1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static struct dentry *nt_debugfs_dir;
97 
98 /* Only two-ports NTB devices are supported */
99 #define PIDX		NTB_DEF_PEER_IDX
100 
101 struct ntb_queue_entry {
102 	/* ntb_queue list reference */
103 	struct list_head entry;
104 	/* pointers to data to be transferred */
105 	void *cb_data;
106 	void *buf;
107 	unsigned int len;
108 	unsigned int flags;
109 	int retries;
110 	int errors;
111 	unsigned int tx_index;
112 	unsigned int rx_index;
113 
114 	struct ntb_transport_qp *qp;
115 	union {
116 		struct ntb_payload_header __iomem *tx_hdr;
117 		struct ntb_payload_header *rx_hdr;
118 	};
119 };
120 
121 struct ntb_rx_info {
122 	unsigned int entry;
123 };
124 
125 struct ntb_transport_qp {
126 	struct ntb_transport_ctx *transport;
127 	struct ntb_dev *ndev;
128 	void *cb_data;
129 	struct dma_chan *tx_dma_chan;
130 	struct dma_chan *rx_dma_chan;
131 
132 	bool client_ready;
133 	bool link_is_up;
134 	bool active;
135 
136 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
137 	u64 qp_bit;
138 
139 	struct ntb_rx_info __iomem *rx_info;
140 	struct ntb_rx_info *remote_rx_info;
141 
142 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
143 			   void *data, int len);
144 	struct list_head tx_free_q;
145 	spinlock_t ntb_tx_free_q_lock;
146 	void __iomem *tx_mw;
147 	dma_addr_t tx_mw_phys;
148 	unsigned int tx_index;
149 	unsigned int tx_max_entry;
150 	unsigned int tx_max_frame;
151 
152 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
153 			   void *data, int len);
154 	struct list_head rx_post_q;
155 	struct list_head rx_pend_q;
156 	struct list_head rx_free_q;
157 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
158 	spinlock_t ntb_rx_q_lock;
159 	void *rx_buff;
160 	unsigned int rx_index;
161 	unsigned int rx_max_entry;
162 	unsigned int rx_max_frame;
163 	unsigned int rx_alloc_entry;
164 	dma_cookie_t last_cookie;
165 	struct tasklet_struct rxc_db_work;
166 
167 	void (*event_handler)(void *data, int status);
168 	struct delayed_work link_work;
169 	struct work_struct link_cleanup;
170 
171 	struct dentry *debugfs_dir;
172 	struct dentry *debugfs_stats;
173 
174 	/* Stats */
175 	u64 rx_bytes;
176 	u64 rx_pkts;
177 	u64 rx_ring_empty;
178 	u64 rx_err_no_buf;
179 	u64 rx_err_oflow;
180 	u64 rx_err_ver;
181 	u64 rx_memcpy;
182 	u64 rx_async;
183 	u64 tx_bytes;
184 	u64 tx_pkts;
185 	u64 tx_ring_full;
186 	u64 tx_err_no_buf;
187 	u64 tx_memcpy;
188 	u64 tx_async;
189 };
190 
191 struct ntb_transport_mw {
192 	phys_addr_t phys_addr;
193 	resource_size_t phys_size;
194 	void __iomem *vbase;
195 	size_t xlat_size;
196 	size_t buff_size;
197 	void *virt_addr;
198 	dma_addr_t dma_addr;
199 };
200 
201 struct ntb_transport_client_dev {
202 	struct list_head entry;
203 	struct ntb_transport_ctx *nt;
204 	struct device dev;
205 };
206 
207 struct ntb_transport_ctx {
208 	struct list_head entry;
209 	struct list_head client_devs;
210 
211 	struct ntb_dev *ndev;
212 
213 	struct ntb_transport_mw *mw_vec;
214 	struct ntb_transport_qp *qp_vec;
215 	unsigned int mw_count;
216 	unsigned int qp_count;
217 	u64 qp_bitmap;
218 	u64 qp_bitmap_free;
219 
220 	bool link_is_up;
221 	struct delayed_work link_work;
222 	struct work_struct link_cleanup;
223 
224 	struct dentry *debugfs_node_dir;
225 };
226 
227 enum {
228 	DESC_DONE_FLAG = BIT(0),
229 	LINK_DOWN_FLAG = BIT(1),
230 };
231 
232 struct ntb_payload_header {
233 	unsigned int ver;
234 	unsigned int len;
235 	unsigned int flags;
236 };
237 
238 enum {
239 	VERSION = 0,
240 	QP_LINKS,
241 	NUM_QPS,
242 	NUM_MWS,
243 	MW0_SZ_HIGH,
244 	MW0_SZ_LOW,
245 };
246 
247 #define dev_client_dev(__dev) \
248 	container_of((__dev), struct ntb_transport_client_dev, dev)
249 
250 #define drv_client(__drv) \
251 	container_of((__drv), struct ntb_transport_client, driver)
252 
253 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
254 #define NTB_QP_DEF_NUM_ENTRIES	100
255 #define NTB_LINK_DOWN_TIMEOUT	10
256 
257 static void ntb_transport_rxc_db(unsigned long data);
258 static const struct ntb_ctx_ops ntb_transport_ops;
259 static struct ntb_client ntb_transport_client;
260 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
261 			       struct ntb_queue_entry *entry);
262 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
263 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
264 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
265 
266 
ntb_transport_bus_match(struct device * dev,struct device_driver * drv)267 static int ntb_transport_bus_match(struct device *dev,
268 				   struct device_driver *drv)
269 {
270 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
271 }
272 
ntb_transport_bus_probe(struct device * dev)273 static int ntb_transport_bus_probe(struct device *dev)
274 {
275 	const struct ntb_transport_client *client;
276 	int rc = -EINVAL;
277 
278 	get_device(dev);
279 
280 	client = drv_client(dev->driver);
281 	rc = client->probe(dev);
282 	if (rc)
283 		put_device(dev);
284 
285 	return rc;
286 }
287 
ntb_transport_bus_remove(struct device * dev)288 static int ntb_transport_bus_remove(struct device *dev)
289 {
290 	const struct ntb_transport_client *client;
291 
292 	client = drv_client(dev->driver);
293 	client->remove(dev);
294 
295 	put_device(dev);
296 
297 	return 0;
298 }
299 
300 static struct bus_type ntb_transport_bus = {
301 	.name = "ntb_transport",
302 	.match = ntb_transport_bus_match,
303 	.probe = ntb_transport_bus_probe,
304 	.remove = ntb_transport_bus_remove,
305 };
306 
307 static LIST_HEAD(ntb_transport_list);
308 
ntb_bus_init(struct ntb_transport_ctx * nt)309 static int ntb_bus_init(struct ntb_transport_ctx *nt)
310 {
311 	list_add_tail(&nt->entry, &ntb_transport_list);
312 	return 0;
313 }
314 
ntb_bus_remove(struct ntb_transport_ctx * nt)315 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
316 {
317 	struct ntb_transport_client_dev *client_dev, *cd;
318 
319 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
320 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
321 			dev_name(&client_dev->dev));
322 		list_del(&client_dev->entry);
323 		device_unregister(&client_dev->dev);
324 	}
325 
326 	list_del(&nt->entry);
327 }
328 
ntb_transport_client_release(struct device * dev)329 static void ntb_transport_client_release(struct device *dev)
330 {
331 	struct ntb_transport_client_dev *client_dev;
332 
333 	client_dev = dev_client_dev(dev);
334 	kfree(client_dev);
335 }
336 
337 /**
338  * ntb_transport_unregister_client_dev - Unregister NTB client device
339  * @device_name: Name of NTB client device
340  *
341  * Unregister an NTB client device with the NTB transport layer
342  */
ntb_transport_unregister_client_dev(char * device_name)343 void ntb_transport_unregister_client_dev(char *device_name)
344 {
345 	struct ntb_transport_client_dev *client, *cd;
346 	struct ntb_transport_ctx *nt;
347 
348 	list_for_each_entry(nt, &ntb_transport_list, entry)
349 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
350 			if (!strncmp(dev_name(&client->dev), device_name,
351 				     strlen(device_name))) {
352 				list_del(&client->entry);
353 				device_unregister(&client->dev);
354 			}
355 }
356 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
357 
358 /**
359  * ntb_transport_register_client_dev - Register NTB client device
360  * @device_name: Name of NTB client device
361  *
362  * Register an NTB client device with the NTB transport layer
363  */
ntb_transport_register_client_dev(char * device_name)364 int ntb_transport_register_client_dev(char *device_name)
365 {
366 	struct ntb_transport_client_dev *client_dev;
367 	struct ntb_transport_ctx *nt;
368 	int node;
369 	int rc, i = 0;
370 
371 	if (list_empty(&ntb_transport_list))
372 		return -ENODEV;
373 
374 	list_for_each_entry(nt, &ntb_transport_list, entry) {
375 		struct device *dev;
376 
377 		node = dev_to_node(&nt->ndev->dev);
378 
379 		client_dev = kzalloc_node(sizeof(*client_dev),
380 					  GFP_KERNEL, node);
381 		if (!client_dev) {
382 			rc = -ENOMEM;
383 			goto err;
384 		}
385 
386 		dev = &client_dev->dev;
387 
388 		/* setup and register client devices */
