1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <linux/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_mirror {
70 ssize_t count;
71 };
72
73 struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 loff_t io_start; /* Start offset for I/O */
90 ssize_t count, /* bytes actually processed */
91 max_count, /* max expected count */
92 bytes_left, /* bytes left to be sent */
93 error; /* any reported error */
94 struct completion completion; /* wait for i/o completion */
95
96 /* commit state */
97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
99 struct work_struct work;
100 int flags;
101 /* for write */
102 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
103 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
104 /* for read */
105 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
106 struct nfs_writeverf verf; /* unstable write verifier */
107 };
108
109 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
110 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
111 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
112 static void nfs_direct_write_schedule_work(struct work_struct *work);
113
get_dreq(struct nfs_direct_req * dreq)114 static inline void get_dreq(struct nfs_direct_req *dreq)
115 {
116 atomic_inc(&dreq->io_count);
117 }
118
put_dreq(struct nfs_direct_req * dreq)119 static inline int put_dreq(struct nfs_direct_req *dreq)
120 {
121 return atomic_dec_and_test(&dreq->io_count);
122 }
123
124 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)125 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
126 const struct nfs_pgio_header *hdr,
127 ssize_t dreq_len)
128 {
129 struct nfs_direct_mirror *mirror = &dreq->mirrors[hdr->pgio_mirror_idx];
130
131 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
132 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
133 return;
134 if (dreq->max_count >= dreq_len) {
135 dreq->max_count = dreq_len;
136 if (dreq->count > dreq_len)
137 dreq->count = dreq_len;
138
139 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
140 dreq->error = hdr->error;
141 else /* Clear outstanding error if this is EOF */
142 dreq->error = 0;
143 }
144 if (mirror->count > dreq_len)
145 mirror->count = dreq_len;
146 }
147
148 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)149 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
150 const struct nfs_pgio_header *hdr)
151 {
152 struct nfs_direct_mirror *mirror = &dreq->mirrors[hdr->pgio_mirror_idx];
153 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
154 ssize_t dreq_len = 0;
155
156 if (hdr_end > dreq->io_start)
157 dreq_len = hdr_end - dreq->io_start;
158
159 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
160
161 if (dreq_len > dreq->max_count)
162 dreq_len = dreq->max_count;
163
164 if (mirror->count < dreq_len)
165 mirror->count = dreq_len;
166 if (dreq->count < dreq_len)
167 dreq->count = dreq_len;
168 }
169
170 /*
171 * nfs_direct_select_verf - select the right verifier
172 * @dreq - direct request possibly spanning multiple servers
173 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
174 * @commit_idx - commit bucket index for the DS
175 *
176 * returns the correct verifier to use given the role of the server
177 */
178 static struct nfs_writeverf *
nfs_direct_select_verf(struct nfs_direct_req * dreq,struct nfs_client * ds_clp,int commit_idx)179 nfs_direct_select_verf(struct nfs_direct_req *dreq,
180 struct nfs_client *ds_clp,
181 int commit_idx)
182 {
183 struct nfs_writeverf *verfp = &dreq->verf;
184
185 #ifdef CONFIG_NFS_V4_1
186 /*
187 * pNFS is in use, use the DS verf except commit_through_mds is set
188 * for layout segment where nbuckets is zero.
189 */
190 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
191 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
192 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
193 else
194 WARN_ON_ONCE(1);
195 }
196 #endif
197 return verfp;
198 }
199
200
201 /*
202 * nfs_direct_set_hdr_verf - set the write/commit verifier
203 * @dreq - direct request possibly spanning multiple servers
204 * @hdr - pageio header to validate against previously seen verfs
205 *
206 * Set the server's (MDS or DS) "seen" verifier
207 */
nfs_direct_set_hdr_verf(struct nfs_direct_req * dreq,struct nfs_pgio_header * hdr)208 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
209 struct nfs_pgio_header *hdr)
210 {
211 struct nfs_writeverf *verfp;
212
213 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 WARN_ON_ONCE(verfp->committed >= 0);
215 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
216 WARN_ON_ONCE(verfp->committed < 0);
217 }
218
nfs_direct_cmp_verf(const struct nfs_writeverf * v1,const struct nfs_writeverf * v2)219 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
220 const struct nfs_writeverf *v2)
221 {
222 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
223 }
224
225 /*
226 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
227 * @dreq - direct request possibly spanning multiple servers
228 * @hdr - pageio header to validate against previously seen verf
229 *
230 * set the server's "seen" verf if not initialized.
