1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_test_inode - compare two (possibly fake) inodes for equality
46  * @vi:		vfs inode which to test
47  * @na:		ntfs attribute which is being tested with
48  *
49  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50  * inode @vi for equality with the ntfs attribute @na.
51  *
52  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53  * @na->name and @na->name_len are then ignored.
54  *
55  * Return 1 if the attributes match and 0 if not.
56  *
57  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58  * allowed to sleep.
59  */
ntfs_test_inode(struct inode * vi,ntfs_attr * na)60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 	ntfs_inode *ni;
63 
64 	if (vi->i_ino != na->mft_no)
65 		return 0;
66 	ni = NTFS_I(vi);
67 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 	if (likely(!NInoAttr(ni))) {
69 		/* If not looking for a normal inode this is a mismatch. */
70 		if (unlikely(na->type != AT_UNUSED))
71 			return 0;
72 	} else {
73 		/* A fake inode describing an attribute. */
74 		if (ni->type != na->type)
75 			return 0;
76 		if (ni->name_len != na->name_len)
77 			return 0;
78 		if (na->name_len && memcmp(ni->name, na->name,
79 				na->name_len * sizeof(ntfschar)))
80 			return 0;
81 	}
82 	/* Match! */
83 	return 1;
84 }
85 
86 /**
87  * ntfs_init_locked_inode - initialize an inode
88  * @vi:		vfs inode to initialize
89  * @na:		ntfs attribute which to initialize @vi to
90  *
91  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92  * order to enable ntfs_test_inode() to do its work.
93  *
94  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95  * In that case, @na->name and @na->name_len should be set to NULL and 0,
96  * respectively. Although that is not strictly necessary as
97  * ntfs_read_locked_inode() will fill them in later.
98  *
99  * Return 0 on success and -errno on error.
100  *
101  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103  */
ntfs_init_locked_inode(struct inode * vi,ntfs_attr * na)104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 	ntfs_inode *ni = NTFS_I(vi);
107 
108 	vi->i_ino = na->mft_no;
109 
110 	ni->type = na->type;
111 	if (na->type == AT_INDEX_ALLOCATION)
112 		NInoSetMstProtected(ni);
113 
114 	ni->name = na->name;
115 	ni->name_len = na->name_len;
116 
117 	/* If initializing a normal inode, we are done. */
118 	if (likely(na->type == AT_UNUSED)) {
119 		BUG_ON(na->name);
120 		BUG_ON(na->name_len);
121 		return 0;
122 	}
123 
124 	/* It is a fake inode. */
125 	NInoSetAttr(ni);
126 
127 	/*
128 	 * We have I30 global constant as an optimization as it is the name
129 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 	 * allocation but that is ok. And most attributes are unnamed anyway,
131 	 * thus the fraction of named attributes with name != I30 is actually
132 	 * absolutely tiny.
133 	 */
134 	if (na->name_len && na->name != I30) {
135 		unsigned int i;
136 
137 		BUG_ON(!na->name);
138 		i = na->name_len * sizeof(ntfschar);
139 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 		if (!ni->name)
141 			return -ENOMEM;
142 		memcpy(ni->name, na->name, i);
143 		ni->name[na->name_len] = 0;
144 	}
145 	return 0;
146 }
147 
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 		struct inode *vi);
153 
154 /**
155  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156  * @sb:		super block of mounted volume
157  * @mft_no:	mft record number / inode number to obtain
158  *
159  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160  * file or directory).
161  *
162  * If the inode is in the cache, it is just returned with an increased
163  * reference count. Otherwise, a new struct inode is allocated and initialized,
164  * and finally ntfs_read_locked_inode() is called to read in the inode and
165  * fill in the remainder of the inode structure.
166  *
167  * Return the struct inode on success. Check the return value with IS_ERR() and
168  * if true, the function failed and the error code is obtained from PTR_ERR().
169  */
ntfs_iget(struct super_block * sb,unsigned long mft_no)170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 	struct inode *vi;
173 	int err;
174 	ntfs_attr na;
175 
176 	na.mft_no = mft_no;
177 	na.type = AT_UNUSED;
178 	na.name = NULL;
179 	na.name_len = 0;
180 
181 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 			(set_t)ntfs_init_locked_inode, &na);
183 	if (unlikely(!vi))
184 		return ERR_PTR(-ENOMEM);
185 
186 	err = 0;
187 
188 	/* If this is a freshly allocated inode, need to read it now. */
189 	if (vi->i_state & I_NEW) {
190 		err = ntfs_read_locked_inode(vi);
191 		unlock_new_inode(vi);
192 	}
193 	/*
194 	 * There is no point in keeping bad inodes around if the failure was
195 	 * due to ENOMEM. We want to be able to retry again later.
196 	 */
197 	if (unlikely(err == -ENOMEM)) {
198 		iput(vi);
199 		vi = ERR_PTR(err);
200 	}
201 	return vi;
202 }
203 
204 /**
205  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206  * @base_vi:	vfs base inode containing the attribute
207  * @type:	attribute type
208  * @name:	Unicode name of the attribute (NULL if unnamed)
209  * @name_len:	length of @name in Unicode characters (0 if unnamed)
210  *
211  * Obtain the (fake) struct inode corresponding to the attribute specified by
212  * @type, @name, and @name_len, which is present in the base mft record
213  * specified by the vfs inode @base_vi.
214  *
215  * If the attribute inode is in the cache, it is just returned with an
216  * increased reference count. Otherwise, a new struct inode is allocated and
217  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218  * attribute and fill in the inode structure.
219  *
220  * Note, for index allocation attributes, you need to use ntfs_index_iget()
221  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222  *
223  * Return the struct inode of the attribute inode on success. Check the return
224  * value with IS_ERR() and if true, the function failed and the error code is
225  * obtained from PTR_ERR().
226  */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 		ntfschar *name, u32 name_len)
229 {
230 	struct inode *vi;
231 	int err;
232 	ntfs_attr na;
233 
234 	/* Make sure no one calls ntfs_attr_iget() for indices. */
235 	BUG_ON(type == AT_INDEX_ALLOCATION);
236 
237 	na.mft_no = base_vi->i_ino;
238 	na.type = type;
239 	na.name = name;
240 	na.name_len = name_len;
241 
242 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 			(set_t)ntfs_init_locked_inode, &na);
244 	if (unlikely(!vi))
245 		return ERR_PTR(-ENOMEM);
246 
247 	err = 0;
248 
249 	/* If this is a freshly allocated inode, need to read it now. */
250 	if (vi->i_state & I_NEW) {
251 		err = ntfs_read_locked_attr_inode(base_vi, vi);
252 		unlock_new_inode(vi);
253 	}
254 	/*
255 	 * There is no point in keeping bad attribute inodes around. This also
256 	 * simplifies things in that we never need to check for bad attribute
257 	 * inodes elsewhere.
258 	 */
259 	if (unlikely(err)) {
260 		iput(vi);
261 		vi = ERR_PTR(err);
262 	}
263 	return vi;
264 }
265 
266 /**
267  * ntfs_index_iget - obtain a struct inode corresponding to an index
268  * @base_vi:	vfs base inode containing the index related attributes
269  * @name:	Unicode name of the index
270  * @name_len:	length of @name in Unicode characters
271  *
272  * Obtain the (fake) struct inode corresponding to the index specified by @name
273  * and @name_len, which is present in the base mft record specified by the vfs
274  * inode @base_vi.
275  *
276  * If the index inode is in the cache, it is just returned with an increased
277  * reference count.  Otherwise, a new struct inode is allocated and
278  * initialized, and finally ntfs_read_locked_index_inode() is called to read
279  * the index related attributes and fill in the inode structure.
280  *
281  * Return the struct inode of the index inode on success. Check the return
282  * value with IS_ERR() and if true, the function failed and the error code is
283  * obtained from PTR_ERR().
284  */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 		u32 name_len)
287 {
288 	struct inode *vi;
289 	int err;
290 	ntfs_attr na;
291 
292 	na.mft_no = base_vi->i_ino;
293 	na.type = AT_INDEX_ALLOCATION;
294 	na.name = name;
295 	na.name_len = name_len;
296 
297 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 			(set_t)ntfs_init_locked_inode, &na);
299 	if (unlikely(!vi))
300 		return ERR_PTR(-ENOMEM);
301 
302 	err = 0;
303 
304 	/* If this is a freshly allocated inode, need to read it now. */
305 	if (vi->i_state & I_NEW) {
306 		err = ntfs_read_locked_index_inode(base_vi, vi);
307 		unlock_new_inode(vi);
308 	}
309 	/*
310 	 * There is no point in keeping bad index inodes around.  This also
311 	 * simplifies things in that we never need to check for bad index
312 	 * inodes elsewhere.
313 	 */
314 	if (unlikely(err)) {
315 		iput(vi);
316 		vi = ERR_PTR(err);
317 	}
318 	return vi;
319 }
320 
ntfs_alloc_big_inode(struct super_block * sb)321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 	ntfs_inode *ni;
324 
325 	ntfs_debug("Entering.");
326 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 	if (likely(ni != NULL)) {
328 		ni->state = 0;
329 		return VFS_I(ni);
330 	}
331 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 	return NULL;
333 }
334 
ntfs_i_callback(struct rcu_head * head)335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 	struct inode *inode = container_of(head, struct inode, i_rcu);
338 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340 
ntfs_destroy_big_inode(struct inode * inode)341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 	ntfs_inode *ni = NTFS_I(inode);
344 
345 	ntfs_debug("Entering.");
346 	BUG_ON(ni->page);
347 	if (!atomic_dec_and_test(&ni->count))
348 		BUG();
349 	call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351 
ntfs_alloc_extent_inode(void)352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 	ntfs_inode *ni;
355 
356 	ntfs_debug("Entering.");
357 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 	if (likely(ni != NULL)) {
359 		ni->state = 0;
360 		return ni;
361 	}
362 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 	return NULL;
364 }
365 
ntfs_destroy_extent_inode(ntfs_inode * ni)366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 	ntfs_debug("Entering.");
369 	BUG_ON(ni->page);
370 	if (!atomic_dec_and_test(&ni->count))
371 		BUG();
372 	kmem_cache_free(ntfs_inode_cache, ni);
373 }
374 
375 /*
376  * The attribute runlist lock has separate locking rules from the
377  * normal runlist lock, so split the two lock-classes:
378  */
379 static struct lock_class_key attr_list_rl_lock_class;
380 
381 /**
382  * __ntfs_init_inode - initialize ntfs specific part of an inode
383  * @sb:		super block of mounted volume
384  * @ni:		freshly allocated ntfs inode which to initialize
385  *
386  * Initialize an ntfs inode to defaults.
387  *
388  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389  * untouched. Make sure to initialize them elsewhere.
390  *
391  * Return zero on success and -ENOMEM on error.
392  */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 	ntfs_debug("Entering.");
396 	rwlock_init(&ni->size_lock);
397 	ni->initialized_size = ni->allocated_size = 0;
398 	ni->seq_no = 0;
399 	atomic_set(&ni->count, 1);
400 	ni->vol = NTFS_SB(sb);
401 	ntfs_init_runlist(&ni->runlist);
402 	mutex_init(&ni->mrec_lock);
403 	ni->page = NULL;
404 	ni->page_ofs = 0;
405 	ni->attr_list_size = 0;
406 	ni->attr_list = NULL;
407 	ntfs_init_runlist(&ni->attr_list_rl);
408 	lockdep_set_class(&ni->attr_list_rl.lock,
409 				&attr_list_rl_lock_class);
410 	ni->itype.index.block_size = 0;
411 	ni->itype.index.vcn_size = 0;
412 	ni->itype.index.collation_rule = 0;
413 	ni->itype.index.block_size_bits = 0;
414 	ni->itype.index.vcn_size_bits = 0;
415 	mutex_init(&ni->extent_lock);
416 	ni->nr_extents = 0;
417 	ni->ext.base_ntfs_ino = NULL;
418 }
419 
420 /*
421  * Extent inodes get MFT-mapped in a nested way, while the base inode
422  * is still mapped. Teach this nesting to the lock validator by creating
423  * a separate class for nested inode's mrec_lock's:
424  */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426 
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 		unsigned long mft_no)
429 {
430 	ntfs_inode *ni = ntfs_alloc_extent_inode();
431 
432 	ntfs_debug("Entering.");
433 	if (likely(ni != NULL)) {
434 		__ntfs_init_inode(sb, ni);
435 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 		ni->mft_no = mft_no;
437 		ni->type = AT_UNUSED;
438 		ni->name = NULL;
439 		ni->name_len = 0;
440 	}
441 	return ni;
442 }
443 
444 /**
445  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446  * @ctx:	initialized attribute search context
447  *
448  * Search all file name attributes in the inode described by the attribute
449  * search context @ctx and check if any of the names are in the $Extend system
450  * directory.
451  *
452  * Return values:
453  *	   1: file is in $Extend directory
454  *	   0: file is not in $Extend directory
455  *    -errno: failed to determine if the file is in the $Extend directory
456  */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 	int nr_links, err;
460 
461 	/* Restart search. */
462 	ntfs_attr_reinit_search_ctx(ctx);
463 
464 	/* Get number of hard links. */
465 	nr_links = le16_to_cpu(ctx->mrec->link_count);
466 
467 	/* Loop through all hard links. */
468 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 			ctx))) {
470 		FILE_NAME_ATTR *file_name_attr;
471 		ATTR_RECORD *attr = ctx->attr;
472 		u8 *p, *p2;
473 
474 		nr_links--;
475 		/*
476 		 * Maximum sanity checking as we are called on an inode that
477 		 * we suspect might be corrupt.
