1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
of_node_name_eq(const struct device_node * np,const char * name)57 bool of_node_name_eq(const struct device_node *np, const char *name)
58 {
59 	const char *node_name;
60 	size_t len;
61 
62 	if (!np)
63 		return false;
64 
65 	node_name = kbasename(np->full_name);
66 	len = strchrnul(node_name, '@') - node_name;
67 
68 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
69 }
70 EXPORT_SYMBOL(of_node_name_eq);
71 
of_node_name_prefix(const struct device_node * np,const char * prefix)72 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
73 {
74 	if (!np)
75 		return false;
76 
77 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
78 }
79 EXPORT_SYMBOL(of_node_name_prefix);
80 
of_n_addr_cells(struct device_node * np)81 int of_n_addr_cells(struct device_node *np)
82 {
83 	u32 cells;
84 
85 	do {
86 		if (np->parent)
87 			np = np->parent;
88 		if (!of_property_read_u32(np, "#address-cells", &cells))
89 			return cells;
90 	} while (np->parent);
91 	/* No #address-cells property for the root node */
92 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
93 }
94 EXPORT_SYMBOL(of_n_addr_cells);
95 
of_n_size_cells(struct device_node * np)96 int of_n_size_cells(struct device_node *np)
97 {
98 	u32 cells;
99 
100 	do {
101 		if (np->parent)
102 			np = np->parent;
103 		if (!of_property_read_u32(np, "#size-cells", &cells))
104 			return cells;
105 	} while (np->parent);
106 	/* No #size-cells property for the root node */
107 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
108 }
109 EXPORT_SYMBOL(of_n_size_cells);
110 
111 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)112 int __weak of_node_to_nid(struct device_node *np)
113 {
114 	return NUMA_NO_NODE;
115 }
116 #endif
117 
118 /*
119  * Assumptions behind phandle_cache implementation:
120  *   - phandle property values are in a contiguous range of 1..n
121  *
122  * If the assumptions do not hold, then
123  *   - the phandle lookup overhead reduction provided by the cache
124  *     will likely be less
125  */
126 
127 static struct device_node **phandle_cache;
128 static u32 phandle_cache_mask;
129 
130 /*
131  * Caller must hold devtree_lock.
132  */
__of_free_phandle_cache(void)133 static void __of_free_phandle_cache(void)
134 {
135 	u32 cache_entries = phandle_cache_mask + 1;
136 	u32 k;
137 
138 	if (!phandle_cache)
139 		return;
140 
141 	for (k = 0; k < cache_entries; k++)
142 		of_node_put(phandle_cache[k]);
143 
144 	kfree(phandle_cache);
145 	phandle_cache = NULL;
146 }
147 
of_free_phandle_cache(void)148 int of_free_phandle_cache(void)
149 {
150 	unsigned long flags;
151 
152 	raw_spin_lock_irqsave(&devtree_lock, flags);
153 
154 	__of_free_phandle_cache();
155 
156 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
157 
158 	return 0;
159 }
160 #if !defined(CONFIG_MODULES)
161 late_initcall_sync(of_free_phandle_cache);
162 #endif
163 
164 /*
165  * Caller must hold devtree_lock.
166  */
__of_free_phandle_cache_entry(phandle handle)167 void __of_free_phandle_cache_entry(phandle handle)
168 {
169 	phandle masked_handle;
170 	struct device_node *np;
171 
172 	if (!handle)
173 		return;
174 
175 	masked_handle = handle & phandle_cache_mask;
176 
177 	if (phandle_cache) {
178 		np = phandle_cache[masked_handle];
179 		if (np && handle == np->phandle) {
180 			of_node_put(np);
181 			phandle_cache[masked_handle] = NULL;
182 		}
183 	}
184 }
185 
of_populate_phandle_cache(void)186 void of_populate_phandle_cache(void)
187 {
188 	unsigned long flags;
189 	u32 cache_entries;
190 	struct device_node *np;
191 	u32 phandles = 0;
192 
193 	raw_spin_lock_irqsave(&devtree_lock, flags);
194 
195 	__of_free_phandle_cache();
196 
197 	for_each_of_allnodes(np)
198 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
199 			phandles++;
200 
201 	if (!phandles)
202 		goto out;
203 
204 	cache_entries = roundup_pow_of_two(phandles);
205 	phandle_cache_mask = cache_entries - 1;
206 
207 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
208 				GFP_ATOMIC);
209 	if (!phandle_cache)
210 		goto out;
211 
212 	for_each_of_allnodes(np)
213 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
214 			of_node_get(np);
215 			phandle_cache[np->phandle & phandle_cache_mask] = np;
216 		}
217 
218 out:
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 }
221 
of_core_init(void)222 void __init of_core_init(void)
223 {
224 	struct device_node *np;
225 
226 	of_populate_phandle_cache();
227 
228 	/* Create the kset, and register existing nodes */
229 	mutex_lock(&of_mutex);
230 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
231 	if (!of_kset) {
232 		mutex_unlock(&of_mutex);
233 		pr_err("failed to register existing nodes\n");
234 		return;
235 	}
236 	for_each_of_allnodes(np)
237 		__of_attach_node_sysfs(np);
238 	mutex_unlock(&of_mutex);
239 
240 	/* Symlink in /proc as required by userspace ABI */
241 	if (of_root)
242 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
243 }
244 
__of_find_property(const struct device_node * np,const char * name,int * lenp)245 static struct property *__of_find_property(const struct device_node *np,
246 					   const char *name, int *lenp)
247 {
248 	struct property *pp;
249 
250 	if (!np)
251 		return NULL;
252 
253 	for (pp = np->properties; pp; pp = pp->next) {
254 		if (of_prop_cmp(pp->name, name) == 0) {
255 			if (lenp)
256 				*lenp = pp->length;
257 			break;
258 		}
259 	}
260 
261 	return pp;
262 }
263 
of_find_property(const struct device_node * np,const char * name,int * lenp)264 struct property *of_find_property(const struct device_node *np,
265 				  const char *name,
266 				  int *lenp)
267 {
268 	struct property *pp;
269 	unsigned long flags;
270 
271 	raw_spin_lock_irqsave(&devtree_lock, flags);
272 	pp = __of_find_property(np, name, lenp);
273 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
274 
275 	return pp;
276 }
277 EXPORT_SYMBOL(of_find_property);
278 
__of_find_all_nodes(struct device_node * prev)279 struct device_node *__of_find_all_nodes(struct device_node *prev)
280 {
281 	struct device_node *np;
282 	if (!prev) {
283 		np = of_root;
284 	} else if (prev->child) {
285 		np = prev->child;
286 	} else {
287 		/* Walk back up looking for a sibling, or the end of the structure */
288 		np = prev;
289 		while (np->parent && !np->sibling)
290 			np = np->parent;
291 		np = np->sibling; /* Might be null at the end of the tree */
292 	}
293 	return np;
294 }
295 
296 /**
297  * of_find_all_nodes - Get next node in global list
298  * @prev:	Previous node or NULL to start iteration
299  *		of_node_put() will be called on it
300  *
301  * Returns a node pointer with refcount incremented, use
302  * of_node_put() on it when done.
