1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
ocfs2_init_file_private(struct inode * inode,struct file * file)68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp;
71
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 if (!fp)
74 return -ENOMEM;
75
76 fp->fp_file = file;
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
80
81 return 0;
82 }
83
ocfs2_free_file_private(struct inode * inode,struct file * file)84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89 if (fp) {
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
92 kfree(fp);
93 file->private_data = NULL;
94 }
95 }
96
ocfs2_file_open(struct inode * inode,struct file * file)97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 int status;
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)oi->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
107
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
110 if (status)
111 goto leave;
112 }
113
114 spin_lock(&oi->ip_lock);
115
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (oi->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
121
122 status = -ENOENT;
123 goto leave;
124 }
125
126 if (mode & O_DIRECT)
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129 oi->ip_open_count++;
130 spin_unlock(&oi->ip_lock);
131
132 status = ocfs2_init_file_private(inode, file);
133 if (status) {
134 /*
135 * We want to set open count back if we're failing the
136 * open.
137 */
138 spin_lock(&oi->ip_lock);
139 oi->ip_open_count--;
140 spin_unlock(&oi->ip_lock);
141 }
142
143 file->f_mode |= FMODE_NOWAIT;
144
145 leave:
146 return status;
147 }
148
ocfs2_file_release(struct inode * inode,struct file * file)149 static int ocfs2_file_release(struct inode *inode, struct file *file)
150 {
151 struct ocfs2_inode_info *oi = OCFS2_I(inode);
152
153 spin_lock(&oi->ip_lock);
154 if (!--oi->ip_open_count)
155 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
156
157 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
158 oi->ip_blkno,
159 file->f_path.dentry->d_name.len,
160 file->f_path.dentry->d_name.name,
161 oi->ip_open_count);
162 spin_unlock(&oi->ip_lock);
163
164 ocfs2_free_file_private(inode, file);
165
166 return 0;
167 }
168
ocfs2_dir_open(struct inode * inode,struct file * file)169 static int ocfs2_dir_open(struct inode *inode, struct file *file)
170 {
171 return ocfs2_init_file_private(inode, file);
172 }
173
ocfs2_dir_release(struct inode * inode,struct file * file)174 static int ocfs2_dir_release(struct inode *inode, struct file *file)
175 {
176 ocfs2_free_file_private(inode, file);
177 return 0;
178 }
179
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)180 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
181 int datasync)
182 {
183 int err = 0;
184 struct inode *inode = file->f_mapping->host;
185 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
186 struct ocfs2_inode_info *oi = OCFS2_I(inode);
187 journal_t *journal = osb->journal->j_journal;
188 int ret;
189 tid_t commit_tid;
190 bool needs_barrier = false;
191
192 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
193 oi->ip_blkno,
194 file->f_path.dentry->d_name.len,
195 file->f_path.dentry->d_name.name,
196 (unsigned long long)datasync);
197
198 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
199 return -EROFS;
200
201 err = file_write_and_wait_range(file, start, end);
202 if (err)
203 return err;
204
205 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
206 if (journal->j_flags & JBD2_BARRIER &&
207 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
208 needs_barrier = true;
209 err = jbd2_complete_transaction(journal, commit_tid);
210 if (needs_barrier) {
211 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
212 if (!err)
213 err = ret;
214 }
215
216 if (err)
217 mlog_errno(err);
218
219 return (err < 0) ? -EIO : 0;
220 }
221
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)222 int ocfs2_should_update_atime(struct inode *inode,
223 struct vfsmount *vfsmnt)
224 {
225 struct timespec64 now;
226 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
227
228 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 return 0;
230
231 if ((inode->i_flags & S_NOATIME) ||
232 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 return 0;
234
235 /*
236 * We can be called with no vfsmnt structure - NFSD will
237 * sometimes do this.
238 *
239 * Note that our action here is different than touch_atime() -
240 * if we can't tell whether this is a noatime mount, then we
241 * don't know whether to trust the value of s_atime_quantum.
242 */
243 if (vfsmnt == NULL)
244 return 0;
245
246 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
247 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 return 0;
249
250 if (vfsmnt->mnt_flags & MNT_RELATIME) {
251 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
252 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 return 1;
254
255 return 0;
256 }
257
258 now = current_time(inode);
259 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
260 return 0;
261 else
262 return 1;
263 }
264
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)265 int ocfs2_update_inode_atime(struct inode *inode,
266 struct buffer_head *bh)
267 {
268 int ret;
269 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
270 handle_t *handle;
271 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
272
273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 if (IS_ERR(handle)) {
275 ret = PTR_ERR(handle);
276 mlog_errno(ret);
277 goto out;
278 }
279
280 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
281 OCFS2_JOURNAL_ACCESS_WRITE);
282 if (ret) {
283 mlog_errno(ret);
284 goto out_commit;
285 }
286
287 /*
288 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 * have i_mutex to guard against concurrent changes to other
290 * inode fields.
291 */
292 inode->i_atime = current_time(inode);
293 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
294 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
295 ocfs2_update_inode_fsync_trans(handle, inode, 0);
296 ocfs2_journal_dirty(handle, bh);
297
298 out_commit:
299 ocfs2_commit_trans(osb, handle);
300 out:
301 return ret;
302 }
303
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)304 int ocfs2_set_inode_size(handle_t *handle,
305 struct inode *inode,
306 struct buffer_head *fe_bh,
307 u64 new_i_size)
308 {
309 int status;
310
311 i_size_write(inode, new_i_size);
312 inode->i_blocks = ocfs2_inode_sector_count(inode);
313 inode->i_ctime = inode->i_mtime = current_time(inode);
314
315 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
316 if (status < 0) {
317 mlog_errno(status);
318 goto bail;
319 }
320
321 bail:
322 return status;
323 }
324
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)325 int ocfs2_simple_size_update(struct inode *inode,
326 struct buffer_head *di_bh,
327 u64 new_i_size)
328 {
329 int ret;
330 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
331 handle_t *handle = NULL;
332
333 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
334 if (IS_ERR(handle)) {
335 ret = PTR_ERR(handle);
336 mlog_errno(ret);
337 goto out;
338 }
339
340 ret = ocfs2_set_inode_size(handle, inode, di_bh,
341 new_i_size);
342 if (ret < 0)
343 mlog_errno(ret);
344
345 ocfs2_update_inode_fsync_trans(handle, inode, 0);
346 ocfs2_commit_trans(osb, handle);
347 out:
348 return ret;
349 }
350
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)351 static int ocfs2_cow_file_pos(struct inode *inode,
352 struct buffer_head *fe_bh,
353 u64 offset)
354 {
355 int status;
356 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
357 unsigned int num_clusters = 0;
358 unsigned int ext_flags = 0;
359
360 /*
361 * If the new offset is aligned to the range of the cluster, there is
362 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
363 * CoW either.
364 */
365 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
366 return 0;
367
368 status = ocfs2_get_clusters(inode, cpos, &phys,
369 &num_clusters, &ext_flags);
370 if (status) {
371 mlog_errno(status);
372 goto out;
373 }
374
375 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
376 goto out;
377
378 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
379
380 out:
381 return status;
382 }
383
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)384 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
385 struct inode *inode,
386 struct buffer_head *fe_bh,
387 u64 new_i_size)
388 {
389 int status;
390 handle_t *handle;
391 struct ocfs2_dinode *di;
392 u64 cluster_bytes;
393
394 /*
395 * We need to CoW the cluster contains the offset if it is reflinked
396 * since we will call ocfs2_zero_range_for_truncate later which will
397 * write "0" from offset to the end of the cluster.
398 */
399 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
400 if (status) {
401 mlog_errno(status);
402 return status;
403 }
404
405 /* TODO: This needs to actually orphan the inode in this
406 * transaction. */
407
408 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
409 if (IS_ERR(handle)) {
410 status = PTR_ERR(handle);
411 mlog_errno(status);
412 goto out;
413 }
414
415 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
416 OCFS2_JOURNAL_ACCESS_WRITE);
417 if (status < 0) {
418 mlog_errno(status);
419 goto out_commit;
420 }
421
422 /*
423 * Do this before setting i_size.
424 */
425 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
426 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
427 cluster_bytes);
428 if (status) {
429 mlog_errno(status);
430 goto out_commit;
431 }
432
433 i_size_write(inode, new_i_size);
434 inode->i_ctime = inode->i_mtime = current_time(inode);
435
436 di = (struct ocfs2_dinode *) fe_bh->b_data;
437 di->i_size = cpu_to_le64(new_i_size);
438 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
439 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
440 ocfs2_update_inode_fsync_trans(handle, inode, 0);
441
442 ocfs2_journal_dirty(handle, fe_bh);
443
444 out_commit:
445 ocfs2_commit_trans(osb, handle);
446 out:
447 return status;
448 }
449
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)450 int ocfs2_truncate_file(struct inode *inode,
451 struct buffer_head *di_bh,
452 u64 new_i_size)
453 {
454 int status = 0;
455 struct ocfs2_dinode *fe = NULL;
456 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
457
458 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
459 * already validated it */
460 fe = (struct ocfs2_dinode *) di_bh->b_data;
461
462 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
463 (unsigned long long)le64_to_cpu(fe->i_size),
464 (unsigned long long)new_i_size);
465
466 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
467 "Inode %llu, inode i_size = %lld != di "
468 "i_size = %llu, i_flags = 0x%x\n",
469 (unsigned long long)OCFS2_I(inode)->ip_blkno,
470 i_size_read(inode),
471 (unsigned long long)le64_to_cpu(fe->i_size),
472 le32_to_cpu(fe->i_flags));
473
474 if (new_i_size > le64_to_cpu(fe->i_size)) {
475 trace_ocfs2_truncate_file_error(
476 (unsigned long long)le64_to_cpu(fe->i_size),
477 (unsigned long long)new_i_size);
478 status = -EINVAL;
479 mlog_errno(status);
480 goto bail;
481 }
482
483 down_write(&OCFS2_I(inode)->ip_alloc_sem);
484
485 ocfs2_resv_discard(&osb->osb_la_resmap,
486 &OCFS2_I(inode)->ip_la_data_resv);
487
488 /*
489 * The inode lock forced other nodes to sync and drop their
490 * pages, which (correctly) happens even if we have a truncate
491 * without allocation change - ocfs2 cluster sizes can be much
492 * greater than page size, so we have to truncate them
493 * anyway.
