1 /*
2  * Copyright (C) 2011
3  * Boaz Harrosh <ooo@electrozaur.com>
4  *
5  * This file is part of the objects raid engine (ore).
6  *
7  * It is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with "ore". If not, write to the Free Software Foundation, Inc:
13  *	"Free Software Foundation <info@fsf.org>"
14  */
15 
16 #include <linux/gfp.h>
17 #include <linux/async_tx.h>
18 
19 #include "ore_raid.h"
20 
21 #undef ORE_DBGMSG2
22 #define ORE_DBGMSG2 ORE_DBGMSG
23 
_raid_page_alloc(void)24 static struct page *_raid_page_alloc(void)
25 {
26 	return alloc_page(GFP_KERNEL);
27 }
28 
_raid_page_free(struct page * p)29 static void _raid_page_free(struct page *p)
30 {
31 	__free_page(p);
32 }
33 
34 /* This struct is forward declare in ore_io_state, but is private to here.
35  * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
36  *
37  * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
38  * Ascending page index access is sp2d(p-minor, c-major). But storage is
39  * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
40  * API.
41  */
42 struct __stripe_pages_2d {
43 	/* Cache some hot path repeated calculations */
44 	unsigned parity;
45 	unsigned data_devs;
46 	unsigned pages_in_unit;
47 
48 	bool needed ;
49 
50 	/* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
51 	struct __1_page_stripe {
52 		bool alloc;
53 		unsigned write_count;
54 		struct async_submit_ctl submit;
55 		struct dma_async_tx_descriptor *tx;
56 
57 		/* The size of this array is data_devs + parity */
58 		struct page **pages;
59 		struct page **scribble;
60 		/* bool array, size of this array is data_devs */
61 		char *page_is_read;
62 	} _1p_stripes[];
63 };
64 
65 /* This can get bigger then a page. So support multiple page allocations
66  * _sp2d_free should be called even if _sp2d_alloc fails (by returning
67  * none-zero).
68  */
_sp2d_alloc(unsigned pages_in_unit,unsigned group_width,unsigned parity,struct __stripe_pages_2d ** psp2d)69 static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
70 		       unsigned parity, struct __stripe_pages_2d **psp2d)
71 {
72 	struct __stripe_pages_2d *sp2d;
73 	unsigned data_devs = group_width - parity;
74 
75 	/*
76 	 * Desired allocation layout is, though when larger than PAGE_SIZE,
77 	 * each struct __alloc_1p_arrays is separately allocated:
78 
79 	struct _alloc_all_bytes {
80 		struct __alloc_stripe_pages_2d {
81 			struct __stripe_pages_2d sp2d;
82 			struct __1_page_stripe _1p_stripes[pages_in_unit];
83 		} __asp2d;
84 		struct __alloc_1p_arrays {
85 			struct page *pages[group_width];
86 			struct page *scribble[group_width];
87 			char page_is_read[data_devs];
88 		} __a1pa[pages_in_unit];
89 	} *_aab;
90 
91 	struct __alloc_1p_arrays *__a1pa;
92 	struct __alloc_1p_arrays *__a1pa_end;
93 
94 	*/
95 
96 	char *__a1pa;
97 	char *__a1pa_end;
98 
99 	const size_t sizeof_stripe_pages_2d =
100 		sizeof(struct __stripe_pages_2d) +
101 		sizeof(struct __1_page_stripe) * pages_in_unit;
102 	const size_t sizeof__a1pa =
103 		ALIGN(sizeof(struct page *) * (2 * group_width) + data_devs,
104 		      sizeof(void *));
105 	const size_t sizeof__a1pa_arrays = sizeof__a1pa * pages_in_unit;
106 	const size_t alloc_total = sizeof_stripe_pages_2d +
107 				   sizeof__a1pa_arrays;
108 
109 	unsigned num_a1pa, alloc_size, i;
110 
111 	/* FIXME: check these numbers in ore_verify_layout */
112 	BUG_ON(sizeof_stripe_pages_2d > PAGE_SIZE);
113 	BUG_ON(sizeof__a1pa > PAGE_SIZE);
114 
115 	/*
116 	 * If alloc_total would be larger than PAGE_SIZE, only allocate
117 	 * as many a1pa items as would fill the rest of the page, instead
118 	 * of the full pages_in_unit count.