303  */
of_find_all_nodes(struct device_node * prev)304 struct device_node *of_find_all_nodes(struct device_node *prev)
305 {
306 	struct device_node *np;
307 	unsigned long flags;
308 
309 	raw_spin_lock_irqsave(&devtree_lock, flags);
310 	np = __of_find_all_nodes(prev);
311 	of_node_get(np);
312 	of_node_put(prev);
313 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
314 	return np;
315 }
316 EXPORT_SYMBOL(of_find_all_nodes);
317 
318 /*
319  * Find a property with a given name for a given node
320  * and return the value.
321  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)322 const void *__of_get_property(const struct device_node *np,
323 			      const char *name, int *lenp)
324 {
325 	struct property *pp = __of_find_property(np, name, lenp);
326 
327 	return pp ? pp->value : NULL;
328 }
329 
330 /*
331  * Find a property with a given name for a given node
332  * and return the value.
333  */
of_get_property(const struct device_node * np,const char * name,int * lenp)334 const void *of_get_property(const struct device_node *np, const char *name,
335 			    int *lenp)
336 {
337 	struct property *pp = of_find_property(np, name, lenp);
338 
339 	return pp ? pp->value : NULL;
340 }
341 EXPORT_SYMBOL(of_get_property);
342 
343 /*
344  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
345  *
346  * @cpu: logical cpu index of a core/thread
347  * @phys_id: physical identifier of a core/thread
348  *
349  * CPU logical to physical index mapping is architecture specific.
350  * However this __weak function provides a default match of physical
351  * id to logical cpu index. phys_id provided here is usually values read
352  * from the device tree which must match the hardware internal registers.
353  *
354  * Returns true if the physical identifier and the logical cpu index
355  * correspond to the same core/thread, false otherwise.
356  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)357 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
358 {
359 	return (u32)phys_id == cpu;
360 }
361 
362 /**
363  * Checks if the given "prop_name" property holds the physical id of the
364  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
365  * NULL, local thread number within the core is returned in it.
366  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)367 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
368 			const char *prop_name, int cpu, unsigned int *thread)
369 {
370 	const __be32 *cell;
371 	int ac, prop_len, tid;
372 	u64 hwid;
373 
374 	ac = of_n_addr_cells(cpun);
375 	cell = of_get_property(cpun, prop_name, &prop_len);
376 	if (!cell || !ac)
377 		return false;
378 	prop_len /= sizeof(*cell) * ac;
379 	for (tid = 0; tid < prop_len; tid++) {
380 		hwid = of_read_number(cell, ac);
381 		if (arch_match_cpu_phys_id(cpu, hwid)) {
382 			if (thread)
383 				*thread = tid;
384 			return true;
385 		}
386 		cell += ac;
387 	}
388 	return false;
389 }
390 
391 /*
392  * arch_find_n_match_cpu_physical_id - See if the given device node is
393  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
394  * else false.  If 'thread' is non-NULL, the local thread number within the
395  * core is returned in it.
396  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)397 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
398 					      int cpu, unsigned int *thread)
399 {
400 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
401 	 * for thread ids on PowerPC. If it doesn't exist fallback to
402 	 * standard "reg" property.
403 	 */
404 	if (IS_ENABLED(CONFIG_PPC) &&
405 	    __of_find_n_match_cpu_property(cpun,
406 					   "ibm,ppc-interrupt-server#s",
407 					   cpu, thread))
408 		return true;
409 
410 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
411 }
412 
413 /**
414  * of_get_cpu_node - Get device node associated with the given logical CPU
415  *
416  * @cpu: CPU number(logical index) for which device node is required
417  * @thread: if not NULL, local thread number within the physical core is
418  *          returned
419  *
420  * The main purpose of this function is to retrieve the device node for the
421  * given logical CPU index. It should be used to initialize the of_node in
422  * cpu device. Once of_node in cpu device is populated, all the further
423  * references can use that instead.
424  *
425  * CPU logical to physical index mapping is architecture specific and is built
426  * before booting secondary cores. This function uses arch_match_cpu_phys_id
427  * which can be overridden by architecture specific implementation.
428  *
429  * Returns a node pointer for the logical cpu with refcount incremented, use
430  * of_node_put() on it when done. Returns NULL if not found.
431  */
of_get_cpu_node(int cpu,unsigned int * thread)432 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
433 {
434 	struct device_node *cpun;
435 
436 	for_each_node_by_type(cpun, "cpu") {
437 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
438 			return cpun;
439 	}
440 	return NULL;
441 }
442 EXPORT_SYMBOL(of_get_cpu_node);
443 
444 /**
445  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
446  *
447  * @cpu_node: Pointer to the device_node for CPU.
448  *
449  * Returns the logical CPU number of the given CPU device_node.
450  * Returns -ENODEV if the CPU is not found.
451  */
of_cpu_node_to_id(struct device_node * cpu_node)452 int of_cpu_node_to_id(struct device_node *cpu_node)
453 {
454 	int cpu;
455 	bool found = false;
456 	struct device_node *np;
457 
458 	for_each_possible_cpu(cpu) {
459 		np = of_cpu_device_node_get(cpu);
460 		found = (cpu_node == np);
461 		of_node_put(np);
462 		if (found)
463 			return cpu;
464 	}
465 
466 	return -ENODEV;
467 }
468 EXPORT_SYMBOL(of_cpu_node_to_id);
469 
470 /**
471  * __of_device_is_compatible() - Check if the node matches given constraints
472  * @device: pointer to node
473  * @compat: required compatible string, NULL or "" for any match
474  * @type: required device_type value, NULL or "" for any match
475  * @name: required node name, NULL or "" for any match
476  *
477  * Checks if the given @compat, @type and @name strings match the
478  * properties of the given @device. A constraints can be skipped by
479  * passing NULL or an empty string as the constraint.