494 */
495
496 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497 unmap_mapping_range(inode->i_mapping,
498 new_i_size + PAGE_SIZE - 1, 0, 1);
499 truncate_inode_pages(inode->i_mapping, new_i_size);
500 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
501 i_size_read(inode), 1);
502 if (status)
503 mlog_errno(status);
504
505 goto bail_unlock_sem;
506 }
507
508 /* alright, we're going to need to do a full blown alloc size
509 * change. Orphan the inode so that recovery can complete the
510 * truncate if necessary. This does the task of marking
511 * i_size. */
512 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
513 if (status < 0) {
514 mlog_errno(status);
515 goto bail_unlock_sem;
516 }
517
518 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
519 truncate_inode_pages(inode->i_mapping, new_i_size);
520
521 status = ocfs2_commit_truncate(osb, inode, di_bh);
522 if (status < 0) {
523 mlog_errno(status);
524 goto bail_unlock_sem;
525 }
526
527 /* TODO: orphan dir cleanup here. */
528 bail_unlock_sem:
529 up_write(&OCFS2_I(inode)->ip_alloc_sem);
530
531 bail:
532 if (!status && OCFS2_I(inode)->ip_clusters == 0)
533 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
534
535 return status;
536 }
537
538 /*
539 * extend file allocation only here.
540 * we'll update all the disk stuff, and oip->alloc_size
541 *
542 * expect stuff to be locked, a transaction started and enough data /
543 * metadata reservations in the contexts.
544 *
545 * Will return -EAGAIN, and a reason if a restart is needed.
546 * If passed in, *reason will always be set, even in error.
547 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)548 int ocfs2_add_inode_data(struct ocfs2_super *osb,
549 struct inode *inode,
550 u32 *logical_offset,
551 u32 clusters_to_add,
552 int mark_unwritten,
553 struct buffer_head *fe_bh,
554 handle_t *handle,
555 struct ocfs2_alloc_context *data_ac,
556 struct ocfs2_alloc_context *meta_ac,
557 enum ocfs2_alloc_restarted *reason_ret)
558 {
559 int ret;
560 struct ocfs2_extent_tree et;
561
562 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
563 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
564 clusters_to_add, mark_unwritten,
565 data_ac, meta_ac, reason_ret);
566
567 return ret;
568 }
569
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)570 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
571 u32 clusters_to_add, int mark_unwritten)
572 {
573 int status = 0;
574 int restart_func = 0;
575 int credits;
576 u32 prev_clusters;
577 struct buffer_head *bh = NULL;
578 struct ocfs2_dinode *fe = NULL;
579 handle_t *handle = NULL;
580 struct ocfs2_alloc_context *data_ac = NULL;
581 struct ocfs2_alloc_context *meta_ac = NULL;
582 enum ocfs2_alloc_restarted why = RESTART_NONE;
583 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
584 struct ocfs2_extent_tree et;
585 int did_quota = 0;
586
587 /*
588 * Unwritten extent only exists for file systems which
589 * support holes.
590 */
591 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
592
593 status = ocfs2_read_inode_block(inode, &bh);
594 if (status < 0) {
595 mlog_errno(status);
596 goto leave;
597 }
598 fe = (struct ocfs2_dinode *) bh->b_data;
599
600 restart_all:
601 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
602
603 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
604 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
605 &data_ac, &meta_ac);
606 if (status) {
607 mlog_errno(status);
608 goto leave;
609 }
610
611 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
612 handle = ocfs2_start_trans(osb, credits);
613 if (IS_ERR(handle)) {
614 status = PTR_ERR(handle);
615 handle = NULL;
616 mlog_errno(status);
617 goto leave;
618 }
619
620 restarted_transaction:
621 trace_ocfs2_extend_allocation(
622 (unsigned long long)OCFS2_I(inode)->ip_blkno,
623 (unsigned long long)i_size_read(inode),
624 le32_to_cpu(fe->i_clusters), clusters_to_add,
625 why, restart_func);
626
627 status = dquot_alloc_space_nodirty(inode,
628 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
629 if (status)
630 goto leave;
631 did_quota = 1;
632
633 /* reserve a write to the file entry early on - that we if we
634 * run out of credits in the allocation path, we can still
635 * update i_size. */
636 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
637 OCFS2_JOURNAL_ACCESS_WRITE);
638 if (status < 0) {
639 mlog_errno(status);
640 goto leave;
641 }
642
643 prev_clusters = OCFS2_I(inode)->ip_clusters;
644
645 status = ocfs2_add_inode_data(osb,
646 inode,
647 &logical_start,
648 clusters_to_add,
649 mark_unwritten,
650 bh,
651 handle,
652 data_ac,
653 meta_ac,
654 &why);
655 if ((status < 0) && (status != -EAGAIN)) {
656 if (status != -ENOSPC)
657 mlog_errno(status);
658 goto leave;
659 }
660 ocfs2_update_inode_fsync_trans(handle, inode, 1);
661 ocfs2_journal_dirty(handle, bh);
662
663 spin_lock(&OCFS2_I(inode)->ip_lock);
664 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
665 spin_unlock(&OCFS2_I(inode)->ip_lock);
666 /* Release unused quota reservation */
667 dquot_free_space(inode,
668 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
669 did_quota = 0;
670
671 if (why != RESTART_NONE && clusters_to_add) {
672 if (why == RESTART_META) {
673 restart_func = 1;
674 status = 0;
675 } else {
676 BUG_ON(why != RESTART_TRANS);
677
678 status = ocfs2_allocate_extend_trans(handle, 1);
679 if (status < 0) {
680 /* handle still has to be committed at
681 * this point. */
682 status = -ENOMEM;
683 mlog_errno(status);
684 goto leave;
685 }
686 goto restarted_transaction;
687 }
688 }
689
690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 le32_to_cpu(fe->i_clusters),
692 (unsigned long long)le64_to_cpu(fe->i_size),
693 OCFS2_I(inode)->ip_clusters,
694 (unsigned long long)i_size_read(inode));
695
696 leave:
697 if (status < 0 && did_quota)
698 dquot_free_space(inode,
699 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 if (handle) {
701 ocfs2_commit_trans(osb, handle);
702 handle = NULL;
703 }
704 if (data_ac) {
705 ocfs2_free_alloc_context(data_ac);
706 data_ac = NULL;
707 }
708 if (meta_ac) {
709 ocfs2_free_alloc_context(meta_ac);
710 meta_ac = NULL;
711 }
712 if ((!status) && restart_func) {
713 restart_func = 0;
714 goto restart_all;
715 }
716 brelse(bh);
717 bh = NULL;
718
719 return status;
720 }
721
722 /*
723 * While a write will already be ordering the data, a truncate will not.
724 * Thus, we need to explicitly order the zeroed pages.
725 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh)726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
727 struct buffer_head *di_bh)
728 {
729 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
730 handle_t *handle = NULL;
731 int ret = 0;
732
733 if (!ocfs2_should_order_data(inode))
734 goto out;
735
736 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
737 if (IS_ERR(handle)) {
738 ret = -ENOMEM;
739 mlog_errno(ret);
740 goto out;
741 }
742
743 ret = ocfs2_jbd2_file_inode(handle, inode);
744 if (ret < 0) {
745 mlog_errno(ret);
746 goto out;
747 }
748
749 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
750 OCFS2_JOURNAL_ACCESS_WRITE);
751 if (ret)
752 mlog_errno(ret);
753 ocfs2_update_inode_fsync_trans(handle, inode, 1);
754
755 out:
756 if (ret) {
757 if (!IS_ERR(handle))
758 ocfs2_commit_trans(osb, handle);
759 handle = ERR_PTR(ret);
760 }
761 return handle;
762 }
763
764 /* Some parts of this taken from generic_cont_expand, which turned out
765 * to be too fragile to do exactly what we need without us having to
766 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)767 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
768 u64 abs_to, struct buffer_head *di_bh)
769 {
770 struct address_space *mapping = inode->i_mapping;
771 struct page *page;
772 unsigned long index = abs_from >> PAGE_SHIFT;
773 handle_t *handle;
774 int ret = 0;
775 unsigned zero_from, zero_to, block_start, block_end;
776 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
777
778 BUG_ON(abs_from >= abs_to);
779 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
780 BUG_ON(abs_from & (inode->i_blkbits - 1));
781
782 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
783 if (IS_ERR(handle)) {
784 ret = PTR_ERR(handle);
785 goto out;
786 }
787
788 page = find_or_create_page(mapping, index, GFP_NOFS);
789 if (!page) {
790 ret = -ENOMEM;
791 mlog_errno(ret);
792 goto out_commit_trans;
793 }
794
795 /* Get the offsets within the page that we want to zero */
796 zero_from = abs_from & (PAGE_SIZE - 1);
797 zero_to = abs_to & (PAGE_SIZE - 1);
798 if (!zero_to)
799 zero_to = PAGE_SIZE;
800
801 trace_ocfs2_write_zero_page(
802 (unsigned long long)OCFS2_I(inode)->ip_blkno,
803 (unsigned long long)abs_from,
804 (unsigned long long)abs_to,
805 index, zero_from, zero_to);
806
807 /* We know that zero_from is block aligned */
808 for (block_start = zero_from; block_start < zero_to;
809 block_start = block_end) {
810 block_end = block_start + i_blocksize(inode);
811
812 /*
813 * block_start is block-aligned. Bump it by one to force
814 * __block_write_begin and block_commit_write to zero the
815 * whole block.