119 	 */
120 	if (alloc_total > PAGE_SIZE) {
121 		num_a1pa = (PAGE_SIZE - sizeof_stripe_pages_2d) / sizeof__a1pa;
122 		alloc_size = sizeof_stripe_pages_2d + sizeof__a1pa * num_a1pa;
123 	} else {
124 		num_a1pa = pages_in_unit;
125 		alloc_size = alloc_total;
126 	}
127 
128 	*psp2d = sp2d = kzalloc(alloc_size, GFP_KERNEL);
129 	if (unlikely(!sp2d)) {
130 		ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
131 		return -ENOMEM;
132 	}
133 	/* From here Just call _sp2d_free */
134 
135 	/* Find start of a1pa area. */
136 	__a1pa = (char *)sp2d + sizeof_stripe_pages_2d;
137 	/* Find end of the _allocated_ a1pa area. */
138 	__a1pa_end = __a1pa + alloc_size;
139 
140 	/* Allocate additionally needed a1pa items in PAGE_SIZE chunks. */
141 	for (i = 0; i < pages_in_unit; ++i) {
142 		struct __1_page_stripe *stripe = &sp2d->_1p_stripes[i];
143 
144 		if (unlikely(__a1pa >= __a1pa_end)) {
145 			num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
146 							pages_in_unit - i);
147 			alloc_size = sizeof__a1pa * num_a1pa;
148 
149 			__a1pa = kzalloc(alloc_size, GFP_KERNEL);
150 			if (unlikely(!__a1pa)) {
151 				ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
152 					   num_a1pa);
153 				return -ENOMEM;
154 			}
155 			__a1pa_end = __a1pa + alloc_size;
156 			/* First *pages is marked for kfree of the buffer */
157 			stripe->alloc = true;
158 		}
159 
160 		/*
161 		 * Attach all _lp_stripes pointers to the allocation for
162 		 * it which was either part of the original PAGE_SIZE
163 		 * allocation or the subsequent allocation in this loop.
164 		 */
165 		stripe->pages = (void *)__a1pa;
166 		stripe->scribble = stripe->pages + group_width;
167 		stripe->page_is_read = (char *)stripe->scribble + group_width;
168 		__a1pa += sizeof__a1pa;
169 	}
170 
171 	sp2d->parity = parity;
172 	sp2d->data_devs = data_devs;
173 	sp2d->pages_in_unit = pages_in_unit;
174 	return 0;
175 }
176 
_sp2d_reset(struct __stripe_pages_2d * sp2d,const struct _ore_r4w_op * r4w,void * priv)177 static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
178 			const struct _ore_r4w_op *r4w, void *priv)
179 {
180 	unsigned data_devs = sp2d->data_devs;
181 	unsigned group_width = data_devs + sp2d->parity;
182 	int p, c;
183 
184 	if (!sp2d->needed)
185 		return;
186 
187 	for (c = data_devs - 1; c >= 0; --c)
188 		for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
189 			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
190 
191 			if (_1ps->page_is_read[c]) {
192 				struct page *page = _1ps->pages[c];
193 
194 				r4w->put_page(priv, page);
195 				_1ps->page_is_read[c] = false;
196 			}
197 		}
198 
199 	for (p = 0; p < sp2d->pages_in_unit; p++) {
200 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
201 
202 		memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
203 		_1ps->write_count = 0;
204 		_1ps->tx = NULL;
205 	}
206 
207 	sp2d->needed = false;
208 }
209 
_sp2d_free(struct __stripe_pages_2d * sp2d)210 static void _sp2d_free(struct __stripe_pages_2d *sp2d)
211 {
212 	unsigned i;
213 
214 	if (!sp2d)
215 		return;
216 
217 	for (i = 0; i < sp2d->pages_in_unit; ++i) {
218 		if (sp2d->_1p_stripes[i].alloc)
219 			kfree(sp2d->_1p_stripes[i].pages);
220 	}
221 
222 	kfree(sp2d);
223 }
224 
_sp2d_min_pg(struct __stripe_pages_2d * sp2d)225 static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
226 {
227 	unsigned p;
228 
229 	for (p = 0; p < sp2d->pages_in_unit; p++) {
230 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
231 
232 		if (_1ps->write_count)
233 			return p;
234 	}
235 
236 	return ~0;
237 }
238 
_sp2d_max_pg(struct __stripe_pages_2d * sp2d)239 static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
240 {
241 	int p;
242 
243 	for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
244 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
245 
246 		if (_1ps->write_count)
247 			return p;
248 	}
249 
250 	return ~0;
251 }
252 
_gen_xor_unit(struct __stripe_pages_2d * sp2d)253 static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
254 {
255 	unsigned p;
256 	unsigned tx_flags = ASYNC_TX_ACK;
257 
258 	if (sp2d->parity == 1)
259 		tx_flags |= ASYNC_TX_XOR_ZERO_DST;
260 
261 	for (p = 0; p < sp2d->pages_in_unit; p++) {
262 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
263 
264 		if (!_1ps->write_count)
265 			continue;
266 
267 		init_async_submit(&_1ps->submit, tx_flags,
268 			NULL, NULL, NULL, (addr_conv_t *)_1ps->scribble);
269 
270 		if (sp2d->parity == 1)
271 			_1ps->tx = async_xor(_1ps->pages[sp2d->data_devs],
272 						_1ps->pages, 0, sp2d->data_devs,
273 						PAGE_SIZE, &_1ps->submit);
274 		else /* parity == 2 */
275 			_1ps->tx = async_gen_syndrome(_1ps->pages, 0,
276 						sp2d->data_devs + sp2d->parity,
277 						PAGE_SIZE, &_1ps->submit);
278 	}
279 
280 	for (p = 0; p < sp2d->pages_in_unit; p++) {
281 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
282 		/* NOTE: We wait for HW synchronously (I don't have such HW
283 		 * to test with.) Is parallelism needed with today's multi
284 		 * cores?