478 		 */
479 		p = (u8*)attr + le32_to_cpu(attr->length);
480 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 					"attribute. You should run chkdsk.");
485 			return -EIO;
486 		}
487 		if (attr->non_resident) {
488 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 					"name. You should run chkdsk.");
490 			return -EIO;
491 		}
492 		if (attr->flags) {
493 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 					"invalid flags. You should run "
495 					"chkdsk.");
496 			return -EIO;
497 		}
498 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 					"name. You should run chkdsk.");
501 			return -EIO;
502 		}
503 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 				le16_to_cpu(attr->data.resident.value_offset));
505 		p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
506 		if (p2 < (u8*)attr || p2 > p)
507 			goto err_corrupt_attr;
508 		/* This attribute is ok, but is it in the $Extend directory? */
509 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 			return 1;	/* YES, it's an extended system file. */
511 	}
512 	if (unlikely(err != -ENOENT))
513 		return err;
514 	if (unlikely(nr_links)) {
515 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 				"doesn't match number of name attributes. You "
517 				"should run chkdsk.");
518 		return -EIO;
519 	}
520 	return 0;	/* NO, it is not an extended system file. */
521 }
522 
523 /**
524  * ntfs_read_locked_inode - read an inode from its device
525  * @vi:		inode to read
526  *
527  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528  * described by @vi into memory from the device.
529  *
530  * The only fields in @vi that we need to/can look at when the function is
531  * called are i_sb, pointing to the mounted device's super block, and i_ino,
532  * the number of the inode to load.
533  *
534  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535  * for reading and sets up the necessary @vi fields as well as initializing
536  * the ntfs inode.
537  *
538  * Q: What locks are held when the function is called?
539  * A: i_state has I_NEW set, hence the inode is locked, also
540  *    i_count is set to 1, so it is not going to go away
541  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
542  *    is allowed to write to them. We should of course be honouring them but
543  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
544  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545  *
546  * Return 0 on success and -errno on error.  In the error case, the inode will
547  * have had make_bad_inode() executed on it.
548  */
ntfs_read_locked_inode(struct inode * vi)549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 	ntfs_inode *ni;
553 	struct inode *bvi;
554 	MFT_RECORD *m;
555 	ATTR_RECORD *a;
556 	STANDARD_INFORMATION *si;
557 	ntfs_attr_search_ctx *ctx;
558 	int err = 0;
559 
560 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561 
562 	/* Setup the generic vfs inode parts now. */
563 	vi->i_uid = vol->uid;
564 	vi->i_gid = vol->gid;
565 	vi->i_mode = 0;
566 
567 	/*
568 	 * Initialize the ntfs specific part of @vi special casing
569 	 * FILE_MFT which we need to do at mount time.
570 	 */
571 	if (vi->i_ino != FILE_MFT)
572 		ntfs_init_big_inode(vi);
573 	ni = NTFS_I(vi);
574 
575 	m = map_mft_record(ni);
576 	if (IS_ERR(m)) {
577 		err = PTR_ERR(m);
578 		goto err_out;
579 	}
580 	ctx = ntfs_attr_get_search_ctx(ni, m);
581 	if (!ctx) {
582 		err = -ENOMEM;
583 		goto unm_err_out;
584 	}
585 
586 	if (!(m->flags & MFT_RECORD_IN_USE)) {
587 		ntfs_error(vi->i_sb, "Inode is not in use!");
588 		goto unm_err_out;
589 	}
590 	if (m->base_mft_record) {
591 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 		goto unm_err_out;
593 	}
594 
595 	/* Transfer information from mft record into vfs and ntfs inodes. */
596 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
597 
598 	/*
599 	 * FIXME: Keep in mind that link_count is two for files which have both
600 	 * a long file name and a short file name as separate entries, so if
601 	 * we are hiding short file names this will be too high. Either we need
602 	 * to account for the short file names by subtracting them or we need
603 	 * to make sure we delete files even though i_nlink is not zero which
604 	 * might be tricky due to vfs interactions. Need to think about this
605 	 * some more when implementing the unlink command.
606 	 */
607 	set_nlink(vi, le16_to_cpu(m->link_count));
608 	/*
609 	 * FIXME: Reparse points can have the directory bit set even though
610 	 * they would be S_IFLNK. Need to deal with this further below when we
611 	 * implement reparse points / symbolic links but it will do for now.
612 	 * Also if not a directory, it could be something else, rather than
613 	 * a regular file. But again, will do for now.
614 	 */
615 	/* Everyone gets all permissions. */
616 	vi->i_mode |= S_IRWXUGO;
617 	/* If read-only, no one gets write permissions. */
618 	if (IS_RDONLY(vi))
619 		vi->i_mode &= ~S_IWUGO;
620 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 		vi->i_mode |= S_IFDIR;
622 		/*
623 		 * Apply the directory permissions mask set in the mount
624 		 * options.
625 		 */
626 		vi->i_mode &= ~vol->dmask;
627 		/* Things break without this kludge! */
628 		if (vi->i_nlink > 1)
629 			set_nlink(vi, 1);
630 	} else {
631 		vi->i_mode |= S_IFREG;
632 		/* Apply the file permissions mask set in the mount options. */
633 		vi->i_mode &= ~vol->fmask;
634 	}
635 	/*
636 	 * Find the standard information attribute in the mft record. At this
637 	 * stage we haven't setup the attribute list stuff yet, so this could
638 	 * in fact fail if the standard information is in an extent record, but
639 	 * I don't think this actually ever happens.
640 	 */
641 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 			ctx);
643 	if (unlikely(err)) {
644 		if (err == -ENOENT) {
645 			/*
646 			 * TODO: We should be performing a hot fix here (if the
647 			 * recover mount option is set) by creating a new
648 			 * attribute.
649 			 */
650 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 					"is missing.");
652 		}
653 		goto unm_err_out;
654 	}
655 	a = ctx->attr;
656 	/* Get the standard information attribute value. */
657 	if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
658 			+ le32_to_cpu(a->data.resident.value_length) >
659 			(u8 *)ctx->mrec + vol->mft_record_size) {
660 		ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
661 		goto unm_err_out;
662 	}
663 	si = (STANDARD_INFORMATION*)((u8*)a +
664 			le16_to_cpu(a->data.resident.value_offset));
665 
666 	/* Transfer information from the standard information into vi. */
667 	/*
668 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
669 	 * but they are close enough, and in the end it doesn't really matter
670 	 * that much...
671 	 */
672 	/*
673 	 * mtime is the last change of the data within the file. Not changed
674 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
675 	 */
676 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
677 	/*
678 	 * ctime is the last change of the metadata of the file. This obviously
679 	 * always changes, when mtime is changed. ctime can be changed on its
680 	 * own, mtime is then not changed, e.g. when a file is renamed.
681 	 */
682 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
683 	/*
684 	 * Last access to the data within the file. Not changed during a rename
685 	 * for example but changed whenever the file is written to.
686 	 */
687 	vi->i_atime = ntfs2utc(si->last_access_time);
688 
689 	/* Find the attribute list attribute if present. */
690 	ntfs_attr_reinit_search_ctx(ctx);
691 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
692 	if (err) {
693 		if (unlikely(err != -ENOENT)) {
694 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
695 					"attribute.");
696 			goto unm_err_out;
697 		}
698 	} else /* if (!err) */ {
699 		if (vi->i_ino == FILE_MFT)
700 			goto skip_attr_list_load;
701 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
702 		NInoSetAttrList(ni);
703 		a = ctx->attr;
704 		if (a->flags & ATTR_COMPRESSION_MASK) {
705 			ntfs_error(vi->i_sb, "Attribute list attribute is "
706 					"compressed.");
707 			goto unm_err_out;
708 		}
709 		if (a->flags & ATTR_IS_ENCRYPTED ||
710 				a->flags & ATTR_IS_SPARSE) {
711 			if (a->non_resident) {
712 				ntfs_error(vi->i_sb, "Non-resident attribute "
713 						"list attribute is encrypted/"
714 						"sparse.");
715 				goto unm_err_out;
716 			}
717 			ntfs_warning(vi->i_sb, "Resident attribute list "
718 					"attribute in inode 0x%lx is marked "
719 					"encrypted/sparse which is not true.  "
720 					"However, Windows allows this and "
721 					"chkdsk does not detect or correct it "
722 					"so we will just ignore the invalid "
723 					"flags and pretend they are not set.",
724 					vi->i_ino);
725 		}
726 		/* Now allocate memory for the attribute list. */
727 		ni->attr_list_size = (u32)ntfs_attr_size(a);
728 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
729 		if (!ni->attr_list) {
730 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
731 					"buffer for attribute list.");
732 			err = -ENOMEM;
733 			goto unm_err_out;
734 		}
735 		if (a->non_resident) {
736 			NInoSetAttrListNonResident(ni);
737 			if (a->data.non_resident.lowest_vcn) {
738 				ntfs_error(vi->i_sb, "Attribute list has non "
739 						"zero lowest_vcn.");
740 				goto unm_err_out;
741 			}
742 			/*
743 			 * Setup the runlist. No need for locking as we have
744 			 * exclusive access to the inode at this time.
745 			 */
746 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
747 					a, NULL);
748 			if (IS_ERR(ni->attr_list_rl.rl)) {
749 				err = PTR_ERR(ni->attr_list_rl.rl);
750 				ni->attr_list_rl.rl = NULL;
751 				ntfs_error(vi->i_sb, "Mapping pairs "
752 						"decompression failed.");
753 				goto unm_err_out;
754 			}
755 			/* Now load the attribute list. */
756 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
757 					ni->attr_list, ni->attr_list_size,
758 					sle64_to_cpu(a->data.non_resident.
759 					initialized_size)))) {
760 				ntfs_error(vi->i_sb, "Failed to load "
761 						"attribute list attribute.");
762 				goto unm_err_out;
763 			}
764 		} else /* if (!a->non_resident) */ {
765 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
766 					+ le32_to_cpu(
767 					a->data.resident.value_length) >
768 					(u8*)ctx->mrec + vol->mft_record_size) {
769 				ntfs_error(vi->i_sb, "Corrupt attribute list "
770 						"in inode.");
771 				goto unm_err_out;
772 			}
773 			/* Now copy the attribute list. */
774 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
775 					a->data.resident.value_offset),
776 					le32_to_cpu(
777 					a->data.resident.value_length));
778 		}
779 	}
780 skip_attr_list_load:
781 	/*
782 	 * If an attribute list is present we now have the attribute list value
783 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
784 	 */
785 	if (S_ISDIR(vi->i_mode)) {
786 		loff_t bvi_size;
787 		ntfs_inode *bni;
788 		INDEX_ROOT *ir;
789 		u8 *ir_end, *index_end;
790 
791 		/* It is a directory, find index root attribute. */
792 		ntfs_attr_reinit_search_ctx(ctx);
793 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
794 				0, NULL, 0, ctx);
795 		if (unlikely(err)) {
796 			if (err == -ENOENT) {
797 				// FIXME: File is corrupt! Hot-fix with empty
798 				// index root attribute if recovery option is
799 				// set.
800 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
801 						"is missing.");
802 			}
803 			goto unm_err_out;
804 		}
805 		a = ctx->attr;
806 		/* Set up the state. */
807 		if (unlikely(a->non_resident)) {
808 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
809 					"resident.");
810 			goto unm_err_out;
811 		}
812 		/* Ensure the attribute name is placed before the value. */
813 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
814 				le16_to_cpu(a->data.resident.value_offset)))) {
815 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
816 					"placed after the attribute value.");
817 			goto unm_err_out;
818 		}
819 		/*
820 		 * Compressed/encrypted index root just means that the newly
821 		 * created files in that directory should be created compressed/
822 		 * encrypted. However index root cannot be both compressed and
823 		 * encrypted.
824 		 */
825 		if (a->flags & ATTR_COMPRESSION_MASK)
826 			NInoSetCompressed(ni);
827 		if (a->flags & ATTR_IS_ENCRYPTED) {
828 			if (a->flags & ATTR_COMPRESSION_MASK) {
829 				ntfs_error(vi->i_sb, "Found encrypted and "
830 						"compressed attribute.");
831 				goto unm_err_out;
832 			}
833 			NInoSetEncrypted(ni);
834 		}
835 		if (a->flags & ATTR_IS_SPARSE)
836 			NInoSetSparse(ni);
837 		ir = (INDEX_ROOT*)((u8*)a +
838 				le16_to_cpu(a->data.resident.value_offset));
839 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
840 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
841 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
842 					"corrupt.");
843 			goto unm_err_out;
844 		}
845 		index_end = (u8*)&ir->index +
846 				le32_to_cpu(ir->index.index_length);
847 		if (index_end > ir_end) {
848 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
849 			goto unm_err_out;
850 		}
851 		if (ir->type != AT_FILE_NAME) {
852 			ntfs_error(vi->i_sb, "Indexed attribute is not "
853 					"$FILE_NAME.");
854 			goto unm_err_out;
855 		}
856 		if (ir->collation_rule != COLLATION_FILE_NAME) {
857 			ntfs_error(vi->i_sb, "Index collation rule is not "
858 					"COLLATION_FILE_NAME.");
859 			goto unm_err_out;
860 		}
861 		ni->itype.index.collation_rule = ir->collation_rule;
862 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
863 		if (ni->itype.index.block_size &
864 				(ni->itype.index.block_size - 1)) {
865 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
866 					"power of two.",
867 					ni->itype.index.block_size);
868 			goto unm_err_out;
869 		}
870 		if (ni->itype.index.block_size > PAGE_SIZE) {
871 			ntfs_error(vi->i_sb, "Index block size (%u) > "
872 					"PAGE_SIZE (%ld) is not "
873 					"supported.  Sorry.",
874 					ni->itype.index.block_size,
875 					PAGE_SIZE);
876 			err = -EOPNOTSUPP;
877 			goto unm_err_out;
878 		}
879 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
880 			ntfs_error(vi->i_sb, "Index block size (%u) < "
881 					"NTFS_BLOCK_SIZE (%i) is not "
882 					"supported.  Sorry.",
883 					ni->itype.index.block_size,
884 					NTFS_BLOCK_SIZE);
885 			err = -EOPNOTSUPP;
886 			goto unm_err_out;
887 		}
888 		ni->itype.index.block_size_bits =
889 				ffs(ni->itype.index.block_size) - 1;
890 		/* Determine the size of a vcn in the directory index. */
891 		if (vol->cluster_size <= ni->itype.index.block_size) {
892 			ni->itype.index.vcn_size = vol->cluster_size;
893 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
894 		} else {
895 			ni->itype.index.vcn_size = vol->sector_size;
896 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
897 		}
898 
899 		/* Setup the index allocation attribute, even if not present. */
900 		NInoSetMstProtected(ni);
901 		ni->type = AT_INDEX_ALLOCATION;
902 		ni->name = I30;
903 		ni->name_len = 4;
904 
905 		if (!(ir->index.flags & LARGE_INDEX)) {
906 			/* No index allocation. */
907 			vi->i_size = ni->initialized_size =
908 					ni->allocated_size = 0;
909 			/* We are done with the mft record, so we release it. */
910 			ntfs_attr_put_search_ctx(ctx);
911 			unmap_mft_record(ni);
912 			m = NULL;
913 			ctx = NULL;
914 			goto skip_large_dir_stuff;
915 		} /* LARGE_INDEX: Index allocation present. Setup state. */
916 		NInoSetIndexAllocPresent(ni);
917 		/* Find index allocation attribute. */
918 		ntfs_attr_reinit_search_ctx(ctx);
919 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
920 				CASE_SENSITIVE, 0, NULL, 0, ctx);
921 		if (unlikely(err)) {
922 			if (err == -ENOENT)
923 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
924 						"attribute is not present but "
925 						"$INDEX_ROOT indicated it is.");
926 			else
927 				ntfs_error(vi->i_sb, "Failed to lookup "
928 						"$INDEX_ALLOCATION "
929 						"attribute.");
930 			goto unm_err_out;
931 		}
932 		a = ctx->attr;
933 		if (!a->non_resident) {
934 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
935 					"is resident.");
936 			goto unm_err_out;
937 		}
938 		/*
939 		 * Ensure the attribute name is placed before the mapping pairs
940 		 * array.