480  *
481  * Returns 0 for no match, and a positive integer on match. The return
482  * value is a relative score with larger values indicating better
483  * matches. The score is weighted for the most specific compatible value
484  * to get the highest score. Matching type is next, followed by matching
485  * name. Practically speaking, this results in the following priority
486  * order for matches:
487  *
488  * 1. specific compatible && type && name
489  * 2. specific compatible && type
490  * 3. specific compatible && name
491  * 4. specific compatible
492  * 5. general compatible && type && name
493  * 6. general compatible && type
494  * 7. general compatible && name
495  * 8. general compatible
496  * 9. type && name
497  * 10. type
498  * 11. name
499  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)500 static int __of_device_is_compatible(const struct device_node *device,
501 				     const char *compat, const char *type, const char *name)
502 {
503 	struct property *prop;
504 	const char *cp;
505 	int index = 0, score = 0;
506 
507 	/* Compatible match has highest priority */
508 	if (compat && compat[0]) {
509 		prop = __of_find_property(device, "compatible", NULL);
510 		for (cp = of_prop_next_string(prop, NULL); cp;
511 		     cp = of_prop_next_string(prop, cp), index++) {
512 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
513 				score = INT_MAX/2 - (index << 2);
514 				break;
515 			}
516 		}
517 		if (!score)
518 			return 0;
519 	}
520 
521 	/* Matching type is better than matching name */
522 	if (type && type[0]) {
523 		if (!device->type || of_node_cmp(type, device->type))
524 			return 0;
525 		score += 2;
526 	}
527 
528 	/* Matching name is a bit better than not */
529 	if (name && name[0]) {
530 		if (!device->name || of_node_cmp(name, device->name))
531 			return 0;
532 		score++;
533 	}
534 
535 	return score;
536 }
537 
538 /** Checks if the given "compat" string matches one of the strings in
539  * the device's "compatible" property
540  */
of_device_is_compatible(const struct device_node * device,const char * compat)541 int of_device_is_compatible(const struct device_node *device,
542 		const char *compat)
543 {
544 	unsigned long flags;
545 	int res;
546 
547 	raw_spin_lock_irqsave(&devtree_lock, flags);
548 	res = __of_device_is_compatible(device, compat, NULL, NULL);
549 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
550 	return res;
551 }
552 EXPORT_SYMBOL(of_device_is_compatible);
553 
554 /** Checks if the device is compatible with any of the entries in
555  *  a NULL terminated array of strings. Returns the best match
556  *  score or 0.
557  */
of_device_compatible_match(struct device_node * device,const char * const * compat)558 int of_device_compatible_match(struct device_node *device,
559 			       const char *const *compat)
560 {
561 	unsigned int tmp, score = 0;
562 
563 	if (!compat)
564 		return 0;
565 
566 	while (*compat) {
567 		tmp = of_device_is_compatible(device, *compat);
568 		if (tmp > score)
569 			score = tmp;
570 		compat++;
571 	}
572 
573 	return score;
574 }
575 
576 /**
577  * of_machine_is_compatible - Test root of device tree for a given compatible value
578  * @compat: compatible string to look for in root node's compatible property.
579  *
580  * Returns a positive integer if the root node has the given value in its
581  * compatible property.
582  */
of_machine_is_compatible(const char * compat)583 int of_machine_is_compatible(const char *compat)
584 {
585 	struct device_node *root;
586 	int rc = 0;
587 
588 	root = of_find_node_by_path("/");
589 	if (root) {
590 		rc = of_device_is_compatible(root, compat);
591 		of_node_put(root);
592 	}
593 	return rc;
594 }
595 EXPORT_SYMBOL(of_machine_is_compatible);
596 
597 /**
598  *  __of_device_is_available - check if a device is available for use
599  *
600  *  @device: Node to check for availability, with locks already held
601  *
602  *  Returns true if the status property is absent or set to "okay" or "ok",
603  *  false otherwise
604  */
__of_device_is_available(const struct device_node * device)605 static bool __of_device_is_available(const struct device_node *device)
606 {
607 	const char *status;
608 	int statlen;
609 
610 	if (!device)
611 		return false;
612 
613 	status = __of_get_property(device, "status", &statlen);
614 	if (status == NULL)
615 		return true;
616 
617 	if (statlen > 0) {
618 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
619 			return true;
620 	}
621 
622 	return false;
623 }
624 
625 /**
626  *  of_device_is_available - check if a device is available for use
627  *
628  *  @device: Node to check for availability
629  *
630  *  Returns true if the status property is absent or set to "okay" or "ok",
631  *  false otherwise
632  */
of_device_is_available(const struct device_node * device)633 bool of_device_is_available(const struct device_node *device)
634 {
635 	unsigned long flags;
636 	bool res;
637 
638 	raw_spin_lock_irqsave(&devtree_lock, flags);
639 	res = __of_device_is_available(device);
640 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
641 	return res;
642 
643 }
644 EXPORT_SYMBOL(of_device_is_available);
645 
646 /**
647  *  of_device_is_big_endian - check if a device has BE registers
648  *
649  *  @device: Node to check for endianness
650  *
651  *  Returns true if the device has a "big-endian" property, or if the kernel
652  *  was compiled for BE *and* the device has a "native-endian" property.
653  *  Returns false otherwise.
654  *
655  *  Callers would nominally use ioread32be/iowrite32be if
656  *  of_device_is_big_endian() == true, or readl/writel otherwise.
657  */
of_device_is_big_endian(const struct device_node * device)658 bool of_device_is_big_endian(const struct device_node *device)
659 {
660 	if (of_property_read_bool(device, "big-endian"))
661 		return true;
662 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
663 	    of_property_read_bool(device, "native-endian"))
664 		return true;
665 	return false;
666 }
667 EXPORT_SYMBOL(of_device_is_big_endian);
668 
669 /**
670  *	of_get_parent - Get a node's parent if any
671  *	@node:	Node to get parent
672  *
673  *	Returns a node pointer with refcount incremented, use
674  *	of_node_put() on it when done.
675  */
of_get_parent(const struct device_node * node)676 struct device_node *of_get_parent(const struct device_node *node)
677 {
678 	struct device_node *np;
679 	unsigned long flags;
680 
681 	if (!node)
682 		return NULL;
683 
684 	raw_spin_lock_irqsave(&devtree_lock, flags);
685 	np = of_node_get(node->parent);
686 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
687 	return np;
688 }
689 EXPORT_SYMBOL(of_get_parent);
690 
691 /**
692  *	of_get_next_parent - Iterate to a node's parent
693  *	@node:	Node to get parent of
694  *
695  *	This is like of_get_parent() except that it drops the
696  *	refcount on the passed node, making it suitable for iterating
697  *	through a node's parents.
698  *
699  *	Returns a node pointer with refcount incremented, use
700  *	of_node_put() on it when done.