389 		dev_set_name(dev, "%s%d", device_name, i);
390 		dev->bus = &ntb_transport_bus;
391 		dev->release = ntb_transport_client_release;
392 		dev->parent = &nt->ndev->dev;
393 
394 		rc = device_register(dev);
395 		if (rc) {
396 			put_device(dev);
397 			goto err;
398 		}
399 
400 		list_add_tail(&client_dev->entry, &nt->client_devs);
401 		i++;
402 	}
403 
404 	return 0;
405 
406 err:
407 	ntb_transport_unregister_client_dev(device_name);
408 
409 	return rc;
410 }
411 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
412 
413 /**
414  * ntb_transport_register_client - Register NTB client driver
415  * @drv: NTB client driver to be registered
416  *
417  * Register an NTB client driver with the NTB transport layer
418  *
419  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
420  */
ntb_transport_register_client(struct ntb_transport_client * drv)421 int ntb_transport_register_client(struct ntb_transport_client *drv)
422 {
423 	drv->driver.bus = &ntb_transport_bus;
424 
425 	if (list_empty(&ntb_transport_list))
426 		return -ENODEV;
427 
428 	return driver_register(&drv->driver);
429 }
430 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
431 
432 /**
433  * ntb_transport_unregister_client - Unregister NTB client driver
434  * @drv: NTB client driver to be unregistered
435  *
436  * Unregister an NTB client driver with the NTB transport layer
437  *
438  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
439  */
ntb_transport_unregister_client(struct ntb_transport_client * drv)440 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
441 {
442 	driver_unregister(&drv->driver);
443 }
444 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
445 
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)446 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
447 			    loff_t *offp)
448 {
449 	struct ntb_transport_qp *qp;
450 	char *buf;
451 	ssize_t ret, out_offset, out_count;
452 
453 	qp = filp->private_data;
454 
455 	if (!qp || !qp->link_is_up)
456 		return 0;
457 
458 	out_count = 1000;
459 
460 	buf = kmalloc(out_count, GFP_KERNEL);
461 	if (!buf)
462 		return -ENOMEM;
463 
464 	out_offset = 0;
465 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
466 			       "\nNTB QP stats:\n\n");
467 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
471 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
472 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
473 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
474 			       "rx_async - \t%llu\n", qp->rx_async);
475 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
477 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
478 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
479 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
481 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
483 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 			       "rx_buff - \t0x%p\n", qp->rx_buff);
485 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 			       "rx_index - \t%u\n", qp->rx_index);
487 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
489 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
491 
492 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
493 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
494 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
495 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
496 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
497 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
498 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 			       "tx_async - \t%llu\n", qp->tx_async);
500 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
501 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
502 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
503 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
504 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
505 			       "tx_mw - \t0x%p\n", qp->tx_mw);
506 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
507 			       "tx_index (H) - \t%u\n", qp->tx_index);
508 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
509 			       "RRI (T) - \t%u\n",
510 			       qp->remote_rx_info->entry);
511 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
512 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
513 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
514 			       "free tx - \t%u\n",
515 			       ntb_transport_tx_free_entry(qp));
516 
517 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
518 			       "\n");
519 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
520 			       "Using TX DMA - \t%s\n",
521 			       qp->tx_dma_chan ? "Yes" : "No");
522 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
523 			       "Using RX DMA - \t%s\n",
524 			       qp->rx_dma_chan ? "Yes" : "No");
525 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
526 			       "QP Link - \t%s\n",
527 			       qp->link_is_up ? "Up" : "Down");
528 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
529 			       "\n");
530 
531 	if (out_offset > out_count)
532 		out_offset = out_count;
533 
534 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
535 	kfree(buf);
536 	return ret;
537 }
538 
539 static const struct file_operations ntb_qp_debugfs_stats = {
540 	.owner = THIS_MODULE,
541 	.open = simple_open,
542 	.read = debugfs_read,
543 };
544 
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)545 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
546 			 struct list_head *list)
547 {
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(lock, flags);
551 	list_add_tail(entry, list);
552 	spin_unlock_irqrestore(lock, flags);
553 }
554 
ntb_list_rm(spinlock_t * lock,struct list_head * list)555 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
556 					   struct list_head *list)
557 {
558 	struct ntb_queue_entry *entry;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(lock, flags);
562 	if (list_empty(list)) {
563 		entry = NULL;
564 		goto out;
565 	}
566 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
567 	list_del(&entry->entry);
568 
569 out:
570 	spin_unlock_irqrestore(lock, flags);
571 
572 	return entry;
573 }
574 
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)575 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
576 					   struct list_head *list,
577 					   struct list_head *to_list)
578 {
579 	struct ntb_queue_entry *entry;
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(lock, flags);
583 
584 	if (list_empty(list)) {
585 		entry = NULL;
586 	} else {
587 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
588 		list_move_tail(&entry->entry, to_list);
589 	}
590 
591 	spin_unlock_irqrestore(lock, flags);
592 
593 	return entry;
594 }
595 
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)596 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
597 				     unsigned int qp_num)
598 {
599 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
600 	struct ntb_transport_mw *mw;
601 	struct ntb_dev *ndev = nt->ndev;
602 	struct ntb_queue_entry *entry;
603 	unsigned int rx_size, num_qps_mw;
604 	unsigned int mw_num, mw_count, qp_count;
605 	unsigned int i;
606 	int node;
607 
608 	mw_count = nt->mw_count;
609 	qp_count = nt->qp_count;
610 
611 	mw_num = QP_TO_MW(nt, qp_num);
612 	mw = &nt->mw_vec[mw_num];
613 
614 	if (!mw->virt_addr)
615 		return -ENOMEM;
616 
617 	if (mw_num < qp_count % mw_count)
618 		num_qps_mw = qp_count / mw_count + 1;
619 	else
620 		num_qps_mw = qp_count / mw_count;
621 
622 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
623 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
624 	rx_size -= sizeof(struct ntb_rx_info);
625 
626 	qp->remote_rx_info = qp->rx_buff + rx_size;
627 
628 	/* Due to housekeeping, there must be atleast 2 buffs */
629 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
630 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
631 	qp->rx_index = 0;
632 
633 	/*
634 	 * Checking to see if we have more entries than the default.
635 	 * We should add additional entries if that is the case so we
636 	 * can be in sync with the transport frames.