941 		 */
942 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
943 				le16_to_cpu(
944 				a->data.non_resident.mapping_pairs_offset)))) {
945 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
946 					"is placed after the mapping pairs "
947 					"array.");
948 			goto unm_err_out;
949 		}
950 		if (a->flags & ATTR_IS_ENCRYPTED) {
951 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
952 					"is encrypted.");
953 			goto unm_err_out;
954 		}
955 		if (a->flags & ATTR_IS_SPARSE) {
956 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
957 					"is sparse.");
958 			goto unm_err_out;
959 		}
960 		if (a->flags & ATTR_COMPRESSION_MASK) {
961 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
962 					"is compressed.");
963 			goto unm_err_out;
964 		}
965 		if (a->data.non_resident.lowest_vcn) {
966 			ntfs_error(vi->i_sb, "First extent of "
967 					"$INDEX_ALLOCATION attribute has non "
968 					"zero lowest_vcn.");
969 			goto unm_err_out;
970 		}
971 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
972 		ni->initialized_size = sle64_to_cpu(
973 				a->data.non_resident.initialized_size);
974 		ni->allocated_size = sle64_to_cpu(
975 				a->data.non_resident.allocated_size);
976 		/*
977 		 * We are done with the mft record, so we release it. Otherwise
978 		 * we would deadlock in ntfs_attr_iget().
979 		 */
980 		ntfs_attr_put_search_ctx(ctx);
981 		unmap_mft_record(ni);
982 		m = NULL;
983 		ctx = NULL;
984 		/* Get the index bitmap attribute inode. */
985 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
986 		if (IS_ERR(bvi)) {
987 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
988 			err = PTR_ERR(bvi);
989 			goto unm_err_out;
990 		}
991 		bni = NTFS_I(bvi);
992 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
993 				NInoSparse(bni)) {
994 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
995 					"and/or encrypted and/or sparse.");
996 			goto iput_unm_err_out;
997 		}
998 		/* Consistency check bitmap size vs. index allocation size. */
999 		bvi_size = i_size_read(bvi);
1000 		if ((bvi_size << 3) < (vi->i_size >>
1001 				ni->itype.index.block_size_bits)) {
1002 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1003 					"for index allocation (0x%llx).",
1004 					bvi_size << 3, vi->i_size);
1005 			goto iput_unm_err_out;
1006 		}
1007 		/* No longer need the bitmap attribute inode. */
1008 		iput(bvi);
1009 skip_large_dir_stuff:
1010 		/* Setup the operations for this inode. */
1011 		vi->i_op = &ntfs_dir_inode_ops;
1012 		vi->i_fop = &ntfs_dir_ops;
1013 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1014 	} else {
1015 		/* It is a file. */
1016 		ntfs_attr_reinit_search_ctx(ctx);
1017 
1018 		/* Setup the data attribute, even if not present. */
1019 		ni->type = AT_DATA;
1020 		ni->name = NULL;
1021 		ni->name_len = 0;
1022 
1023 		/* Find first extent of the unnamed data attribute. */
1024 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1025 		if (unlikely(err)) {
1026 			vi->i_size = ni->initialized_size =
1027 					ni->allocated_size = 0;
1028 			if (err != -ENOENT) {
1029 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1030 						"attribute.");
1031 				goto unm_err_out;
1032 			}
1033 			/*
1034 			 * FILE_Secure does not have an unnamed $DATA
1035 			 * attribute, so we special case it here.
1036 			 */
1037 			if (vi->i_ino == FILE_Secure)
1038 				goto no_data_attr_special_case;
1039 			/*
1040 			 * Most if not all the system files in the $Extend
1041 			 * system directory do not have unnamed data
1042 			 * attributes so we need to check if the parent
1043 			 * directory of the file is FILE_Extend and if it is
1044 			 * ignore this error. To do this we need to get the
1045 			 * name of this inode from the mft record as the name
1046 			 * contains the back reference to the parent directory.
1047 			 */
1048 			if (ntfs_is_extended_system_file(ctx) > 0)
1049 				goto no_data_attr_special_case;
1050 			// FIXME: File is corrupt! Hot-fix with empty data
1051 			// attribute if recovery option is set.
1052 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1053 			goto unm_err_out;
1054 		}
1055 		a = ctx->attr;
1056 		/* Setup the state. */
1057 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1058 			if (a->flags & ATTR_COMPRESSION_MASK) {
1059 				NInoSetCompressed(ni);
1060 				if (vol->cluster_size > 4096) {
1061 					ntfs_error(vi->i_sb, "Found "
1062 							"compressed data but "
1063 							"compression is "
1064 							"disabled due to "
1065 							"cluster size (%i) > "
1066 							"4kiB.",
1067 							vol->cluster_size);
1068 					goto unm_err_out;
1069 				}
1070 				if ((a->flags & ATTR_COMPRESSION_MASK)
1071 						!= ATTR_IS_COMPRESSED) {
1072 					ntfs_error(vi->i_sb, "Found unknown "
1073 							"compression method "
1074 							"or corrupt file.");
1075 					goto unm_err_out;
1076 				}
1077 			}
1078 			if (a->flags & ATTR_IS_SPARSE)
1079 				NInoSetSparse(ni);
1080 		}
1081 		if (a->flags & ATTR_IS_ENCRYPTED) {
1082 			if (NInoCompressed(ni)) {
1083 				ntfs_error(vi->i_sb, "Found encrypted and "
1084 						"compressed data.");
1085 				goto unm_err_out;
1086 			}
1087 			NInoSetEncrypted(ni);
1088 		}
1089 		if (a->non_resident) {
1090 			NInoSetNonResident(ni);
1091 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1092 				if (NInoCompressed(ni) && a->data.non_resident.
1093 						compression_unit != 4) {
1094 					ntfs_error(vi->i_sb, "Found "
1095 							"non-standard "
1096 							"compression unit (%u "
1097 							"instead of 4).  "
1098 							"Cannot handle this.",
1099 							a->data.non_resident.
1100 							compression_unit);
1101 					err = -EOPNOTSUPP;
1102 					goto unm_err_out;
1103 				}
1104 				if (a->data.non_resident.compression_unit) {
1105 					ni->itype.compressed.block_size = 1U <<
1106 							(a->data.non_resident.
1107 							compression_unit +
1108 							vol->cluster_size_bits);
1109 					ni->itype.compressed.block_size_bits =
1110 							ffs(ni->itype.
1111 							compressed.
1112 							block_size) - 1;
1113 					ni->itype.compressed.block_clusters =
1114 							1U << a->data.
1115 							non_resident.
1116 							compression_unit;
1117 				} else {
1118 					ni->itype.compressed.block_size = 0;
1119 					ni->itype.compressed.block_size_bits =
1120 							0;
1121 					ni->itype.compressed.block_clusters =
1122 							0;
1123 				}
1124 				ni->itype.compressed.size = sle64_to_cpu(
1125 						a->data.non_resident.
1126 						compressed_size);
1127 			}
1128 			if (a->data.non_resident.lowest_vcn) {
1129 				ntfs_error(vi->i_sb, "First extent of $DATA "
1130 						"attribute has non zero "
1131 						"lowest_vcn.");
1132 				goto unm_err_out;
1133 			}
1134 			vi->i_size = sle64_to_cpu(
1135 					a->data.non_resident.data_size);
1136 			ni->initialized_size = sle64_to_cpu(
1137 					a->data.non_resident.initialized_size);
1138 			ni->allocated_size = sle64_to_cpu(
1139 					a->data.non_resident.allocated_size);
1140 		} else { /* Resident attribute. */
1141 			vi->i_size = ni->initialized_size = le32_to_cpu(
1142 					a->data.resident.value_length);
1143 			ni->allocated_size = le32_to_cpu(a->length) -
1144 					le16_to_cpu(
1145 					a->data.resident.value_offset);
1146 			if (vi->i_size > ni->allocated_size) {
1147 				ntfs_error(vi->i_sb, "Resident data attribute "
1148 						"is corrupt (size exceeds "
1149 						"allocation).");
1150 				goto unm_err_out;
1151 			}
1152 		}
1153 no_data_attr_special_case:
1154 		/* We are done with the mft record, so we release it. */
1155 		ntfs_attr_put_search_ctx(ctx);
1156 		unmap_mft_record(ni);
1157 		m = NULL;
1158 		ctx = NULL;
1159 		/* Setup the operations for this inode. */
1160 		vi->i_op = &ntfs_file_inode_ops;
1161 		vi->i_fop = &ntfs_file_ops;
1162 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1163 		if (NInoMstProtected(ni))
1164 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1165 		else if (NInoCompressed(ni))
1166 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1167 	}
1168 	/*
1169 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1170 	 * far inaccurate as it doesn't account for any named streams or other
1171 	 * special non-resident attributes, but that is how Windows works, too,
1172 	 * so we are at least consistent with Windows, if not entirely
1173 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174 	 * significant slowdown as it would involve iterating over all
1175 	 * attributes in the mft record and adding the allocated/compressed
1176 	 * sizes of all non-resident attributes present to give us the Linux
1177 	 * correct size that should go into i_blocks (after division by 512).
1178 	 */
1179 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1180 		vi->i_blocks = ni->itype.compressed.size >> 9;
1181 	else
1182 		vi->i_blocks = ni->allocated_size >> 9;
1183 	ntfs_debug("Done.");
1184 	return 0;
1185 iput_unm_err_out:
1186 	iput(bvi);
1187 unm_err_out:
1188 	if (!err)
1189 		err = -EIO;
1190 	if (ctx)
1191 		ntfs_attr_put_search_ctx(ctx);
1192 	if (m)
1193 		unmap_mft_record(ni);
1194 err_out:
1195 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1196 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1197 	make_bad_inode(vi);
1198 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1199 		NVolSetErrors(vol);
1200 	return err;
1201 }
1202 
1203 /**
1204  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205  * @base_vi:	base inode
1206  * @vi:		attribute inode to read
1207  *
1208  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209  * attribute inode described by @vi into memory from the base mft record
1210  * described by @base_ni.
1211  *
1212  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213  * reading and looks up the attribute described by @vi before setting up the
1214  * necessary fields in @vi as well as initializing the ntfs inode.
1215  *
1216  * Q: What locks are held when the function is called?
1217  * A: i_state has I_NEW set, hence the inode is locked, also
1218  *    i_count is set to 1, so it is not going to go away
1219  *
1220  * Return 0 on success and -errno on error.  In the error case, the inode will
1221  * have had make_bad_inode() executed on it.
1222  *
1223  * Note this cannot be called for AT_INDEX_ALLOCATION.
1224  */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1225 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1226 {
1227 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1228 	ntfs_inode *ni, *base_ni;
1229 	MFT_RECORD *m;
1230 	ATTR_RECORD *a;
1231 	ntfs_attr_search_ctx *ctx;
1232 	int err = 0;
1233 
1234 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1235 
1236 	ntfs_init_big_inode(vi);
1237 
1238 	ni	= NTFS_I(vi);
1239 	base_ni = NTFS_I(base_vi);
1240 
1241 	/* Just mirror the values from the base inode. */
1242 	vi->i_uid	= base_vi->i_uid;
1243 	vi->i_gid	= base_vi->i_gid;
1244 	set_nlink(vi, base_vi->i_nlink);
1245 	vi->i_mtime	= base_vi->i_mtime;
1246 	vi->i_ctime	= base_vi->i_ctime;
1247 	vi->i_atime	= base_vi->i_atime;
1248 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1249 
1250 	/* Set inode type to zero but preserve permissions. */
1251 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1252 
1253 	m = map_mft_record(base_ni);
1254 	if (IS_ERR(m)) {
1255 		err = PTR_ERR(m);
1256 		goto err_out;
1257 	}
1258 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1259 	if (!ctx) {
1260 		err = -ENOMEM;
1261 		goto unm_err_out;
1262 	}
1263 	/* Find the attribute. */
1264 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1265 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1266 	if (unlikely(err))
1267 		goto unm_err_out;
1268 	a = ctx->attr;
1269 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1270 		if (a->flags & ATTR_COMPRESSION_MASK) {
1271 			NInoSetCompressed(ni);
1272 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1273 					ni->name_len)) {
1274 				ntfs_error(vi->i_sb, "Found compressed "
1275 						"non-data or named data "
1276 						"attribute.  Please report "
1277 						"you saw this message to "
1278 						"linux-ntfs-dev@lists."
