2560 /* ONLY check exec rights */
2561 mask = MAY_EXEC;
2562 } else {
2563 if ((openflags & O_ACCMODE) != O_WRONLY)
2564 mask |= MAY_READ;
2565 if ((openflags & O_ACCMODE) != O_RDONLY)
2566 mask |= MAY_WRITE;
2567 }
2568
2569 return mask;
2570 }
2571
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)2572 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2573 {
2574 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2575 }
2576 EXPORT_SYMBOL_GPL(nfs_may_open);
2577
nfs_execute_ok(struct inode * inode,int mask)2578 static int nfs_execute_ok(struct inode *inode, int mask)
2579 {
2580 struct nfs_server *server = NFS_SERVER(inode);
2581 int ret = 0;
2582
2583 if (S_ISDIR(inode->i_mode))
2584 return 0;
2585 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2586 if (mask & MAY_NOT_BLOCK)
2587 return -ECHILD;
2588 ret = __nfs_revalidate_inode(server, inode);
2589 }
2590 if (ret == 0 && !execute_ok(inode))
2591 ret = -EACCES;
2592 return ret;
2593 }
2594
nfs_permission(struct inode * inode,int mask)2595 int nfs_permission(struct inode *inode, int mask)
2596 {
2597 struct rpc_cred *cred;
2598 int res = 0;
2599
2600 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2601
2602 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2603 goto out;
2604 /* Is this sys_access() ? */
2605 if (mask & (MAY_ACCESS | MAY_CHDIR))
2606 goto force_lookup;
2607
2608 switch (inode->i_mode & S_IFMT) {
2609 case S_IFLNK:
2610 goto out;
2611 case S_IFREG:
2612 if ((mask & MAY_OPEN) &&
2613 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2614 return 0;
2615 break;
2616 case S_IFDIR:
2617 /*
2618 * Optimize away all write operations, since the server
2619 * will check permissions when we perform the op.
2620 */
2621 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2622 goto out;
2623 }
2624
2625 force_lookup:
2626 if (!NFS_PROTO(inode)->access)
2627 goto out_notsup;
2628
2629 /* Always try fast lookups first */
2630 rcu_read_lock();
2631 cred = rpc_lookup_cred_nonblock();
2632 if (!IS_ERR(cred))
2633 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2634 else
2635 res = PTR_ERR(cred);
2636 rcu_read_unlock();
2637 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2638 /* Fast lookup failed, try the slow way */
2639 cred = rpc_lookup_cred();
2640 if (!IS_ERR(cred)) {
2641 res = nfs_do_access(inode, cred, mask);
2642 put_rpccred(cred);
2643 } else
2644 res = PTR_ERR(cred);
2645 }
2646 out:
2647 if (!res && (mask & MAY_EXEC))
2648 res = nfs_execute_ok(inode, mask);
2649
2650 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2651 inode->i_sb->s_id, inode->i_ino, mask, res);
2652 return res;
2653 out_notsup:
2654 if (mask & MAY_NOT_BLOCK)
2655 return -ECHILD;
2656
2657 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2658 if (res == 0)
2659 res = generic_permission(inode, mask);
2660 goto out;
2661 }
2662 EXPORT_SYMBOL_GPL(nfs_permission);
2663
2664 /*
2665 * Local variables:
2666 * version-control: t
2667 * kept-new-versions: 5
2668 * End:
2669 */
2670