816 */
817 ret = __block_write_begin(page, block_start + 1, 0,
818 ocfs2_get_block);
819 if (ret < 0) {
820 mlog_errno(ret);
821 goto out_unlock;
822 }
823
824
825 /* must not update i_size! */
826 ret = block_commit_write(page, block_start + 1,
827 block_start + 1);
828 if (ret < 0)
829 mlog_errno(ret);
830 else
831 ret = 0;
832 }
833
834 /*
835 * fs-writeback will release the dirty pages without page lock
836 * whose offset are over inode size, the release happens at
837 * block_write_full_page().
838 */
839 i_size_write(inode, abs_to);
840 inode->i_blocks = ocfs2_inode_sector_count(inode);
841 di->i_size = cpu_to_le64((u64)i_size_read(inode));
842 inode->i_mtime = inode->i_ctime = current_time(inode);
843 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
844 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
845 di->i_mtime_nsec = di->i_ctime_nsec;
846 if (handle) {
847 ocfs2_journal_dirty(handle, di_bh);
848 ocfs2_update_inode_fsync_trans(handle, inode, 1);
849 }
850
851 out_unlock:
852 unlock_page(page);
853 put_page(page);
854 out_commit_trans:
855 if (handle)
856 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
857 out:
858 return ret;
859 }
860
861 /*
862 * Find the next range to zero. We do this in terms of bytes because
863 * that's what ocfs2_zero_extend() wants, and it is dealing with the
864 * pagecache. We may return multiple extents.
865 *
866 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
867 * needs to be zeroed. range_start and range_end return the next zeroing
868 * range. A subsequent call should pass the previous range_end as its
869 * zero_start. If range_end is 0, there's nothing to do.
870 *
871 * Unwritten extents are skipped over. Refcounted extents are CoWd.
872 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)873 static int ocfs2_zero_extend_get_range(struct inode *inode,
874 struct buffer_head *di_bh,
875 u64 zero_start, u64 zero_end,
876 u64 *range_start, u64 *range_end)
877 {
878 int rc = 0, needs_cow = 0;
879 u32 p_cpos, zero_clusters = 0;
880 u32 zero_cpos =
881 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
882 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
883 unsigned int num_clusters = 0;
884 unsigned int ext_flags = 0;
885
886 while (zero_cpos < last_cpos) {
887 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
888 &num_clusters, &ext_flags);
889 if (rc) {
890 mlog_errno(rc);
891 goto out;
892 }
893
894 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
895 zero_clusters = num_clusters;
896 if (ext_flags & OCFS2_EXT_REFCOUNTED)
897 needs_cow = 1;
898 break;
899 }
900
901 zero_cpos += num_clusters;
902 }
903 if (!zero_clusters) {
904 *range_end = 0;
905 goto out;
906 }
907
908 while ((zero_cpos + zero_clusters) < last_cpos) {
909 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
910 &p_cpos, &num_clusters,
911 &ext_flags);
912 if (rc) {
913 mlog_errno(rc);
914 goto out;
915 }
916
917 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
918 break;
919 if (ext_flags & OCFS2_EXT_REFCOUNTED)
920 needs_cow = 1;
921 zero_clusters += num_clusters;
922 }
923 if ((zero_cpos + zero_clusters) > last_cpos)
924 zero_clusters = last_cpos - zero_cpos;
925
926 if (needs_cow) {
927 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
928 zero_clusters, UINT_MAX);
929 if (rc) {
930 mlog_errno(rc);
931 goto out;
932 }
933 }
934
935 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
936 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
937 zero_cpos + zero_clusters);
938
939 out:
940 return rc;
941 }
942
943 /*
944 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
945 * has made sure that the entire range needs zeroing.
946 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)947 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
948 u64 range_end, struct buffer_head *di_bh)
949 {
950 int rc = 0;
951 u64 next_pos;
952 u64 zero_pos = range_start;
953
954 trace_ocfs2_zero_extend_range(
955 (unsigned long long)OCFS2_I(inode)->ip_blkno,
956 (unsigned long long)range_start,
957 (unsigned long long)range_end);
958 BUG_ON(range_start >= range_end);
959
960 while (zero_pos < range_end) {
961 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
962 if (next_pos > range_end)
963 next_pos = range_end;
964 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
965 if (rc < 0) {
966 mlog_errno(rc);
967 break;
968 }
969 zero_pos = next_pos;
970
971 /*
972 * Very large extends have the potential to lock up
973 * the cpu for extended periods of time.
974 */
975 cond_resched();
976 }
977
978 return rc;
979 }
980
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)981 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
982 loff_t zero_to_size)
983 {
984 int ret = 0;
985 u64 zero_start, range_start = 0, range_end = 0;
986 struct super_block *sb = inode->i_sb;
987
988 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
989 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
990 (unsigned long long)zero_start,
991 (unsigned long long)i_size_read(inode));
992 while (zero_start < zero_to_size) {
993 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
994 zero_to_size,
995 &range_start,
996 &range_end);
997 if (ret) {
998 mlog_errno(ret);
999 break;
1000 }
1001 if (!range_end)
1002 break;
1003 /* Trim the ends */
1004 if (range_start < zero_start)
1005 range_start = zero_start;
1006 if (range_end > zero_to_size)
1007 range_end = zero_to_size;
1008
1009 ret = ocfs2_zero_extend_range(inode, range_start,
1010 range_end, di_bh);
1011 if (ret) {
1012 mlog_errno(ret);
1013 break;
1014 }
1015 zero_start = range_end;
1016 }
1017
1018 return ret;
1019 }
1020
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1021 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1022 u64 new_i_size, u64 zero_to)
1023 {
1024 int ret;
1025 u32 clusters_to_add;
1026 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1027
1028 /*
1029 * Only quota files call this without a bh, and they can't be
1030 * refcounted.
1031 */
1032 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1033 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1034
1035 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1036 if (clusters_to_add < oi->ip_clusters)
1037 clusters_to_add = 0;
1038 else
1039 clusters_to_add -= oi->ip_clusters;
1040
1041 if (clusters_to_add) {
1042 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1043 clusters_to_add, 0);
1044 if (ret) {
1045 mlog_errno(ret);
1046 goto out;
1047 }
1048 }
1049
1050 /*
1051 * Call this even if we don't add any clusters to the tree. We
1052 * still need to zero the area between the old i_size and the
1053 * new i_size.
1054 */
1055 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1056 if (ret < 0)
1057 mlog_errno(ret);
1058
1059 out:
1060 return ret;
1061 }
1062
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1063 static int ocfs2_extend_file(struct inode *inode,
1064 struct buffer_head *di_bh,
1065 u64 new_i_size)
1066 {
1067 int ret = 0;
1068 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1069
1070 BUG_ON(!di_bh);
1071
1072 /* setattr sometimes calls us like this. */
1073 if (new_i_size == 0)
1074 goto out;
1075
1076 if (i_size_read(inode) == new_i_size)
1077 goto out;
1078 BUG_ON(new_i_size < i_size_read(inode));
1079
1080 /*
1081 * The alloc sem blocks people in read/write from reading our
1082 * allocation until we're done changing it. We depend on
1083 * i_mutex to block other extend/truncate calls while we're
1084 * here. We even have to hold it for sparse files because there
1085 * might be some tail zeroing.
1086 */
1087 down_write(&oi->ip_alloc_sem);
1088
1089 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1090 /*
1091 * We can optimize small extends by keeping the inodes
1092 * inline data.