285 		 */
286 		async_tx_issue_pending(_1ps->tx);
287 	}
288 }
289 
_ore_add_stripe_page(struct __stripe_pages_2d * sp2d,struct ore_striping_info * si,struct page * page)290 void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
291 		       struct ore_striping_info *si, struct page *page)
292 {
293 	struct __1_page_stripe *_1ps;
294 
295 	sp2d->needed = true;
296 
297 	_1ps = &sp2d->_1p_stripes[si->cur_pg];
298 	_1ps->pages[si->cur_comp] = page;
299 	++_1ps->write_count;
300 
301 	si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
302 	/* si->cur_comp is advanced outside at main loop */
303 }
304 
_ore_add_sg_seg(struct ore_per_dev_state * per_dev,unsigned cur_len,bool not_last)305 void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
306 		     bool not_last)
307 {
308 	struct osd_sg_entry *sge;
309 
310 	ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
311 		     "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
312 		     per_dev->dev, cur_len, not_last, per_dev->cur_sg,
313 		     _LLU(per_dev->offset), per_dev->length,
314 		     per_dev->last_sgs_total);
315 
316 	if (!per_dev->cur_sg) {
317 		sge = per_dev->sglist;
318 
319 		/* First time we prepare two entries */
320 		if (per_dev->length) {
321 			++per_dev->cur_sg;
322 			sge->offset = per_dev->offset;
323 			sge->len = per_dev->length;
324 		} else {
325 			/* Here the parity is the first unit of this object.
326 			 * This happens every time we reach a parity device on
327 			 * the same stripe as the per_dev->offset. We need to
328 			 * just skip this unit.
329 			 */
330 			per_dev->offset += cur_len;
331 			return;
332 		}
333 	} else {
334 		/* finalize the last one */
335 		sge = &per_dev->sglist[per_dev->cur_sg - 1];
336 		sge->len = per_dev->length - per_dev->last_sgs_total;
337 	}
338 
339 	if (not_last) {
340 		/* Partly prepare the next one */
341 		struct osd_sg_entry *next_sge = sge + 1;
342 
343 		++per_dev->cur_sg;
344 		next_sge->offset = sge->offset + sge->len + cur_len;
345 		/* Save cur len so we know how mutch was added next time */
346 		per_dev->last_sgs_total = per_dev->length;
347 		next_sge->len = 0;
348 	} else if (!sge->len) {
349 		/* Optimize for when the last unit is a parity */
350 		--per_dev->cur_sg;
351 	}
352 }
353 
_alloc_read_4_write(struct ore_io_state * ios)354 static int _alloc_read_4_write(struct ore_io_state *ios)
355 {
356 	struct ore_layout *layout = ios->layout;
357 	int ret;
358 	/* We want to only read those pages not in cache so worst case
359 	 * is a stripe populated with every other page
360 	 */
361 	unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
362 
363 	ret = _ore_get_io_state(layout, ios->oc,
364 				layout->group_width * layout->mirrors_p1,
365 				sgs_per_dev, 0, &ios->ios_read_4_write);
366 	return ret;
367 }
368 
369 /* @si contains info of the to-be-inserted page. Update of @si should be
370  * maintained by caller. Specificaly si->dev, si->obj_offset, ...