701  */
of_get_next_parent(struct device_node * node)702 struct device_node *of_get_next_parent(struct device_node *node)
703 {
704 	struct device_node *parent;
705 	unsigned long flags;
706 
707 	if (!node)
708 		return NULL;
709 
710 	raw_spin_lock_irqsave(&devtree_lock, flags);
711 	parent = of_node_get(node->parent);
712 	of_node_put(node);
713 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
714 	return parent;
715 }
716 EXPORT_SYMBOL(of_get_next_parent);
717 
__of_get_next_child(const struct device_node * node,struct device_node * prev)718 static struct device_node *__of_get_next_child(const struct device_node *node,
719 						struct device_node *prev)
720 {
721 	struct device_node *next;
722 
723 	if (!node)
724 		return NULL;
725 
726 	next = prev ? prev->sibling : node->child;
727 	for (; next; next = next->sibling)
728 		if (of_node_get(next))
729 			break;
730 	of_node_put(prev);
731 	return next;
732 }
733 #define __for_each_child_of_node(parent, child) \
734 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
735 	     child = __of_get_next_child(parent, child))
736 
737 /**
738  *	of_get_next_child - Iterate a node childs
739  *	@node:	parent node
740  *	@prev:	previous child of the parent node, or NULL to get first
741  *
742  *	Returns a node pointer with refcount incremented, use of_node_put() on
743  *	it when done. Returns NULL when prev is the last child. Decrements the
744  *	refcount of prev.
745  */
of_get_next_child(const struct device_node * node,struct device_node * prev)746 struct device_node *of_get_next_child(const struct device_node *node,
747 	struct device_node *prev)
748 {
749 	struct device_node *next;
750 	unsigned long flags;
751 
752 	raw_spin_lock_irqsave(&devtree_lock, flags);
753 	next = __of_get_next_child(node, prev);
754 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
755 	return next;
756 }
757 EXPORT_SYMBOL(of_get_next_child);
758 
759 /**
760  *	of_get_next_available_child - Find the next available child node
761  *	@node:	parent node
762  *	@prev:	previous child of the parent node, or NULL to get first
763  *
764  *      This function is like of_get_next_child(), except that it
765  *      automatically skips any disabled nodes (i.e. status = "disabled").
766  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)767 struct device_node *of_get_next_available_child(const struct device_node *node,
768 	struct device_node *prev)
769 {
770 	struct device_node *next;
771 	unsigned long flags;
772 
773 	if (!node)
774 		return NULL;
775 
776 	raw_spin_lock_irqsave(&devtree_lock, flags);
777 	next = prev ? prev->sibling : node->child;
778 	for (; next; next = next->sibling) {
779 		if (!__of_device_is_available(next))
780 			continue;
781 		if (of_node_get(next))
782 			break;
783 	}
784 	of_node_put(prev);
785 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
786 	return next;
787 }
788 EXPORT_SYMBOL(of_get_next_available_child);
789 
790 /**
791  * of_get_compatible_child - Find compatible child node
792  * @parent:	parent node
793  * @compatible:	compatible string
794  *
795  * Lookup child node whose compatible property contains the given compatible
796  * string.
797  *
798  * Returns a node pointer with refcount incremented, use of_node_put() on it
799  * when done; or NULL if not found.
800  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)801 struct device_node *of_get_compatible_child(const struct device_node *parent,
802 				const char *compatible)
803 {
804 	struct device_node *child;
805 
806 	for_each_child_of_node(parent, child) {
807 		if (of_device_is_compatible(child, compatible))
808 			break;
809 	}
810 
811 	return child;
812 }
813 EXPORT_SYMBOL(of_get_compatible_child);
814 
815 /**
816  *	of_get_child_by_name - Find the child node by name for a given parent
817  *	@node:	parent node
818  *	@name:	child name to look for.
819  *
820  *      This function looks for child node for given matching name
821  *
822  *	Returns a node pointer if found, with refcount incremented, use
823  *	of_node_put() on it when done.
824  *	Returns NULL if node is not found.
825  */
of_get_child_by_name(const struct device_node * node,const char * name)826 struct device_node *of_get_child_by_name(const struct device_node *node,
827 				const char *name)
828 {
829 	struct device_node *child;
830 
831 	for_each_child_of_node(node, child)
832 		if (child->name && (of_node_cmp(child->name, name) == 0))
833 			break;
834 	return child;
835 }
836 EXPORT_SYMBOL(of_get_child_by_name);
837 
__of_find_node_by_path(struct device_node * parent,const char * path)838 struct device_node *__of_find_node_by_path(struct device_node *parent,
839 						const char *path)
840 {
841 	struct device_node *child;
842 	int len;
843 
844 	len = strcspn(path, "/:");
845 	if (!len)
846 		return NULL;
847 
848 	__for_each_child_of_node(parent, child) {
849 		const char *name = kbasename(child->full_name);
850 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
851 			return child;
852 	}
853 	return NULL;
854 }
855 
__of_find_node_by_full_path(struct device_node * node,const char * path)856 struct device_node *__of_find_node_by_full_path(struct device_node *node,
857 						const char *path)
858 {
859 	const char *separator = strchr(path, ':');
860 
861 	while (node && *path == '/') {
862 		struct device_node *tmp = node;
863 
864 		path++; /* Increment past '/' delimiter */
865 		node = __of_find_node_by_path(node, path);
866 		of_node_put(tmp);
867 		path = strchrnul(path, '/');
868 		if (separator && separator < path)
869 			break;
870 	}
871 	return node;
872 }
873 
874 /**
875  *	of_find_node_opts_by_path - Find a node matching a full OF path
876  *	@path: Either the full path to match, or if the path does not
877  *	       start with '/', the name of a property of the /aliases
878  *	       node (an alias).  In the case of an alias, the node
879  *	       matching the alias' value will be returned.
880  *	@opts: Address of a pointer into which to store the start of
881  *	       an options string appended to the end of the path with
882  *	       a ':' separator.
883  *
884  *	Valid paths:
885  *		/foo/bar	Full path
886  *		foo		Valid alias
887  *		foo/bar		Valid alias + relative path
888  *
889  *	Returns a node pointer with refcount incremented, use
890  *	of_node_put() on it when done.
891  */
of_find_node_opts_by_path(const char * path,const char ** opts)892 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
893 {
894 	struct device_node *np = NULL;
895 	struct property *pp;
896 	unsigned long flags;
897 	const char *separator = strchr(path, ':');
898 
899 	if (opts)
900 		*opts = separator ? separator + 1 : NULL;
901 
902 	if (strcmp(path, "/") == 0)
903 		return of_node_get(of_root);
904 
905 	/* The path could begin with an alias */
906 	if (*path != '/') {
907 		int len;
908 		const char *p = separator;
909 
910 		if (!p)
911 			p = strchrnul(path, '/');
912 		len = p - path;
913 
914 		/* of_aliases must not be NULL */
915 		if (!of_aliases)
916 			return NULL;
917 
918 		for_each_property_of_node(of_aliases, pp) {
919 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
920 				np = of_find_node_by_path(pp->value);
921 				break;
922 			}
923 		}
924 		if (!np)
925 			return NULL;
926 		path = p;
927 	}
928 
929 	/* Step down the tree matching path components */
930 	raw_spin_lock_irqsave(&devtree_lock, flags);
931 	if (!np)
932 		np = of_node_get(of_root);
933 	np = __of_find_node_by_full_path(np, path);
934 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 	return np;
936 }
937 EXPORT_SYMBOL(of_find_node_opts_by_path);
938 
939 /**
940  *	of_find_node_by_name - Find a node by its "name" property
941  *	@from:	The node to start searching from or NULL; the node
942  *		you pass will not be searched, only the next one
943  *		will. Typically, you pass what the previous call
944  *		returned. of_node_put() will be called on @from.