1279 						"sourceforge.net");
1280 				goto unm_err_out;
1281 			}
1282 			if (vol->cluster_size > 4096) {
1283 				ntfs_error(vi->i_sb, "Found compressed "
1284 						"attribute but compression is "
1285 						"disabled due to cluster size "
1286 						"(%i) > 4kiB.",
1287 						vol->cluster_size);
1288 				goto unm_err_out;
1289 			}
1290 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1291 					ATTR_IS_COMPRESSED) {
1292 				ntfs_error(vi->i_sb, "Found unknown "
1293 						"compression method.");
1294 				goto unm_err_out;
1295 			}
1296 		}
1297 		/*
1298 		 * The compressed/sparse flag set in an index root just means
1299 		 * to compress all files.
1300 		 */
1301 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1302 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1303 					"but the attribute is %s.  Please "
1304 					"report you saw this message to "
1305 					"linux-ntfs-dev@lists.sourceforge.net",
1306 					NInoCompressed(ni) ? "compressed" :
1307 					"sparse");
1308 			goto unm_err_out;
1309 		}
1310 		if (a->flags & ATTR_IS_SPARSE)
1311 			NInoSetSparse(ni);
1312 	}
1313 	if (a->flags & ATTR_IS_ENCRYPTED) {
1314 		if (NInoCompressed(ni)) {
1315 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1316 					"data.");
1317 			goto unm_err_out;
1318 		}
1319 		/*
1320 		 * The encryption flag set in an index root just means to
1321 		 * encrypt all files.
1322 		 */
1323 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1324 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1325 					"but the attribute is encrypted.  "
1326 					"Please report you saw this message "
1327 					"to linux-ntfs-dev@lists.sourceforge."
1328 					"net");
1329 			goto unm_err_out;
1330 		}
1331 		if (ni->type != AT_DATA) {
1332 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1333 					"attribute.");
1334 			goto unm_err_out;
1335 		}
1336 		NInoSetEncrypted(ni);
1337 	}
1338 	if (!a->non_resident) {
1339 		/* Ensure the attribute name is placed before the value. */
1340 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1341 				le16_to_cpu(a->data.resident.value_offset)))) {
1342 			ntfs_error(vol->sb, "Attribute name is placed after "
1343 					"the attribute value.");
1344 			goto unm_err_out;
1345 		}
1346 		if (NInoMstProtected(ni)) {
1347 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1348 					"but the attribute is resident.  "
1349 					"Please report you saw this message to "
1350 					"linux-ntfs-dev@lists.sourceforge.net");
1351 			goto unm_err_out;
1352 		}
1353 		vi->i_size = ni->initialized_size = le32_to_cpu(
1354 				a->data.resident.value_length);
1355 		ni->allocated_size = le32_to_cpu(a->length) -
1356 				le16_to_cpu(a->data.resident.value_offset);
1357 		if (vi->i_size > ni->allocated_size) {
1358 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1359 					"(size exceeds allocation).");
1360 			goto unm_err_out;
1361 		}
1362 	} else {
1363 		NInoSetNonResident(ni);
1364 		/*
1365 		 * Ensure the attribute name is placed before the mapping pairs
1366 		 * array.
1367 		 */
1368 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1369 				le16_to_cpu(
1370 				a->data.non_resident.mapping_pairs_offset)))) {
1371 			ntfs_error(vol->sb, "Attribute name is placed after "
1372 					"the mapping pairs array.");
1373 			goto unm_err_out;
1374 		}
1375 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1376 			if (NInoCompressed(ni) && a->data.non_resident.
1377 					compression_unit != 4) {
1378 				ntfs_error(vi->i_sb, "Found non-standard "
1379 						"compression unit (%u instead "
1380 						"of 4).  Cannot handle this.",
1381 						a->data.non_resident.
1382 						compression_unit);
1383 				err = -EOPNOTSUPP;
1384 				goto unm_err_out;
1385 			}
1386 			if (a->data.non_resident.compression_unit) {
1387 				ni->itype.compressed.block_size = 1U <<
1388 						(a->data.non_resident.
1389 						compression_unit +
1390 						vol->cluster_size_bits);
1391 				ni->itype.compressed.block_size_bits =
1392 						ffs(ni->itype.compressed.
1393 						block_size) - 1;
1394 				ni->itype.compressed.block_clusters = 1U <<
1395 						a->data.non_resident.
1396 						compression_unit;
1397 			} else {
1398 				ni->itype.compressed.block_size = 0;
1399 				ni->itype.compressed.block_size_bits = 0;
1400 				ni->itype.compressed.block_clusters = 0;
1401 			}
1402 			ni->itype.compressed.size = sle64_to_cpu(
1403 					a->data.non_resident.compressed_size);
1404 		}
1405 		if (a->data.non_resident.lowest_vcn) {
1406 			ntfs_error(vi->i_sb, "First extent of attribute has "
1407 					"non-zero lowest_vcn.");
1408 			goto unm_err_out;
1409 		}
1410 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1411 		ni->initialized_size = sle64_to_cpu(
1412 				a->data.non_resident.initialized_size);
1413 		ni->allocated_size = sle64_to_cpu(
1414 				a->data.non_resident.allocated_size);
1415 	}
1416 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1417 	if (NInoMstProtected(ni))
1418 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1419 	else if (NInoCompressed(ni))
1420 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1421 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1422 		vi->i_blocks = ni->itype.compressed.size >> 9;
1423 	else
1424 		vi->i_blocks = ni->allocated_size >> 9;
1425 	/*
1426 	 * Make sure the base inode does not go away and attach it to the
1427 	 * attribute inode.
1428 	 */
1429 	igrab(base_vi);
1430 	ni->ext.base_ntfs_ino = base_ni;
1431 	ni->nr_extents = -1;
1432 
1433 	ntfs_attr_put_search_ctx(ctx);
1434 	unmap_mft_record(base_ni);
1435 
1436 	ntfs_debug("Done.");
1437 	return 0;
1438 
1439 unm_err_out:
1440 	if (!err)
1441 		err = -EIO;
1442 	if (ctx)
1443 		ntfs_attr_put_search_ctx(ctx);
1444 	unmap_mft_record(base_ni);
1445 err_out:
1446 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1447 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1448 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1449 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1450 			base_vi->i_ino);
1451 	make_bad_inode(vi);
1452 	if (err != -ENOMEM)
1453 		NVolSetErrors(vol);
1454 	return err;
1455 }
1456 
1457 /**
1458  * ntfs_read_locked_index_inode - read an index inode from its base inode
1459  * @base_vi:	base inode
1460  * @vi:		index inode to read
1461  *
1462  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463  * index inode described by @vi into memory from the base mft record described
1464  * by @base_ni.
1465  *
1466  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467  * reading and looks up the attributes relating to the index described by @vi
1468  * before setting up the necessary fields in @vi as well as initializing the
1469  * ntfs inode.
1470  *
1471  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1473  * are setup like directory inodes since directories are a special case of
1474  * indices ao they need to be treated in much the same way.  Most importantly,
1475  * for small indices the index allocation attribute might not actually exist.
1476  * However, the index root attribute always exists but this does not need to
1477  * have an inode associated with it and this is why we define a new inode type
1478  * index.  Also, like for directories, we need to have an attribute inode for
1479  * the bitmap attribute corresponding to the index allocation attribute and we
1480  * can store this in the appropriate field of the inode, just like we do for
1481  * normal directory inodes.
1482  *
1483  * Q: What locks are held when the function is called?
1484  * A: i_state has I_NEW set, hence the inode is locked, also
1485  *    i_count is set to 1, so it is not going to go away
1486  *
1487  * Return 0 on success and -errno on error.  In the error case, the inode will
1488  * have had make_bad_inode() executed on it.
1489  */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1490 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1491 {
1492 	loff_t bvi_size;
1493 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1494 	ntfs_inode *ni, *base_ni, *bni;
1495 	struct inode *bvi;
1496 	MFT_RECORD *m;
1497 	ATTR_RECORD *a;
1498 	ntfs_attr_search_ctx *ctx;
1499 	INDEX_ROOT *ir;
1500 	u8 *ir_end, *index_end;
1501 	int err = 0;
1502 
1503 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1504 	ntfs_init_big_inode(vi);
1505 	ni	= NTFS_I(vi);
1506 	base_ni = NTFS_I(base_vi);
1507 	/* Just mirror the values from the base inode. */
1508 	vi->i_uid	= base_vi->i_uid;
1509 	vi->i_gid	= base_vi->i_gid;
1510 	set_nlink(vi, base_vi->i_nlink);
1511 	vi->i_mtime	= base_vi->i_mtime;
1512 	vi->i_ctime	= base_vi->i_ctime;
1513 	vi->i_atime	= base_vi->i_atime;
1514 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1515 	/* Set inode type to zero but preserve permissions. */
1516 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1517 	/* Map the mft record for the base inode. */
1518 	m = map_mft_record(base_ni);
1519 	if (IS_ERR(m)) {
1520 		err = PTR_ERR(m);
1521 		goto err_out;
1522 	}
1523 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1524 	if (!ctx) {
1525 		err = -ENOMEM;
1526 		goto unm_err_out;
1527 	}
1528 	/* Find the index root attribute. */
1529 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1530 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1531 	if (unlikely(err)) {
1532 		if (err == -ENOENT)
1533 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1534 					"missing.");
1535 		goto unm_err_out;
1536 	}
1537 	a = ctx->attr;
1538 	/* Set up the state. */
1539 	if (unlikely(a->non_resident)) {
1540 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1541 		goto unm_err_out;
1542 	}
1543 	/* Ensure the attribute name is placed before the value. */
1544 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1545 			le16_to_cpu(a->data.resident.value_offset)))) {
1546 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1547 				"after the attribute value.");
1548 		goto unm_err_out;
1549 	}
1550 	/*
1551 	 * Compressed/encrypted/sparse index root is not allowed, except for
1552 	 * directories of course but those are not dealt with here.
1553 	 */
1554 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1555 			ATTR_IS_SPARSE)) {
1556 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1557 				"root attribute.");
1558 		goto unm_err_out;
1559 	}
1560 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1561 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1562 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1563 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1564 		goto unm_err_out;
1565 	}
1566 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1567 	if (index_end > ir_end) {
1568 		ntfs_error(vi->i_sb, "Index is corrupt.");
1569 		goto unm_err_out;
1570 	}
1571 	if (ir->type) {
1572 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1573 				le32_to_cpu(ir->type));
1574 		goto unm_err_out;
1575 	}
1576 	ni->itype.index.collation_rule = ir->collation_rule;
1577 	ntfs_debug("Index collation rule is 0x%x.",
1578 			le32_to_cpu(ir->collation_rule));
1579 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1580 	if (!is_power_of_2(ni->itype.index.block_size)) {
1581 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1582 				"two.", ni->itype.index.block_size);
1583 		goto unm_err_out;
1584 	}
1585 	if (ni->itype.index.block_size > PAGE_SIZE) {
1586 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1587 				"(%ld) is not supported.  Sorry.",
1588 				ni->itype.index.block_size, PAGE_SIZE);
1589 		err = -EOPNOTSUPP;
1590 		goto unm_err_out;
1591 	}
1592 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1593 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1594 				"(%i) is not supported.  Sorry.",
1595 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1596 		err = -EOPNOTSUPP;
1597 		goto unm_err_out;
1598 	}
1599 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1600 	/* Determine the size of a vcn in the index. */
1601 	if (vol->cluster_size <= ni->itype.index.block_size) {
1602 		ni->itype.index.vcn_size = vol->cluster_size;
1603 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1604 	} else {
1605 		ni->itype.index.vcn_size = vol->sector_size;
1606 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1607 	}
1608 	/* Check for presence of index allocation attribute. */
1609 	if (!(ir->index.flags & LARGE_INDEX)) {
1610 		/* No index allocation. */
1611 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1612 		/* We are done with the mft record, so we release it. */
1613 		ntfs_attr_put_search_ctx(ctx);
1614 		unmap_mft_record(base_ni);
1615 		m = NULL;
1616 		ctx = NULL;
1617 		goto skip_large_index_stuff;
1618 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1619 	NInoSetIndexAllocPresent(ni);
1620 	/* Find index allocation attribute. */
1621 	ntfs_attr_reinit_search_ctx(ctx);
1622 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1623 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1624 	if (unlikely(err)) {
1625 		if (err == -ENOENT)
1626 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 					"not present but $INDEX_ROOT "
1628 					"indicated it is.");
1629 		else
1630 			ntfs_error(vi->i_sb, "Failed to lookup "
1631 					"$INDEX_ALLOCATION attribute.");
1632 		goto unm_err_out;
1633 	}
1634 	a = ctx->attr;
1635 	if (!a->non_resident) {
1636 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637 				"resident.");
1638 		goto unm_err_out;
1639 	}
1640 	/*
1641 	 * Ensure the attribute name is placed before the mapping pairs array.