231 * returns result of comparison between @hdr->verf and the "seen"
232 * verf of the server used by @hdr (DS or MDS)
233 */
nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req * dreq,struct nfs_pgio_header * hdr)234 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
235 struct nfs_pgio_header *hdr)
236 {
237 struct nfs_writeverf *verfp;
238
239 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
240 if (verfp->committed < 0) {
241 nfs_direct_set_hdr_verf(dreq, hdr);
242 return 0;
243 }
244 return nfs_direct_cmp_verf(verfp, &hdr->verf);
245 }
246
247 /*
248 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
249 * @dreq - direct request possibly spanning multiple servers
250 * @data - commit data to validate against previously seen verf
251 *
252 * returns result of comparison between @data->verf and the verf of
253 * the server used by @data (DS or MDS)
254 */
nfs_direct_cmp_commit_data_verf(struct nfs_direct_req * dreq,struct nfs_commit_data * data)255 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
256 struct nfs_commit_data *data)
257 {
258 struct nfs_writeverf *verfp;
259
260 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
261 data->ds_commit_index);
262
263 /* verifier not set so always fail */
264 if (verfp->committed < 0 || data->res.verf->committed <= NFS_UNSTABLE)
265 return 1;
266
267 return nfs_direct_cmp_verf(verfp, data->res.verf);
268 }
269
270 /**
271 * nfs_direct_IO - NFS address space operation for direct I/O
272 * @iocb: target I/O control block
273 * @iter: I/O buffer
274 *
275 * The presence of this routine in the address space ops vector means
276 * the NFS client supports direct I/O. However, for most direct IO, we
277 * shunt off direct read and write requests before the VFS gets them,
278 * so this method is only ever called for swap.
279 */
nfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)280 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
281 {
282 struct inode *inode = iocb->ki_filp->f_mapping->host;
283
284 /* we only support swap file calling nfs_direct_IO */
285 if (!IS_SWAPFILE(inode))
286 return 0;
287
288 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
289
290 if (iov_iter_rw(iter) == READ)
291 return nfs_file_direct_read(iocb, iter, true);
292 return nfs_file_direct_write(iocb, iter, true);
293 }
294
nfs_direct_release_pages(struct page ** pages,unsigned int npages)295 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
296 {
297 unsigned int i;
298 for (i = 0; i < npages; i++)
299 put_page(pages[i]);
300 }
301
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)302 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
303 struct nfs_direct_req *dreq)
304 {
305 cinfo->inode = dreq->inode;
306 cinfo->mds = &dreq->mds_cinfo;
307 cinfo->ds = &dreq->ds_cinfo;
308 cinfo->dreq = dreq;
309 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
310 }
311
nfs_direct_setup_mirroring(struct nfs_direct_req * dreq,struct nfs_pageio_descriptor * pgio,struct nfs_page * req)312 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
313 struct nfs_pageio_descriptor *pgio,
314 struct nfs_page *req)
315 {
316 int mirror_count = 1;
317
318 if (pgio->pg_ops->pg_get_mirror_count)
319 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
320
321 dreq->mirror_count = mirror_count;
322 }
323
nfs_direct_req_alloc(void)324 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
325 {
326 struct nfs_direct_req *dreq;
327
328 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
329 if (!dreq)
330 return NULL;
331
332 kref_init(&dreq->kref);
333 kref_get(&dreq->kref);
334 init_completion(&dreq->completion);
335 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
336 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
337 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
338 dreq->mirror_count = 1;
339 spin_lock_init(&dreq->lock);
340
341 return dreq;
342 }
343
nfs_direct_req_free(struct kref * kref)344 static void nfs_direct_req_free(struct kref *kref)
345 {
346 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
347
348 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
349 if (dreq->l_ctx != NULL)
350 nfs_put_lock_context(dreq->l_ctx);
351 if (dreq->ctx != NULL)
352 put_nfs_open_context(dreq->ctx);
353 kmem_cache_free(nfs_direct_cachep, dreq);
354 }
355
nfs_direct_req_release(struct nfs_direct_req * dreq)356 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
357 {
358 kref_put(&dreq->kref, nfs_direct_req_free);
359 }
360
nfs_dreq_bytes_left(struct nfs_direct_req * dreq)361 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
362 {
363 return dreq->bytes_left;
364 }
365 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
366
367 /*
368 * Collects and returns the final error value/byte-count.
