1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * uptodate.c
5 *
6 * Tracking the up-to-date-ness of a local buffer_head with respect to
7 * the cluster.
8 *
9 * Copyright (C) 2002, 2004, 2005 Oracle. All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public
22 * License along with this program; if not, write to the
23 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 * Boston, MA 021110-1307, USA.
25 *
26 * Standard buffer head caching flags (uptodate, etc) are insufficient
27 * in a clustered environment - a buffer may be marked up to date on
28 * our local node but could have been modified by another cluster
29 * member. As a result an additional (and performant) caching scheme
30 * is required. A further requirement is that we consume as little
31 * memory as possible - we never pin buffer_head structures in order
32 * to cache them.
33 *
34 * We track the existence of up to date buffers on the inodes which
35 * are associated with them. Because we don't want to pin
36 * buffer_heads, this is only a (strong) hint and several other checks
37 * are made in the I/O path to ensure that we don't use a stale or
38 * invalid buffer without going to disk:
39 * - buffer_jbd is used liberally - if a bh is in the journal on
40 * this node then it *must* be up to date.
41 * - the standard buffer_uptodate() macro is used to detect buffers
42 * which may be invalid (even if we have an up to date tracking
43 * item for them)
44 *
45 * For a full understanding of how this code works together, one
46 * should read the callers in dlmglue.c, the I/O functions in
47 * buffer_head_io.c and ocfs2_journal_access in journal.c
48 */
49
50 #include <linux/fs.h>
51 #include <linux/types.h>
52 #include <linux/slab.h>
53 #include <linux/highmem.h>
54 #include <linux/buffer_head.h>
55 #include <linux/rbtree.h>
56
57 #include <cluster/masklog.h>
58
59 #include "ocfs2.h"
60
61 #include "inode.h"
62 #include "uptodate.h"
63 #include "ocfs2_trace.h"
64
65 struct ocfs2_meta_cache_item {
66 struct rb_node c_node;
67 sector_t c_block;
68 };
69
70 static struct kmem_cache *ocfs2_uptodate_cachep;
71
ocfs2_metadata_cache_owner(struct ocfs2_caching_info * ci)72 u64 ocfs2_metadata_cache_owner(struct ocfs2_caching_info *ci)
73 {
74 BUG_ON(!ci || !ci->ci_ops);
75
76 return ci->ci_ops->co_owner(ci);
77 }
78
ocfs2_metadata_cache_get_super(struct ocfs2_caching_info * ci)79 struct super_block *ocfs2_metadata_cache_get_super(struct ocfs2_caching_info *ci)
80 {
81 BUG_ON(!ci || !ci->ci_ops);
82
83 return ci->ci_ops->co_get_super(ci);
84 }
85
ocfs2_metadata_cache_lock(struct ocfs2_caching_info * ci)86 static void ocfs2_metadata_cache_lock(struct ocfs2_caching_info *ci)
87 {
88 BUG_ON(!ci || !ci->ci_ops);
89
90 ci->ci_ops->co_cache_lock(ci);
91 }
92
ocfs2_metadata_cache_unlock(struct ocfs2_caching_info * ci)93 static void ocfs2_metadata_cache_unlock(struct ocfs2_caching_info *ci)
94 {
95 BUG_ON(!ci || !ci->ci_ops);
96
97 ci->ci_ops->co_cache_unlock(ci);
98 }
99
ocfs2_metadata_cache_io_lock(struct ocfs2_caching_info * ci)100 void ocfs2_metadata_cache_io_lock(struct ocfs2_caching_info *ci)
101 {
102 BUG_ON(!ci || !ci->ci_ops);
103
104 ci->ci_ops->co_io_lock(ci);
105 }
106
ocfs2_metadata_cache_io_unlock(struct ocfs2_caching_info * ci)107 void ocfs2_metadata_cache_io_unlock(struct ocfs2_caching_info *ci)
108 {
109 BUG_ON(!ci || !ci->ci_ops);
110
111 ci->ci_ops->co_io_unlock(ci);
112 }
113
114