637 	 */
638 	node = dev_to_node(&ndev->dev);
639 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
640 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
641 		if (!entry)
642 			return -ENOMEM;
643 
644 		entry->qp = qp;
645 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
646 			     &qp->rx_free_q);
647 		qp->rx_alloc_entry++;
648 	}
649 
650 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
651 
652 	/* setup the hdr offsets with 0's */
653 	for (i = 0; i < qp->rx_max_entry; i++) {
654 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
655 				sizeof(struct ntb_payload_header));
656 		memset(offset, 0, sizeof(struct ntb_payload_header));
657 	}
658 
659 	qp->rx_pkts = 0;
660 	qp->tx_pkts = 0;
661 	qp->tx_index = 0;
662 
663 	return 0;
664 }
665 
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)666 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
667 {
668 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
669 	struct pci_dev *pdev = nt->ndev->pdev;
670 
671 	if (!mw->virt_addr)
672 		return;
673 
674 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
675 	dma_free_coherent(&pdev->dev, mw->buff_size,
676 			  mw->virt_addr, mw->dma_addr);
677 	mw->xlat_size = 0;
678 	mw->buff_size = 0;
679 	mw->virt_addr = NULL;
680 }
681 
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)682 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
683 		      resource_size_t size)
684 {
685 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
686 	struct pci_dev *pdev = nt->ndev->pdev;
687 	size_t xlat_size, buff_size;
688 	resource_size_t xlat_align;
689 	resource_size_t xlat_align_size;
690 	int rc;
691 
692 	if (!size)
693 		return -EINVAL;
694 
695 	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
696 			      &xlat_align_size, NULL);
697 	if (rc)
698 		return rc;
699 
700 	xlat_size = round_up(size, xlat_align_size);
701 	buff_size = round_up(size, xlat_align);
702 
703 	/* No need to re-setup */
704 	if (mw->xlat_size == xlat_size)
705 		return 0;
706 
707 	if (mw->buff_size)
708 		ntb_free_mw(nt, num_mw);
709 
710 	/* Alloc memory for receiving data.  Must be aligned */
711 	mw->xlat_size = xlat_size;
712 	mw->buff_size = buff_size;
713 
714 	mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
715 					   &mw->dma_addr, GFP_KERNEL);
716 	if (!mw->virt_addr) {
717 		mw->xlat_size = 0;
718 		mw->buff_size = 0;
719 		dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
720 			buff_size);
721 		return -ENOMEM;
722 	}
723 
724 	/*
725 	 * we must ensure that the memory address allocated is BAR size
726 	 * aligned in order for the XLAT register to take the value. This
727 	 * is a requirement of the hardware. It is recommended to setup CMA
728 	 * for BAR sizes equal or greater than 4MB.
729 	 */
730 	if (!IS_ALIGNED(mw->dma_addr, xlat_align)) {
731 		dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
732 			&mw->dma_addr);
733 		ntb_free_mw(nt, num_mw);
734 		return -ENOMEM;
735 	}
736 
737 	/* Notify HW the memory location of the receive buffer */
738 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
739 			      mw->xlat_size);
740 	if (rc) {
741 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
742 		ntb_free_mw(nt, num_mw);
743 		return -EIO;
744 	}
745 
746 	return 0;
747 }
748 
ntb_qp_link_context_reset(struct ntb_transport_qp * qp)749 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
750 {
751 	qp->link_is_up = false;
752 	qp->active = false;
753 
754 	qp->tx_index = 0;
755 	qp->rx_index = 0;
756 	qp->rx_bytes = 0;
757 	qp->rx_pkts = 0;
758 	qp->rx_ring_empty = 0;
759 	qp->rx_err_no_buf = 0;
760 	qp->rx_err_oflow = 0;
761 	qp->rx_err_ver = 0;
762 	qp->rx_memcpy = 0;
763 	qp->rx_async = 0;
764 	qp->tx_bytes = 0;
765 	qp->tx_pkts = 0;
766 	qp->tx_ring_full = 0;
767 	qp->tx_err_no_buf = 0;
768 	qp->tx_memcpy = 0;
769 	qp->tx_async = 0;
770 }
771 
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)772 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
773 {
774 	ntb_qp_link_context_reset(qp);
775 	if (qp->remote_rx_info)
776 		qp->remote_rx_info->entry = qp->rx_max_entry - 1;
777 }
778 
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)779 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
780 {
781 	struct ntb_transport_ctx *nt = qp->transport;
782 	struct pci_dev *pdev = nt->ndev->pdev;
783 
784 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
785 
786 	cancel_delayed_work_sync(&qp->link_work);
787 	ntb_qp_link_down_reset(qp);
788 
789 	if (qp->event_handler)
790 		qp->event_handler(qp->cb_data, qp->link_is_up);
791 }
792 
ntb_qp_link_cleanup_work(struct work_struct * work)793 static void ntb_qp_link_cleanup_work(struct work_struct *work)
794 {
795 	struct ntb_transport_qp *qp = container_of(work,
796 						   struct ntb_transport_qp,
797 						   link_cleanup);
798 	struct ntb_transport_ctx *nt = qp->transport;
799 
800 	ntb_qp_link_cleanup(qp);
801 
802 	if (nt->link_is_up)
803 		schedule_delayed_work(&qp->link_work,
804 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
805 }
806 
ntb_qp_link_down(struct ntb_transport_qp * qp)807 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
808 {
809 	schedule_work(&qp->link_cleanup);
810 }
811 
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)812 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
813 {
814 	struct ntb_transport_qp *qp;
815 	u64 qp_bitmap_alloc;
816 	unsigned int i, count;
817 
818 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
819 
820 	/* Pass along the info to any clients */
821 	for (i = 0; i < nt->qp_count; i++)
822 		if (qp_bitmap_alloc & BIT_ULL(i)) {
823 			qp = &nt->qp_vec[i];
824 			ntb_qp_link_cleanup(qp);
825 			cancel_work_sync(&qp->link_cleanup);
826 			cancel_delayed_work_sync(&qp->link_work);
827 		}
828 
829 	if (!nt->link_is_up)
830 		cancel_delayed_work_sync(&nt->link_work);
831 
832 	/* The scratchpad registers keep the values if the remote side
833 	 * goes down, blast them now to give them a sane value the next
834 	 * time they are accessed
835 	 */
836 	count = ntb_spad_count(nt->ndev);
837 	for (i = 0; i < count; i++)
838 		ntb_spad_write(nt->ndev, i, 0);
839 }
840 
ntb_transport_link_cleanup_work(struct work_struct * work)841 static void ntb_transport_link_cleanup_work(struct work_struct *work)
842 {
843 	struct ntb_transport_ctx *nt =
844 		container_of(work, struct ntb_transport_ctx, link_cleanup);
845 
846 	ntb_transport_link_cleanup(nt);
847 }
848 
ntb_transport_event_callback(void * data)849 static void ntb_transport_event_callback(void *data)
850 {
851 	struct ntb_transport_ctx *nt = data;
852 
853 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
854 		schedule_delayed_work(&nt->link_work, 0);
855 	else
856 		schedule_work(&nt->link_cleanup);
857 }
858 
ntb_transport_link_work(struct work_struct * work)859 static void ntb_transport_link_work(struct work_struct *work)
860 {
861 	struct ntb_transport_ctx *nt =
862 		container_of(work, struct ntb_transport_ctx, link_work.work);
863 	struct ntb_dev *ndev = nt->ndev;
864 	struct pci_dev *pdev = ndev->pdev;
865 	resource_size_t size;
866 	u32 val;
867 	int rc = 0, i, spad;
868 
869 	/* send the local info, in the opposite order of the way we read it */
870 	for (i = 0; i < nt->mw_count; i++) {
871 		size = nt->mw_vec[i].phys_size;
872 
873 		if (max_mw_size && size > max_mw_size)
874 			size = max_mw_size;
875 
876 		spad = MW0_SZ_HIGH + (i * 2);
877 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
878 
879 		spad = MW0_SZ_LOW + (i * 2);
880 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
881 	}
882 
883 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
884 
885 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
886 
887 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
888 
889 	/* Query the remote side for its info */
890 	val = ntb_spad_read(ndev, VERSION);
891 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
892 	if (val != NTB_TRANSPORT_VERSION)
893 		goto out;
894 
895 	val = ntb_spad_read(ndev, NUM_QPS);
896 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
897 	if (val != nt->qp_count)
898 		goto out;
899 
900 	val = ntb_spad_read(ndev, NUM_MWS);
901 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
902 	if (val != nt->mw_count)
903 		goto out;
904 
905 	for (i = 0; i < nt->mw_count; i++) {
906 		u64 val64;
907 
908 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
909 		val64 = (u64)val << 32;
910 
911 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
912 		val64 |= val;
913 