1093 */
1094 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1095 up_write(&oi->ip_alloc_sem);
1096 goto out_update_size;
1097 }
1098
1099 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1100 if (ret) {
1101 up_write(&oi->ip_alloc_sem);
1102 mlog_errno(ret);
1103 goto out;
1104 }
1105 }
1106
1107 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1108 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1109 else
1110 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1111 new_i_size);
1112
1113 up_write(&oi->ip_alloc_sem);
1114
1115 if (ret < 0) {
1116 mlog_errno(ret);
1117 goto out;
1118 }
1119
1120 out_update_size:
1121 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1122 if (ret < 0)
1123 mlog_errno(ret);
1124
1125 out:
1126 return ret;
1127 }
1128
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1129 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1130 {
1131 int status = 0, size_change;
1132 int inode_locked = 0;
1133 struct inode *inode = d_inode(dentry);
1134 struct super_block *sb = inode->i_sb;
1135 struct ocfs2_super *osb = OCFS2_SB(sb);
1136 struct buffer_head *bh = NULL;
1137 handle_t *handle = NULL;
1138 struct dquot *transfer_to[MAXQUOTAS] = { };
1139 int qtype;
1140 int had_lock;
1141 struct ocfs2_lock_holder oh;
1142
1143 trace_ocfs2_setattr(inode, dentry,
1144 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1145 dentry->d_name.len, dentry->d_name.name,
1146 attr->ia_valid, attr->ia_mode,
1147 from_kuid(&init_user_ns, attr->ia_uid),
1148 from_kgid(&init_user_ns, attr->ia_gid));
1149
1150 /* ensuring we don't even attempt to truncate a symlink */
1151 if (S_ISLNK(inode->i_mode))
1152 attr->ia_valid &= ~ATTR_SIZE;
1153
1154 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1155 | ATTR_GID | ATTR_UID | ATTR_MODE)
1156 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1157 return 0;
1158
1159 status = setattr_prepare(dentry, attr);
1160 if (status)
1161 return status;
1162
1163 if (is_quota_modification(inode, attr)) {
1164 status = dquot_initialize(inode);
1165 if (status)
1166 return status;
1167 }
1168 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1169 if (size_change) {
1170 /*
1171 * Here we should wait dio to finish before inode lock
1172 * to avoid a deadlock between ocfs2_setattr() and
1173 * ocfs2_dio_end_io_write()
1174 */
1175 inode_dio_wait(inode);
1176
1177 status = ocfs2_rw_lock(inode, 1);
1178 if (status < 0) {
1179 mlog_errno(status);
1180 goto bail;
1181 }
1182 }
1183
1184 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1185 if (had_lock < 0) {
1186 status = had_lock;
1187 goto bail_unlock_rw;
1188 } else if (had_lock) {
1189 /*
1190 * As far as we know, ocfs2_setattr() could only be the first
1191 * VFS entry point in the call chain of recursive cluster
1192 * locking issue.
1193 *
1194 * For instance:
1195 * chmod_common()
1196 * notify_change()
1197 * ocfs2_setattr()
1198 * posix_acl_chmod()
1199 * ocfs2_iop_get_acl()
1200 *
1201 * But, we're not 100% sure if it's always true, because the
1202 * ordering of the VFS entry points in the call chain is out
1203 * of our control. So, we'd better dump the stack here to
1204 * catch the other cases of recursive locking.
1205 */
1206 mlog(ML_ERROR, "Another case of recursive locking:\n");
1207 dump_stack();
1208 }
1209 inode_locked = 1;
1210
1211 if (size_change) {
1212 status = inode_newsize_ok(inode, attr->ia_size);
1213 if (status)
1214 goto bail_unlock;
1215
1216 if (i_size_read(inode) >= attr->ia_size) {
1217 if (ocfs2_should_order_data(inode)) {
1218 status = ocfs2_begin_ordered_truncate(inode,
1219 attr->ia_size);
1220 if (status)
1221 goto bail_unlock;
1222 }
1223 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1224 } else
1225 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1226 if (status < 0) {
1227 if (status != -ENOSPC)
1228 mlog_errno(status);
1229 status = -ENOSPC;
1230 goto bail_unlock;
1231 }
1232 }
1233
1234 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1235 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1236 /*
1237 * Gather pointers to quota structures so that allocation /
1238 * freeing of quota structures happens here and not inside
1239 * dquot_transfer() where we have problems with lock ordering
1240 */
1241 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1242 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1243 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1244 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1245 if (IS_ERR(transfer_to[USRQUOTA])) {
1246 status = PTR_ERR(transfer_to[USRQUOTA]);
1247 goto bail_unlock;
1248 }
1249 }
1250 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1251 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1252 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1253 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1254 if (IS_ERR(transfer_to[GRPQUOTA])) {
1255 status = PTR_ERR(transfer_to[GRPQUOTA]);
1256 goto bail_unlock;
1257 }
1258 }
1259 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1260 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1261 2 * ocfs2_quota_trans_credits(sb));
1262 if (IS_ERR(handle)) {
1263 status = PTR_ERR(handle);
1264 mlog_errno(status);
1265 goto bail_unlock_alloc;
1266 }
1267 status = __dquot_transfer(inode, transfer_to);
1268 if (status < 0)
1269 goto bail_commit;
1270 } else {
1271 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1272 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1273 if (IS_ERR(handle)) {
1274 status = PTR_ERR(handle);
1275 mlog_errno(status);
1276 goto bail_unlock_alloc;
1277 }
1278 }
1279
1280 setattr_copy(inode, attr);
1281 mark_inode_dirty(inode);
1282
1283 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1284 if (status < 0)
1285 mlog_errno(status);
1286
1287 bail_commit:
1288 ocfs2_commit_trans(osb, handle);
1289 bail_unlock_alloc:
1290 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1291 bail_unlock:
1292 if (status && inode_locked) {
1293 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1294 inode_locked = 0;
1295 }
1296 bail_unlock_rw:
1297 if (size_change)
1298 ocfs2_rw_unlock(inode, 1);
1299 bail:
1300
1301 /* Release quota pointers in case we acquired them */
1302 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1303 dqput(transfer_to[qtype]);
1304
1305 if (!status && attr->ia_valid & ATTR_MODE) {
1306 status = ocfs2_acl_chmod(inode, bh);
1307 if (status < 0)
1308 mlog_errno(status);
1309 }
1310 if (inode_locked)
1311 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1312
1313 brelse(bh);
1314 return status;
1315 }
1316
ocfs2_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1317 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1318 u32 request_mask, unsigned int flags)
1319 {
1320 struct inode *inode = d_inode(path->dentry);
1321 struct super_block *sb = path->dentry->d_sb;
1322 struct ocfs2_super *osb = sb->s_fs_info;
1323 int err;
1324
1325 err = ocfs2_inode_revalidate(path->dentry);
1326 if (err) {
1327 if (err != -ENOENT)
1328 mlog_errno(err);
1329 goto bail;
1330 }
1331
1332 generic_fillattr(inode, stat);
1333 /*
1334 * If there is inline data in the inode, the inode will normally not
1335 * have data blocks allocated (it may have an external xattr block).
1336 * Report at least one sector for such files, so tools like tar, rsync,
1337 * others don't incorrectly think the file is completely sparse.
1338 */
1339 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1340 stat->blocks += (stat->size + 511)>>9;
1341
1342 /* We set the blksize from the cluster size for performance */
1343 stat->blksize = osb->s_clustersize;
1344
1345 bail:
1346 return err;
1347 }
1348
ocfs2_permission(struct inode * inode,int mask)1349 int ocfs2_permission(struct inode *inode, int mask)
1350 {
1351 int ret, had_lock;
1352 struct ocfs2_lock_holder oh;
1353
1354 if (mask & MAY_NOT_BLOCK)
1355 return -ECHILD;
1356
1357 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1358 if (had_lock < 0) {
1359 ret = had_lock;
1360 goto out;
1361 } else if (had_lock) {
1362 /* See comments in ocfs2_setattr() for details.
1363 * The call chain of this case could be:
1364 * do_sys_open()
1365 * may_open()
1366 * inode_permission()
1367 * ocfs2_permission()
1368 * ocfs2_iop_get_acl()
1369 */
1370 mlog(ML_ERROR, "Another case of recursive locking:\n");
1371 dump_stack();
1372 }
1373
1374 ret = generic_permission(inode, mask);
1375
1376 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1377 out:
1378 return ret;
1379 }
1380
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1381 static int __ocfs2_write_remove_suid(struct inode *inode,
1382 struct buffer_head *bh)
1383 {
1384 int ret;
1385 handle_t *handle;
1386 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1387 struct ocfs2_dinode *di;
1388
1389 trace_ocfs2_write_remove_suid(
1390 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1391 inode->i_mode);
1392
1393 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1394 if (IS_ERR(handle)) {
1395 ret = PTR_ERR(handle);
1396 mlog_errno(ret);
1397 goto out;
1398 }
1399
1400 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1401 OCFS2_JOURNAL_ACCESS_WRITE);
1402 if (ret < 0) {
1403 mlog_errno(ret);
1404 goto out_trans;
1405 }
1406
1407 inode->i_mode &= ~S_ISUID;
1408 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1409 inode->i_mode &= ~S_ISGID;
1410
1411 di = (struct ocfs2_dinode *) bh->b_data;
1412 di->i_mode = cpu_to_le16(inode->i_mode);
1413 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1414
1415 ocfs2_journal_dirty(handle, bh);
1416
1417 out_trans:
1418 ocfs2_commit_trans(osb, handle);
1419 out:
1420 return ret;
1421 }
1422
ocfs2_write_remove_suid(struct inode * inode)1423 static int ocfs2_write_remove_suid(struct inode *inode)
1424 {
1425 int ret;
1426 struct buffer_head *bh = NULL;
1427
1428 ret = ocfs2_read_inode_block(inode, &bh);
1429 if (ret < 0) {
1430 mlog_errno(ret);
1431 goto out;
1432 }
1433
1434 ret = __ocfs2_write_remove_suid(inode, bh);
1435 out:
1436 brelse(bh);
1437 return ret;
1438 }
1439
1440 /*
1441 * Allocate enough extents to cover the region starting at byte offset
1442 * start for len bytes. Existing extents are skipped, any extents
1443 * added are marked as "unwritten".