ocfs2_metadata_cache_reset(struct ocfs2_caching_info * ci,int clear)115 static void ocfs2_metadata_cache_reset(struct ocfs2_caching_info *ci,
116 int clear)
117 {
118 ci->ci_flags |= OCFS2_CACHE_FL_INLINE;
119 ci->ci_num_cached = 0;
120
121 if (clear) {
122 ci->ci_created_trans = 0;
123 ci->ci_last_trans = 0;
124 }
125 }
126
ocfs2_metadata_cache_init(struct ocfs2_caching_info * ci,const struct ocfs2_caching_operations * ops)127 void ocfs2_metadata_cache_init(struct ocfs2_caching_info *ci,
128 const struct ocfs2_caching_operations *ops)
129 {
130 BUG_ON(!ops);
131
132 ci->ci_ops = ops;
133 ocfs2_metadata_cache_reset(ci, 1);
134 }
135
ocfs2_metadata_cache_exit(struct ocfs2_caching_info * ci)136 void ocfs2_metadata_cache_exit(struct ocfs2_caching_info *ci)
137 {
138 ocfs2_metadata_cache_purge(ci);
139 ocfs2_metadata_cache_reset(ci, 1);
140 }
141
142
143 /* No lock taken here as 'root' is not expected to be visible to other
144 * processes. */
ocfs2_purge_copied_metadata_tree(struct rb_root * root)145 static unsigned int ocfs2_purge_copied_metadata_tree(struct rb_root *root)
146 {
147 unsigned int purged = 0;
148 struct rb_node *node;
149 struct ocfs2_meta_cache_item *item;
150
151 while ((node = rb_last(root)) != NULL) {
152 item = rb_entry(node, struct ocfs2_meta_cache_item, c_node);
153
154 trace_ocfs2_purge_copied_metadata_tree(
155 (unsigned long long) item->c_block);
156
157 rb_erase(&item->c_node, root);
158 kmem_cache_free(ocfs2_uptodate_cachep, item);
159
160 purged++;
161 }
162 return purged;
163 }
164
165 /* Called from locking and called from ocfs2_clear_inode. Dump the
166 * cache for a given inode.
167 *
168 * This function is a few more lines longer than necessary due to some
169 * accounting done here, but I think it's worth tracking down those
170 * bugs sooner -- Mark */
ocfs2_metadata_cache_purge(struct ocfs2_caching_info * ci)171 void ocfs2_metadata_cache_purge(struct ocfs2_caching_info *ci)
172 {
173 unsigned int tree, to_purge, purged;
174 struct rb_root root = RB_ROOT;
175
176 BUG_ON(!ci || !ci->ci_ops);
177
178 ocfs2_metadata_cache_lock(ci);
179 tree = !(ci->ci_flags & OCFS2_CACHE_FL_INLINE);
180 to_purge = ci->ci_num_cached;
181
182 trace_ocfs2_metadata_cache_purge(
183 (unsigned long long)ocfs2_metadata_cache_owner(ci),
184 to_purge, tree);
185
186 /* If we're a tree, save off the root so that we can safely
187 * initialize the cache. We do the work to free tree members
188 * without the spinlock. */
189 if (tree)
190 root = ci->ci_cache.ci_tree;
191
192 ocfs2_metadata_cache_reset(ci, 0);
193 ocfs2_metadata_cache_unlock(ci);
194
195 purged = ocfs2_purge_copied_metadata_tree(&root);
196 /* If possible, track the number wiped so that we can more
197 * easily detect counting errors. Unfortunately, this is only
198 * meaningful for trees. */
199 if (tree && purged != to_purge)
200 mlog(ML_ERROR, "Owner %llu, count = %u, purged = %u\n",
201 (unsigned long long)ocfs2_metadata_cache_owner(ci),
202 to_purge, purged);
203 }
204
205 /* Returns the index in the cache array, -1 if not found.
206 * Requires ip_lock. */
ocfs2_search_cache_array(struct ocfs2_caching_info * ci,sector_t item)207 static int ocfs2_search_cache_array(struct ocfs2_caching_info *ci,
208 sector_t item)
209 {
210 int i;
211
212 for (i = 0; i < ci->ci_num_cached; i++) {
213 if (item == ci->ci_cache.ci_array[i])
214 return i;
215 }
216
217 return -1;
218 }
219
220 /* Returns the cache item if found, otherwise NULL.