914 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
915 
916 		rc = ntb_set_mw(nt, i, val64);
917 		if (rc)
918 			goto out1;
919 	}
920 
921 	nt->link_is_up = true;
922 
923 	for (i = 0; i < nt->qp_count; i++) {
924 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
925 
926 		ntb_transport_setup_qp_mw(nt, i);
927 
928 		if (qp->client_ready)
929 			schedule_delayed_work(&qp->link_work, 0);
930 	}
931 
932 	return;
933 
934 out1:
935 	for (i = 0; i < nt->mw_count; i++)
936 		ntb_free_mw(nt, i);
937 
938 	/* if there's an actual failure, we should just bail */
939 	if (rc < 0)
940 		return;
941 
942 out:
943 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
944 		schedule_delayed_work(&nt->link_work,
945 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
946 }
947 
ntb_qp_link_work(struct work_struct * work)948 static void ntb_qp_link_work(struct work_struct *work)
949 {
950 	struct ntb_transport_qp *qp = container_of(work,
951 						   struct ntb_transport_qp,
952 						   link_work.work);
953 	struct pci_dev *pdev = qp->ndev->pdev;
954 	struct ntb_transport_ctx *nt = qp->transport;
955 	int val;
956 
957 	WARN_ON(!nt->link_is_up);
958 
959 	val = ntb_spad_read(nt->ndev, QP_LINKS);
960 
961 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
962 
963 	/* query remote spad for qp ready bits */
964 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
965 
966 	/* See if the remote side is up */
967 	if (val & BIT(qp->qp_num)) {
968 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
969 		qp->link_is_up = true;
970 		qp->active = true;
971 
972 		if (qp->event_handler)
973 			qp->event_handler(qp->cb_data, qp->link_is_up);
974 
975 		if (qp->active)
976 			tasklet_schedule(&qp->rxc_db_work);
977 	} else if (nt->link_is_up)
978 		schedule_delayed_work(&qp->link_work,
979 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
980 }
981 
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)982 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
983 				    unsigned int qp_num)
984 {
985 	struct ntb_transport_qp *qp;
986 	phys_addr_t mw_base;
987 	resource_size_t mw_size;
988 	unsigned int num_qps_mw, tx_size;
989 	unsigned int mw_num, mw_count, qp_count;
990 	u64 qp_offset;
991 
992 	mw_count = nt->mw_count;
993 	qp_count = nt->qp_count;
994 
995 	mw_num = QP_TO_MW(nt, qp_num);
996 
997 	qp = &nt->qp_vec[qp_num];
998 	qp->qp_num = qp_num;
999 	qp->transport = nt;
1000 	qp->ndev = nt->ndev;
1001 	qp->client_ready = false;
1002 	qp->event_handler = NULL;
1003 	ntb_qp_link_context_reset(qp);
1004 
1005 	if (mw_num < qp_count % mw_count)
1006 		num_qps_mw = qp_count / mw_count + 1;
1007 	else
1008 		num_qps_mw = qp_count / mw_count;
1009 
1010 	mw_base = nt->mw_vec[mw_num].phys_addr;
1011 	mw_size = nt->mw_vec[mw_num].phys_size;
1012 
1013 	if (max_mw_size && mw_size > max_mw_size)
1014 		mw_size = max_mw_size;
1015 
1016 	tx_size = (unsigned int)mw_size / num_qps_mw;
1017 	qp_offset = tx_size * (qp_num / mw_count);
1018 
1019 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1020 	if (!qp->tx_mw)
1021 		return -EINVAL;
1022 
1023 	qp->tx_mw_phys = mw_base + qp_offset;
1024 	if (!qp->tx_mw_phys)
1025 		return -EINVAL;
1026 
1027 	tx_size -= sizeof(struct ntb_rx_info);
1028 	qp->rx_info = qp->tx_mw + tx_size;
1029 
1030 	/* Due to housekeeping, there must be atleast 2 buffs */
1031 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1032 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1033 
1034 	if (nt->debugfs_node_dir) {
1035 		char debugfs_name[4];
1036 
1037 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1038 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1039 						     nt->debugfs_node_dir);
1040 
1041 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1042 							qp->debugfs_dir, qp,
1043 							&ntb_qp_debugfs_stats);
1044 	} else {
1045 		qp->debugfs_dir = NULL;
1046 		qp->debugfs_stats = NULL;
1047 	}
1048 
1049 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1050 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1051 
1052 	spin_lock_init(&qp->ntb_rx_q_lock);
1053 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1054 
1055 	INIT_LIST_HEAD(&qp->rx_post_q);
1056 	INIT_LIST_HEAD(&qp->rx_pend_q);
1057 	INIT_LIST_HEAD(&qp->rx_free_q);
1058 	INIT_LIST_HEAD(&qp->tx_free_q);
1059 
1060 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1061 		     (unsigned long)qp);
1062 
1063 	return 0;
1064 }
1065 
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1066 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1067 {
1068 	struct ntb_transport_ctx *nt;
1069 	struct ntb_transport_mw *mw;
1070 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1071 	u64 qp_bitmap;
1072 	int node;
1073 	int rc, i;
1074 
1075 	mw_count = ntb_peer_mw_count(ndev);
1076 
1077 	if (!ndev->ops->mw_set_trans) {
1078 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1079 		return -EINVAL;
1080 	}
1081 
1082 	if (ntb_db_is_unsafe(ndev))
1083 		dev_dbg(&ndev->dev,
1084 			"doorbell is unsafe, proceed anyway...\n");
1085 	if (ntb_spad_is_unsafe(ndev))
1086 		dev_dbg(&ndev->dev,
1087 			"scratchpad is unsafe, proceed anyway...\n");
1088 
1089 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1090 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1091 
1092 	node = dev_to_node(&ndev->dev);
1093 
1094 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1095 	if (!nt)
1096 		return -ENOMEM;
1097 
1098 	nt->ndev = ndev;
1099 	spad_count = ntb_spad_count(ndev);
1100 
1101 	/* Limit the MW's based on the availability of scratchpads */
1102 
1103 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1104 		nt->mw_count = 0;
1105 		rc = -EINVAL;
1106 		goto err;
1107 	}
1108 
1109 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1110 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1111 
1112 	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1113 				  GFP_KERNEL, node);
1114 	if (!nt->mw_vec) {
1115 		rc = -ENOMEM;
1116 		goto err;
1117 	}
1118 
1119 	for (i = 0; i < mw_count; i++) {
1120 		mw = &nt->mw_vec[i];
1121 
1122 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1123 					  &mw->phys_size);
1124 		if (rc)
1125 			goto err1;
1126 
1127 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1128 		if (!mw->vbase) {
1129 			rc = -ENOMEM;
1130 			goto err1;
1131 		}
1132 
1133 		mw->buff_size = 0;
1134 		mw->xlat_size = 0;
1135 		mw->virt_addr = NULL;
1136 		mw->dma_addr = 0;
1137 	}
1138 
1139 	qp_bitmap = ntb_db_valid_mask(ndev);
1140 
1141 	qp_count = ilog2(qp_bitmap);
1142 	if (max_num_clients && max_num_clients < qp_count)
1143 		qp_count = max_num_clients;
1144 	else if (nt->mw_count < qp_count)
1145 		qp_count = nt->mw_count;
1146 
1147 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1148 
1149 	nt->qp_count = qp_count;
1150 	nt->qp_bitmap = qp_bitmap;
1151 	nt->qp_bitmap_free = qp_bitmap;
1152 
1153 	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1154 				  GFP_KERNEL, node);
1155 	if (!nt->qp_vec) {
1156 		rc = -ENOMEM;
1157 		goto err1;
1158 	}
1159 
1160 	if (nt_debugfs_dir) {
1161 		nt->debugfs_node_dir =
1162 			debugfs_create_dir(pci_name(ndev->pdev),
1163 					   nt_debugfs_dir);
1164 	}
1165 
1166 	for (i = 0; i < qp_count; i++) {
1167 		rc = ntb_transport_init_queue(nt, i);
1168 		if (rc)
1169 			goto err2;
1170 	}
1171 
1172 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1173 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1174 
1175 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1176 	if (rc)
1177 		goto err2;
1178 
1179 	INIT_LIST_HEAD(&nt->client_devs);
1180 	rc = ntb_bus_init(nt);
1181 	if (rc)
1182 		goto err3;
1183 
1184 	nt->link_is_up = false;
1185 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1186 	ntb_link_event(ndev);
1187 
1188 	return 0;
1189 
1190 err3:
1191 	ntb_clear_ctx(ndev);
1192 err2:
1193 	kfree(nt->qp_vec);
1194 err1:
1195 	while (i--) {
1196 		mw = &nt->mw_vec[i];
1197 		iounmap(mw->vbase);
1198 	}
1199 	kfree(nt->mw_vec);
1200 err:
1201 	kfree(nt);
1202 	return rc;
1203 }
1204 
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1205 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1206 {
1207 	struct ntb_transport_ctx *nt = ndev->ctx;
1208 	struct ntb_transport_qp *qp;
1209 	u64 qp_bitmap_alloc;
1210 	int i;
1211 
1212 	ntb_transport_link_cleanup(nt);
1213 	cancel_work_sync(&nt->link_cleanup);
1214 	cancel_delayed_work_sync(&nt->link_work);
1215 
1216 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1217 
1218 	/* verify that all the qp's are freed */