369 */
nfs_direct_wait(struct nfs_direct_req * dreq)370 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
371 {
372 ssize_t result = -EIOCBQUEUED;
373
374 /* Async requests don't wait here */
375 if (dreq->iocb)
376 goto out;
377
378 result = wait_for_completion_killable(&dreq->completion);
379
380 if (!result) {
381 result = dreq->count;
382 WARN_ON_ONCE(dreq->count < 0);
383 }
384 if (!result)
385 result = dreq->error;
386
387 out:
388 return (ssize_t) result;
389 }
390
391 /*
392 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
393 * the iocb is still valid here if this is a synchronous request.
394 */
nfs_direct_complete(struct nfs_direct_req * dreq)395 static void nfs_direct_complete(struct nfs_direct_req *dreq)
396 {
397 struct inode *inode = dreq->inode;
398
399 inode_dio_end(inode);
400
401 if (dreq->iocb) {
402 long res = (long) dreq->error;
403 if (dreq->count != 0) {
404 res = (long) dreq->count;
405 WARN_ON_ONCE(dreq->count < 0);
406 }
407 dreq->iocb->ki_complete(dreq->iocb, res, 0);
408 }
409
410 complete(&dreq->completion);
411
412 nfs_direct_req_release(dreq);
413 }
414
nfs_direct_read_completion(struct nfs_pgio_header * hdr)415 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
416 {
417 unsigned long bytes = 0;
418 struct nfs_direct_req *dreq = hdr->dreq;
419
420 spin_lock(&dreq->lock);
421 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
422 spin_unlock(&dreq->lock);
423 goto out_put;
424 }
425
426 nfs_direct_count_bytes(dreq, hdr);
427 spin_unlock(&dreq->lock);
428
429 while (!list_empty(&hdr->pages)) {
430 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
431 struct page *page = req->wb_page;
432
433 if (!PageCompound(page) && bytes < hdr->good_bytes &&
434 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
435 set_page_dirty(page);
436 bytes += req->wb_bytes;
437 nfs_list_remove_request(req);
438 nfs_release_request(req);
439 }
440 out_put:
441 if (put_dreq(dreq))
442 nfs_direct_complete(dreq);
443 hdr->release(hdr);
444 }
445
nfs_read_sync_pgio_error(struct list_head * head,int error)446 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
447 {
448 struct nfs_page *req;
449
450 while (!list_empty(head)) {
451 req = nfs_list_entry(head->next);
452 nfs_list_remove_request(req);
453 nfs_release_request(req);
454 }
455 }
456
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)457 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
458 {
459 get_dreq(hdr->dreq);
460 }
461
462 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
463 .error_cleanup = nfs_read_sync_pgio_error,
464 .init_hdr = nfs_direct_pgio_init,
465 .completion = nfs_direct_read_completion,
466 };
467
468 /*
469 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
470 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
471 * bail and stop sending more reads. Read length accounting is
472 * handled automatically by nfs_direct_read_result(). Otherwise, if
473 * no requests have been sent, just return an error.
474 */
475
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)476 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
477 struct iov_iter *iter,
478 loff_t pos)
479 {
480 struct nfs_pageio_descriptor desc;
481 struct inode *inode = dreq->inode;
482 ssize_t result = -EINVAL;
483 size_t requested_bytes = 0;
484 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
485
486 nfs_pageio_init_read(&desc, dreq->inode, false,
487 &nfs_direct_read_completion_ops);
488 get_dreq(dreq);
489 desc.pg_dreq = dreq;
490 inode_dio_begin(inode);
491
492 while (iov_iter_count(iter)) {
493 struct page **pagevec;
494 size_t bytes;
495 size_t pgbase;
496 unsigned npages, i;
497
498 result = iov_iter_get_pages_alloc(iter, &pagevec,
499 rsize, &pgbase);
500 if (result < 0)
501 break;
502
503 bytes = result;
504 iov_iter_advance(iter, bytes);
505 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
506 for (i = 0; i < npages; i++) {
507 struct nfs_page *req;
508 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
509 /* XXX do we need to do the eof zeroing found in async_filler? */
510 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
511 pgbase, req_len);
512 if (IS_ERR(req)) {
513 result = PTR_ERR(req);
514 break;
515 }
516 req->wb_index = pos >> PAGE_SHIFT;
517 req->wb_offset = pos & ~PAGE_MASK;
518 if (!nfs_pageio_add_request(&desc, req)) {
519 result = desc.pg_error;
520 nfs_release_request(req);
521 break;
522 }
523 pgbase = 0;
524 bytes -= req_len;
525 requested_bytes += req_len;
526 pos += req_len;
527 dreq->bytes_left -= req_len;
528 }
529 nfs_direct_release_pages(pagevec, npages);
530 kvfree(pagevec);
531 if (result < 0)
532 break;
533 }
534
535 nfs_pageio_complete(&desc);
536
537 /*
538 * If no bytes were started, return the error, and let the
539 * generic layer handle the completion.