221 * Requires ip_lock. */
222 static struct ocfs2_meta_cache_item *
ocfs2_search_cache_tree(struct ocfs2_caching_info * ci,sector_t block)223 ocfs2_search_cache_tree(struct ocfs2_caching_info *ci,
224 sector_t block)
225 {
226 struct rb_node * n = ci->ci_cache.ci_tree.rb_node;
227 struct ocfs2_meta_cache_item *item = NULL;
228
229 while (n) {
230 item = rb_entry(n, struct ocfs2_meta_cache_item, c_node);
231
232 if (block < item->c_block)
233 n = n->rb_left;
234 else if (block > item->c_block)
235 n = n->rb_right;
236 else
237 return item;
238 }
239
240 return NULL;
241 }
242
ocfs2_buffer_cached(struct ocfs2_caching_info * ci,struct buffer_head * bh)243 static int ocfs2_buffer_cached(struct ocfs2_caching_info *ci,
244 struct buffer_head *bh)
245 {
246 int index = -1;
247 struct ocfs2_meta_cache_item *item = NULL;
248
249 ocfs2_metadata_cache_lock(ci);
250
251 trace_ocfs2_buffer_cached_begin(
252 (unsigned long long)ocfs2_metadata_cache_owner(ci),
253 (unsigned long long) bh->b_blocknr,
254 !!(ci->ci_flags & OCFS2_CACHE_FL_INLINE));
255
256 if (ci->ci_flags & OCFS2_CACHE_FL_INLINE)
257 index = ocfs2_search_cache_array(ci, bh->b_blocknr);
258 else
259 item = ocfs2_search_cache_tree(ci, bh->b_blocknr);
260
261 ocfs2_metadata_cache_unlock(ci);
262
263 trace_ocfs2_buffer_cached_end(index, item);
264
265 return (index != -1) || (item != NULL);
266 }
267
268 /* Warning: even if it returns true, this does *not* guarantee that
269 * the block is stored in our inode metadata cache.
270 *
271 * This can be called under lock_buffer()
272 */
ocfs2_buffer_uptodate(struct ocfs2_caching_info * ci,struct buffer_head * bh)273 int ocfs2_buffer_uptodate(struct ocfs2_caching_info *ci,
274 struct buffer_head *bh)
275 {
276 /* Doesn't matter if the bh is in our cache or not -- if it's
277 * not marked uptodate then we know it can't have correct
278 * data. */
279 if (!buffer_uptodate(bh))
280 return 0;
281
282 /* OCFS2 does not allow multiple nodes to be changing the same
283 * block at the same time. */
284 if (buffer_jbd(bh))
285 return 1;
286
287 /* Ok, locally the buffer is marked as up to date, now search
288 * our cache to see if we can trust that. */
289 return ocfs2_buffer_cached(ci, bh);
290 }
291
292 /*
293 * Determine whether a buffer is currently out on a read-ahead request.
294 * ci_io_sem should be held to serialize submitters with the logic here.
295 */
ocfs2_buffer_read_ahead(struct ocfs2_caching_info * ci,struct buffer_head * bh)296 int ocfs2_buffer_read_ahead(struct ocfs2_caching_info *ci,
297 struct buffer_head *bh)
298 {
299 return buffer_locked(bh) && ocfs2_buffer_cached(ci, bh);
300 }
301
302 /* Requires ip_lock */
ocfs2_append_cache_array(struct ocfs2_caching_info * ci,sector_t block)303 static void ocfs2_append_cache_array(struct ocfs2_caching_info *ci,
304 sector_t block)
305 {
306 BUG_ON(ci->ci_num_cached >= OCFS2_CACHE_INFO_MAX_ARRAY);
307
308 trace_ocfs2_append_cache_array(
309 (unsigned long long)ocfs2_metadata_cache_owner(ci),
310 (unsigned long long)block, ci->ci_num_cached);
311
312 ci->ci_cache.ci_array[ci->ci_num_cached] = block;
313 ci->ci_num_cached++;
314 }
315
316 /* By now the caller should have checked that the item does *not*
317 * exist in the tree.