1219 	for (i = 0; i < nt->qp_count; i++) {
1220 		qp = &nt->qp_vec[i];
1221 		if (qp_bitmap_alloc & BIT_ULL(i))
1222 			ntb_transport_free_queue(qp);
1223 		debugfs_remove_recursive(qp->debugfs_dir);
1224 	}
1225 
1226 	ntb_link_disable(ndev);
1227 	ntb_clear_ctx(ndev);
1228 
1229 	ntb_bus_remove(nt);
1230 
1231 	for (i = nt->mw_count; i--; ) {
1232 		ntb_free_mw(nt, i);
1233 		iounmap(nt->mw_vec[i].vbase);
1234 	}
1235 
1236 	kfree(nt->qp_vec);
1237 	kfree(nt->mw_vec);
1238 	kfree(nt);
1239 }
1240 
ntb_complete_rxc(struct ntb_transport_qp * qp)1241 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1242 {
1243 	struct ntb_queue_entry *entry;
1244 	void *cb_data;
1245 	unsigned int len;
1246 	unsigned long irqflags;
1247 
1248 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1249 
1250 	while (!list_empty(&qp->rx_post_q)) {
1251 		entry = list_first_entry(&qp->rx_post_q,
1252 					 struct ntb_queue_entry, entry);
1253 		if (!(entry->flags & DESC_DONE_FLAG))
1254 			break;
1255 
1256 		entry->rx_hdr->flags = 0;
1257 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1258 
1259 		cb_data = entry->cb_data;
1260 		len = entry->len;
1261 
1262 		list_move_tail(&entry->entry, &qp->rx_free_q);
1263 
1264 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1265 
1266 		if (qp->rx_handler && qp->client_ready)
1267 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1268 
1269 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1270 	}
1271 
1272 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1273 }
1274 
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1275 static void ntb_rx_copy_callback(void *data,
1276 				 const struct dmaengine_result *res)
1277 {
1278 	struct ntb_queue_entry *entry = data;
1279 
1280 	/* we need to check DMA results if we are using DMA */
1281 	if (res) {
1282 		enum dmaengine_tx_result dma_err = res->result;
1283 
1284 		switch (dma_err) {
1285 		case DMA_TRANS_READ_FAILED:
1286 		case DMA_TRANS_WRITE_FAILED:
1287 			entry->errors++;
1288 		case DMA_TRANS_ABORTED:
1289 		{
1290 			struct ntb_transport_qp *qp = entry->qp;
1291 			void *offset = qp->rx_buff + qp->rx_max_frame *
1292 					qp->rx_index;
1293 
1294 			ntb_memcpy_rx(entry, offset);
1295 			qp->rx_memcpy++;
1296 			return;
1297 		}
1298 
1299 		case DMA_TRANS_NOERROR:
1300 		default:
1301 			break;
1302 		}
1303 	}
1304 
1305 	entry->flags |= DESC_DONE_FLAG;
1306 
1307 	ntb_complete_rxc(entry->qp);
1308 }
1309 
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1310 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1311 {
1312 	void *buf = entry->buf;
1313 	size_t len = entry->len;
1314 
1315 	memcpy(buf, offset, len);
1316 
1317 	/* Ensure that the data is fully copied out before clearing the flag */
1318 	wmb();
1319 
1320 	ntb_rx_copy_callback(entry, NULL);
1321 }
1322 
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1323 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1324 {
1325 	struct dma_async_tx_descriptor *txd;
1326 	struct ntb_transport_qp *qp = entry->qp;
1327 	struct dma_chan *chan = qp->rx_dma_chan;
1328 	struct dma_device *device;
1329 	size_t pay_off, buff_off, len;
1330 	struct dmaengine_unmap_data *unmap;
1331 	dma_cookie_t cookie;
1332 	void *buf = entry->buf;
1333 
1334 	len = entry->len;
1335 	device = chan->device;
1336 	pay_off = (size_t)offset & ~PAGE_MASK;
1337 	buff_off = (size_t)buf & ~PAGE_MASK;
1338 
1339 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1340 		goto err;
1341 
1342 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1343 	if (!unmap)
1344 		goto err;
1345 
1346 	unmap->len = len;
1347 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1348 				      pay_off, len, DMA_TO_DEVICE);
1349 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1350 		goto err_get_unmap;
1351 
1352 	unmap->to_cnt = 1;
1353 
1354 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1355 				      buff_off, len, DMA_FROM_DEVICE);
1356 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1357 		goto err_get_unmap;
1358 
1359 	unmap->from_cnt = 1;
1360 
1361 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1362 					     unmap->addr[0], len,
1363 					     DMA_PREP_INTERRUPT);
1364 	if (!txd)
1365 		goto err_get_unmap;
1366 
1367 	txd->callback_result = ntb_rx_copy_callback;
1368 	txd->callback_param = entry;
1369 	dma_set_unmap(txd, unmap);
1370 
1371 	cookie = dmaengine_submit(txd);
1372 	if (dma_submit_error(cookie))
1373 		goto err_set_unmap;
1374 
1375 	dmaengine_unmap_put(unmap);
1376 
1377 	qp->last_cookie = cookie;
1378 
1379 	qp->rx_async++;
1380 
1381 	return 0;
1382 
1383 err_set_unmap:
1384 	dmaengine_unmap_put(unmap);
1385 err_get_unmap:
1386 	dmaengine_unmap_put(unmap);
1387 err:
1388 	return -ENXIO;
1389 }
1390 
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1391 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1392 {
1393 	struct ntb_transport_qp *qp = entry->qp;
1394 	struct dma_chan *chan = qp->rx_dma_chan;
1395 	int res;
1396 
1397 	if (!chan)
1398 		goto err;
1399 
1400 	if (entry->len < copy_bytes)
1401 		goto err;
1402 
1403 	res = ntb_async_rx_submit(entry, offset);
1404 	if (res < 0)
1405 		goto err;
1406 
1407 	if (!entry->retries)
1408 		qp->rx_async++;
1409 
1410 	return;
1411 
1412 err:
1413 	ntb_memcpy_rx(entry, offset);
1414 	qp->rx_memcpy++;
1415 }
1416 
ntb_process_rxc(struct ntb_transport_qp * qp)1417 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1418 {
1419 	struct ntb_payload_header *hdr;
1420 	struct ntb_queue_entry *entry;
1421 	void *offset;
1422 
1423 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1424 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1425 
1426 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1427 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1428 
1429 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1430 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1431 		qp->rx_ring_empty++;
1432 		return -EAGAIN;
1433 	}
1434 
1435 	if (hdr->flags & LINK_DOWN_FLAG) {
1436 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1437 		ntb_qp_link_down(qp);
1438 		hdr->flags = 0;
1439 		return -EAGAIN;
1440 	}
1441 
1442 	if (hdr->ver != (u32)qp->rx_pkts) {
1443 		dev_dbg(&qp->ndev->pdev->dev,
1444 			"version mismatch, expected %llu - got %u\n",
1445 			qp->rx_pkts, hdr->ver);
1446 		qp->rx_err_ver++;
1447 		return -EIO;
1448 	}
1449 
1450 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1451 	if (!entry) {
1452 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1453 		qp->rx_err_no_buf++;
1454 		return -EAGAIN;
1455 	}
1456 
1457 	entry->rx_hdr = hdr;
1458 	entry->rx_index = qp->rx_index;
1459 
1460 	if (hdr->len > entry->len) {
1461 		dev_dbg(&qp->ndev->pdev->dev,
1462 			"receive buffer overflow! Wanted %d got %d\n",
1463 			hdr->len, entry->len);
1464 		qp->rx_err_oflow++;
1465 
1466 		entry->len = -EIO;
1467 		entry->flags |= DESC_DONE_FLAG;
1468 
1469 		ntb_complete_rxc(qp);
1470 	} else {
1471 		dev_dbg(&qp->ndev->pdev->dev,
1472 			"RX OK index %u ver %u size %d into buf size %d\n",
1473 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1474 
1475 		qp->rx_bytes += hdr->len;
1476 		qp->rx_pkts++;
1477 
1478 		entry->len = hdr->len;
1479 
1480 		ntb_async_rx(entry, offset);
1481 	}
1482 
1483 	qp->rx_index++;
1484 	qp->rx_index %= qp->rx_max_entry;
1485 
1486 	return 0;
1487 }
1488 
ntb_transport_rxc_db(unsigned long data)1489 static void ntb_transport_rxc_db(unsigned long data)
1490 {
1491 	struct ntb_transport_qp *qp = (void *)data;
1492 	int rc, i;
1493 
1494 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1495 		__func__, qp->qp_num);
1496 
1497 	/* Limit the number of packets processed in a single interrupt to
1498 	 * provide fairness to others
1499 	 */
1500 	for (i = 0; i < qp->rx_max_entry; i++) {
1501 		rc = ntb_process_rxc(qp);
1502 		if (rc)
1503 			break;
1504 	}
1505 
1506 	if (i && qp->rx_dma_chan)
1507 		dma_async_issue_pending(qp->rx_dma_chan);
1508 
1509 	if (i == qp->rx_max_entry) {
1510 		/* there is more work to do */
1511 		if (qp->active)
1512 			tasklet_schedule(&qp->rxc_db_work);
1513 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1514 		/* the doorbell bit is set: clear it */
1515 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1516 		/* ntb_db_read ensures ntb_db_clear write is committed */
1517 		ntb_db_read(qp->ndev);
1518 
1519 		/* an interrupt may have arrived between finishing
1520 		 * ntb_process_rxc and clearing the doorbell bit:
1521 		 * there might be some more work to do.