540 */
541 if (requested_bytes == 0) {
542 inode_dio_end(inode);
543 nfs_direct_req_release(dreq);
544 return result < 0 ? result : -EIO;
545 }
546
547 if (put_dreq(dreq))
548 nfs_direct_complete(dreq);
549 return requested_bytes;
550 }
551
552 /**
553 * nfs_file_direct_read - file direct read operation for NFS files
554 * @iocb: target I/O control block
555 * @iter: vector of user buffers into which to read data
556 * @swap: flag indicating this is swap IO, not O_DIRECT IO
557 *
558 * We use this function for direct reads instead of calling
559 * generic_file_aio_read() in order to avoid gfar's check to see if
560 * the request starts before the end of the file. For that check
561 * to work, we must generate a GETATTR before each direct read, and
562 * even then there is a window between the GETATTR and the subsequent
563 * READ where the file size could change. Our preference is simply
564 * to do all reads the application wants, and the server will take
565 * care of managing the end of file boundary.
566 *
567 * This function also eliminates unnecessarily updating the file's
568 * atime locally, as the NFS server sets the file's atime, and this
569 * client must read the updated atime from the server back into its
570 * cache.
571 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)572 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
573 bool swap)
574 {
575 struct file *file = iocb->ki_filp;
576 struct address_space *mapping = file->f_mapping;
577 struct inode *inode = mapping->host;
578 struct nfs_direct_req *dreq;
579 struct nfs_lock_context *l_ctx;
580 ssize_t result = -EINVAL, requested;
581 size_t count = iov_iter_count(iter);
582 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
583
584 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
585 file, count, (long long) iocb->ki_pos);
586
587 result = 0;
588 if (!count)
589 goto out;
590
591 task_io_account_read(count);
592
593 result = -ENOMEM;
594 dreq = nfs_direct_req_alloc();
595 if (dreq == NULL)
596 goto out;
597
598 dreq->inode = inode;
599 dreq->bytes_left = dreq->max_count = count;
600 dreq->io_start = iocb->ki_pos;
601 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
602 l_ctx = nfs_get_lock_context(dreq->ctx);
603 if (IS_ERR(l_ctx)) {
604 result = PTR_ERR(l_ctx);
605 nfs_direct_req_release(dreq);
606 goto out_release;
607 }
608 dreq->l_ctx = l_ctx;
609 if (!is_sync_kiocb(iocb))
610 dreq->iocb = iocb;
611
612 if (iter_is_iovec(iter))
613 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
614
615 if (!swap)
616 nfs_start_io_direct(inode);
617
618 NFS_I(inode)->read_io += count;
619 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
620
621 if (!swap)
622 nfs_end_io_direct(inode);
623
624 if (requested > 0) {
625 result = nfs_direct_wait(dreq);
626 if (result > 0) {
627 requested -= result;
628 iocb->ki_pos += result;
629 }
630 iov_iter_revert(iter, requested);
631 } else {
632 result = requested;
633 }
634
635 out_release:
636 nfs_direct_req_release(dreq);
637 out:
638 return result;
639 }
640
641 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)642 nfs_direct_write_scan_commit_list(struct inode *inode,
643 struct list_head *list,
644 struct nfs_commit_info *cinfo)
645 {
646 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
647 #ifdef CONFIG_NFS_V4_1
648 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
649 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
650 #endif
651 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
652 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
653 }
654
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)655 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
656 {
657 struct nfs_pageio_descriptor desc;
658 struct nfs_page *req, *tmp;
659 LIST_HEAD(reqs);
660 struct nfs_commit_info cinfo;
661 LIST_HEAD(failed);
662 int i;
663
664 nfs_init_cinfo_from_dreq(&cinfo, dreq);
665 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
666
667 dreq->count = 0;
668 dreq->max_count = 0;
669 list_for_each_entry(req, &reqs, wb_list)
670 dreq->max_count += req->wb_bytes;
671 dreq->verf.committed = NFS_INVALID_STABLE_HOW;
672 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
673 for (i = 0; i < dreq->mirror_count; i++)
674 dreq->mirrors[i].count = 0;
675 get_dreq(dreq);