318 * Requires ip_lock. */
__ocfs2_insert_cache_tree(struct ocfs2_caching_info * ci,struct ocfs2_meta_cache_item * new)319 static void __ocfs2_insert_cache_tree(struct ocfs2_caching_info *ci,
320 struct ocfs2_meta_cache_item *new)
321 {
322 sector_t block = new->c_block;
323 struct rb_node *parent = NULL;
324 struct rb_node **p = &ci->ci_cache.ci_tree.rb_node;
325 struct ocfs2_meta_cache_item *tmp;
326
327 trace_ocfs2_insert_cache_tree(
328 (unsigned long long)ocfs2_metadata_cache_owner(ci),
329 (unsigned long long)block, ci->ci_num_cached);
330
331 while(*p) {
332 parent = *p;
333
334 tmp = rb_entry(parent, struct ocfs2_meta_cache_item, c_node);
335
336 if (block < tmp->c_block)
337 p = &(*p)->rb_left;
338 else if (block > tmp->c_block)
339 p = &(*p)->rb_right;
340 else {
341 /* This should never happen! */
342 mlog(ML_ERROR, "Duplicate block %llu cached!\n",
343 (unsigned long long) block);
344 BUG();
345 }
346 }
347
348 rb_link_node(&new->c_node, parent, p);
349 rb_insert_color(&new->c_node, &ci->ci_cache.ci_tree);
350 ci->ci_num_cached++;
351 }
352
353 /* co_cache_lock() must be held */
ocfs2_insert_can_use_array(struct ocfs2_caching_info * ci)354 static inline int ocfs2_insert_can_use_array(struct ocfs2_caching_info *ci)
355 {
356 return (ci->ci_flags & OCFS2_CACHE_FL_INLINE) &&
357 (ci->ci_num_cached < OCFS2_CACHE_INFO_MAX_ARRAY);
358 }
359
360 /* tree should be exactly OCFS2_CACHE_INFO_MAX_ARRAY wide. NULL the
361 * pointers in tree after we use them - this allows caller to detect
362 * when to free in case of error.
363 *
364 * The co_cache_lock() must be held. */
ocfs2_expand_cache(struct ocfs2_caching_info * ci,struct ocfs2_meta_cache_item ** tree)365 static void ocfs2_expand_cache(struct ocfs2_caching_info *ci,
366 struct ocfs2_meta_cache_item **tree)
367 {
368 int i;
369
370 mlog_bug_on_msg(ci->ci_num_cached != OCFS2_CACHE_INFO_MAX_ARRAY,
371 "Owner %llu, num cached = %u, should be %u\n",
372 (unsigned long long)ocfs2_metadata_cache_owner(ci),
373 ci->ci_num_cached, OCFS2_CACHE_INFO_MAX_ARRAY);
374 mlog_bug_on_msg(!(ci->ci_flags & OCFS2_CACHE_FL_INLINE),
375 "Owner %llu not marked as inline anymore!\n",
376 (unsigned long long)ocfs2_metadata_cache_owner(ci));
377
378 /* Be careful to initialize the tree members *first* because
379 * once the ci_tree is used, the array is junk... */
380 for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++)
381 tree[i]->c_block = ci->ci_cache.ci_array[i];
382
383 ci->ci_flags &= ~OCFS2_CACHE_FL_INLINE;
384 ci->ci_cache.ci_tree = RB_ROOT;
385 /* this will be set again by __ocfs2_insert_cache_tree */
386 ci->ci_num_cached = 0;
387
388 for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) {
389 __ocfs2_insert_cache_tree(ci, tree[i]);
390 tree[i] = NULL;
391 }
392
393 trace_ocfs2_expand_cache(
394 (unsigned long long)ocfs2_metadata_cache_owner(ci),
395 ci->ci_flags, ci->ci_num_cached);
396 }
397
398 /* Slow path function - memory allocation is necessary. See the
399 * comment above ocfs2_set_buffer_uptodate for more information. */
__ocfs2_set_buffer_uptodate(struct ocfs2_caching_info * ci,sector_t block,int expand_tree)400 static void __ocfs2_set_buffer_uptodate(struct ocfs2_caching_info *ci,
401 sector_t block,
402 int expand_tree)
403 {
404 int i;
405 struct ocfs2_meta_cache_item *new = NULL;
406 struct ocfs2_meta_cache_item *tree[OCFS2_CACHE_INFO_MAX_ARRAY] =
407 { NULL, };
408
409 trace_ocfs2_set_buffer_uptodate(
410 (unsigned long long)ocfs2_metadata_cache_owner(ci),
411 (unsigned long long)block, expand_tree);
412
413 new = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS);
414 if (!new) {
415 mlog_errno(-ENOMEM);
416 return;
417 }
418 new->c_block = block;
419