1642 	 */
1643 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1644 			le16_to_cpu(
1645 			a->data.non_resident.mapping_pairs_offset)))) {
1646 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1647 				"placed after the mapping pairs array.");
1648 		goto unm_err_out;
1649 	}
1650 	if (a->flags & ATTR_IS_ENCRYPTED) {
1651 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1652 				"encrypted.");
1653 		goto unm_err_out;
1654 	}
1655 	if (a->flags & ATTR_IS_SPARSE) {
1656 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1657 		goto unm_err_out;
1658 	}
1659 	if (a->flags & ATTR_COMPRESSION_MASK) {
1660 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1661 				"compressed.");
1662 		goto unm_err_out;
1663 	}
1664 	if (a->data.non_resident.lowest_vcn) {
1665 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1666 				"attribute has non zero lowest_vcn.");
1667 		goto unm_err_out;
1668 	}
1669 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1670 	ni->initialized_size = sle64_to_cpu(
1671 			a->data.non_resident.initialized_size);
1672 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1673 	/*
1674 	 * We are done with the mft record, so we release it.  Otherwise
1675 	 * we would deadlock in ntfs_attr_iget().
1676 	 */
1677 	ntfs_attr_put_search_ctx(ctx);
1678 	unmap_mft_record(base_ni);
1679 	m = NULL;
1680 	ctx = NULL;
1681 	/* Get the index bitmap attribute inode. */
1682 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1683 	if (IS_ERR(bvi)) {
1684 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1685 		err = PTR_ERR(bvi);
1686 		goto unm_err_out;
1687 	}
1688 	bni = NTFS_I(bvi);
1689 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1690 			NInoSparse(bni)) {
1691 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1692 				"encrypted and/or sparse.");
1693 		goto iput_unm_err_out;
1694 	}
1695 	/* Consistency check bitmap size vs. index allocation size. */
1696 	bvi_size = i_size_read(bvi);
1697 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1698 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1699 				"index allocation (0x%llx).", bvi_size << 3,
1700 				vi->i_size);
1701 		goto iput_unm_err_out;
1702 	}
1703 	iput(bvi);
1704 skip_large_index_stuff:
1705 	/* Setup the operations for this index inode. */
1706 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1707 	vi->i_blocks = ni->allocated_size >> 9;
1708 	/*
1709 	 * Make sure the base inode doesn't go away and attach it to the
1710 	 * index inode.
1711 	 */
1712 	igrab(base_vi);
1713 	ni->ext.base_ntfs_ino = base_ni;
1714 	ni->nr_extents = -1;
1715 
1716 	ntfs_debug("Done.");
1717 	return 0;
1718 iput_unm_err_out:
1719 	iput(bvi);
1720 unm_err_out:
1721 	if (!err)
1722 		err = -EIO;
1723 	if (ctx)
1724 		ntfs_attr_put_search_ctx(ctx);
1725 	if (m)
1726 		unmap_mft_record(base_ni);
1727 err_out:
1728 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1729 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1730 			ni->name_len);
1731 	make_bad_inode(vi);
1732 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1733 		NVolSetErrors(vol);
1734 	return err;
1735 }
1736 
1737 /*
1738  * The MFT inode has special locking, so teach the lock validator
1739  * about this by splitting off the locking rules of the MFT from
1740  * the locking rules of other inodes. The MFT inode can never be
1741  * accessed from the VFS side (or even internally), only by the
1742  * map_mft functions.
1743  */
1744 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1745 
1746 /**
1747  * ntfs_read_inode_mount - special read_inode for mount time use only
1748  * @vi:		inode to read
1749  *
1750  * Read inode FILE_MFT at mount time, only called with super_block lock
1751  * held from within the read_super() code path.
1752  *
1753  * This function exists because when it is called the page cache for $MFT/$DATA
1754  * is not initialized and hence we cannot get at the contents of mft records
1755  * by calling map_mft_record*().
1756  *
1757  * Further it needs to cope with the circular references problem, i.e. cannot
1758  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1759  * we do not know where the other extent mft records are yet and again, because
1760  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1761  * attribute list is actually present in $MFT inode.
1762  *
1763  * We solve these problems by starting with the $DATA attribute before anything
1764  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1765  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1766  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1767  * sufficient information for the next step to complete.
1768  *
1769  * This should work but there are two possible pit falls (see inline comments
1770  * below), but only time will tell if they are real pits or just smoke...
1771  */
ntfs_read_inode_mount(struct inode * vi)1772 int ntfs_read_inode_mount(struct inode *vi)
1773 {
1774 	VCN next_vcn, last_vcn, highest_vcn;
1775 	s64 block;
1776 	struct super_block *sb = vi->i_sb;
1777 	ntfs_volume *vol = NTFS_SB(sb);
1778 	struct buffer_head *bh;
1779 	ntfs_inode *ni;
1780 	MFT_RECORD *m = NULL;
1781 	ATTR_RECORD *a;
1782 	ntfs_attr_search_ctx *ctx;
1783 	unsigned int i, nr_blocks;
1784 	int err;
1785 
1786 	ntfs_debug("Entering.");
1787 
1788 	/* Initialize the ntfs specific part of @vi. */
1789 	ntfs_init_big_inode(vi);
1790 
1791 	ni = NTFS_I(vi);
1792 
1793 	/* Setup the data attribute. It is special as it is mst protected. */
1794 	NInoSetNonResident(ni);
1795 	NInoSetMstProtected(ni);
1796 	NInoSetSparseDisabled(ni);
1797 	ni->type = AT_DATA;
1798 	ni->name = NULL;
1799 	ni->name_len = 0;
1800 	/*
1801 	 * This sets up our little cheat allowing us to reuse the async read io
1802 	 * completion handler for directories.
1803 	 */
1804 	ni->itype.index.block_size = vol->mft_record_size;
1805 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1806 
1807 	/* Very important! Needed to be able to call map_mft_record*(). */
1808 	vol->mft_ino = vi;
1809 
1810 	/* Allocate enough memory to read the first mft record. */
1811 	if (vol->mft_record_size > 64 * 1024) {
1812 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1813 				vol->mft_record_size);
1814 		goto err_out;
1815 	}
1816 	i = vol->mft_record_size;
1817 	if (i < sb->s_blocksize)
1818 		i = sb->s_blocksize;
1819 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1820 	if (!m) {
1821 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1822 		goto err_out;
1823 	}
1824 
1825 	/* Determine the first block of the $MFT/$DATA attribute. */
1826 	block = vol->mft_lcn << vol->cluster_size_bits >>
1827 			sb->s_blocksize_bits;
1828 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1829 	if (!nr_blocks)
1830 		nr_blocks = 1;
1831 
1832 	/* Load $MFT/$DATA's first mft record. */
1833 	for (i = 0; i < nr_blocks; i++) {
1834 		bh = sb_bread(sb, block++);
1835 		if (!bh) {
1836 			ntfs_error(sb, "Device read failed.");
1837 			goto err_out;
1838 		}
1839 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1840 				sb->s_blocksize);
1841 		brelse(bh);
1842 	}
1843 
1844 	if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1845 		ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1846 				le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1847 		goto err_out;
1848 	}
1849 
1850 	/* Apply the mst fixups. */
1851 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1852 		/* FIXME: Try to use the $MFTMirr now. */
1853 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1854 		goto err_out;
1855 	}
1856 
1857 	/* Sanity check offset to the first attribute */
1858 	if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) {
1859 		ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.",
1860 			       le16_to_cpu(m->attrs_offset));
1861 		goto err_out;
1862 	}
1863 
1864 	/* Need this to sanity check attribute list references to $MFT. */
1865 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1866 
1867 	/* Provides readpage() for map_mft_record(). */
1868 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1869 
1870 	ctx = ntfs_attr_get_search_ctx(ni, m);
1871 	if (!ctx) {
1872 		err = -ENOMEM;
1873 		goto err_out;
1874 	}
1875 
1876 	/* Find the attribute list attribute if present. */
1877 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1878 	if (err) {
1879 		if (unlikely(err != -ENOENT)) {
1880 			ntfs_error(sb, "Failed to lookup attribute list "
1881 					"attribute. You should run chkdsk.");
1882 			goto put_err_out;
1883 		}
1884 	} else /* if (!err) */ {
1885 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1886 		u8 *al_end;
1887 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1888 				"You should run chkdsk.";
1889 
1890 		ntfs_debug("Attribute list attribute found in $MFT.");
1891 		NInoSetAttrList(ni);
1892 		a = ctx->attr;
1893 		if (a->flags & ATTR_COMPRESSION_MASK) {
1894 			ntfs_error(sb, "Attribute list attribute is "
1895 					"compressed.%s", es);
1896 			goto put_err_out;
1897 		}
1898 		if (a->flags & ATTR_IS_ENCRYPTED ||
1899 				a->flags & ATTR_IS_SPARSE) {
1900 			if (a->non_resident) {
1901 				ntfs_error(sb, "Non-resident attribute list "
1902 						"attribute is encrypted/"
1903 						"sparse.%s", es);
1904 				goto put_err_out;
1905 			}
1906 			ntfs_warning(sb, "Resident attribute list attribute "
1907 					"in $MFT system file is marked "
1908 					"encrypted/sparse which is not true.  "
1909 					"However, Windows allows this and "
1910 					"chkdsk does not detect or correct it "
1911 					"so we will just ignore the invalid "
1912 					"flags and pretend they are not set.");
1913 		}
1914 		/* Now allocate memory for the attribute list. */
1915 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1916 		if (!ni->attr_list_size) {
1917 			ntfs_error(sb, "Attr_list_size is zero");
1918 			goto put_err_out;
1919 		}
1920 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1921 		if (!ni->attr_list) {
1922 			ntfs_error(sb, "Not enough memory to allocate buffer "
1923 					"for attribute list.");
1924 			goto put_err_out;
1925 		}
1926 		if (a->non_resident) {
1927 			NInoSetAttrListNonResident(ni);
1928 			if (a->data.non_resident.lowest_vcn) {
1929 				ntfs_error(sb, "Attribute list has non zero "
1930 						"lowest_vcn. $MFT is corrupt. "
1931 						"You should run chkdsk.");
1932 				goto put_err_out;
1933 			}
1934 			/* Setup the runlist. */
1935 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1936 					a, NULL);
1937 			if (IS_ERR(ni->attr_list_rl.rl)) {
1938 				err = PTR_ERR(ni->attr_list_rl.rl);
1939 				ni->attr_list_rl.rl = NULL;
1940 				ntfs_error(sb, "Mapping pairs decompression "
1941 						"failed with error code %i.",
1942 						-err);
1943 				goto put_err_out;
1944 			}
1945 			/* Now load the attribute list. */
1946 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1947 					ni->attr_list, ni->attr_list_size,
1948 					sle64_to_cpu(a->data.
1949 					non_resident.initialized_size)))) {
1950 				ntfs_error(sb, "Failed to load attribute list "
1951 						"attribute with error code %i.",
1952 						-err);
1953 				goto put_err_out;
1954 			}
1955 		} else /* if (!ctx.attr->non_resident) */ {
1956 			if ((u8*)a + le16_to_cpu(
1957 					a->data.resident.value_offset) +
1958 					le32_to_cpu(
1959 					a->data.resident.value_length) >
1960 					(u8*)ctx->mrec + vol->mft_record_size) {
1961 				ntfs_error(sb, "Corrupt attribute list "
1962 						"attribute.");
1963 				goto put_err_out;
1964 			}
1965 			/* Now copy the attribute list. */
1966 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1967 					a->data.resident.value_offset),
1968 					le32_to_cpu(
1969 					a->data.resident.value_length));
1970 		}
1971 		/* The attribute list is now setup in memory. */
1972 		/*
1973 		 * FIXME: I don't know if this case is actually possible.
1974 		 * According to logic it is not possible but I have seen too
1975 		 * many weird things in MS software to rely on logic... Thus we
1976 		 * perform a manual search and make sure the first $MFT/$DATA
1977 		 * extent is in the base inode. If it is not we abort with an
1978 		 * error and if we ever see a report of this error we will need
1979 		 * to do some magic in order to have the necessary mft record
1980 		 * loaded and in the right place in the page cache. But
1981 		 * hopefully logic will prevail and this never happens...
1982 		 */
1983 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1984 		al_end = (u8*)al_entry + ni->attr_list_size;
1985 		for (;; al_entry = next_al_entry) {
1986 			/* Out of bounds check. */
1987 			if ((u8*)al_entry < ni->attr_list ||
1988 					(u8*)al_entry > al_end)
1989 				goto em_put_err_out;
1990 			/* Catch the end of the attribute list. */
1991 			if ((u8*)al_entry == al_end)
1992 				goto em_put_err_out;
1993 			if (!al_entry->length)
1994 				goto em_put_err_out;
1995 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1996 					le16_to_cpu(al_entry->length) > al_end)
1997 				goto em_put_err_out;
1998 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1999 					le16_to_cpu(al_entry->length));
2000 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
2001 				goto em_put_err_out;
2002 			if (AT_DATA != al_entry->type)
2003 				continue;
2004 			/* We want an unnamed attribute. */
2005 			if (al_entry->name_length)
2006 				goto em_put_err_out;
2007 			/* Want the first entry, i.e. lowest_vcn == 0. */
2008 			if (al_entry->lowest_vcn)
2009 				goto em_put_err_out;
2010 			/* First entry has to be in the base mft record. */
2011 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
2012 				/* MFT references do not match, logic fails. */
2013 				ntfs_error(sb, "BUG: The first $DATA extent "
2014 						"of $MFT is not in the base "
2015 						"mft record. Please report "
2016 						"you saw this message to "
2017 						"linux-ntfs-dev@lists."