371  */
_add_to_r4w(struct ore_io_state * ios,struct ore_striping_info * si,struct page * page,unsigned pg_len)372 static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
373 		       struct page *page, unsigned pg_len)
374 {
375 	struct request_queue *q;
376 	struct ore_per_dev_state *per_dev;
377 	struct ore_io_state *read_ios;
378 	unsigned first_dev = si->dev - (si->dev %
379 			  (ios->layout->group_width * ios->layout->mirrors_p1));
380 	unsigned comp = si->dev - first_dev;
381 	unsigned added_len;
382 
383 	if (!ios->ios_read_4_write) {
384 		int ret = _alloc_read_4_write(ios);
385 
386 		if (unlikely(ret))
387 			return ret;
388 	}
389 
390 	read_ios = ios->ios_read_4_write;
391 	read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
392 
393 	per_dev = &read_ios->per_dev[comp];
394 	if (!per_dev->length) {
395 		per_dev->bio = bio_kmalloc(GFP_KERNEL,
396 					   ios->sp2d->pages_in_unit);
397 		if (unlikely(!per_dev->bio)) {
398 			ORE_DBGMSG("Failed to allocate BIO size=%u\n",
399 				     ios->sp2d->pages_in_unit);
400 			return -ENOMEM;
401 		}
402 		per_dev->offset = si->obj_offset;
403 		per_dev->dev = si->dev;
404 	} else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
405 		u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
406 
407 		_ore_add_sg_seg(per_dev, gap, true);
408 	}
409 	q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
410 	added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
411 				    si->obj_offset % PAGE_SIZE);
412 	if (unlikely(added_len != pg_len)) {
413 		ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
414 			      per_dev->bio->bi_vcnt);
415 		return -ENOMEM;
416 	}
417 
418 	per_dev->length += pg_len;
419 	return 0;
420 }
421 
422 /* read the beginning of an unaligned first page */
_add_to_r4w_first_page(struct ore_io_state * ios,struct page * page)423 static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
424 {
425 	struct ore_striping_info si;
426 	unsigned pg_len;
427 
428 	ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
429 
430 	pg_len = si.obj_offset % PAGE_SIZE;
431 	si.obj_offset -= pg_len;
432 
433 	ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
434 		   _LLU(si.obj_offset), pg_len, page->index, si.dev);
435 
436 	return _add_to_r4w(ios, &si, page, pg_len);
437 }
438 
439 /* read the end of an incomplete last page */
_add_to_r4w_last_page(struct ore_io_state * ios,u64 * offset)440 static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
441 {
442 	struct ore_striping_info si;
443 	struct page *page;
444 	unsigned pg_len, p, c;
445 
446 	ore_calc_stripe_info(ios->layout, *offset, 0, &si);
447 
448 	p = si.cur_pg;
449 	c = si.cur_comp;
450 	page = ios->sp2d->_1p_stripes[p].pages[c];
451 
452 	pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
453 	*offset += pg_len;
454 
455 	ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
456 		   p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
457 
458 	BUG_ON(!page);
459 
460 	return _add_to_r4w(ios, &si, page, pg_len);
461 }
462 
_mark_read4write_pages_uptodate(struct ore_io_state * ios,int ret)463 static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
464 {
465 	struct bio_vec *bv;
466 	unsigned i, d;
467 
468 	/* loop on all devices all pages */
469 	for (d = 0; d < ios->numdevs; d++) {
470 		struct bio *bio = ios->per_dev[d].bio;
471 
472 		if (!bio)
473 			continue;
474 
475 		bio_for_each_segment_all(bv, bio, i) {
476 			struct page *page = bv->bv_page;
477 
478 			SetPageUptodate(page);
479 			if (PageError(page))
480 				ClearPageError(page);
481 		}
482 	}
483 }
484 
485 /* read_4_write is hacked to read the start of the first stripe and/or
486  * the end of the last stripe. If needed, with an sg-gap at each device/page.
487  * It is assumed to be called after the to_be_written pages of the first stripe
488  * are populating ios->sp2d[][]
489  *
490  * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
491  * These pages are held at sp2d[p].pages[c] but with
492  * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
493  * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
494  * @uptodate=true, so we don't need to read it, only unlock, after IO.
495  *
496  * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
497  * to-be-written count, we should consider the xor-in-place mode.
498  * need_to_read_pages_count is the actual number of pages not present in cache.