420 if (expand_tree) {
421 /* Do *not* allocate an array here - the removal code
422 * has no way of tracking that. */
423 for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) {
424 tree[i] = kmem_cache_alloc(ocfs2_uptodate_cachep,
425 GFP_NOFS);
426 if (!tree[i]) {
427 mlog_errno(-ENOMEM);
428 goto out_free;
429 }
430
431 /* These are initialized in ocfs2_expand_cache! */
432 }
433 }
434
435 ocfs2_metadata_cache_lock(ci);
436 if (ocfs2_insert_can_use_array(ci)) {
437 /* Ok, items were removed from the cache in between
438 * locks. Detect this and revert back to the fast path */
439 ocfs2_append_cache_array(ci, block);
440 ocfs2_metadata_cache_unlock(ci);
441 goto out_free;
442 }
443
444 if (expand_tree)
445 ocfs2_expand_cache(ci, tree);
446
447 __ocfs2_insert_cache_tree(ci, new);
448 ocfs2_metadata_cache_unlock(ci);
449
450 new = NULL;
451 out_free:
452 if (new)
453 kmem_cache_free(ocfs2_uptodate_cachep, new);
454
455 /* If these were used, then ocfs2_expand_cache re-set them to
456 * NULL for us. */
457 if (tree[0]) {
458 for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++)
459 if (tree[i])
460 kmem_cache_free(ocfs2_uptodate_cachep,
461 tree[i]);
462 }
463 }
464
465 /* Item insertion is guarded by co_io_lock(), so the insertion path takes
466 * advantage of this by not rechecking for a duplicate insert during
467 * the slow case. Additionally, if the cache needs to be bumped up to
468 * a tree, the code will not recheck after acquiring the lock --
469 * multiple paths cannot be expanding to a tree at the same time.
470 *
471 * The slow path takes into account that items can be removed
472 * (including the whole tree wiped and reset) when this process it out
473 * allocating memory. In those cases, it reverts back to the fast
474 * path.
475 *
476 * Note that this function may actually fail to insert the block if
477 * memory cannot be allocated. This is not fatal however (but may
478 * result in a performance penalty)
479 *
480 * Readahead buffers can be passed in here before the I/O request is
481 * completed.
482 */
ocfs2_set_buffer_uptodate(struct ocfs2_caching_info * ci,struct buffer_head * bh)483 void ocfs2_set_buffer_uptodate(struct ocfs2_caching_info *ci,
484 struct buffer_head *bh)
485 {
486 int expand;
487
488 /* The block may very well exist in our cache already, so avoid
489 * doing any more work in that case. */
490 if (ocfs2_buffer_cached(ci, bh))
491 return;
492
493 trace_ocfs2_set_buffer_uptodate_begin(
494 (unsigned long long)ocfs2_metadata_cache_owner(ci),
495 (unsigned long long)bh->b_blocknr);
496
497 /* No need to recheck under spinlock - insertion is guarded by
498 * co_io_lock() */
499 ocfs2_metadata_cache_lock(ci);
500 if (ocfs2_insert_can_use_array(ci)) {
501 /* Fast case - it's an array and there's a free
502 * spot. */
503 ocfs2_append_cache_array(ci, bh->b_blocknr);
504 ocfs2_metadata_cache_unlock(ci);
505 return;
506 }
507
508 expand = 0;
509 if (ci->ci_flags & OCFS2_CACHE_FL_INLINE) {
510 /* We need to bump things up to a tree. */
511 expand = 1;
512 }
513 ocfs2_metadata_cache_unlock(ci);
514
515 __ocfs2_set_buffer_uptodate(ci, bh->b_blocknr, expand);
516 }
517
518 /* Called against a newly allocated buffer. Most likely nobody should
519 * be able to read this sort of metadata while it's still being
520 * allocated, but this is careful to take co_io_lock() anyway. */
ocfs2_set_new_buffer_uptodate(struct ocfs2_caching_info * ci,struct buffer_head * bh)521 void ocfs2_set_new_buffer_uptodate(struct ocfs2_caching_info *ci,
522 struct buffer_head *bh)
523 {
524 /* This should definitely *not* exist in our cache */
525 BUG_ON(ocfs2_buffer_cached(ci, bh));
526
527 set_buffer_uptodate(bh);
528