945  *	@name:	The name string to match against
946  *
947  *	Returns a node pointer with refcount incremented, use
948  *	of_node_put() on it when done.
949  */
of_find_node_by_name(struct device_node * from,const char * name)950 struct device_node *of_find_node_by_name(struct device_node *from,
951 	const char *name)
952 {
953 	struct device_node *np;
954 	unsigned long flags;
955 
956 	raw_spin_lock_irqsave(&devtree_lock, flags);
957 	for_each_of_allnodes_from(from, np)
958 		if (np->name && (of_node_cmp(np->name, name) == 0)
959 		    && of_node_get(np))
960 			break;
961 	of_node_put(from);
962 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
963 	return np;
964 }
965 EXPORT_SYMBOL(of_find_node_by_name);
966 
967 /**
968  *	of_find_node_by_type - Find a node by its "device_type" property
969  *	@from:	The node to start searching from, or NULL to start searching
970  *		the entire device tree. The node you pass will not be
971  *		searched, only the next one will; typically, you pass
972  *		what the previous call returned. of_node_put() will be
973  *		called on from for you.
974  *	@type:	The type string to match against
975  *
976  *	Returns a node pointer with refcount incremented, use
977  *	of_node_put() on it when done.
978  */
of_find_node_by_type(struct device_node * from,const char * type)979 struct device_node *of_find_node_by_type(struct device_node *from,
980 	const char *type)
981 {
982 	struct device_node *np;
983 	unsigned long flags;
984 
985 	raw_spin_lock_irqsave(&devtree_lock, flags);
986 	for_each_of_allnodes_from(from, np)
987 		if (np->type && (of_node_cmp(np->type, type) == 0)
988 		    && of_node_get(np))
989 			break;
990 	of_node_put(from);
991 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 	return np;
993 }
994 EXPORT_SYMBOL(of_find_node_by_type);
995 
996 /**
997  *	of_find_compatible_node - Find a node based on type and one of the
998  *                                tokens in its "compatible" property
999  *	@from:		The node to start searching from or NULL, the node
1000  *			you pass will not be searched, only the next one
1001  *			will; typically, you pass what the previous call
1002  *			returned. of_node_put() will be called on it
1003  *	@type:		The type string to match "device_type" or NULL to ignore
1004  *	@compatible:	The string to match to one of the tokens in the device
1005  *			"compatible" list.
1006  *
1007  *	Returns a node pointer with refcount incremented, use
1008  *	of_node_put() on it when done.
1009  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1010 struct device_node *of_find_compatible_node(struct device_node *from,
1011 	const char *type, const char *compatible)
1012 {
1013 	struct device_node *np;
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&devtree_lock, flags);
1017 	for_each_of_allnodes_from(from, np)
1018 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1019 		    of_node_get(np))
1020 			break;
1021 	of_node_put(from);
1022 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1023 	return np;
1024 }
1025 EXPORT_SYMBOL(of_find_compatible_node);
1026 
1027 /**
1028  *	of_find_node_with_property - Find a node which has a property with
1029  *                                   the given name.
1030  *	@from:		The node to start searching from or NULL, the node
1031  *			you pass will not be searched, only the next one
1032  *			will; typically, you pass what the previous call
1033  *			returned. of_node_put() will be called on it
1034  *	@prop_name:	The name of the property to look for.
1035  *
1036  *	Returns a node pointer with refcount incremented, use
1037  *	of_node_put() on it when done.
1038  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1039 struct device_node *of_find_node_with_property(struct device_node *from,
1040 	const char *prop_name)
1041 {
1042 	struct device_node *np;
1043 	struct property *pp;
1044 	unsigned long flags;
1045 
1046 	raw_spin_lock_irqsave(&devtree_lock, flags);
1047 	for_each_of_allnodes_from(from, np) {
1048 		for (pp = np->properties; pp; pp = pp->next) {
1049 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1050 				of_node_get(np);
1051 				goto out;
1052 			}
1053 		}
1054 	}
1055 out:
1056 	of_node_put(from);
1057 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058 	return np;
1059 }
1060 EXPORT_SYMBOL(of_find_node_with_property);
1061 
1062 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1063 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1064 					   const struct device_node *node)
1065 {
1066 	const struct of_device_id *best_match = NULL;
1067 	int score, best_score = 0;
1068 
1069 	if (!matches)
1070 		return NULL;
1071 
1072 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1073 		score = __of_device_is_compatible(node, matches->compatible,
1074 						  matches->type, matches->name);
1075 		if (score > best_score) {
1076 			best_match = matches;
1077 			best_score = score;
1078 		}
1079 	}
1080 
1081 	return best_match;
1082 }
1083 
1084 /**
1085  * of_match_node - Tell if a device_node has a matching of_match structure
1086  *	@matches:	array of of device match structures to search in
1087  *	@node:		the of device structure to match against
1088  *
1089  *	Low level utility function used by device matching.
1090  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1091 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1092 					 const struct device_node *node)
1093 {
1094 	const struct of_device_id *match;
1095 	unsigned long flags;
1096 
1097 	raw_spin_lock_irqsave(&devtree_lock, flags);
1098 	match = __of_match_node(matches, node);
1099 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1100 	return match;
1101 }
1102 EXPORT_SYMBOL(of_match_node);
1103 
1104 /**
1105  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1106  *					  match table.
1107  *	@from:		The node to start searching from or NULL, the node
1108  *			you pass will not be searched, only the next one
1109  *			will; typically, you pass what the previous call
1110  *			returned. of_node_put() will be called on it
1111  *	@matches:	array of of device match structures to search in
1112  *	@match		Updated to point at the matches entry which matched
1113  *
1114  *	Returns a node pointer with refcount incremented, use
1115  *	of_node_put() on it when done.
1116  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1117 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1118 					const struct of_device_id *matches,
1119 					const struct of_device_id **match)
1120 {
1121 	struct device_node *np;
1122 	const struct of_device_id *m;
1123 	unsigned long flags;
1124 
1125 	if (match)
1126 		*match = NULL;
1127 
1128 	raw_spin_lock_irqsave(&devtree_lock, flags);
1129 	for_each_of_allnodes_from(from, np) {
1130 		m = __of_match_node(matches, np);
1131 		if (m && of_node_get(np)) {
1132 			if (match)
1133 				*match = m;
1134 			break;
1135 		}
1136 	}
1137 	of_node_put(from);
1138 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1139 	return np;
1140 }
1141 EXPORT_SYMBOL(of_find_matching_node_and_match);
1142 
1143 /**
1144  * of_modalias_node - Lookup appropriate modalias for a device node
1145  * @node:	pointer to a device tree node
1146  * @modalias:	Pointer to buffer that modalias value will be copied into
1147  * @len:	Length of modalias value
1148  *
1149  * Based on the value of the compatible property, this routine will attempt
1150  * to choose an appropriate modalias value for a particular device tree node.