2018 						"sourceforge.net");
2019 				goto put_err_out;
2020 			} else {
2021 				/* Sequence numbers must match. */
2022 				if (MSEQNO_LE(al_entry->mft_reference) !=
2023 						ni->seq_no)
2024 					goto em_put_err_out;
2025 				/* Got it. All is ok. We can stop now. */
2026 				break;
2027 			}
2028 		}
2029 	}
2030 
2031 	ntfs_attr_reinit_search_ctx(ctx);
2032 
2033 	/* Now load all attribute extents. */
2034 	a = NULL;
2035 	next_vcn = last_vcn = highest_vcn = 0;
2036 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2037 			ctx))) {
2038 		runlist_element *nrl;
2039 
2040 		/* Cache the current attribute. */
2041 		a = ctx->attr;
2042 		/* $MFT must be non-resident. */
2043 		if (!a->non_resident) {
2044 			ntfs_error(sb, "$MFT must be non-resident but a "
2045 					"resident extent was found. $MFT is "
2046 					"corrupt. Run chkdsk.");
2047 			goto put_err_out;
2048 		}
2049 		/* $MFT must be uncompressed and unencrypted. */
2050 		if (a->flags & ATTR_COMPRESSION_MASK ||
2051 				a->flags & ATTR_IS_ENCRYPTED ||
2052 				a->flags & ATTR_IS_SPARSE) {
2053 			ntfs_error(sb, "$MFT must be uncompressed, "
2054 					"non-sparse, and unencrypted but a "
2055 					"compressed/sparse/encrypted extent "
2056 					"was found. $MFT is corrupt. Run "
2057 					"chkdsk.");
2058 			goto put_err_out;
2059 		}
2060 		/*
2061 		 * Decompress the mapping pairs array of this extent and merge
2062 		 * the result into the existing runlist. No need for locking
2063 		 * as we have exclusive access to the inode at this time and we
2064 		 * are a mount in progress task, too.
2065 		 */
2066 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2067 		if (IS_ERR(nrl)) {
2068 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2069 					"failed with error code %ld.  $MFT is "
2070 					"corrupt.", PTR_ERR(nrl));
2071 			goto put_err_out;
2072 		}
2073 		ni->runlist.rl = nrl;
2074 
2075 		/* Are we in the first extent? */
2076 		if (!next_vcn) {
2077 			if (a->data.non_resident.lowest_vcn) {
2078 				ntfs_error(sb, "First extent of $DATA "
2079 						"attribute has non zero "
2080 						"lowest_vcn. $MFT is corrupt. "
2081 						"You should run chkdsk.");
2082 				goto put_err_out;
2083 			}
2084 			/* Get the last vcn in the $DATA attribute. */
2085 			last_vcn = sle64_to_cpu(
2086 					a->data.non_resident.allocated_size)
2087 					>> vol->cluster_size_bits;
2088 			/* Fill in the inode size. */
2089 			vi->i_size = sle64_to_cpu(
2090 					a->data.non_resident.data_size);
2091 			ni->initialized_size = sle64_to_cpu(
2092 					a->data.non_resident.initialized_size);
2093 			ni->allocated_size = sle64_to_cpu(
2094 					a->data.non_resident.allocated_size);
2095 			/*
2096 			 * Verify the number of mft records does not exceed
2097 			 * 2^32 - 1.
2098 			 */
2099 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2100 					(1ULL << 32)) {
2101 				ntfs_error(sb, "$MFT is too big! Aborting.");
2102 				goto put_err_out;
2103 			}
2104 			/*
2105 			 * We have got the first extent of the runlist for
2106 			 * $MFT which means it is now relatively safe to call
2107 			 * the normal ntfs_read_inode() function.
2108 			 * Complete reading the inode, this will actually
2109 			 * re-read the mft record for $MFT, this time entering
2110 			 * it into the page cache with which we complete the
2111 			 * kick start of the volume. It should be safe to do
2112 			 * this now as the first extent of $MFT/$DATA is
2113 			 * already known and we would hope that we don't need
2114 			 * further extents in order to find the other
2115 			 * attributes belonging to $MFT. Only time will tell if
2116 			 * this is really the case. If not we will have to play
2117 			 * magic at this point, possibly duplicating a lot of
2118 			 * ntfs_read_inode() at this point. We will need to
2119 			 * ensure we do enough of its work to be able to call
2120 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2121 			 * hope this never happens...
2122 			 */
2123 			ntfs_read_locked_inode(vi);
2124 			if (is_bad_inode(vi)) {
2125 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2126 						"failed. BUG or corrupt $MFT. "
2127 						"Run chkdsk and if no errors "
2128 						"are found, please report you "
2129 						"saw this message to "
2130 						"linux-ntfs-dev@lists."
2131 						"sourceforge.net");
2132 				ntfs_attr_put_search_ctx(ctx);
2133 				/* Revert to the safe super operations. */
2134 				ntfs_free(m);
2135 				return -1;
2136 			}
2137 			/*
2138 			 * Re-initialize some specifics about $MFT's inode as
2139 			 * ntfs_read_inode() will have set up the default ones.
2140 			 */
2141 			/* Set uid and gid to root. */
2142 			vi->i_uid = GLOBAL_ROOT_UID;
2143 			vi->i_gid = GLOBAL_ROOT_GID;
2144 			/* Regular file. No access for anyone. */
2145 			vi->i_mode = S_IFREG;
2146 			/* No VFS initiated operations allowed for $MFT. */
2147 			vi->i_op = &ntfs_empty_inode_ops;
2148 			vi->i_fop = &ntfs_empty_file_ops;
2149 		}
2150 
2151 		/* Get the lowest vcn for the next extent. */
2152 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2153 		next_vcn = highest_vcn + 1;
2154 
2155 		/* Only one extent or error, which we catch below. */
2156 		if (next_vcn <= 0)
2157 			break;
2158 
2159 		/* Avoid endless loops due to corruption. */
2160 		if (next_vcn < sle64_to_cpu(
2161 				a->data.non_resident.lowest_vcn)) {
2162 			ntfs_error(sb, "$MFT has corrupt attribute list "
2163 					"attribute. Run chkdsk.");
2164 			goto put_err_out;
2165 		}
2166 	}
2167 	if (err != -ENOENT) {
2168 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2169 				"$MFT is corrupt. Run chkdsk.");
2170 		goto put_err_out;
2171 	}
2172 	if (!a) {
2173 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2174 				"corrupt. Run chkdsk.");
2175 		goto put_err_out;
2176 	}
2177 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2178 		ntfs_error(sb, "Failed to load the complete runlist for "
2179 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2180 				"Run chkdsk.");
2181 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2182 				(unsigned long long)highest_vcn,
2183 				(unsigned long long)last_vcn - 1);
2184 		goto put_err_out;
2185 	}
2186 	ntfs_attr_put_search_ctx(ctx);
2187 	ntfs_debug("Done.");
2188 	ntfs_free(m);
2189 
2190 	/*
2191 	 * Split the locking rules of the MFT inode from the
2192 	 * locking rules of other inodes:
2193 	 */
2194 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2195 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2196 
2197 	return 0;
2198 
2199 em_put_err_out:
2200 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2201 			"attribute list. $MFT is corrupt. Run chkdsk.");
2202 put_err_out:
2203 	ntfs_attr_put_search_ctx(ctx);
2204 err_out:
2205 	ntfs_error(sb, "Failed. Marking inode as bad.");
2206 	make_bad_inode(vi);
2207 	ntfs_free(m);
2208 	return -1;
2209 }
2210 
__ntfs_clear_inode(ntfs_inode * ni)2211 static void __ntfs_clear_inode(ntfs_inode *ni)
2212 {
2213 	/* Free all alocated memory. */
2214 	down_write(&ni->runlist.lock);
2215 	if (ni->runlist.rl) {
2216 		ntfs_free(ni->runlist.rl);
2217 		ni->runlist.rl = NULL;
2218 	}
2219 	up_write(&ni->runlist.lock);
2220 
2221 	if (ni->attr_list) {
2222 		ntfs_free(ni->attr_list);
2223 		ni->attr_list = NULL;
2224 	}
2225 
2226 	down_write(&ni->attr_list_rl.lock);
2227 	if (ni->attr_list_rl.rl) {
2228 		ntfs_free(ni->attr_list_rl.rl);
2229 		ni->attr_list_rl.rl = NULL;
2230 	}
2231 	up_write(&ni->attr_list_rl.lock);
2232 
2233 	if (ni->name_len && ni->name != I30) {
2234 		/* Catch bugs... */
2235 		BUG_ON(!ni->name);
2236 		kfree(ni->name);
2237 	}
2238 }
2239 
ntfs_clear_extent_inode(ntfs_inode * ni)2240 void ntfs_clear_extent_inode(ntfs_inode *ni)
2241 {
2242 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2243 
2244 	BUG_ON(NInoAttr(ni));
2245 	BUG_ON(ni->nr_extents != -1);
2246 
2247 #ifdef NTFS_RW
2248 	if (NInoDirty(ni)) {
2249 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2250 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2251 					"Losing data!  This is a BUG!!!");
2252 		// FIXME:  Do something!!!
2253 	}
2254 #endif /* NTFS_RW */
2255 
2256 	__ntfs_clear_inode(ni);
2257 
2258 	/* Bye, bye... */
2259 	ntfs_destroy_extent_inode(ni);
2260 }
2261 
2262 /**
2263  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2264  * @vi:		vfs inode pending annihilation
2265  *
2266  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2267  * is called, which deallocates all memory belonging to the NTFS specific part
2268  * of the inode and returns.
2269  *
2270  * If the MFT record is dirty, we commit it before doing anything else.
2271  */
ntfs_evict_big_inode(struct inode * vi)2272 void ntfs_evict_big_inode(struct inode *vi)
2273 {
2274 	ntfs_inode *ni = NTFS_I(vi);
2275 
2276 	truncate_inode_pages_final(&vi->i_data);
2277 	clear_inode(vi);
2278 
2279 #ifdef NTFS_RW
2280 	if (NInoDirty(ni)) {
2281 		bool was_bad = (is_bad_inode(vi));
2282 
2283 		/* Committing the inode also commits all extent inodes. */
2284 		ntfs_commit_inode(vi);
2285 
2286 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2287 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2288 					"0x%lx.  Losing data!", vi->i_ino);
2289 			// FIXME:  Do something!!!
2290 		}
2291 	}
2292 #endif /* NTFS_RW */
2293 
2294 	/* No need to lock at this stage as no one else has a reference. */
2295 	if (ni->nr_extents > 0) {
2296 		int i;
2297 
2298 		for (i = 0; i < ni->nr_extents; i++)
2299 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2300 		kfree(ni->ext.extent_ntfs_inos);
2301 	}
2302 
2303 	__ntfs_clear_inode(ni);
2304 
2305 	if (NInoAttr(ni)) {
2306 		/* Release the base inode if we are holding it. */
2307 		if (ni->nr_extents == -1) {
2308 			iput(VFS_I(ni->ext.base_ntfs_ino));
2309 			ni->nr_extents = 0;
2310 			ni->ext.base_ntfs_ino = NULL;
2311 		}
2312 	}
2313 	return;
2314 }
2315 
2316 /**
2317  * ntfs_show_options - show mount options in /proc/mounts
2318  * @sf:		seq_file in which to write our mount options
2319  * @root:	root of the mounted tree whose mount options to display
2320  *
2321  * Called by the VFS once for each mounted ntfs volume when someone reads
2322  * /proc/mounts in order to display the NTFS specific mount options of each
2323  * mount. The mount options of fs specified by @root are written to the seq file
2324  * @sf and success is returned.
2325  */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2326 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2327 {
2328 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2329 	int i;
2330 
2331 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2332 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2333 	if (vol->fmask == vol->dmask)
2334 		seq_printf(sf, ",umask=0%o", vol->fmask);
2335 	else {
2336 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2337 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2338 	}
2339 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2340 	if (NVolCaseSensitive(vol))
2341 		seq_printf(sf, ",case_sensitive");
2342 	if (NVolShowSystemFiles(vol))
2343 		seq_printf(sf, ",show_sys_files");
2344 	if (!NVolSparseEnabled(vol))
2345 		seq_printf(sf, ",disable_sparse");
2346 	for (i = 0; on_errors_arr[i].val; i++) {
2347 		if (on_errors_arr[i].val & vol->on_errors)
2348 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2349 	}
2350 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2351 	return 0;
2352 }
2353 
2354 #ifdef NTFS_RW
2355 
2356 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2357 		"chkdsk.";
2358 
2359 /**
2360  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2361  * @vi:		inode for which the i_size was changed
2362  *
2363  * We only support i_size changes for normal files at present, i.e. not
2364  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2365  * below.
2366  *
2367  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2368  * that the change is allowed.
2369  *
2370  * This implies for us that @vi is a file inode rather than a directory, index,
2371  * or attribute inode as well as that @vi is a base inode.
2372  *
2373  * Returns 0 on success or -errno on error.
2374  *
2375  * Called with ->i_mutex held.
2376  */
ntfs_truncate(struct inode * vi)2377 int ntfs_truncate(struct inode *vi)
2378 {
2379 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2380 	VCN highest_vcn;
2381 	unsigned long flags;
2382 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2383 	ntfs_volume *vol = ni->vol;
2384 	ntfs_attr_search_ctx *ctx;
2385 	MFT_RECORD *m;
2386 	ATTR_RECORD *a;
2387 	const char *te = "  Leaving file length out of sync with i_size.";
2388 	int err, mp_size, size_change, alloc_change;
2389 	u32 attr_len;
2390 
2391 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2392 	BUG_ON(NInoAttr(ni));
2393 	BUG_ON(S_ISDIR(vi->i_mode));
2394 	BUG_ON(NInoMstProtected(ni));
2395 	BUG_ON(ni->nr_extents < 0);
2396 retry_truncate:
2397 	/*
2398 	 * Lock the runlist for writing and map the mft record to ensure it is
2399 	 * safe to mess with the attribute runlist and sizes.