529 ocfs2_metadata_cache_io_lock(ci);
530 ocfs2_set_buffer_uptodate(ci, bh);
531 ocfs2_metadata_cache_io_unlock(ci);
532 }
533
534 /* Requires ip_lock. */
ocfs2_remove_metadata_array(struct ocfs2_caching_info * ci,int index)535 static void ocfs2_remove_metadata_array(struct ocfs2_caching_info *ci,
536 int index)
537 {
538 sector_t *array = ci->ci_cache.ci_array;
539 int bytes;
540
541 BUG_ON(index < 0 || index >= OCFS2_CACHE_INFO_MAX_ARRAY);
542 BUG_ON(index >= ci->ci_num_cached);
543 BUG_ON(!ci->ci_num_cached);
544
545 trace_ocfs2_remove_metadata_array(
546 (unsigned long long)ocfs2_metadata_cache_owner(ci),
547 index, ci->ci_num_cached);
548
549 ci->ci_num_cached--;
550
551 /* don't need to copy if the array is now empty, or if we
552 * removed at the tail */
553 if (ci->ci_num_cached && index < ci->ci_num_cached) {
554 bytes = sizeof(sector_t) * (ci->ci_num_cached - index);
555 memmove(&array[index], &array[index + 1], bytes);
556 }
557 }
558
559 /* Requires ip_lock. */
ocfs2_remove_metadata_tree(struct ocfs2_caching_info * ci,struct ocfs2_meta_cache_item * item)560 static void ocfs2_remove_metadata_tree(struct ocfs2_caching_info *ci,
561 struct ocfs2_meta_cache_item *item)
562 {
563 trace_ocfs2_remove_metadata_tree(
564 (unsigned long long)ocfs2_metadata_cache_owner(ci),
565 (unsigned long long)item->c_block);
566
567 rb_erase(&item->c_node, &ci->ci_cache.ci_tree);
568 ci->ci_num_cached--;
569 }
570
ocfs2_remove_block_from_cache(struct ocfs2_caching_info * ci,sector_t block)571 static void ocfs2_remove_block_from_cache(struct ocfs2_caching_info *ci,
572 sector_t block)
573 {
574 int index;
575 struct ocfs2_meta_cache_item *item = NULL;
576
577 ocfs2_metadata_cache_lock(ci);
578 trace_ocfs2_remove_block_from_cache(
579 (unsigned long long)ocfs2_metadata_cache_owner(ci),
580 (unsigned long long) block, ci->ci_num_cached,
581 ci->ci_flags);
582
583 if (ci->ci_flags & OCFS2_CACHE_FL_INLINE) {
584 index = ocfs2_search_cache_array(ci, block);
585 if (index != -1)
586 ocfs2_remove_metadata_array(ci, index);
587 } else {
588 item = ocfs2_search_cache_tree(ci, block);
589 if (item)
590 ocfs2_remove_metadata_tree(ci, item);
591 }
592 ocfs2_metadata_cache_unlock(ci);
593
594 if (item)
595 kmem_cache_free(ocfs2_uptodate_cachep, item);
596 }
597
598 /*
599 * Called when we remove a chunk of metadata from an inode. We don't
600 * bother reverting things to an inlined array in the case of a remove
601 * which moves us back under the limit.
602 */
ocfs2_remove_from_cache(struct ocfs2_caching_info * ci,struct buffer_head * bh)603 void ocfs2_remove_from_cache(struct ocfs2_caching_info *ci,
604 struct buffer_head *bh)
605 {
606 sector_t block = bh->b_blocknr;
607
608 ocfs2_remove_block_from_cache(ci, block);
609 }
610
611 /* Called when we remove xattr clusters from an inode. */
ocfs2_remove_xattr_clusters_from_cache(struct ocfs2_caching_info * ci,sector_t block,u32 c_len)612 void ocfs2_remove_xattr_clusters_from_cache(struct ocfs2_caching_info *ci,
613 sector_t block,
614 u32 c_len)
615 {
616 struct super_block *sb = ocfs2_metadata_cache_get_super(ci);
617 unsigned int i, b_len = ocfs2_clusters_to_blocks(sb, 1) * c_len;
618
619 for (i = 0; i < b_len; i++, block++)
620 ocfs2_remove_block_from_cache(ci, block);
621 }
622
init_ocfs2_uptodate_cache(void)623 int __init init_ocfs2_uptodate_cache(void)
624 {
625 ocfs2_uptodate_cachep = kmem_cache_create("ocfs2_uptodate",
626 sizeof(struct ocfs2_meta_cache_item),
627 0, SLAB_HWCACHE_ALIGN, NULL);
628 if (!ocfs2_uptodate_cachep)
629 return -ENOMEM;
630
631 return 0;
632 }
633
exit_ocfs2_uptodate_cache(void)634 void exit_ocfs2_uptodate_cache(void)
635 {
636 kmem_cache_destroy(ocfs2_uptodate_cachep);
637 }
638