1151  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1152  * from the first entry in the compatible list property.
1153  *
1154  * This routine returns 0 on success, <0 on failure.
1155  */
of_modalias_node(struct device_node * node,char * modalias,int len)1156 int of_modalias_node(struct device_node *node, char *modalias, int len)
1157 {
1158 	const char *compatible, *p;
1159 	int cplen;
1160 
1161 	compatible = of_get_property(node, "compatible", &cplen);
1162 	if (!compatible || strlen(compatible) > cplen)
1163 		return -ENODEV;
1164 	p = strchr(compatible, ',');
1165 	strlcpy(modalias, p ? p + 1 : compatible, len);
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(of_modalias_node);
1169 
1170 /**
1171  * of_find_node_by_phandle - Find a node given a phandle
1172  * @handle:	phandle of the node to find
1173  *
1174  * Returns a node pointer with refcount incremented, use
1175  * of_node_put() on it when done.
1176  */
of_find_node_by_phandle(phandle handle)1177 struct device_node *of_find_node_by_phandle(phandle handle)
1178 {
1179 	struct device_node *np = NULL;
1180 	unsigned long flags;
1181 	phandle masked_handle;
1182 
1183 	if (!handle)
1184 		return NULL;
1185 
1186 	raw_spin_lock_irqsave(&devtree_lock, flags);
1187 
1188 	masked_handle = handle & phandle_cache_mask;
1189 
1190 	if (phandle_cache) {
1191 		if (phandle_cache[masked_handle] &&
1192 		    handle == phandle_cache[masked_handle]->phandle)
1193 			np = phandle_cache[masked_handle];
1194 		if (np && of_node_check_flag(np, OF_DETACHED)) {
1195 			WARN_ON(1); /* did not uncache np on node removal */
1196 			of_node_put(np);
1197 			phandle_cache[masked_handle] = NULL;
1198 			np = NULL;
1199 		}
1200 	}
1201 
1202 	if (!np) {
1203 		for_each_of_allnodes(np)
1204 			if (np->phandle == handle &&
1205 			    !of_node_check_flag(np, OF_DETACHED)) {
1206 				if (phandle_cache) {
1207 					/* will put when removed from cache */
1208 					of_node_get(np);
1209 					phandle_cache[masked_handle] = np;
1210 				}
1211 				break;
1212 			}
1213 	}
1214 
1215 	of_node_get(np);
1216 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1217 	return np;
1218 }
1219 EXPORT_SYMBOL(of_find_node_by_phandle);
1220 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1221 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1222 {
1223 	int i;
1224 	printk("%s %pOF", msg, args->np);
1225 	for (i = 0; i < args->args_count; i++) {
1226 		const char delim = i ? ',' : ':';
1227 
1228 		pr_cont("%c%08x", delim, args->args[i]);
1229 	}
1230 	pr_cont("\n");
1231 }
1232 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1233 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1234 		const struct device_node *np,
1235 		const char *list_name,
1236 		const char *cells_name,
1237 		int cell_count)
1238 {
1239 	const __be32 *list;
1240 	int size;
1241 
1242 	memset(it, 0, sizeof(*it));
1243 
1244 	list = of_get_property(np, list_name, &size);
1245 	if (!list)
1246 		return -ENOENT;
1247 
1248 	it->cells_name = cells_name;
1249 	it->cell_count = cell_count;
1250 	it->parent = np;
1251 	it->list_end = list + size / sizeof(*list);
1252 	it->phandle_end = list;
1253 	it->cur = list;
1254 
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1258 
of_phandle_iterator_next(struct of_phandle_iterator * it)1259 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1260 {
1261 	uint32_t count = 0;
1262 
1263 	if (it->node) {
1264 		of_node_put(it->node);
1265 		it->node = NULL;
1266 	}
1267 
1268 	if (!it->cur || it->phandle_end >= it->list_end)
1269 		return -ENOENT;
1270 
1271 	it->cur = it->phandle_end;
1272 
1273 	/* If phandle is 0, then it is an empty entry with no arguments. */
1274 	it->phandle = be32_to_cpup(it->cur++);
1275 
1276 	if (it->phandle) {
1277 
1278 		/*
1279 		 * Find the provider node and parse the #*-cells property to
1280 		 * determine the argument length.
1281 		 */
1282 		it->node = of_find_node_by_phandle(it->phandle);
1283 
1284 		if (it->cells_name) {
1285 			if (!it->node) {
1286 				pr_err("%pOF: could not find phandle\n",
1287 				       it->parent);
1288 				goto err;
1289 			}
1290 
1291 			if (of_property_read_u32(it->node, it->cells_name,
1292 						 &count)) {
1293 				pr_err("%pOF: could not get %s for %pOF\n",
1294 				       it->parent,
1295 				       it->cells_name,
1296 				       it->node);
1297 				goto err;
1298 			}
1299 		} else {
1300 			count = it->cell_count;
1301 		}
1302 
1303 		/*
1304 		 * Make sure that the arguments actually fit in the remaining
1305 		 * property data length
1306 		 */
1307 		if (it->cur + count > it->list_end) {
1308 			pr_err("%pOF: arguments longer than property\n",
1309 			       it->parent);
1310 			goto err;
1311 		}
1312 	}
1313 
1314 	it->phandle_end = it->cur + count;
1315 	it->cur_count = count;
1316 
1317 	return 0;
1318 
1319 err:
1320 	if (it->node) {
1321 		of_node_put(it->node);
1322 		it->node = NULL;
1323 	}
1324 
1325 	return -EINVAL;
1326 }
1327 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1328 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1329 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1330 			     uint32_t *args,
1331 			     int size)
1332 {
1333 	int i, count;
1334 
1335 	count = it->cur_count;
1336 
1337 	if (WARN_ON(size < count))
1338 		count = size;
1339 
1340 	for (i = 0; i < count; i++)
1341 		args[i] = be32_to_cpup(it->cur++);
1342 
1343 	return count;
1344 }
1345 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1346 static int __of_parse_phandle_with_args(const struct device_node *np,
1347 					const char *list_name,
1348 					const char *cells_name,
1349 					int cell_count, int index,
1350 					struct of_phandle_args *out_args)
1351 {
1352 	struct of_phandle_iterator it;
1353 	int rc, cur_index = 0;
1354 
1355 	/* Loop over the phandles until all the requested entry is found */
1356 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1357 		/*
1358 		 * All of the error cases bail out of the loop, so at
1359 		 * this point, the parsing is successful. If the requested
1360 		 * index matches, then fill the out_args structure and return,
1361 		 * or return -ENOENT for an empty entry.