1522 		 */
1523 		if (qp->active)
1524 			tasklet_schedule(&qp->rxc_db_work);
1525 	}
1526 }
1527 
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1528 static void ntb_tx_copy_callback(void *data,
1529 				 const struct dmaengine_result *res)
1530 {
1531 	struct ntb_queue_entry *entry = data;
1532 	struct ntb_transport_qp *qp = entry->qp;
1533 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1534 
1535 	/* we need to check DMA results if we are using DMA */
1536 	if (res) {
1537 		enum dmaengine_tx_result dma_err = res->result;
1538 
1539 		switch (dma_err) {
1540 		case DMA_TRANS_READ_FAILED:
1541 		case DMA_TRANS_WRITE_FAILED:
1542 			entry->errors++;
1543 		case DMA_TRANS_ABORTED:
1544 		{
1545 			void __iomem *offset =
1546 				qp->tx_mw + qp->tx_max_frame *
1547 				entry->tx_index;
1548 
1549 			/* resubmit via CPU */
1550 			ntb_memcpy_tx(entry, offset);
1551 			qp->tx_memcpy++;
1552 			return;
1553 		}
1554 
1555 		case DMA_TRANS_NOERROR:
1556 		default:
1557 			break;
1558 		}
1559 	}
1560 
1561 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1562 
1563 	ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1564 
1565 	/* The entry length can only be zero if the packet is intended to be a
1566 	 * "link down" or similar.  Since no payload is being sent in these
1567 	 * cases, there is nothing to add to the completion queue.
1568 	 */
1569 	if (entry->len > 0) {
1570 		qp->tx_bytes += entry->len;
1571 
1572 		if (qp->tx_handler)
1573 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1574 				       entry->len);
1575 	}
1576 
1577 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1578 }
1579 
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1580 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1581 {
1582 #ifdef ARCH_HAS_NOCACHE_UACCESS
1583 	/*
1584 	 * Using non-temporal mov to improve performance on non-cached
1585 	 * writes, even though we aren't actually copying from user space.
1586 	 */
1587 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1588 #else
1589 	memcpy_toio(offset, entry->buf, entry->len);
1590 #endif
1591 
1592 	/* Ensure that the data is fully copied out before setting the flags */
1593 	wmb();
1594 
1595 	ntb_tx_copy_callback(entry, NULL);
1596 }
1597 
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1598 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1599 			       struct ntb_queue_entry *entry)
1600 {
1601 	struct dma_async_tx_descriptor *txd;
1602 	struct dma_chan *chan = qp->tx_dma_chan;
1603 	struct dma_device *device;
1604 	size_t len = entry->len;
1605 	void *buf = entry->buf;
1606 	size_t dest_off, buff_off;
1607 	struct dmaengine_unmap_data *unmap;
1608 	dma_addr_t dest;
1609 	dma_cookie_t cookie;
1610 
1611 	device = chan->device;
1612 	dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1613 	buff_off = (size_t)buf & ~PAGE_MASK;
1614 	dest_off = (size_t)dest & ~PAGE_MASK;
1615 
1616 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1617 		goto err;
1618 
1619 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1620 	if (!unmap)
1621 		goto err;
1622 
1623 	unmap->len = len;
1624 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1625 				      buff_off, len, DMA_TO_DEVICE);
1626 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1627 		goto err_get_unmap;
1628 
1629 	unmap->to_cnt = 1;
1630 
1631 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1632 					     DMA_PREP_INTERRUPT);
1633 	if (!txd)
1634 		goto err_get_unmap;
1635 
1636 	txd->callback_result = ntb_tx_copy_callback;
1637 	txd->callback_param = entry;
1638 	dma_set_unmap(txd, unmap);
1639 
1640 	cookie = dmaengine_submit(txd);
1641 	if (dma_submit_error(cookie))
1642 		goto err_set_unmap;
1643 
1644 	dmaengine_unmap_put(unmap);
1645 
1646 	dma_async_issue_pending(chan);
1647 
1648 	return 0;
1649 err_set_unmap:
1650 	dmaengine_unmap_put(unmap);
1651 err_get_unmap:
1652 	dmaengine_unmap_put(unmap);
1653 err:
1654 	return -ENXIO;
1655 }
1656 
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1657 static void ntb_async_tx(struct ntb_transport_qp *qp,
1658 			 struct ntb_queue_entry *entry)
1659 {
1660 	struct ntb_payload_header __iomem *hdr;
1661 	struct dma_chan *chan = qp->tx_dma_chan;
1662 	void __iomem *offset;
1663 	int res;
1664 
1665 	entry->tx_index = qp->tx_index;
1666 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1667 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1668 	entry->tx_hdr = hdr;
1669 
1670 	iowrite32(entry->len, &hdr->len);
1671 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1672 
1673 	if (!chan)
1674 		goto err;
1675 
1676 	if (entry->len < copy_bytes)
1677 		goto err;
1678 
1679 	res = ntb_async_tx_submit(qp, entry);
1680 	if (res < 0)
1681 		goto err;
1682 
1683 	if (!entry->retries)
1684 		qp->tx_async++;
1685 
1686 	return;
1687 
1688 err:
1689 	ntb_memcpy_tx(entry, offset);
1690 	qp->tx_memcpy++;
1691 }
1692 
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1693 static int ntb_process_tx(struct ntb_transport_qp *qp,
1694 			  struct ntb_queue_entry *entry)
1695 {
1696 	if (qp->tx_index == qp->remote_rx_info->entry) {
1697 		qp->tx_ring_full++;
1698 		return -EAGAIN;
1699 	}
1700 
1701 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1702 		if (qp->tx_handler)
1703 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1704 
1705 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1706 			     &qp->tx_free_q);
1707 		return 0;
1708 	}
1709 
1710 	ntb_async_tx(qp, entry);
1711 
1712 	qp->tx_index++;
1713 	qp->tx_index %= qp->tx_max_entry;
1714 
1715 	qp->tx_pkts++;
1716 
1717 	return 0;
1718 }
1719 
ntb_send_link_down(struct ntb_transport_qp * qp)1720 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1721 {
1722 	struct pci_dev *pdev = qp->ndev->pdev;
1723 	struct ntb_queue_entry *entry;
1724 	int i, rc;
1725 
1726 	if (!qp->link_is_up)
1727 		return;
1728 
1729 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1730 
1731 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1732 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1733 		if (entry)
1734 			break;
1735 		msleep(100);
1736 	}
1737 
1738 	if (!entry)
1739 		return;
1740 
1741 	entry->cb_data = NULL;
1742 	entry->buf = NULL;
1743 	entry->len = 0;
1744 	entry->flags = LINK_DOWN_FLAG;
1745 
1746 	rc = ntb_process_tx(qp, entry);
1747 	if (rc)
1748 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1749 			qp->qp_num);
1750 
1751 	ntb_qp_link_down_reset(qp);
1752 }
1753 
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1754 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1755 {
1756 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1757 }
1758 
1759 /**
1760  * ntb_transport_create_queue - Create a new NTB transport layer queue
1761  * @rx_handler: receive callback function
1762  * @tx_handler: transmit callback function
1763  * @event_handler: event callback function
1764  *
1765  * Create a new NTB transport layer queue and provide the queue with a callback
1766  * routine for both transmit and receive.  The receive callback routine will be
1767  * used to pass up data when the transport has received it on the queue.   The
1768  * transmit callback routine will be called when the transport has completed the
1769  * transmission of the data on the queue and the data is ready to be freed.