1444 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1445 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1446 u64 start, u64 len)
1447 {
1448 int ret;
1449 u32 cpos, phys_cpos, clusters, alloc_size;
1450 u64 end = start + len;
1451 struct buffer_head *di_bh = NULL;
1452
1453 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1454 ret = ocfs2_read_inode_block(inode, &di_bh);
1455 if (ret) {
1456 mlog_errno(ret);
1457 goto out;
1458 }
1459
1460 /*
1461 * Nothing to do if the requested reservation range
1462 * fits within the inode.
1463 */
1464 if (ocfs2_size_fits_inline_data(di_bh, end))
1465 goto out;
1466
1467 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1468 if (ret) {
1469 mlog_errno(ret);
1470 goto out;
1471 }
1472 }
1473
1474 /*
1475 * We consider both start and len to be inclusive.
1476 */
1477 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1478 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1479 clusters -= cpos;
1480
1481 while (clusters) {
1482 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1483 &alloc_size, NULL);
1484 if (ret) {
1485 mlog_errno(ret);
1486 goto out;
1487 }
1488
1489 /*
1490 * Hole or existing extent len can be arbitrary, so
1491 * cap it to our own allocation request.
1492 */
1493 if (alloc_size > clusters)
1494 alloc_size = clusters;
1495
1496 if (phys_cpos) {
1497 /*
1498 * We already have an allocation at this
1499 * region so we can safely skip it.
1500 */
1501 goto next;
1502 }
1503
1504 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1505 if (ret) {
1506 if (ret != -ENOSPC)
1507 mlog_errno(ret);
1508 goto out;
1509 }
1510
1511 next:
1512 cpos += alloc_size;
1513 clusters -= alloc_size;
1514 }
1515
1516 ret = 0;
1517 out:
1518
1519 brelse(di_bh);
1520 return ret;
1521 }
1522
1523 /*
1524 * Truncate a byte range, avoiding pages within partial clusters. This
1525 * preserves those pages for the zeroing code to write to.
1526 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1527 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1528 u64 byte_len)
1529 {
1530 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1531 loff_t start, end;
1532 struct address_space *mapping = inode->i_mapping;
1533
1534 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1535 end = byte_start + byte_len;
1536 end = end & ~(osb->s_clustersize - 1);
1537
1538 if (start < end) {
1539 unmap_mapping_range(mapping, start, end - start, 0);
1540 truncate_inode_pages_range(mapping, start, end - 1);
1541 }
1542 }
1543
1544 /*
1545 * zero out partial blocks of one cluster.
1546 *
1547 * start: file offset where zero starts, will be made upper block aligned.
1548 * len: it will be trimmed to the end of current cluster if "start + len"
1549 * is bigger than it.
1550 */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1551 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1552 u64 start, u64 len)
1553 {
1554 int ret;
1555 u64 start_block, end_block, nr_blocks;
1556 u64 p_block, offset;
1557 u32 cluster, p_cluster, nr_clusters;
1558 struct super_block *sb = inode->i_sb;
1559 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1560
1561 if (start + len < end)
1562 end = start + len;
1563
1564 start_block = ocfs2_blocks_for_bytes(sb, start);
1565 end_block = ocfs2_blocks_for_bytes(sb, end);
1566 nr_blocks = end_block - start_block;
1567 if (!nr_blocks)
1568 return 0;
1569
1570 cluster = ocfs2_bytes_to_clusters(sb, start);
1571 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1572 &nr_clusters, NULL);
1573 if (ret)
1574 return ret;
1575 if (!p_cluster)
1576 return 0;
1577
1578 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1579 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1580 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1581 }
1582
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1583 static int ocfs2_zero_partial_clusters(struct inode *inode,
1584 u64 start, u64 len)
1585 {
1586 int ret = 0;
1587 u64 tmpend = 0;
1588 u64 end = start + len;
1589 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1590 unsigned int csize = osb->s_clustersize;
1591 handle_t *handle;
1592 loff_t isize = i_size_read(inode);
1593
1594 /*
1595 * The "start" and "end" values are NOT necessarily part of
1596 * the range whose allocation is being deleted. Rather, this
1597 * is what the user passed in with the request. We must zero
1598 * partial clusters here. There's no need to worry about
1599 * physical allocation - the zeroing code knows to skip holes.
1600 */
1601 trace_ocfs2_zero_partial_clusters(
1602 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1603 (unsigned long long)start, (unsigned long long)end);
1604
1605 /*
1606 * If both edges are on a cluster boundary then there's no
1607 * zeroing required as the region is part of the allocation to
1608 * be truncated.
1609 */
1610 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1611 goto out;
1612
1613 /* No page cache for EOF blocks, issue zero out to disk. */
1614 if (end > isize) {
1615 /*
1616 * zeroout eof blocks in last cluster starting from
1617 * "isize" even "start" > "isize" because it is
1618 * complicated to zeroout just at "start" as "start"
1619 * may be not aligned with block size, buffer write
1620 * would be required to do that, but out of eof buffer
1621 * write is not supported.
1622 */
1623 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1624 end - isize);
1625 if (ret) {
1626 mlog_errno(ret);
1627 goto out;
1628 }
1629 if (start >= isize)
1630 goto out;
1631 end = isize;
1632 }
1633 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1634 if (IS_ERR(handle)) {
1635 ret = PTR_ERR(handle);
1636 mlog_errno(ret);
1637 goto out;
1638 }
1639
1640 /*
1641 * If start is on a cluster boundary and end is somewhere in another
1642 * cluster, we have not COWed the cluster starting at start, unless
1643 * end is also within the same cluster. So, in this case, we skip this
1644 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1645 * to the next one.
1646 */
1647 if ((start & (csize - 1)) != 0) {
1648 /*
1649 * We want to get the byte offset of the end of the 1st
1650 * cluster.
1651 */
1652 tmpend = (u64)osb->s_clustersize +
1653 (start & ~(osb->s_clustersize - 1));
1654 if (tmpend > end)
1655 tmpend = end;
1656
1657 trace_ocfs2_zero_partial_clusters_range1(
1658 (unsigned long long)start,
1659 (unsigned long long)tmpend);
1660
1661 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1662 tmpend);
1663 if (ret)
1664 mlog_errno(ret);
1665 }
1666
1667 if (tmpend < end) {
1668 /*
1669 * This may make start and end equal, but the zeroing
1670 * code will skip any work in that case so there's no
1671 * need to catch it up here.
1672 */
1673 start = end & ~(osb->s_clustersize - 1);
1674
1675 trace_ocfs2_zero_partial_clusters_range2(
1676 (unsigned long long)start, (unsigned long long)end);
1677
1678 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1679 if (ret)
1680 mlog_errno(ret);
1681 }
1682 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1683
1684 ocfs2_commit_trans(osb, handle);
1685 out:
1686 return ret;
1687 }
1688
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1689 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1690 {
1691 int i;
1692 struct ocfs2_extent_rec *rec = NULL;
1693
1694 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1695
1696 rec = &el->l_recs[i];
1697
1698 if (le32_to_cpu(rec->e_cpos) < pos)
1699 break;
1700 }
1701
1702 return i;
1703 }
1704
1705 /*
1706 * Helper to calculate the punching pos and length in one run, we handle the
1707 * following three cases in order:
1708 *
1709 * - remove the entire record
1710 * - remove a partial record
1711 * - no record needs to be removed (hole-punching completed)
1712 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1713 static void ocfs2_calc_trunc_pos(struct inode *inode,
1714 struct ocfs2_extent_list *el,
1715 struct ocfs2_extent_rec *rec,
1716 u32 trunc_start, u32 *trunc_cpos,
1717 u32 *trunc_len, u32 *trunc_end,
1718 u64 *blkno, int *done)
1719 {
1720 int ret = 0;
1721 u32 coff, range;
1722
1723 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1724
1725 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1726 /*
1727 * remove an entire extent record.
1728 */
1729 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1730 /*
1731 * Skip holes if any.
1732 */
1733 if (range < *trunc_end)
1734 *trunc_end = range;
1735 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1736 *blkno = le64_to_cpu(rec->e_blkno);
1737 *trunc_end = le32_to_cpu(rec->e_cpos);
1738 } else if (range > trunc_start) {
1739 /*
1740 * remove a partial extent record, which means we're
1741 * removing the last extent record.
1742 */
1743 *trunc_cpos = trunc_start;
1744 /*
1745 * skip hole if any.
1746 */
1747 if (range < *trunc_end)
1748 *trunc_end = range;
1749 *trunc_len = *trunc_end - trunc_start;
1750 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1751 *blkno = le64_to_cpu(rec->e_blkno) +
1752 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1753 *trunc_end = trunc_start;
1754 } else {
1755 /*
1756 * It may have two following possibilities:
1757 *
1758 * - last record has been removed
1759 * - trunc_start was within a hole
1760 *
1761 * both two cases mean the completion of hole punching.
1762 */
1763 ret = 1;
1764 }
1765
1766 *done = ret;
1767 }
1768
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1769 int ocfs2_remove_inode_range(struct inode *inode,
1770 struct buffer_head *di_bh, u64 byte_start,
1771 u64 byte_len)
1772 {
1773 int ret = 0, flags = 0, done = 0, i;
1774 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1775 u32 cluster_in_el;
1776 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1777 struct ocfs2_cached_dealloc_ctxt dealloc;
1778 struct address_space *mapping = inode->i_mapping;
1779 struct ocfs2_extent_tree et;
1780 struct ocfs2_path *path = NULL;
1781 struct ocfs2_extent_list *el = NULL;
1782 struct ocfs2_extent_rec *rec = NULL;
1783 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1784 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1785
1786 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1787 ocfs2_init_dealloc_ctxt(&dealloc);
1788
1789 trace_ocfs2_remove_inode_range(
1790 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1791 (unsigned long long)byte_start,
1792 (unsigned long long)byte_len);
1793
1794 if (byte_len == 0)
1795 return 0;
1796
1797 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1798 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1799 byte_start + byte_len, 0);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out;
1803 }
1804 /*
1805 * There's no need to get fancy with the page cache
1806 * truncate of an inline-data inode. We're talking
1807 * about less than a page here, which will be cached
1808 * in the dinode buffer anyway.