1362 		 */
1363 		rc = -ENOENT;
1364 		if (cur_index == index) {
1365 			if (!it.phandle)
1366 				goto err;
1367 
1368 			if (out_args) {
1369 				int c;
1370 
1371 				c = of_phandle_iterator_args(&it,
1372 							     out_args->args,
1373 							     MAX_PHANDLE_ARGS);
1374 				out_args->np = it.node;
1375 				out_args->args_count = c;
1376 			} else {
1377 				of_node_put(it.node);
1378 			}
1379 
1380 			/* Found it! return success */
1381 			return 0;
1382 		}
1383 
1384 		cur_index++;
1385 	}
1386 
1387 	/*
1388 	 * Unlock node before returning result; will be one of:
1389 	 * -ENOENT : index is for empty phandle
1390 	 * -EINVAL : parsing error on data
1391 	 */
1392 
1393  err:
1394 	of_node_put(it.node);
1395 	return rc;
1396 }
1397 
1398 /**
1399  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1400  * @np: Pointer to device node holding phandle property
1401  * @phandle_name: Name of property holding a phandle value
1402  * @index: For properties holding a table of phandles, this is the index into
1403  *         the table
1404  *
1405  * Returns the device_node pointer with refcount incremented.  Use
1406  * of_node_put() on it when done.
1407  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1408 struct device_node *of_parse_phandle(const struct device_node *np,
1409 				     const char *phandle_name, int index)
1410 {
1411 	struct of_phandle_args args;
1412 
1413 	if (index < 0)
1414 		return NULL;
1415 
1416 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1417 					 index, &args))
1418 		return NULL;
1419 
1420 	return args.np;
1421 }
1422 EXPORT_SYMBOL(of_parse_phandle);
1423 
1424 /**
1425  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1426  * @np:		pointer to a device tree node containing a list
1427  * @list_name:	property name that contains a list
1428  * @cells_name:	property name that specifies phandles' arguments count
1429  * @index:	index of a phandle to parse out
1430  * @out_args:	optional pointer to output arguments structure (will be filled)
1431  *
1432  * This function is useful to parse lists of phandles and their arguments.
1433  * Returns 0 on success and fills out_args, on error returns appropriate
1434  * errno value.
1435  *
1436  * Caller is responsible to call of_node_put() on the returned out_args->np
1437  * pointer.
1438  *
1439  * Example:
1440  *
1441  * phandle1: node1 {
1442  *	#list-cells = <2>;
1443  * }
1444  *
1445  * phandle2: node2 {
1446  *	#list-cells = <1>;
1447  * }
1448  *
1449  * node3 {
1450  *	list = <&phandle1 1 2 &phandle2 3>;
1451  * }
1452  *
1453  * To get a device_node of the `node2' node you may call this:
1454  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1455  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1456 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1457 				const char *cells_name, int index,
1458 				struct of_phandle_args *out_args)
1459 {
1460 	if (index < 0)
1461 		return -EINVAL;
1462 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1463 					    index, out_args);
1464 }
1465 EXPORT_SYMBOL(of_parse_phandle_with_args);
1466 
1467 /**
1468  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1469  * @np:		pointer to a device tree node containing a list
1470  * @list_name:	property name that contains a list
1471  * @stem_name:	stem of property names that specify phandles' arguments count
1472  * @index:	index of a phandle to parse out
1473  * @out_args:	optional pointer to output arguments structure (will be filled)
1474  *
1475  * This function is useful to parse lists of phandles and their arguments.
1476  * Returns 0 on success and fills out_args, on error returns appropriate errno
1477  * value. The difference between this function and of_parse_phandle_with_args()
1478  * is that this API remaps a phandle if the node the phandle points to has
1479  * a <@stem_name>-map property.
1480  *
1481  * Caller is responsible to call of_node_put() on the returned out_args->np
1482  * pointer.
1483  *
1484  * Example:
1485  *
1486  * phandle1: node1 {
1487  *	#list-cells = <2>;
1488  * }
1489  *
1490  * phandle2: node2 {
1491  *	#list-cells = <1>;
1492  * }
1493  *
1494  * phandle3: node3 {
1495  * 	#list-cells = <1>;
1496  * 	list-map = <0 &phandle2 3>,
1497  * 		   <1 &phandle2 2>,
1498  * 		   <2 &phandle1 5 1>;
1499  *	list-map-mask = <0x3>;
1500  * };
1501  *
1502  * node4 {
1503  *	list = <&phandle1 1 2 &phandle3 0>;
1504  * }
1505  *
1506  * To get a device_node of the `node2' node you may call this:
1507  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1508  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1509 int of_parse_phandle_with_args_map(const struct device_node *np,
1510 				   const char *list_name,
1511 				   const char *stem_name,
1512 				   int index, struct of_phandle_args *out_args)
1513 {
1514 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1515 	char *pass_name = NULL;
1516 	struct device_node *cur, *new = NULL;
1517 	const __be32 *map, *mask, *pass;
1518 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1519 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1520 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1521 	const __be32 *match_array = initial_match_array;
1522 	int i, ret, map_len, match;
1523 	u32 list_size, new_size;
1524 
1525 	if (index < 0)
1526 		return -EINVAL;
1527 
1528 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1529 	if (!cells_name)
1530 		return -ENOMEM;
1531 
1532 	ret = -ENOMEM;
1533 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1534 	if (!map_name)
1535 		goto free;
1536 
1537 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1538 	if (!mask_name)
1539 		goto free;
1540 
1541 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1542 	if (!pass_name)
1543 		goto free;
1544 
1545 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1546 					   out_args);
1547 	if (ret)
1548 		goto free;
1549 
1550 	/* Get the #<list>-cells property */
1551 	cur = out_args->np;
1552 	ret = of_property_read_u32(cur, cells_name, &list_size);
1553 	if (ret < 0)
1554 		goto put;
1555 
1556 	/* Precalculate the match array - this simplifies match loop */
1557 	for (i = 0; i < list_size; i++)
1558 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1559 
1560 	ret = -EINVAL;
1561 	while (cur) {
1562 		/* Get the <list>-map property */
1563 		map = of_get_property(cur, map_name, &map_len);
1564 		if (!map) {
1565 			ret = 0;
1566 			goto free;
1567 		}
1568 		map_len /= sizeof(u32);
1569 
1570 		/* Get the <list>-map-mask property (optional) */
1571 		mask = of_get_property(cur, mask_name, NULL);
1572 		if (!mask)
1573 			mask = dummy_mask;
1574 		/* Iterate through <list>-map property */
1575 		match = 0;
1576 		while (map_len > (list_size + 1) && !match) {
1577 			/* Compare specifiers */
1578 			match = 1;
1579 			for (i = 0; i < list_size; i++, map_len--)
1580 				match &= !((match_array[i] ^ *map++) & mask[i]);
1581 
1582 			of_node_put(new);
1583 			new = of_find_node_by_phandle(be32_to_cpup(map));
1584 			map++;
1585 			map_len--;
1586 
1587 			/* Check if not found */
1588 			if (!new)
1589 				goto put;
1590 
1591 			if (!of_device_is_available(new))
1592 				match = 0;
1593 
1594 			ret = of_property_read_u32(new, cells_name, &new_size);
1595 			if (ret)
1596 				goto put;
1597 
1598 			/* Check for malformed properties */
1599 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1600 				goto put;
1601 			if (map_len < new_size)
1602 				goto put;
1603 
1604 			/* Move forward by new node's #<list>-cells amount */
1605 			map += new_size;
1606 			map_len -= new_size;
1607 		}
1608 		if (!match)
1609 			goto put;
1610 
1611 		/* Get the <list>-map-pass-thru property (optional) */
1612 		pass = of_get_property(cur, pass_name, NULL);
1613 		if (!pass)
1614 			pass = dummy_pass;
1615 
1616 		/*
1617 		 * Successfully parsed a <list>-map translation; copy new
1618 		 * specifier into the out_args structure, keeping the
1619 		 * bits specified in <list>-map-pass-thru.