1770  *
1771  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1772  */
1773 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)1774 ntb_transport_create_queue(void *data, struct device *client_dev,
1775 			   const struct ntb_queue_handlers *handlers)
1776 {
1777 	struct ntb_dev *ndev;
1778 	struct pci_dev *pdev;
1779 	struct ntb_transport_ctx *nt;
1780 	struct ntb_queue_entry *entry;
1781 	struct ntb_transport_qp *qp;
1782 	u64 qp_bit;
1783 	unsigned int free_queue;
1784 	dma_cap_mask_t dma_mask;
1785 	int node;
1786 	int i;
1787 
1788 	ndev = dev_ntb(client_dev->parent);
1789 	pdev = ndev->pdev;
1790 	nt = ndev->ctx;
1791 
1792 	node = dev_to_node(&ndev->dev);
1793 
1794 	free_queue = ffs(nt->qp_bitmap_free);
1795 	if (!free_queue)
1796 		goto err;
1797 
1798 	/* decrement free_queue to make it zero based */
1799 	free_queue--;
1800 
1801 	qp = &nt->qp_vec[free_queue];
1802 	qp_bit = BIT_ULL(qp->qp_num);
1803 
1804 	nt->qp_bitmap_free &= ~qp_bit;
1805 
1806 	qp->cb_data = data;
1807 	qp->rx_handler = handlers->rx_handler;
1808 	qp->tx_handler = handlers->tx_handler;
1809 	qp->event_handler = handlers->event_handler;
1810 
1811 	dma_cap_zero(dma_mask);
1812 	dma_cap_set(DMA_MEMCPY, dma_mask);
1813 
1814 	if (use_dma) {
1815 		qp->tx_dma_chan =
1816 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1817 					    (void *)(unsigned long)node);
1818 		if (!qp->tx_dma_chan)
1819 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1820 
1821 		qp->rx_dma_chan =
1822 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
1823 					    (void *)(unsigned long)node);
1824 		if (!qp->rx_dma_chan)
1825 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1826 	} else {
1827 		qp->tx_dma_chan = NULL;
1828 		qp->rx_dma_chan = NULL;
1829 	}
1830 
1831 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1832 		qp->tx_dma_chan ? "DMA" : "CPU");
1833 
1834 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1835 		qp->rx_dma_chan ? "DMA" : "CPU");
1836 
1837 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1838 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
1839 		if (!entry)
1840 			goto err1;
1841 
1842 		entry->qp = qp;
1843 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1844 			     &qp->rx_free_q);
1845 	}
1846 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1847 
1848 	for (i = 0; i < qp->tx_max_entry; i++) {
1849 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
1850 		if (!entry)
1851 			goto err2;
1852 
1853 		entry->qp = qp;
1854 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1855 			     &qp->tx_free_q);
1856 	}
1857 
1858 	ntb_db_clear(qp->ndev, qp_bit);
1859 	ntb_db_clear_mask(qp->ndev, qp_bit);
1860 
1861 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1862 
1863 	return qp;
1864 
1865 err2:
1866 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1867 		kfree(entry);
1868 err1:
1869 	qp->rx_alloc_entry = 0;
1870 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1871 		kfree(entry);
1872 	if (qp->tx_dma_chan)
1873 		dma_release_channel(qp->tx_dma_chan);
1874 	if (qp->rx_dma_chan)
1875 		dma_release_channel(qp->rx_dma_chan);
1876 	nt->qp_bitmap_free |= qp_bit;
1877 err:
1878 	return NULL;
1879 }
1880 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1881 
1882 /**
1883  * ntb_transport_free_queue - Frees NTB transport queue
1884  * @qp: NTB queue to be freed
1885  *
1886  * Frees NTB transport queue
1887  */
ntb_transport_free_queue(struct ntb_transport_qp * qp)1888 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1889 {
1890 	struct pci_dev *pdev;
1891 	struct ntb_queue_entry *entry;
1892 	u64 qp_bit;
1893 
1894 	if (!qp)
1895 		return;
1896 
1897 	pdev = qp->ndev->pdev;
1898 
1899 	qp->active = false;
1900 
1901 	if (qp->tx_dma_chan) {
1902 		struct dma_chan *chan = qp->tx_dma_chan;
1903 		/* Putting the dma_chan to NULL will force any new traffic to be
1904 		 * processed by the CPU instead of the DAM engine
1905 		 */
1906 		qp->tx_dma_chan = NULL;
1907 
1908 		/* Try to be nice and wait for any queued DMA engine
1909 		 * transactions to process before smashing it with a rock
1910 		 */
1911 		dma_sync_wait(chan, qp->last_cookie);
1912 		dmaengine_terminate_all(chan);
1913 		dma_release_channel(chan);
1914 	}
1915 
1916 	if (qp->rx_dma_chan) {
1917 		struct dma_chan *chan = qp->rx_dma_chan;
1918 		/* Putting the dma_chan to NULL will force any new traffic to be
1919 		 * processed by the CPU instead of the DAM engine
1920 		 */
1921 		qp->rx_dma_chan = NULL;
1922 
1923 		/* Try to be nice and wait for any queued DMA engine
1924 		 * transactions to process before smashing it with a rock
1925 		 */
1926 		dma_sync_wait(chan, qp->last_cookie);
1927 		dmaengine_terminate_all(chan);
1928 		dma_release_channel(chan);
1929 	}
1930 
1931 	qp_bit = BIT_ULL(qp->qp_num);
1932 
1933 	ntb_db_set_mask(qp->ndev, qp_bit);
1934 	tasklet_kill(&qp->rxc_db_work);
1935 
1936 	cancel_delayed_work_sync(&qp->link_work);
1937 
1938 	qp->cb_data = NULL;
1939 	qp->rx_handler = NULL;
1940 	qp->tx_handler = NULL;
1941 	qp->event_handler = NULL;
1942 
1943 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1944 		kfree(entry);
1945 
1946 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1947 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1948 		kfree(entry);
1949 	}
1950 
1951 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1952 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1953 		kfree(entry);
1954 	}
1955 
1956 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1957 		kfree(entry);
1958 
1959 	qp->transport->qp_bitmap_free |= qp_bit;
1960 
1961 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1962 }
1963 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1964 
1965 /**
1966  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1967  * @qp: NTB queue to be freed
1968  * @len: pointer to variable to write enqueued buffers length
1969  *
1970  * Dequeues unused buffers from receive queue.  Should only be used during
1971  * shutdown of qp.
1972  *
1973  * RETURNS: NULL error value on error, or void* for success.