499  * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
500  * approximation? In this mode the read pages are put in the empty places of
501  * ios->sp2d[p][*], xor is calculated the same way. These pages are
502  * allocated/freed and don't go through cache
503  */
_read_4_write_first_stripe(struct ore_io_state * ios)504 static int _read_4_write_first_stripe(struct ore_io_state *ios)
505 {
506 	struct ore_striping_info read_si;
507 	struct __stripe_pages_2d *sp2d = ios->sp2d;
508 	u64 offset = ios->si.first_stripe_start;
509 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
510 
511 	if (offset == ios->offset) /* Go to start collect $200 */
512 		goto read_last_stripe;
513 
514 	min_p = _sp2d_min_pg(sp2d);
515 	max_p = _sp2d_max_pg(sp2d);
516 
517 	ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n",
518 		   offset, ios->offset, min_p, max_p);
519 
520 	for (c = 0; ; c++) {
521 		ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
522 		read_si.obj_offset += min_p * PAGE_SIZE;
523 		offset += min_p * PAGE_SIZE;
524 		for (p = min_p; p <= max_p; p++) {
525 			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
526 			struct page **pp = &_1ps->pages[c];
527 			bool uptodate;
528 
529 			if (*pp) {
530 				if (ios->offset % PAGE_SIZE)
531 					/* Read the remainder of the page */
532 					_add_to_r4w_first_page(ios, *pp);
533 				/* to-be-written pages start here */
534 				goto read_last_stripe;
535 			}
536 
537 			*pp = ios->r4w->get_page(ios->private, offset,
538 						 &uptodate);
539 			if (unlikely(!*pp))
540 				return -ENOMEM;
541 
542 			if (!uptodate)
543 				_add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
544 
545 			/* Mark read-pages to be cache_released */
546 			_1ps->page_is_read[c] = true;
547 			read_si.obj_offset += PAGE_SIZE;
548 			offset += PAGE_SIZE;
549 		}
550 		offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
551 	}
552 
553 read_last_stripe:
554 	return 0;
555 }
556 
_read_4_write_last_stripe(struct ore_io_state * ios)557 static int _read_4_write_last_stripe(struct ore_io_state *ios)
558 {
559 	struct ore_striping_info read_si;
560 	struct __stripe_pages_2d *sp2d = ios->sp2d;
561 	u64 offset;
562 	u64 last_stripe_end;
563 	unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
564 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
565 
566 	offset = ios->offset + ios->length;
567 	if (offset % PAGE_SIZE)
568 		_add_to_r4w_last_page(ios, &offset);
569 		/* offset will be aligned to next page */
570 
571 	last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
572 				 * bytes_in_stripe;
573 	if (offset == last_stripe_end) /* Optimize for the aligned case */
574 		goto read_it;
575 
576 	ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
577 	p = read_si.cur_pg;
578 	c = read_si.cur_comp;
579 
580 	if (min_p == sp2d->pages_in_unit) {
581 		/* Didn't do it yet */
582 		min_p = _sp2d_min_pg(sp2d);
583 		max_p = _sp2d_max_pg(sp2d);
584 	}
585 
586 	ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n",
587 		   offset, last_stripe_end, min_p, max_p);
588 
589 	while (offset < last_stripe_end) {
590 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
591 
592 		if ((min_p <= p) && (p <= max_p)) {
593 			struct page *page;
594 			bool uptodate;
595 
596 			BUG_ON(_1ps->pages[c]);
597 			page = ios->r4w->get_page(ios->private, offset,
598 						  &uptodate);
599 			if (unlikely(!page))
600 				return -ENOMEM;
601 
602 			_1ps->pages[c] = page;
603 			/* Mark read-pages to be cache_released */
604 			_1ps->page_is_read[c] = true;
605 			if (!uptodate)
606 				_add_to_r4w(ios, &read_si, page, PAGE_SIZE);
607 		}
608 
609 		offset += PAGE_SIZE;
610 		if (p == (sp2d->pages_in_unit - 1)) {
611 			++c;
612 			p = 0;
613 			ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
614 		} else {
615 			read_si.obj_offset += PAGE_SIZE;
616 			++p;
617 		}
618 	}
619 
620 read_it:
621 	return 0;
622 }
623 
_read_4_write_execute(struct ore_io_state * ios)624 static int _read_4_write_execute(struct ore_io_state *ios)
625 {