2400 	 */
2401 	down_write(&ni->runlist.lock);
2402 	if (!NInoAttr(ni))
2403 		base_ni = ni;
2404 	else
2405 		base_ni = ni->ext.base_ntfs_ino;
2406 	m = map_mft_record(base_ni);
2407 	if (IS_ERR(m)) {
2408 		err = PTR_ERR(m);
2409 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2410 				"(error code %d).%s", vi->i_ino, err, te);
2411 		ctx = NULL;
2412 		m = NULL;
2413 		goto old_bad_out;
2414 	}
2415 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2416 	if (unlikely(!ctx)) {
2417 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2418 				"inode 0x%lx (not enough memory).%s",
2419 				vi->i_ino, te);
2420 		err = -ENOMEM;
2421 		goto old_bad_out;
2422 	}
2423 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2424 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2425 	if (unlikely(err)) {
2426 		if (err == -ENOENT) {
2427 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2428 					"mft record.  Inode 0x%lx is corrupt.  "
2429 					"Run chkdsk.%s", vi->i_ino, te);
2430 			err = -EIO;
2431 		} else
2432 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2433 					"inode 0x%lx (error code %d).%s",
2434 					vi->i_ino, err, te);
2435 		goto old_bad_out;
2436 	}
2437 	m = ctx->mrec;
2438 	a = ctx->attr;
2439 	/*
2440 	 * The i_size of the vfs inode is the new size for the attribute value.
2441 	 */
2442 	new_size = i_size_read(vi);
2443 	/* The current size of the attribute value is the old size. */
2444 	old_size = ntfs_attr_size(a);
2445 	/* Calculate the new allocated size. */
2446 	if (NInoNonResident(ni))
2447 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2448 				~(s64)vol->cluster_size_mask;
2449 	else
2450 		new_alloc_size = (new_size + 7) & ~7;
2451 	/* The current allocated size is the old allocated size. */
2452 	read_lock_irqsave(&ni->size_lock, flags);
2453 	old_alloc_size = ni->allocated_size;
2454 	read_unlock_irqrestore(&ni->size_lock, flags);
2455 	/*
2456 	 * The change in the file size.  This will be 0 if no change, >0 if the
2457 	 * size is growing, and <0 if the size is shrinking.
2458 	 */
2459 	size_change = -1;
2460 	if (new_size - old_size >= 0) {
2461 		size_change = 1;
2462 		if (new_size == old_size)
2463 			size_change = 0;
2464 	}
2465 	/* As above for the allocated size. */
2466 	alloc_change = -1;
2467 	if (new_alloc_size - old_alloc_size >= 0) {
2468 		alloc_change = 1;
2469 		if (new_alloc_size == old_alloc_size)
2470 			alloc_change = 0;
2471 	}
2472 	/*
2473 	 * If neither the size nor the allocation are being changed there is
2474 	 * nothing to do.
2475 	 */
2476 	if (!size_change && !alloc_change)
2477 		goto unm_done;
2478 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2479 	if (size_change) {
2480 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2481 		if (unlikely(err)) {
2482 			if (err == -ERANGE) {
2483 				ntfs_error(vol->sb, "Truncate would cause the "
2484 						"inode 0x%lx to %simum size "
2485 						"for its attribute type "
2486 						"(0x%x).  Aborting truncate.",
2487 						vi->i_ino,
2488 						new_size > old_size ? "exceed "
2489 						"the max" : "go under the min",
2490 						le32_to_cpu(ni->type));
2491 				err = -EFBIG;
2492 			} else {
2493 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2494 						"attribute type 0x%x.  "
2495 						"Aborting truncate.",
2496 						vi->i_ino,
2497 						le32_to_cpu(ni->type));
2498 				err = -EIO;
2499 			}
2500 			/* Reset the vfs inode size to the old size. */
2501 			i_size_write(vi, old_size);
2502 			goto err_out;
2503 		}
2504 	}
2505 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2506 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2507 				"supported yet for %s files, ignoring.",
2508 				NInoCompressed(ni) ? "compressed" :
2509 				"encrypted");
2510 		err = -EOPNOTSUPP;
2511 		goto bad_out;
2512 	}
2513 	if (a->non_resident)
2514 		goto do_non_resident_truncate;
2515 	BUG_ON(NInoNonResident(ni));
2516 	/* Resize the attribute record to best fit the new attribute size. */
2517 	if (new_size < vol->mft_record_size &&
2518 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2519 		/* The resize succeeded! */
2520 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2521 		mark_mft_record_dirty(ctx->ntfs_ino);
2522 		write_lock_irqsave(&ni->size_lock, flags);
2523 		/* Update the sizes in the ntfs inode and all is done. */
2524 		ni->allocated_size = le32_to_cpu(a->length) -
2525 				le16_to_cpu(a->data.resident.value_offset);
2526 		/*
2527 		 * Note ntfs_resident_attr_value_resize() has already done any
2528 		 * necessary data clearing in the attribute record.  When the
2529 		 * file is being shrunk vmtruncate() will already have cleared
2530 		 * the top part of the last partial page, i.e. since this is
2531 		 * the resident case this is the page with index 0.  However,
2532 		 * when the file is being expanded, the page cache page data
2533 		 * between the old data_size, i.e. old_size, and the new_size
2534 		 * has not been zeroed.  Fortunately, we do not need to zero it
2535 		 * either since on one hand it will either already be zero due
2536 		 * to both readpage and writepage clearing partial page data
2537 		 * beyond i_size in which case there is nothing to do or in the
2538 		 * case of the file being mmap()ped at the same time, POSIX
2539 		 * specifies that the behaviour is unspecified thus we do not
2540 		 * have to do anything.  This means that in our implementation
2541 		 * in the rare case that the file is mmap()ped and a write
2542 		 * occurred into the mmap()ped region just beyond the file size
2543 		 * and writepage has not yet been called to write out the page
2544 		 * (which would clear the area beyond the file size) and we now
2545 		 * extend the file size to incorporate this dirty region
2546 		 * outside the file size, a write of the page would result in
2547 		 * this data being written to disk instead of being cleared.
2548 		 * Given both POSIX and the Linux mmap(2) man page specify that
2549 		 * this corner case is undefined, we choose to leave it like
2550 		 * that as this is much simpler for us as we cannot lock the
2551 		 * relevant page now since we are holding too many ntfs locks
2552 		 * which would result in a lock reversal deadlock.
2553 		 */
2554 		ni->initialized_size = new_size;
2555 		write_unlock_irqrestore(&ni->size_lock, flags);
2556 		goto unm_done;
2557 	}
2558 	/* If the above resize failed, this must be an attribute extension. */
2559 	BUG_ON(size_change < 0);
2560 	/*
2561 	 * We have to drop all the locks so we can call
2562 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2563 	 * locking the first page cache page and only if that fails dropping
2564 	 * the locks, locking the page, and redoing all the locking and
2565 	 * lookups.  While this would be a huge optimisation, it is not worth
2566 	 * it as this is definitely a slow code path as it only ever can happen
2567 	 * once for any given file.
2568 	 */
2569 	ntfs_attr_put_search_ctx(ctx);
2570 	unmap_mft_record(base_ni);
2571 	up_write(&ni->runlist.lock);
2572 	/*
2573 	 * Not enough space in the mft record, try to make the attribute
2574 	 * non-resident and if successful restart the truncation process.
2575 	 */
2576 	err = ntfs_attr_make_non_resident(ni, old_size);
2577 	if (likely(!err))
2578 		goto retry_truncate;
2579 	/*
2580 	 * Could not make non-resident.  If this is due to this not being
2581 	 * permitted for this attribute type or there not being enough space,
2582 	 * try to make other attributes non-resident.  Otherwise fail.
2583 	 */
2584 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2585 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2586 				"type 0x%x, because the conversion from "
2587 				"resident to non-resident attribute failed "
2588 				"with error code %i.", vi->i_ino,
2589 				(unsigned)le32_to_cpu(ni->type), err);
2590 		if (err != -ENOMEM)
2591 			err = -EIO;
2592 		goto conv_err_out;
2593 	}
2594 	/* TODO: Not implemented from here, abort. */
2595 	if (err == -ENOSPC)
2596 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2597 				"disk for the non-resident attribute value.  "
2598 				"This case is not implemented yet.");
2599 	else /* if (err == -EPERM) */
2600 		ntfs_error(vol->sb, "This attribute type may not be "
2601 				"non-resident.  This case is not implemented "
2602 				"yet.");
2603 	err = -EOPNOTSUPP;
2604 	goto conv_err_out;
2605 #if 0
2606 	// TODO: Attempt to make other attributes non-resident.
2607 	if (!err)
2608 		goto do_resident_extend;
2609 	/*
2610 	 * Both the attribute list attribute and the standard information
2611 	 * attribute must remain in the base inode.  Thus, if this is one of
2612 	 * these attributes, we have to try to move other attributes out into
2613 	 * extent mft records instead.
2614 	 */
2615 	if (ni->type == AT_ATTRIBUTE_LIST ||
2616 			ni->type == AT_STANDARD_INFORMATION) {
2617 		// TODO: Attempt to move other attributes into extent mft
2618 		// records.
2619 		err = -EOPNOTSUPP;
2620 		if (!err)
2621 			goto do_resident_extend;
2622 		goto err_out;
2623 	}
2624 	// TODO: Attempt to move this attribute to an extent mft record, but
2625 	// only if it is not already the only attribute in an mft record in
2626 	// which case there would be nothing to gain.
2627 	err = -EOPNOTSUPP;
2628 	if (!err)
2629 		goto do_resident_extend;
2630 	/* There is nothing we can do to make enough space. )-: */
2631 	goto err_out;
2632 #endif
2633 do_non_resident_truncate:
2634 	BUG_ON(!NInoNonResident(ni));
2635 	if (alloc_change < 0) {
2636 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2637 		if (highest_vcn > 0 &&
2638 				old_alloc_size >> vol->cluster_size_bits >
2639 				highest_vcn + 1) {
2640 			/*
2641 			 * This attribute has multiple extents.  Not yet
2642 			 * supported.
2643 			 */
2644 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2645 					"attribute type 0x%x, because the "
2646 					"attribute is highly fragmented (it "
2647 					"consists of multiple extents) and "
2648 					"this case is not implemented yet.",
2649 					vi->i_ino,
2650 					(unsigned)le32_to_cpu(ni->type));
2651 			err = -EOPNOTSUPP;
2652 			goto bad_out;
2653 		}
2654 	}
2655 	/*
2656 	 * If the size is shrinking, need to reduce the initialized_size and
2657 	 * the data_size before reducing the allocation.
2658 	 */
2659 	if (size_change < 0) {
2660 		/*
2661 		 * Make the valid size smaller (i_size is already up-to-date).
2662 		 */
2663 		write_lock_irqsave(&ni->size_lock, flags);
2664 		if (new_size < ni->initialized_size) {
2665 			ni->initialized_size = new_size;
2666 			a->data.non_resident.initialized_size =
2667 					cpu_to_sle64(new_size);
2668 		}
2669 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2670 		write_unlock_irqrestore(&ni->size_lock, flags);
2671 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2672 		mark_mft_record_dirty(ctx->ntfs_ino);
2673 		/* If the allocated size is not changing, we are done. */
2674 		if (!alloc_change)
2675 			goto unm_done;
2676 		/*
2677 		 * If the size is shrinking it makes no sense for the
2678 		 * allocation to be growing.
2679 		 */
2680 		BUG_ON(alloc_change > 0);
2681 	} else /* if (size_change >= 0) */ {
2682 		/*
2683 		 * The file size is growing or staying the same but the
2684 		 * allocation can be shrinking, growing or staying the same.
2685 		 */
2686 		if (alloc_change > 0) {
2687 			/*
2688 			 * We need to extend the allocation and possibly update
2689 			 * the data size.  If we are updating the data size,
2690 			 * since we are not touching the initialized_size we do
2691 			 * not need to worry about the actual data on disk.
2692 			 * And as far as the page cache is concerned, there
2693 			 * will be no pages beyond the old data size and any
2694 			 * partial region in the last page between the old and
2695 			 * new data size (or the end of the page if the new
2696 			 * data size is outside the page) does not need to be
2697 			 * modified as explained above for the resident
2698 			 * attribute truncate case.  To do this, we simply drop
2699 			 * the locks we hold and leave all the work to our
2700 			 * friendly helper ntfs_attr_extend_allocation().
2701 			 */
2702 			ntfs_attr_put_search_ctx(ctx);
2703 			unmap_mft_record(base_ni);
2704 			up_write(&ni->runlist.lock);
2705 			err = ntfs_attr_extend_allocation(ni, new_size,
2706 					size_change > 0 ? new_size : -1, -1);
2707 			/*
2708 			 * ntfs_attr_extend_allocation() will have done error
2709 			 * output already.
2710 			 */
2711 			goto done;
2712 		}
2713 		if (!alloc_change)
2714 			goto alloc_done;
2715 	}
2716 	/* alloc_change < 0 */
2717 	/* Free the clusters. */
2718 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2719 			vol->cluster_size_bits, -1, ctx);
2720 	m = ctx->mrec;
2721 	a = ctx->attr;
2722 	if (unlikely(nr_freed < 0)) {
2723 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2724 				"%lli).  Unmount and run chkdsk to recover "
2725 				"the lost cluster(s).", (long long)nr_freed);
2726 		NVolSetErrors(vol);
2727 		nr_freed = 0;
2728 	}
2729 	/* Truncate the runlist. */
2730 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2731 			new_alloc_size >> vol->cluster_size_bits);
2732 	/*
2733 	 * If the runlist truncation failed and/or the search context is no
2734 	 * longer valid, we cannot resize the attribute record or build the
2735 	 * mapping pairs array thus we mark the inode bad so that no access to
2736 	 * the freed clusters can happen.
2737 	 */
2738 	if (unlikely(err || IS_ERR(m))) {
2739 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2740 				IS_ERR(m) ?