1809 */
1810 unmap_mapping_range(mapping, 0, 0, 0);
1811 truncate_inode_pages(mapping, 0);
1812 goto out;
1813 }
1814
1815 /*
1816 * For reflinks, we may need to CoW 2 clusters which might be
1817 * partially zero'd later, if hole's start and end offset were
1818 * within one cluster(means is not exactly aligned to clustersize).
1819 */
1820
1821 if (ocfs2_is_refcount_inode(inode)) {
1822 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1823 if (ret) {
1824 mlog_errno(ret);
1825 goto out;
1826 }
1827
1828 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1829 if (ret) {
1830 mlog_errno(ret);
1831 goto out;
1832 }
1833 }
1834
1835 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1836 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1837 cluster_in_el = trunc_end;
1838
1839 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1840 if (ret) {
1841 mlog_errno(ret);
1842 goto out;
1843 }
1844
1845 path = ocfs2_new_path_from_et(&et);
1846 if (!path) {
1847 ret = -ENOMEM;
1848 mlog_errno(ret);
1849 goto out;
1850 }
1851
1852 while (trunc_end > trunc_start) {
1853
1854 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1855 cluster_in_el);
1856 if (ret) {
1857 mlog_errno(ret);
1858 goto out;
1859 }
1860
1861 el = path_leaf_el(path);
1862
1863 i = ocfs2_find_rec(el, trunc_end);
1864 /*
1865 * Need to go to previous extent block.
1866 */
1867 if (i < 0) {
1868 if (path->p_tree_depth == 0)
1869 break;
1870
1871 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1872 path,
1873 &cluster_in_el);
1874 if (ret) {
1875 mlog_errno(ret);
1876 goto out;
1877 }
1878
1879 /*
1880 * We've reached the leftmost extent block,
1881 * it's safe to leave.
1882 */
1883 if (cluster_in_el == 0)
1884 break;
1885
1886 /*
1887 * The 'pos' searched for previous extent block is
1888 * always one cluster less than actual trunc_end.
1889 */
1890 trunc_end = cluster_in_el + 1;
1891
1892 ocfs2_reinit_path(path, 1);
1893
1894 continue;
1895
1896 } else
1897 rec = &el->l_recs[i];
1898
1899 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1900 &trunc_len, &trunc_end, &blkno, &done);
1901 if (done)
1902 break;
1903
1904 flags = rec->e_flags;
1905 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1906
1907 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1908 phys_cpos, trunc_len, flags,
1909 &dealloc, refcount_loc, false);
1910 if (ret < 0) {
1911 mlog_errno(ret);
1912 goto out;
1913 }
1914
1915 cluster_in_el = trunc_end;
1916
1917 ocfs2_reinit_path(path, 1);
1918 }
1919
1920 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1921
1922 out:
1923 ocfs2_free_path(path);
1924 ocfs2_schedule_truncate_log_flush(osb, 1);
1925 ocfs2_run_deallocs(osb, &dealloc);
1926
1927 return ret;
1928 }
1929
1930 /*
1931 * Parts of this function taken from xfs_change_file_space()
1932 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1933 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1934 loff_t f_pos, unsigned int cmd,
1935 struct ocfs2_space_resv *sr,
1936 int change_size)
1937 {
1938 int ret;
1939 s64 llen;
1940 loff_t size, orig_isize;
1941 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1942 struct buffer_head *di_bh = NULL;
1943 handle_t *handle;
1944 unsigned long long max_off = inode->i_sb->s_maxbytes;
1945
1946 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1947 return -EROFS;
1948
1949 inode_lock(inode);
1950
1951 /*
1952 * This prevents concurrent writes on other nodes
1953 */
1954 ret = ocfs2_rw_lock(inode, 1);
1955 if (ret) {
1956 mlog_errno(ret);
1957 goto out;
1958 }
1959
1960 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1961 if (ret) {
1962 mlog_errno(ret);
1963 goto out_rw_unlock;
1964 }
1965
1966 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1967 ret = -EPERM;
1968 goto out_inode_unlock;
1969 }
1970
1971 switch (sr->l_whence) {
1972 case 0: /*SEEK_SET*/
1973 break;
1974 case 1: /*SEEK_CUR*/
1975 sr->l_start += f_pos;
1976 break;
1977 case 2: /*SEEK_END*/
1978 sr->l_start += i_size_read(inode);
1979 break;
1980 default:
1981 ret = -EINVAL;
1982 goto out_inode_unlock;
1983 }
1984 sr->l_whence = 0;
1985
1986 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1987
1988 if (sr->l_start < 0
1989 || sr->l_start > max_off
1990 || (sr->l_start + llen) < 0
1991 || (sr->l_start + llen) > max_off) {
1992 ret = -EINVAL;
1993 goto out_inode_unlock;
1994 }
1995 size = sr->l_start + sr->l_len;
1996
1997 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1998 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1999 if (sr->l_len <= 0) {
2000 ret = -EINVAL;
2001 goto out_inode_unlock;
2002 }
2003 }
2004
2005 if (file && should_remove_suid(file->f_path.dentry)) {
2006 ret = __ocfs2_write_remove_suid(inode, di_bh);
2007 if (ret) {
2008 mlog_errno(ret);
2009 goto out_inode_unlock;
2010 }
2011 }
2012
2013 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2014 switch (cmd) {
2015 case OCFS2_IOC_RESVSP:
2016 case OCFS2_IOC_RESVSP64:
2017 /*
2018 * This takes unsigned offsets, but the signed ones we
2019 * pass have been checked against overflow above.
2020 */
2021 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2022 sr->l_len);
2023 break;
2024 case OCFS2_IOC_UNRESVSP:
2025 case OCFS2_IOC_UNRESVSP64:
2026 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2027 sr->l_len);
2028 break;
2029 default:
2030 ret = -EINVAL;
2031 }
2032
2033 orig_isize = i_size_read(inode);
2034 /* zeroout eof blocks in the cluster. */
2035 if (!ret && change_size && orig_isize < size) {
2036 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2037 size - orig_isize);
2038 if (!ret)
2039 i_size_write(inode, size);
2040 }
2041 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2042 if (ret) {
2043 mlog_errno(ret);
2044 goto out_inode_unlock;
2045 }
2046
2047 /*
2048 * We update c/mtime for these changes
2049 */
2050 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2051 if (IS_ERR(handle)) {
2052 ret = PTR_ERR(handle);
2053 mlog_errno(ret);
2054 goto out_inode_unlock;
2055 }
2056
2057 inode->i_ctime = inode->i_mtime = current_time(inode);
2058 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2059 if (ret < 0)
2060 mlog_errno(ret);
2061
2062 if (file && (file->f_flags & O_SYNC))
2063 handle->h_sync = 1;
2064
2065 ocfs2_commit_trans(osb, handle);
2066
2067 out_inode_unlock:
2068 brelse(di_bh);
2069 ocfs2_inode_unlock(inode, 1);
2070 out_rw_unlock:
2071 ocfs2_rw_unlock(inode, 1);
2072
2073 out:
2074 inode_unlock(inode);
2075 return ret;
2076 }
2077
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2078 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2079 struct ocfs2_space_resv *sr)
2080 {
2081 struct inode *inode = file_inode(file);
2082 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2083 int ret;
2084
2085 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2086 !ocfs2_writes_unwritten_extents(osb))
2087 return -ENOTTY;
2088 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2089 !ocfs2_sparse_alloc(osb))
2090 return -ENOTTY;
2091
2092 if (!S_ISREG(inode->i_mode))
2093 return -EINVAL;
2094
2095 if (!(file->f_mode & FMODE_WRITE))
2096 return -EBADF;
2097
2098 ret = mnt_want_write_file(file);
2099 if (ret)
2100 return ret;
2101 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2102 mnt_drop_write_file(file);
2103 return ret;
2104 }
2105
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2106 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2107 loff_t len)
2108 {
2109 struct inode *inode = file_inode(file);
2110 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2111 struct ocfs2_space_resv sr;
2112 int change_size = 1;
2113 int cmd = OCFS2_IOC_RESVSP64;
2114 int ret = 0;
2115
2116 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2117 return -EOPNOTSUPP;
2118 if (!ocfs2_writes_unwritten_extents(osb))
2119 return -EOPNOTSUPP;
2120
2121 if (mode & FALLOC_FL_KEEP_SIZE) {
2122 change_size = 0;
2123 } else {
2124 ret = inode_newsize_ok(inode, offset + len);
2125 if (ret)
2126 return ret;
2127 }
2128
2129 if (mode & FALLOC_FL_PUNCH_HOLE)
2130 cmd = OCFS2_IOC_UNRESVSP64;
2131
2132 sr.l_whence = 0;
2133 sr.l_start = (s64)offset;
2134 sr.l_len = (s64)len;
2135
2136 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2137 change_size);
2138 }
2139
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2140 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2141 size_t count)
2142 {
2143 int ret = 0;
2144 unsigned int extent_flags;
2145 u32 cpos, clusters, extent_len, phys_cpos;
2146 struct super_block *sb = inode->i_sb;
2147
2148 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2149 !ocfs2_is_refcount_inode(inode) ||
2150 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2151 return 0;
2152
2153 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2154 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2155