626 	struct ore_io_state *ios_read;
627 	unsigned i;
628 	int ret;
629 
630 	ios_read = ios->ios_read_4_write;
631 	if (!ios_read)
632 		return 0;
633 
634 	/* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
635 	 * to check for per_dev->bio
636 	 */
637 	ios_read->pages = ios->pages;
638 
639 	/* Now read these devices */
640 	for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
641 		ret = _ore_read_mirror(ios_read, i);
642 		if (unlikely(ret))
643 			return ret;
644 	}
645 
646 	ret = ore_io_execute(ios_read); /* Synchronus execution */
647 	if (unlikely(ret)) {
648 		ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
649 		return ret;
650 	}
651 
652 	_mark_read4write_pages_uptodate(ios_read, ret);
653 	ore_put_io_state(ios_read);
654 	ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */
655 	return 0;
656 }
657 
658 /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
_ore_add_parity_unit(struct ore_io_state * ios,struct ore_striping_info * si,struct ore_per_dev_state * per_dev,unsigned cur_len,bool do_xor)659 int _ore_add_parity_unit(struct ore_io_state *ios,
660 			    struct ore_striping_info *si,
661 			    struct ore_per_dev_state *per_dev,
662 			    unsigned cur_len, bool do_xor)
663 {
664 	if (ios->reading) {
665 		if (per_dev->cur_sg >= ios->sgs_per_dev) {
666 			ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
667 				per_dev->cur_sg, ios->sgs_per_dev);
668 			return -ENOMEM;
669 		}
670 		_ore_add_sg_seg(per_dev, cur_len, true);
671 	} else {
672 		struct __stripe_pages_2d *sp2d = ios->sp2d;
673 		struct page **pages = ios->parity_pages + ios->cur_par_page;
674 		unsigned num_pages;
675 		unsigned array_start = 0;
676 		unsigned i;
677 		int ret;
678 
679 		si->cur_pg = _sp2d_min_pg(sp2d);
680 		num_pages  = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
681 
682 		if (!per_dev->length) {
683 			per_dev->offset += si->cur_pg * PAGE_SIZE;
684 			/* If first stripe, Read in all read4write pages
685 			 * (if needed) before we calculate the first parity.
686 			 */
687 			if (do_xor)
688 				_read_4_write_first_stripe(ios);
689 		}
690 		if (!cur_len && do_xor)
691 			/* If last stripe r4w pages of last stripe */
692 			_read_4_write_last_stripe(ios);
693 		_read_4_write_execute(ios);
694 
695 		for (i = 0; i < num_pages; i++) {
696 			pages[i] = _raid_page_alloc();
697 			if (unlikely(!pages[i]))
698 				return -ENOMEM;
699 
700 			++(ios->cur_par_page);
701 		}
702 
703 		BUG_ON(si->cur_comp < sp2d->data_devs);
704 		BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
705 
706 		ret = _ore_add_stripe_unit(ios,  &array_start, 0, pages,
707 					   per_dev, num_pages * PAGE_SIZE);
708 		if (unlikely(ret))
709 			return ret;
710 
711 		if (do_xor) {
712 			_gen_xor_unit(sp2d);
713 			_sp2d_reset(sp2d, ios->r4w, ios->private);
714 		}
715 	}
716 	return 0;
717 }
718 
_ore_post_alloc_raid_stuff(struct ore_io_state * ios)719 int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
720 {
721 	if (ios->parity_pages) {
722 		struct ore_layout *layout = ios->layout;
723 		unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
724 
725 		if (_sp2d_alloc(pages_in_unit, layout->group_width,
726 				layout->parity, &ios->sp2d)) {
727 			return -ENOMEM;
728 		}
729 	}
730 	return 0;
731 }
732 
_ore_free_raid_stuff(struct ore_io_state * ios)733 void _ore_free_raid_stuff(struct ore_io_state *ios)
734 {
735 	if (ios->sp2d) { /* writing and raid */
736 		unsigned i;
737 
738 		for (i = 0; i < ios->cur_par_page; i++) {
739 			struct page *page = ios->parity_pages[i];
740 
741 			if (page)
742 				_raid_page_free(page);
743 		}
744 		if (ios->extra_part_alloc)
745 			kfree(ios->parity_pages);
746 		/* If IO returned an error pages might need unlocking */
747 		_sp2d_reset(ios->sp2d, ios->r4w, ios->private);
748 		_sp2d_free(ios->sp2d);
749 	} else {
750 		/* Will only be set if raid reading && sglist is big */
751 		if (ios->extra_part_alloc)
752 			kfree(ios->per_dev[0].sglist);
753 	}
754 	if (ios->ios_read_4_write)
755 		ore_put_io_state(ios->ios_read_4_write);
756 }
757