1974  */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)1975 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1976 {
1977 	struct ntb_queue_entry *entry;
1978 	void *buf;
1979 
1980 	if (!qp || qp->client_ready)
1981 		return NULL;
1982 
1983 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1984 	if (!entry)
1985 		return NULL;
1986 
1987 	buf = entry->cb_data;
1988 	*len = entry->len;
1989 
1990 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1991 
1992 	return buf;
1993 }
1994 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1995 
1996 /**
1997  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1998  * @qp: NTB transport layer queue the entry is to be enqueued on
1999  * @cb: per buffer pointer for callback function to use
2000  * @data: pointer to data buffer that incoming packets will be copied into
2001  * @len: length of the data buffer
2002  *
2003  * Enqueue a new receive buffer onto the transport queue into which a NTB
2004  * payload can be received into.
2005  *
2006  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2007  */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2008 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2009 			     unsigned int len)
2010 {
2011 	struct ntb_queue_entry *entry;
2012 
2013 	if (!qp)
2014 		return -EINVAL;
2015 
2016 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2017 	if (!entry)
2018 		return -ENOMEM;
2019 
2020 	entry->cb_data = cb;
2021 	entry->buf = data;
2022 	entry->len = len;
2023 	entry->flags = 0;
2024 	entry->retries = 0;
2025 	entry->errors = 0;
2026 	entry->rx_index = 0;
2027 
2028 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2029 
2030 	if (qp->active)
2031 		tasklet_schedule(&qp->rxc_db_work);
2032 
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2036 
2037 /**
2038  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2039  * @qp: NTB transport layer queue the entry is to be enqueued on
2040  * @cb: per buffer pointer for callback function to use
2041  * @data: pointer to data buffer that will be sent
2042  * @len: length of the data buffer
2043  *
2044  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2045  * payload will be transmitted.  This assumes that a lock is being held to
2046  * serialize access to the qp.
2047  *
2048  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2049  */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2050 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2051 			     unsigned int len)
2052 {
2053 	struct ntb_queue_entry *entry;
2054 	int rc;
2055 
2056 	if (!qp || !len)
2057 		return -EINVAL;
2058 
2059 	/* If the qp link is down already, just ignore. */
2060 	if (!qp->link_is_up)
2061 		return 0;
2062 
2063 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2064 	if (!entry) {
2065 		qp->tx_err_no_buf++;
2066 		return -EBUSY;
2067 	}
2068 
2069 	entry->cb_data = cb;
2070 	entry->buf = data;
2071 	entry->len = len;
2072 	entry->flags = 0;
2073 	entry->errors = 0;
2074 	entry->retries = 0;
2075 	entry->tx_index = 0;
2076 
2077 	rc = ntb_process_tx(qp, entry);
2078 	if (rc)
2079 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2080 			     &qp->tx_free_q);
2081 
2082 	return rc;
2083 }
2084 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2085 
2086 /**
2087  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2088  * @qp: NTB transport layer queue to be enabled
2089  *
2090  * Notify NTB transport layer of client readiness to use queue
2091  */
ntb_transport_link_up(struct ntb_transport_qp * qp)2092 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2093 {
2094 	if (!qp)
2095 		return;
2096 
2097 	qp->client_ready = true;
2098 
2099 	if (qp->transport->link_is_up)
2100 		schedule_delayed_work(&qp->link_work, 0);
2101 }
2102 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2103 
2104 /**
2105  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2106  * @qp: NTB transport layer queue to be disabled
2107  *
2108  * Notify NTB transport layer of client's desire to no longer receive data on
2109  * transport queue specified.  It is the client's responsibility to ensure all
2110  * entries on queue are purged or otherwise handled appropriately.
2111  */
ntb_transport_link_down(struct ntb_transport_qp * qp)2112 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2113 {
2114 	int val;
2115 
2116 	if (!qp)
2117 		return;
2118 
2119 	qp->client_ready = false;
2120 
2121 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2122 
2123 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2124 
2125 	if (qp->link_is_up)
2126 		ntb_send_link_down(qp);
2127 	else
2128 		cancel_delayed_work_sync(&qp->link_work);
2129 }
2130 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2131 
2132 /**
2133  * ntb_transport_link_query - Query transport link state
2134  * @qp: NTB transport layer queue to be queried
2135  *
2136  * Query connectivity to the remote system of the NTB transport queue
2137  *
2138  * RETURNS: true for link up or false for link down
2139  */
ntb_transport_link_query(struct ntb_transport_qp * qp)2140 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2141 {
2142 	if (!qp)
2143 		return false;
2144 
2145 	return qp->link_is_up;
2146 }
2147 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2148 
2149 /**
2150  * ntb_transport_qp_num - Query the qp number
2151  * @qp: NTB transport layer queue to be queried
2152  *
2153  * Query qp number of the NTB transport queue
2154  *
2155  * RETURNS: a zero based number specifying the qp number
2156  */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2157 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2158 {
2159 	if (!qp)
2160 		return 0;
2161 
2162 	return qp->qp_num;
2163 }
2164 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2165 
2166 /**
2167  * ntb_transport_max_size - Query the max payload size of a qp
2168  * @qp: NTB transport layer queue to be queried
2169  *
2170  * Query the maximum payload size permissible on the given qp
2171  *
2172  * RETURNS: the max payload size of a qp
2173  */
ntb_transport_max_size(struct ntb_transport_qp * qp)2174 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2175 {
2176 	unsigned int max_size;
2177 	unsigned int copy_align;
2178 	struct dma_chan *rx_chan, *tx_chan;
2179 
2180 	if (!qp)
2181 		return 0;
2182 
2183 	rx_chan = qp->rx_dma_chan;
2184 	tx_chan = qp->tx_dma_chan;
2185 
2186 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2187 			 tx_chan ? tx_chan->device->copy_align : 0);
2188 
2189 	/* If DMA engine usage is possible, try to find the max size for that */
2190 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2191 	max_size = round_down(max_size, 1 << copy_align);
2192 
2193 	return max_size;
2194 }
2195 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2196 
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2197 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2198 {
2199 	unsigned int head = qp->tx_index;
2200 	unsigned int tail = qp->remote_rx_info->entry;
2201 
2202 	return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2203 }
2204 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2205 
ntb_transport_doorbell_callback(void * data,int vector)2206 static void ntb_transport_doorbell_callback(void *data, int vector)
2207 {
2208 	struct ntb_transport_ctx *nt = data;
2209 	struct ntb_transport_qp *qp;
2210 	u64 db_bits;
2211 	unsigned int qp_num;
2212 
2213 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2214 		   ntb_db_vector_mask(nt->ndev, vector));
2215 
2216 	while (db_bits) {
2217 		qp_num = __ffs(db_bits);
2218 		qp = &nt->qp_vec[qp_num];
2219 
2220 		if (qp->active)
2221 			tasklet_schedule(&qp->rxc_db_work);
2222 
2223 		db_bits &= ~BIT_ULL(qp_num);
2224 	}
2225 }
2226 
2227 static const struct ntb_ctx_ops ntb_transport_ops = {
2228 	.link_event = ntb_transport_event_callback,
2229 	.db_event = ntb_transport_doorbell_callback,
2230 };
2231 
2232 static struct ntb_client ntb_transport_client = {
2233 	.ops = {
2234 		.probe = ntb_transport_probe,
2235 		.remove = ntb_transport_free,
2236 	},
2237 };
2238 
ntb_transport_init(void)2239 static int __init ntb_transport_init(void)
2240 {
2241 	int rc;
2242 
2243 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2244 
2245 	if (debugfs_initialized())
2246 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2247 
2248 	rc = bus_register(&ntb_transport_bus);
2249 	if (rc)
2250 		goto err_bus;
2251 
2252 	rc = ntb_register_client(&ntb_transport_client);
2253 	if (rc)
2254 		goto err_client;
2255 
2256 	return 0;
2257 
2258 err_client:
2259 	bus_unregister(&ntb_transport_bus);
2260 err_bus:
2261 	debugfs_remove_recursive(nt_debugfs_dir);
2262 	return rc;
2263 }
2264 module_init(ntb_transport_init);
2265 
ntb_transport_exit(void)2266 static void __exit ntb_transport_exit(void)
2267 {
2268 	ntb_unregister_client(&ntb_transport_client);
2269 	bus_unregister(&ntb_transport_bus);
2270 	debugfs_remove_recursive(nt_debugfs_dir);
2271 }
2272 module_exit(ntb_transport_exit);
2273