2156 while (clusters) {
2157 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2158 &extent_flags);
2159 if (ret < 0) {
2160 mlog_errno(ret);
2161 goto out;
2162 }
2163
2164 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2165 ret = 1;
2166 break;
2167 }
2168
2169 if (extent_len > clusters)
2170 extent_len = clusters;
2171
2172 clusters -= extent_len;
2173 cpos += extent_len;
2174 }
2175 out:
2176 return ret;
2177 }
2178
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2179 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2180 {
2181 int blockmask = inode->i_sb->s_blocksize - 1;
2182 loff_t final_size = pos + count;
2183
2184 if ((pos & blockmask) || (final_size & blockmask))
2185 return 1;
2186 return 0;
2187 }
2188
ocfs2_inode_lock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem,int wait)2189 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2190 struct buffer_head **di_bh,
2191 int meta_level,
2192 int write_sem,
2193 int wait)
2194 {
2195 int ret = 0;
2196
2197 if (wait)
2198 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2199 else
2200 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2201 if (ret < 0)
2202 goto out;
2203
2204 if (wait) {
2205 if (write_sem)
2206 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2207 else
2208 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2209 } else {
2210 if (write_sem)
2211 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2212 else
2213 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2214
2215 if (!ret) {
2216 ret = -EAGAIN;
2217 goto out_unlock;
2218 }
2219 }
2220
2221 return ret;
2222
2223 out_unlock:
2224 brelse(*di_bh);
2225 *di_bh = NULL;
2226 ocfs2_inode_unlock(inode, meta_level);
2227 out:
2228 return ret;
2229 }
2230
ocfs2_inode_unlock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem)2231 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2232 struct buffer_head **di_bh,
2233 int meta_level,
2234 int write_sem)
2235 {
2236 if (write_sem)
2237 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2238 else
2239 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2240
2241 brelse(*di_bh);
2242 *di_bh = NULL;
2243
2244 if (meta_level >= 0)
2245 ocfs2_inode_unlock(inode, meta_level);
2246 }
2247
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2248 static int ocfs2_prepare_inode_for_write(struct file *file,
2249 loff_t pos, size_t count, int wait)
2250 {
2251 int ret = 0, meta_level = 0, overwrite_io = 0;
2252 int write_sem = 0;
2253 struct dentry *dentry = file->f_path.dentry;
2254 struct inode *inode = d_inode(dentry);
2255 struct buffer_head *di_bh = NULL;
2256 loff_t end;
2257 u32 cpos;
2258 u32 clusters;
2259
2260 /*
2261 * We start with a read level meta lock and only jump to an ex
2262 * if we need to make modifications here.
2263 */
2264 for(;;) {
2265 ret = ocfs2_inode_lock_for_extent_tree(inode,
2266 &di_bh,
2267 meta_level,
2268 write_sem,
2269 wait);
2270 if (ret < 0) {
2271 if (ret != -EAGAIN)
2272 mlog_errno(ret);
2273 goto out;
2274 }
2275
2276 /*
2277 * Check if IO will overwrite allocated blocks in case
2278 * IOCB_NOWAIT flag is set.
2279 */
2280 if (!wait && !overwrite_io) {
2281 overwrite_io = 1;
2282
2283 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2284 if (ret < 0) {
2285 if (ret != -EAGAIN)
2286 mlog_errno(ret);
2287 goto out_unlock;
2288 }
2289 }
2290
2291 /* Clear suid / sgid if necessary. We do this here
2292 * instead of later in the write path because
2293 * remove_suid() calls ->setattr without any hint that
2294 * we may have already done our cluster locking. Since
2295 * ocfs2_setattr() *must* take cluster locks to
2296 * proceed, this will lead us to recursively lock the
2297 * inode. There's also the dinode i_size state which
2298 * can be lost via setattr during extending writes (we
2299 * set inode->i_size at the end of a write. */
2300 if (should_remove_suid(dentry)) {
2301 if (meta_level == 0) {
2302 ocfs2_inode_unlock_for_extent_tree(inode,
2303 &di_bh,
2304 meta_level,
2305 write_sem);
2306 meta_level = 1;
2307 continue;
2308 }
2309
2310 ret = ocfs2_write_remove_suid(inode);
2311 if (ret < 0) {
2312 mlog_errno(ret);
2313 goto out_unlock;
2314 }
2315 }
2316
2317 end = pos + count;
2318
2319 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2320 if (ret == 1) {
2321 ocfs2_inode_unlock_for_extent_tree(inode,
2322 &di_bh,
2323 meta_level,
2324 write_sem);
2325 meta_level = 1;
2326 write_sem = 1;
2327 ret = ocfs2_inode_lock_for_extent_tree(inode,
2328 &di_bh,
2329 meta_level,
2330 write_sem,
2331 wait);
2332 if (ret < 0) {
2333 if (ret != -EAGAIN)
2334 mlog_errno(ret);
2335 goto out;
2336 }
2337
2338 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2339 clusters =
2340 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2341 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2342 }
2343
2344 if (ret < 0) {
2345 if (ret != -EAGAIN)
2346 mlog_errno(ret);
2347 goto out_unlock;
2348 }
2349
2350 break;
2351 }
2352
2353 out_unlock:
2354 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2355 pos, count, wait);
2356
2357 ocfs2_inode_unlock_for_extent_tree(inode,
2358 &di_bh,
2359 meta_level,
2360 write_sem);
2361
2362 out:
2363 return ret;
2364 }
2365
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2366 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2367 struct iov_iter *from)
2368 {
2369 int rw_level;
2370 ssize_t written = 0;
2371 ssize_t ret;
2372 size_t count = iov_iter_count(from);
2373 struct file *file = iocb->ki_filp;
2374 struct inode *inode = file_inode(file);
2375 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2376 int full_coherency = !(osb->s_mount_opt &
2377 OCFS2_MOUNT_COHERENCY_BUFFERED);
2378 void *saved_ki_complete = NULL;
2379 int append_write = ((iocb->ki_pos + count) >=
2380 i_size_read(inode) ? 1 : 0);
2381 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2382 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2383
2384 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2385 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2386 file->f_path.dentry->d_name.len,
2387 file->f_path.dentry->d_name.name,
2388 (unsigned int)from->nr_segs); /* GRRRRR */
2389
2390 if (!direct_io && nowait)
2391 return -EOPNOTSUPP;
2392
2393 if (count == 0)
2394 return 0;
2395
2396 if (nowait) {
2397 if (!inode_trylock(inode))
2398 return -EAGAIN;
2399 } else
2400 inode_lock(inode);
2401
2402 /*
2403 * Concurrent O_DIRECT writes are allowed with
2404 * mount_option "coherency=buffered".
2405 * For append write, we must take rw EX.
2406 */
2407 rw_level = (!direct_io || full_coherency || append_write);
2408
2409 if (nowait)
2410 ret = ocfs2_try_rw_lock(inode, rw_level);
2411 else
2412 ret = ocfs2_rw_lock(inode, rw_level);
2413 if (ret < 0) {
2414 if (ret != -EAGAIN)
2415 mlog_errno(ret);
2416 goto out_mutex;
2417 }
2418
2419 /*
2420 * O_DIRECT writes with "coherency=full" need to take EX cluster
2421 * inode_lock to guarantee coherency.
2422 */
2423 if (direct_io && full_coherency) {
2424 /*
2425 * We need to take and drop the inode lock to force
2426 * other nodes to drop their caches. Buffered I/O
2427 * already does this in write_begin().
2428 */
2429 if (nowait)
2430 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2431 else
2432 ret = ocfs2_inode_lock(inode, NULL, 1);
2433 if (ret < 0) {
2434 if (ret != -EAGAIN)
2435 mlog_errno(ret);
2436 goto out;
2437 }
2438
2439 ocfs2_inode_unlock(inode, 1);
2440 }
2441
2442 ret = generic_write_checks(iocb, from);
2443 if (ret <= 0) {
2444 if (ret)
2445 mlog_errno(ret);
2446 goto out;
2447 }
2448 count = ret;
2449
2450 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2451 if (ret < 0) {
2452 if (ret != -EAGAIN)
2453 mlog_errno(ret);
2454 goto out;
2455 }
2456
2457 if (direct_io && !is_sync_kiocb(iocb) &&
2458 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2459 /*
2460 * Make it a sync io if it's an unaligned aio.
2461 */
2462 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2463 }
2464
2465 /* communicate with ocfs2_dio_end_io */
2466 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2467
2468 written = __generic_file_write_iter(iocb, from);
2469 /* buffered aio wouldn't have proper lock coverage today */
2470 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2471
2472 /*
2473 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2474 * function pointer which is called when o_direct io completes so that
2475 * it can unlock our rw lock.
2476 * Unfortunately there are error cases which call end_io and others
2477 * that don't. so we don't have to unlock the rw_lock if either an
2478 * async dio is going to do it in the future or an end_io after an
2479 * error has already done it.