2741 				"restore attribute search context" :
2742 				"truncate attribute runlist",
2743 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2744 		err = -EIO;
2745 		goto bad_out;
2746 	}
2747 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2748 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2749 	if (unlikely(mp_size <= 0)) {
2750 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2751 				"attribute type 0x%x, because determining the "
2752 				"size for the mapping pairs failed with error "
2753 				"code %i.%s", vi->i_ino,
2754 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2755 		err = -EIO;
2756 		goto bad_out;
2757 	}
2758 	/*
2759 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2760 	 * this cannot fail since we are making the attribute smaller thus by
2761 	 * definition there is enough space to do so.
2762 	 */
2763 	attr_len = le32_to_cpu(a->length);
2764 	err = ntfs_attr_record_resize(m, a, mp_size +
2765 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2766 	BUG_ON(err);
2767 	/*
2768 	 * Generate the mapping pairs array directly into the attribute record.
2769 	 */
2770 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2771 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2772 			mp_size, ni->runlist.rl, 0, -1, NULL);
2773 	if (unlikely(err)) {
2774 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2775 				"attribute type 0x%x, because building the "
2776 				"mapping pairs failed with error code %i.%s",
2777 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2778 				err, es);
2779 		err = -EIO;
2780 		goto bad_out;
2781 	}
2782 	/* Update the allocated/compressed size as well as the highest vcn. */
2783 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2784 			vol->cluster_size_bits) - 1);
2785 	write_lock_irqsave(&ni->size_lock, flags);
2786 	ni->allocated_size = new_alloc_size;
2787 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2788 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2789 		if (nr_freed) {
2790 			ni->itype.compressed.size -= nr_freed <<
2791 					vol->cluster_size_bits;
2792 			BUG_ON(ni->itype.compressed.size < 0);
2793 			a->data.non_resident.compressed_size = cpu_to_sle64(
2794 					ni->itype.compressed.size);
2795 			vi->i_blocks = ni->itype.compressed.size >> 9;
2796 		}
2797 	} else
2798 		vi->i_blocks = new_alloc_size >> 9;
2799 	write_unlock_irqrestore(&ni->size_lock, flags);
2800 	/*
2801 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2802 	 * have already dealt with the initialized_size and the data_size above
2803 	 * and we are done.  If the truncate is only changing the allocation
2804 	 * and not the data_size, we are also done.  If this is an extending
2805 	 * truncate, need to extend the data_size now which is ensured by the
2806 	 * fact that @size_change is positive.
2807 	 */
2808 alloc_done:
2809 	/*
2810 	 * If the size is growing, need to update it now.  If it is shrinking,
2811 	 * we have already updated it above (before the allocation change).
2812 	 */
2813 	if (size_change > 0)
2814 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2815 	/* Ensure the modified mft record is written out. */
2816 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2817 	mark_mft_record_dirty(ctx->ntfs_ino);
2818 unm_done:
2819 	ntfs_attr_put_search_ctx(ctx);
2820 	unmap_mft_record(base_ni);
2821 	up_write(&ni->runlist.lock);
2822 done:
2823 	/* Update the mtime and ctime on the base inode. */
2824 	/* normally ->truncate shouldn't update ctime or mtime,
2825 	 * but ntfs did before so it got a copy & paste version
2826 	 * of file_update_time.  one day someone should fix this
2827 	 * for real.
2828 	 */
2829 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2830 		struct timespec64 now = current_time(VFS_I(base_ni));
2831 		int sync_it = 0;
2832 
2833 		if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2834 		    !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2835 			sync_it = 1;
2836 		VFS_I(base_ni)->i_mtime = now;
2837 		VFS_I(base_ni)->i_ctime = now;
2838 
2839 		if (sync_it)
2840 			mark_inode_dirty_sync(VFS_I(base_ni));
2841 	}
2842 
2843 	if (likely(!err)) {
2844 		NInoClearTruncateFailed(ni);
2845 		ntfs_debug("Done.");
2846 	}
2847 	return err;
2848 old_bad_out:
2849 	old_size = -1;
2850 bad_out:
2851 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2852 		NVolSetErrors(vol);
2853 	if (err != -EOPNOTSUPP)
2854 		NInoSetTruncateFailed(ni);
2855 	else if (old_size >= 0)
2856 		i_size_write(vi, old_size);
2857 err_out:
2858 	if (ctx)
2859 		ntfs_attr_put_search_ctx(ctx);
2860 	if (m)
2861 		unmap_mft_record(base_ni);
2862 	up_write(&ni->runlist.lock);
2863 out:
2864 	ntfs_debug("Failed.  Returning error code %i.", err);
2865 	return err;
2866 conv_err_out:
2867 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2868 		NVolSetErrors(vol);
2869 	if (err != -EOPNOTSUPP)
2870 		NInoSetTruncateFailed(ni);
2871 	else
2872 		i_size_write(vi, old_size);
2873 	goto out;
2874 }
2875 
2876 /**
2877  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2878  * @vi:		inode for which the i_size was changed
2879  *
2880  * Wrapper for ntfs_truncate() that has no return value.
2881  *
2882  * See ntfs_truncate() description above for details.
2883  */
2884 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2885 void ntfs_truncate_vfs(struct inode *vi) {
2886 	ntfs_truncate(vi);
2887 }
2888 #endif
2889 
2890 /**
2891  * ntfs_setattr - called from notify_change() when an attribute is being changed
2892  * @dentry:	dentry whose attributes to change
2893  * @attr:	structure describing the attributes and the changes
2894  *
2895  * We have to trap VFS attempts to truncate the file described by @dentry as
2896  * soon as possible, because we do not implement changes in i_size yet.  So we
2897  * abort all i_size changes here.
2898  *
2899  * We also abort all changes of user, group, and mode as we do not implement
2900  * the NTFS ACLs yet.
2901  *
2902  * Called with ->i_mutex held.
2903  */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2904 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2905 {
2906 	struct inode *vi = d_inode(dentry);
2907 	int err;
2908 	unsigned int ia_valid = attr->ia_valid;
2909 
2910 	err = setattr_prepare(dentry, attr);
2911 	if (err)
2912 		goto out;
2913 	/* We do not support NTFS ACLs yet. */
2914 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2915 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2916 				"supported yet, ignoring.");
2917 		err = -EOPNOTSUPP;
2918 		goto out;
2919 	}
2920 	if (ia_valid & ATTR_SIZE) {
2921 		if (attr->ia_size != i_size_read(vi)) {
2922 			ntfs_inode *ni = NTFS_I(vi);
2923 			/*
2924 			 * FIXME: For now we do not support resizing of
2925 			 * compressed or encrypted files yet.
2926 			 */
2927 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2928 				ntfs_warning(vi->i_sb, "Changes in inode size "
2929 						"are not supported yet for "
2930 						"%s files, ignoring.",
2931 						NInoCompressed(ni) ?
2932 						"compressed" : "encrypted");
2933 				err = -EOPNOTSUPP;
2934 			} else {
2935 				truncate_setsize(vi, attr->ia_size);
2936 				ntfs_truncate_vfs(vi);
2937 			}
2938 			if (err || ia_valid == ATTR_SIZE)
2939 				goto out;
2940 		} else {
2941 			/*
2942 			 * We skipped the truncate but must still update
2943 			 * timestamps.
2944 			 */
2945 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2946 		}
2947 	}
2948 	if (ia_valid & ATTR_ATIME)
2949 		vi->i_atime = timespec64_trunc(attr->ia_atime,
2950 					       vi->i_sb->s_time_gran);
2951 	if (ia_valid & ATTR_MTIME)
2952 		vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2953 					       vi->i_sb->s_time_gran);
2954 	if (ia_valid & ATTR_CTIME)
2955 		vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2956 					       vi->i_sb->s_time_gran);
2957 	mark_inode_dirty(vi);
2958 out:
2959 	return err;
2960 }
2961 
2962 /**
2963  * ntfs_write_inode - write out a dirty inode
2964  * @vi:		inode to write out
2965  * @sync:	if true, write out synchronously
2966  *
2967  * Write out a dirty inode to disk including any extent inodes if present.
2968  *
2969  * If @sync is true, commit the inode to disk and wait for io completion.  This
2970  * is done using write_mft_record().
2971  *
2972  * If @sync is false, just schedule the write to happen but do not wait for i/o
2973  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2974  * marking the page (and in this case mft record) dirty but we do not implement
2975  * this yet as write_mft_record() largely ignores the @sync parameter and
2976  * always performs synchronous writes.
2977  *
2978  * Return 0 on success and -errno on error.
2979  */
__ntfs_write_inode(struct inode * vi,int sync)2980 int __ntfs_write_inode(struct inode *vi, int sync)
2981 {
2982 	sle64 nt;
2983 	ntfs_inode *ni = NTFS_I(vi);
2984 	ntfs_attr_search_ctx *ctx;
2985 	MFT_RECORD *m;
2986 	STANDARD_INFORMATION *si;
2987 	int err = 0;
2988 	bool modified = false;
2989 
2990 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2991 			vi->i_ino);
2992 	/*
2993 	 * Dirty attribute inodes are written via their real inodes so just
2994 	 * clean them here.  Access time updates are taken care off when the
2995 	 * real inode is written.
2996 	 */
2997 	if (NInoAttr(ni)) {
2998 		NInoClearDirty(ni);
2999 		ntfs_debug("Done.");
3000 		return 0;
3001 	}
3002 	/* Map, pin, and lock the mft record belonging to the inode. */
3003 	m = map_mft_record(ni);
3004 	if (IS_ERR(m)) {
3005 		err = PTR_ERR(m);
3006 		goto err_out;
3007 	}
3008 	/* Update the access times in the standard information attribute. */
3009 	ctx = ntfs_attr_get_search_ctx(ni, m);
3010 	if (unlikely(!ctx)) {
3011 		err = -ENOMEM;
3012 		goto unm_err_out;
3013 	}
3014 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3015 			CASE_SENSITIVE, 0, NULL, 0, ctx);
3016 	if (unlikely(err)) {
3017 		ntfs_attr_put_search_ctx(ctx);
3018 		goto unm_err_out;
3019 	}
3020 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3021 			le16_to_cpu(ctx->attr->data.resident.value_offset));
3022 	/* Update the access times if they have changed. */
3023 	nt = utc2ntfs(vi->i_mtime);
3024 	if (si->last_data_change_time != nt) {
3025 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3026 				"new = 0x%llx", vi->i_ino, (long long)
3027 				sle64_to_cpu(si->last_data_change_time),
3028 				(long long)sle64_to_cpu(nt));
3029 		si->last_data_change_time = nt;
3030 		modified = true;
3031 	}
3032 	nt = utc2ntfs(vi->i_ctime);
3033 	if (si->last_mft_change_time != nt) {
3034 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3035 				"new = 0x%llx", vi->i_ino, (long long)
3036 				sle64_to_cpu(si->last_mft_change_time),
3037 				(long long)sle64_to_cpu(nt));
3038 		si->last_mft_change_time = nt;
3039 		modified = true;
3040 	}
3041 	nt = utc2ntfs(vi->i_atime);
3042 	if (si->last_access_time != nt) {
3043 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3044 				"new = 0x%llx", vi->i_ino,
3045 				(long long)sle64_to_cpu(si->last_access_time),
3046 				(long long)sle64_to_cpu(nt));
3047 		si->last_access_time = nt;
3048 		modified = true;
3049 	}
3050 	/*
3051 	 * If we just modified the standard information attribute we need to
3052 	 * mark the mft record it is in dirty.  We do this manually so that
3053 	 * mark_inode_dirty() is not called which would redirty the inode and
3054 	 * hence result in an infinite loop of trying to write the inode.
3055 	 * There is no need to mark the base inode nor the base mft record
3056 	 * dirty, since we are going to write this mft record below in any case
3057 	 * and the base mft record may actually not have been modified so it
3058 	 * might not need to be written out.
3059 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3060 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3061 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3062 	 * re-invoked because of it which in turn is ok since the dirtied mft
3063 	 * record will be cleaned and written out to disk below, i.e. before
3064 	 * this function returns.
3065 	 */
3066 	if (modified) {
3067 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3068 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3069 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3070 					ctx->ntfs_ino->page_ofs);
3071 	}
3072 	ntfs_attr_put_search_ctx(ctx);
3073 	/* Now the access times are updated, write the base mft record. */
3074 	if (NInoDirty(ni))
3075 		err = write_mft_record(ni, m, sync);
3076 	/* Write all attached extent mft records. */
3077 	mutex_lock(&ni->extent_lock);
3078 	if (ni->nr_extents > 0) {
3079 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3080 		int i;
3081 
3082 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3083 		for (i = 0; i < ni->nr_extents; i++) {
3084 			ntfs_inode *tni = extent_nis[i];
3085 
3086 			if (NInoDirty(tni)) {
3087 				MFT_RECORD *tm = map_mft_record(tni);
3088 				int ret;
3089 
3090 				if (IS_ERR(tm)) {
3091 					if (!err || err == -ENOMEM)
3092 						err = PTR_ERR(tm);
3093 					continue;
3094 				}
3095 				ret = write_mft_record(tni, tm, sync);
3096 				unmap_mft_record(tni);
3097 				if (unlikely(ret)) {
3098 					if (!err || err == -ENOMEM)
3099 						err = ret;
3100 				}
3101 			}
3102 		}
3103 	}
3104 	mutex_unlock(&ni->extent_lock);
3105 	unmap_mft_record(ni);
3106 	if (unlikely(err))
3107 		goto err_out;
3108 	ntfs_debug("Done.");
3109 	return 0;
3110 unm_err_out:
3111 	unmap_mft_record(ni);
3112 err_out:
3113 	if (err == -ENOMEM) {
3114 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3115 				"Marking the inode dirty again, so the VFS "
3116 				"retries later.");
3117 		mark_inode_dirty(vi);
3118 	} else {
3119 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3120 		NVolSetErrors(ni->vol);
3121 	}
3122 	return err;
3123 }
3124 
3125 #endif /* NTFS_RW */
3126