676
677 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
678 &nfs_direct_write_completion_ops);
679 desc.pg_dreq = dreq;
680
681 req = nfs_list_entry(reqs.next);
682 nfs_direct_setup_mirroring(dreq, &desc, req);
683 if (desc.pg_error < 0) {
684 list_splice_init(&reqs, &failed);
685 goto out_failed;
686 }
687
688 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
689 if (!nfs_pageio_add_request(&desc, req)) {
690 nfs_list_move_request(req, &failed);
691 spin_lock(&cinfo.inode->i_lock);
692 dreq->flags = 0;
693 if (desc.pg_error < 0)
694 dreq->error = desc.pg_error;
695 else
696 dreq->error = -EIO;
697 spin_unlock(&cinfo.inode->i_lock);
698 }
699 nfs_release_request(req);
700 }
701 nfs_pageio_complete(&desc);
702
703 out_failed:
704 while (!list_empty(&failed)) {
705 req = nfs_list_entry(failed.next);
706 nfs_list_remove_request(req);
707 nfs_unlock_and_release_request(req);
708 }
709
710 if (put_dreq(dreq))
711 nfs_direct_write_complete(dreq);
712 }
713
nfs_direct_commit_complete(struct nfs_commit_data * data)714 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
715 {
716 struct nfs_direct_req *dreq = data->dreq;
717 struct nfs_commit_info cinfo;
718 struct nfs_page *req;
719 int status = data->task.tk_status;
720
721 nfs_init_cinfo_from_dreq(&cinfo, dreq);
722 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
723 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
724
725 while (!list_empty(&data->pages)) {
726 req = nfs_list_entry(data->pages.next);
727 nfs_list_remove_request(req);
728 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
729 /* Note the rewrite will go through mds */
730 nfs_mark_request_commit(req, NULL, &cinfo, 0);
731 } else
732 nfs_release_request(req);
733 nfs_unlock_and_release_request(req);
734 }
735
736 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
737 nfs_direct_write_complete(dreq);
738 }
739
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)740 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
741 struct nfs_page *req)
742 {
743 struct nfs_direct_req *dreq = cinfo->dreq;
744
745 spin_lock(&dreq->lock);
746 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
747 spin_unlock(&dreq->lock);
748 nfs_mark_request_commit(req, NULL, cinfo, 0);
749 }
750
751 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
752 .completion = nfs_direct_commit_complete,
753 .resched_write = nfs_direct_resched_write,
754 };
755
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)756 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
757 {
758 int res;
759 struct nfs_commit_info cinfo;
760 LIST_HEAD(mds_list);
761
762 nfs_init_cinfo_from_dreq(&cinfo, dreq);
763 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
764 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
765 if (res < 0) /* res == -ENOMEM */
766 nfs_direct_write_reschedule(dreq);
767 }
768
nfs_direct_write_schedule_work(struct work_struct * work)769 static void nfs_direct_write_schedule_work(struct work_struct *work)
770 {
771 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
772 int flags = dreq->flags;
773
774 dreq->flags = 0;
775 switch (flags) {
776 case NFS_ODIRECT_DO_COMMIT:
777 nfs_direct_commit_schedule(dreq);
778 break;
779 case NFS_ODIRECT_RESCHED_WRITES:
780 nfs_direct_write_reschedule(dreq);
781 break;
782 default:
783 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
784 nfs_direct_complete(dreq);
785 }
786 }
787
nfs_direct_write_complete(struct nfs_direct_req * dreq)788 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
789 {
790 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
791 }
792
nfs_direct_write_completion(struct nfs_pgio_header * hdr)793 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
794 {
795 struct nfs_direct_req *dreq = hdr->dreq;
796 struct nfs_commit_info cinfo;
797 bool request_commit = false;
798 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
799
800 nfs_init_cinfo_from_dreq(&cinfo, dreq);
801
802 spin_lock(&dreq->lock);
803 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
804 spin_unlock(&dreq->lock);
805 goto out_put;
806 }
807
808 nfs_direct_count_bytes(dreq, hdr);
809 if (hdr->good_bytes != 0) {
810 if (nfs_write_need_commit(hdr)) {
811 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
812 request_commit = true;