2480 */
2481 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2482 rw_level = -1;
2483 }
2484
2485 if (unlikely(written <= 0))
2486 goto out;
2487
2488 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2489 IS_SYNC(inode)) {
2490 ret = filemap_fdatawrite_range(file->f_mapping,
2491 iocb->ki_pos - written,
2492 iocb->ki_pos - 1);
2493 if (ret < 0)
2494 written = ret;
2495
2496 if (!ret) {
2497 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2498 if (ret < 0)
2499 written = ret;
2500 }
2501
2502 if (!ret)
2503 ret = filemap_fdatawait_range(file->f_mapping,
2504 iocb->ki_pos - written,
2505 iocb->ki_pos - 1);
2506 }
2507
2508 out:
2509 if (saved_ki_complete)
2510 xchg(&iocb->ki_complete, saved_ki_complete);
2511
2512 if (rw_level != -1)
2513 ocfs2_rw_unlock(inode, rw_level);
2514
2515 out_mutex:
2516 inode_unlock(inode);
2517
2518 if (written)
2519 ret = written;
2520 return ret;
2521 }
2522
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2523 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2524 struct iov_iter *to)
2525 {
2526 int ret = 0, rw_level = -1, lock_level = 0;
2527 struct file *filp = iocb->ki_filp;
2528 struct inode *inode = file_inode(filp);
2529 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2530 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2531
2532 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2533 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2534 filp->f_path.dentry->d_name.len,
2535 filp->f_path.dentry->d_name.name,
2536 to->nr_segs); /* GRRRRR */
2537
2538
2539 if (!inode) {
2540 ret = -EINVAL;
2541 mlog_errno(ret);
2542 goto bail;
2543 }
2544
2545 if (!direct_io && nowait)
2546 return -EOPNOTSUPP;
2547
2548 /*
2549 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2550 * need locks to protect pending reads from racing with truncate.
2551 */
2552 if (direct_io) {
2553 if (nowait)
2554 ret = ocfs2_try_rw_lock(inode, 0);
2555 else
2556 ret = ocfs2_rw_lock(inode, 0);
2557
2558 if (ret < 0) {
2559 if (ret != -EAGAIN)
2560 mlog_errno(ret);
2561 goto bail;
2562 }
2563 rw_level = 0;
2564 /* communicate with ocfs2_dio_end_io */
2565 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2566 }
2567
2568 /*
2569 * We're fine letting folks race truncates and extending
2570 * writes with read across the cluster, just like they can
2571 * locally. Hence no rw_lock during read.
2572 *
2573 * Take and drop the meta data lock to update inode fields
2574 * like i_size. This allows the checks down below
2575 * generic_file_read_iter() a chance of actually working.
2576 */
2577 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2578 !nowait);
2579 if (ret < 0) {
2580 if (ret != -EAGAIN)
2581 mlog_errno(ret);
2582 goto bail;
2583 }
2584 ocfs2_inode_unlock(inode, lock_level);
2585
2586 ret = generic_file_read_iter(iocb, to);
2587 trace_generic_file_read_iter_ret(ret);
2588
2589 /* buffered aio wouldn't have proper lock coverage today */
2590 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2591
2592 /* see ocfs2_file_write_iter */
2593 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2594 rw_level = -1;
2595 }
2596
2597 bail:
2598 if (rw_level != -1)
2599 ocfs2_rw_unlock(inode, rw_level);
2600
2601 return ret;
2602 }
2603
2604 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2605 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2606 {
2607 struct inode *inode = file->f_mapping->host;
2608 int ret = 0;
2609
2610 inode_lock(inode);
2611
2612 switch (whence) {
2613 case SEEK_SET:
2614 break;
2615 case SEEK_END:
2616 /* SEEK_END requires the OCFS2 inode lock for the file
2617 * because it references the file's size.
2618 */
2619 ret = ocfs2_inode_lock(inode, NULL, 0);
2620 if (ret < 0) {
2621 mlog_errno(ret);
2622 goto out;
2623 }
2624 offset += i_size_read(inode);
2625 ocfs2_inode_unlock(inode, 0);
2626 break;
2627 case SEEK_CUR:
2628 if (offset == 0) {
2629 offset = file->f_pos;
2630 goto out;
2631 }
2632 offset += file->f_pos;
2633 break;
2634 case SEEK_DATA:
2635 case SEEK_HOLE:
2636 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2637 if (ret)
2638 goto out;
2639 break;
2640 default:
2641 ret = -EINVAL;
2642 goto out;
2643 }
2644
2645 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2646
2647 out:
2648 inode_unlock(inode);
2649 if (ret)
2650 return ret;
2651 return offset;
2652 }
2653
ocfs2_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)2654 static int ocfs2_file_clone_range(struct file *file_in,
2655 loff_t pos_in,
2656 struct file *file_out,
2657 loff_t pos_out,
2658 u64 len)
2659 {
2660 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2661 len, false);
2662 }
2663
ocfs2_file_dedupe_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)2664 static int ocfs2_file_dedupe_range(struct file *file_in,
2665 loff_t pos_in,
2666 struct file *file_out,
2667 loff_t pos_out,
2668 u64 len)
2669 {
2670 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2671 len, true);
2672 }
2673
2674 const struct inode_operations ocfs2_file_iops = {
2675 .setattr = ocfs2_setattr,
2676 .getattr = ocfs2_getattr,
2677 .permission = ocfs2_permission,
2678 .listxattr = ocfs2_listxattr,
2679 .fiemap = ocfs2_fiemap,
2680 .get_acl = ocfs2_iop_get_acl,
2681 .set_acl = ocfs2_iop_set_acl,
2682 };
2683
2684 const struct inode_operations ocfs2_special_file_iops = {
2685 .setattr = ocfs2_setattr,
2686 .getattr = ocfs2_getattr,
2687 .permission = ocfs2_permission,
2688 .get_acl = ocfs2_iop_get_acl,
2689 .set_acl = ocfs2_iop_set_acl,
2690 };
2691
2692 /*
2693 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2694 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2695 */
2696 const struct file_operations ocfs2_fops = {
2697 .llseek = ocfs2_file_llseek,
2698 .mmap = ocfs2_mmap,
2699 .fsync = ocfs2_sync_file,
2700 .release = ocfs2_file_release,
2701 .open = ocfs2_file_open,
2702 .read_iter = ocfs2_file_read_iter,
2703 .write_iter = ocfs2_file_write_iter,
2704 .unlocked_ioctl = ocfs2_ioctl,
2705 #ifdef CONFIG_COMPAT
2706 .compat_ioctl = ocfs2_compat_ioctl,
2707 #endif
2708 .lock = ocfs2_lock,
2709 .flock = ocfs2_flock,
2710 .splice_read = generic_file_splice_read,
2711 .splice_write = iter_file_splice_write,
2712 .fallocate = ocfs2_fallocate,
2713 .clone_file_range = ocfs2_file_clone_range,
2714 .dedupe_file_range = ocfs2_file_dedupe_range,
2715 };
2716
2717 const struct file_operations ocfs2_dops = {
2718 .llseek = generic_file_llseek,
2719 .read = generic_read_dir,
2720 .iterate = ocfs2_readdir,
2721 .fsync = ocfs2_sync_file,
2722 .release = ocfs2_dir_release,
2723 .open = ocfs2_dir_open,
2724 .unlocked_ioctl = ocfs2_ioctl,
2725 #ifdef CONFIG_COMPAT
2726 .compat_ioctl = ocfs2_compat_ioctl,
2727 #endif
2728 .lock = ocfs2_lock,
2729 .flock = ocfs2_flock,
2730 };
2731
2732 /*
2733 * POSIX-lockless variants of our file_operations.
2734 *
2735 * These will be used if the underlying cluster stack does not support
2736 * posix file locking, if the user passes the "localflocks" mount
2737 * option, or if we have a local-only fs.
2738 *
2739 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2740 * so we still want it in the case of no stack support for
2741 * plocks. Internally, it will do the right thing when asked to ignore
2742 * the cluster.
2743 */
2744 const struct file_operations ocfs2_fops_no_plocks = {
2745 .llseek = ocfs2_file_llseek,
2746 .mmap = ocfs2_mmap,
2747 .fsync = ocfs2_sync_file,
2748 .release = ocfs2_file_release,
2749 .open = ocfs2_file_open,
2750 .read_iter = ocfs2_file_read_iter,
2751 .write_iter = ocfs2_file_write_iter,
2752 .unlocked_ioctl = ocfs2_ioctl,
2753 #ifdef CONFIG_COMPAT
2754 .compat_ioctl = ocfs2_compat_ioctl,
2755 #endif
2756 .flock = ocfs2_flock,
2757 .splice_read = generic_file_splice_read,
2758 .splice_write = iter_file_splice_write,
2759 .fallocate = ocfs2_fallocate,
2760 .clone_file_range = ocfs2_file_clone_range,
2761 .dedupe_file_range = ocfs2_file_dedupe_range,
2762 };
2763
2764 const struct file_operations ocfs2_dops_no_plocks = {
2765 .llseek = generic_file_llseek,
2766 .read = generic_read_dir,
2767 .iterate = ocfs2_readdir,
2768 .fsync = ocfs2_sync_file,
2769 .release = ocfs2_dir_release,
2770 .open = ocfs2_dir_open,
2771 .unlocked_ioctl = ocfs2_ioctl,
2772 #ifdef CONFIG_COMPAT
2773 .compat_ioctl = ocfs2_compat_ioctl,
2774 #endif
2775 .flock = ocfs2_flock,
2776 };
2777