813 else if (dreq->flags == 0) {
814 nfs_direct_set_hdr_verf(dreq, hdr);
815 request_commit = true;
816 dreq->flags = NFS_ODIRECT_DO_COMMIT;
817 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
818 request_commit = true;
819 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
820 dreq->flags =
821 NFS_ODIRECT_RESCHED_WRITES;
822 }
823 }
824 }
825 spin_unlock(&dreq->lock);
826
827 while (!list_empty(&hdr->pages)) {
828
829 req = nfs_list_entry(hdr->pages.next);
830 nfs_list_remove_request(req);
831 if (request_commit) {
832 kref_get(&req->wb_kref);
833 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
834 hdr->ds_commit_idx);
835 }
836 nfs_unlock_and_release_request(req);
837 }
838
839 out_put:
840 if (put_dreq(dreq))
841 nfs_direct_write_complete(dreq);
842 hdr->release(hdr);
843 }
844
nfs_write_sync_pgio_error(struct list_head * head,int error)845 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
846 {
847 struct nfs_page *req;
848
849 while (!list_empty(head)) {
850 req = nfs_list_entry(head->next);
851 nfs_list_remove_request(req);
852 nfs_unlock_and_release_request(req);
853 }
854 }
855
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)856 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
857 {
858 struct nfs_direct_req *dreq = hdr->dreq;
859
860 spin_lock(&dreq->lock);
861 if (dreq->error == 0) {
862 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
863 /* fake unstable write to let common nfs resend pages */
864 hdr->verf.committed = NFS_UNSTABLE;
865 hdr->good_bytes = hdr->args.count;
866 }
867 spin_unlock(&dreq->lock);
868 }
869
870 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
871 .error_cleanup = nfs_write_sync_pgio_error,
872 .init_hdr = nfs_direct_pgio_init,
873 .completion = nfs_direct_write_completion,
874 .reschedule_io = nfs_direct_write_reschedule_io,
875 };
876
877
878 /*
879 * NB: Return the value of the first error return code. Subsequent
880 * errors after the first one are ignored.
881 */
882 /*
883 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
884 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
885 * bail and stop sending more writes. Write length accounting is
886 * handled automatically by nfs_direct_write_result(). Otherwise, if
887 * no requests have been sent, just return an error.
888 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)889 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
890 struct iov_iter *iter,
891 loff_t pos, int ioflags)
892 {
893 struct nfs_pageio_descriptor desc;
894 struct inode *inode = dreq->inode;
895 ssize_t result = 0;
896 size_t requested_bytes = 0;
897 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
898
899 nfs_pageio_init_write(&desc, inode, ioflags, false,
900 &nfs_direct_write_completion_ops);
901 desc.pg_dreq = dreq;
902 get_dreq(dreq);
903 inode_dio_begin(inode);
904
905 NFS_I(inode)->write_io += iov_iter_count(iter);
906 while (iov_iter_count(iter)) {
907 struct page **pagevec;
908 size_t bytes;
909 size_t pgbase;
910 unsigned npages, i;
911
912 result = iov_iter_get_pages_alloc(iter, &pagevec,
913 wsize, &pgbase);
914 if (result < 0)
915 break;
916
917 bytes = result;
918 iov_iter_advance(iter, bytes);
919 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
920 for (i = 0; i < npages; i++) {
921 struct nfs_page *req;
922 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
923
924 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
925 pgbase, req_len);
926 if (IS_ERR(req)) {
927 result = PTR_ERR(req);
928 break;
929 }
930
931 nfs_direct_setup_mirroring(dreq, &desc, req);
932 if (desc.pg_error < 0) {
933 nfs_free_request(req);
934 result = desc.pg_error;
935 break;
936 }
937
938 nfs_lock_request(req);
939 req->wb_index = pos >> PAGE_SHIFT;
940 req->wb_offset = pos & ~PAGE_MASK;
941 if (!nfs_pageio_add_request(&desc, req)) {
942 result = desc.pg_error;
943 nfs_unlock_and_release_request(req);
944 break;
945 }
946 pgbase = 0;
947 bytes -= req_len;
948 requested_bytes += req_len;
949 pos += req_len;
950 dreq->bytes_left -= req_len;
951 }
952 nfs_direct_release_pages(pagevec, npages);
953 kvfree(pagevec);
954 if (result < 0)
955 break;
956 }
957 nfs_pageio_complete(&desc);
958
959 /*
960 * If no bytes were started, return the error, and let the
961 * generic layer handle the completion.
962 */
963 if (requested_bytes == 0) {
964 inode_dio_end(inode);
965 nfs_direct_req_release(dreq);
966 return result < 0 ? result : -EIO;
967 }
968
969 if (put_dreq(dreq))
970 nfs_direct_write_complete(dreq);
971 return requested_bytes;
972 }
973
974 /**
975 * nfs_file_direct_write - file direct write operation for NFS files
976 * @iocb: target I/O control block
977 * @iter: vector of user buffers from which to write data
978 * @swap: flag indicating this is swap IO, not O_DIRECT IO
979 *
980 * We use this function for direct writes instead of calling
981 * generic_file_aio_write() in order to avoid taking the inode
982 * semaphore and updating the i_size. The NFS server will set
983 * the new i_size and this client must read the updated size
984 * back into its cache. We let the server do generic write
985 * parameter checking and report problems.
986 *
987 * We eliminate local atime updates, see direct read above.
988 *
989 * We avoid unnecessary page cache invalidations for normal cached
990 * readers of this file.
991 *
992 * Note that O_APPEND is not supported for NFS direct writes, as there
993 * is no atomic O_APPEND write facility in the NFS protocol.
994 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)995 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
996 bool swap)
997 {
998 ssize_t result = -EINVAL, requested;
999 size_t count;
1000 struct file *file = iocb->ki_filp;
1001 struct address_space *mapping = file->f_mapping;
1002 struct inode *inode = mapping->host;
1003 struct nfs_direct_req *dreq;
1004 struct nfs_lock_context *l_ctx;
1005 loff_t pos, end;
1006
1007 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1008 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1009
1010 if (swap)
1011 /* bypass generic checks */
1012 result = iov_iter_count(iter);
1013 else
1014 result = generic_write_checks(iocb, iter);
1015 if (result <= 0)
1016 return result;
1017 count = result;
1018 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
1019
1020 pos = iocb->ki_pos;
1021 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1022
1023 task_io_account_write(count);
1024
1025 result = -ENOMEM;
1026 dreq = nfs_direct_req_alloc();
1027 if (!dreq)
1028 goto out;
1029
1030 dreq->inode = inode;
1031 dreq->bytes_left = dreq->max_count = count;
1032 dreq->io_start = pos;
1033 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1034 l_ctx = nfs_get_lock_context(dreq->ctx);
1035 if (IS_ERR(l_ctx)) {
1036 result = PTR_ERR(l_ctx);
1037 nfs_direct_req_release(dreq);
1038 goto out_release;
1039 }
1040 dreq->l_ctx = l_ctx;
1041 if (!is_sync_kiocb(iocb))
1042 dreq->iocb = iocb;
1043
1044 if (swap) {
1045 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1046 FLUSH_STABLE);
1047 } else {
1048 nfs_start_io_direct(inode);
1049
1050 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1051 FLUSH_COND_STABLE);
1052
1053 if (mapping->nrpages) {
1054 invalidate_inode_pages2_range(mapping,
1055 pos >> PAGE_SHIFT, end);
1056 }
1057
1058 nfs_end_io_direct(inode);
1059 }
1060
1061 if (requested > 0) {
1062 result = nfs_direct_wait(dreq);
1063 if (result > 0) {
1064 requested -= result;
1065 iocb->ki_pos = pos + result;
1066 /* XXX: should check the generic_write_sync retval */
1067 generic_write_sync(iocb, result);
1068 }
1069 iov_iter_revert(iter, requested);
1070 } else {
1071 result = requested;
1072 }
1073 out_release:
1074 nfs_direct_req_release(dreq);
1075 out:
1076 return result;
1077 }
1078
1079 /**
1080 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1081 *
1082 */
nfs_init_directcache(void)1083 int __init nfs_init_directcache(void)
1084 {
1085 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1086 sizeof(struct nfs_direct_req),
1087 0, (SLAB_RECLAIM_ACCOUNT|
1088 SLAB_MEM_SPREAD),
1089 NULL);
1090 if (nfs_direct_cachep == NULL)
1091 return -ENOMEM;
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098 *
1099 */
nfs_destroy_directcache(void)1100 void nfs_destroy_directcache(void)
1101 {
1102 kmem_cache_destroy(nfs_direct_cachep);
1103 }
1104