1620 		 */
1621 		match_array = map - new_size;
1622 		for (i = 0; i < new_size; i++) {
1623 			__be32 val = *(map - new_size + i);
1624 
1625 			if (i < list_size) {
1626 				val &= ~pass[i];
1627 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1628 			}
1629 
1630 			out_args->args[i] = be32_to_cpu(val);
1631 		}
1632 		out_args->args_count = list_size = new_size;
1633 		/* Iterate again with new provider */
1634 		out_args->np = new;
1635 		of_node_put(cur);
1636 		cur = new;
1637 	}
1638 put:
1639 	of_node_put(cur);
1640 	of_node_put(new);
1641 free:
1642 	kfree(mask_name);
1643 	kfree(map_name);
1644 	kfree(cells_name);
1645 	kfree(pass_name);
1646 
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1650 
1651 /**
1652  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1653  * @np:		pointer to a device tree node containing a list
1654  * @list_name:	property name that contains a list
1655  * @cell_count: number of argument cells following the phandle
1656  * @index:	index of a phandle to parse out
1657  * @out_args:	optional pointer to output arguments structure (will be filled)
1658  *
1659  * This function is useful to parse lists of phandles and their arguments.
1660  * Returns 0 on success and fills out_args, on error returns appropriate
1661  * errno value.
1662  *
1663  * Caller is responsible to call of_node_put() on the returned out_args->np
1664  * pointer.
1665  *
1666  * Example:
1667  *
1668  * phandle1: node1 {
1669  * }
1670  *
1671  * phandle2: node2 {
1672  * }
1673  *
1674  * node3 {
1675  *	list = <&phandle1 0 2 &phandle2 2 3>;
1676  * }
1677  *
1678  * To get a device_node of the `node2' node you may call this:
1679  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1680  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1681 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1682 				const char *list_name, int cell_count,
1683 				int index, struct of_phandle_args *out_args)
1684 {
1685 	if (index < 0)
1686 		return -EINVAL;
1687 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1688 					   index, out_args);
1689 }
1690 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1691 
1692 /**
1693  * of_count_phandle_with_args() - Find the number of phandles references in a property
1694  * @np:		pointer to a device tree node containing a list
1695  * @list_name:	property name that contains a list
1696  * @cells_name:	property name that specifies phandles' arguments count
1697  *
1698  * Returns the number of phandle + argument tuples within a property. It
1699  * is a typical pattern to encode a list of phandle and variable
1700  * arguments into a single property. The number of arguments is encoded
1701  * by a property in the phandle-target node. For example, a gpios
1702  * property would contain a list of GPIO specifies consisting of a
1703  * phandle and 1 or more arguments. The number of arguments are
1704  * determined by the #gpio-cells property in the node pointed to by the
1705  * phandle.
1706  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1707 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1708 				const char *cells_name)
1709 {
1710 	struct of_phandle_iterator it;
1711 	int rc, cur_index = 0;
1712 
1713 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1714 	if (rc)
1715 		return rc;
1716 
1717 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1718 		cur_index += 1;
1719 
1720 	if (rc != -ENOENT)
1721 		return rc;
1722 
1723 	return cur_index;
1724 }
1725 EXPORT_SYMBOL(of_count_phandle_with_args);
1726 
1727 /**
1728  * __of_add_property - Add a property to a node without lock operations
1729  */
__of_add_property(struct device_node * np,struct property * prop)1730 int __of_add_property(struct device_node *np, struct property *prop)
1731 {
1732 	struct property **next;
1733 
1734 	prop->next = NULL;
1735 	next = &np->properties;
1736 	while (*next) {
1737 		if (strcmp(prop->name, (*next)->name) == 0)
1738 			/* duplicate ! don't insert it */
1739 			return -EEXIST;
1740 
1741 		next = &(*next)->next;
1742 	}
1743 	*next = prop;
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  * of_add_property - Add a property to a node
1750  */
of_add_property(struct device_node * np,struct property * prop)1751 int of_add_property(struct device_node *np, struct property *prop)
1752 {
1753 	unsigned long flags;
1754 	int rc;
1755 
1756 	mutex_lock(&of_mutex);
1757 
1758 	raw_spin_lock_irqsave(&devtree_lock, flags);
1759 	rc = __of_add_property(np, prop);
1760 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1761 
1762 	if (!rc)
1763 		__of_add_property_sysfs(np, prop);
1764 
1765 	mutex_unlock(&of_mutex);
1766 
1767 	if (!rc)
1768 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1769 
1770 	return rc;
1771 }
1772 
__of_remove_property(struct device_node * np,struct property * prop)1773 int __of_remove_property(struct device_node *np, struct property *prop)
1774 {
1775 	struct property **next;
1776 
1777 	for (next = &np->properties; *next; next = &(*next)->next) {
1778 		if (*next == prop)
1779 			break;
1780 	}
1781 	if (*next == NULL)
1782 		return -ENODEV;
1783 
1784 	/* found the node */
1785 	*next = prop->next;
1786 	prop->next = np->deadprops;
1787 	np->deadprops = prop;
1788 
1789 	return 0;
1790 }
1791 
1792 /**
1793  * of_remove_property - Remove a property from a node.
1794  *
1795  * Note that we don't actually remove it, since we have given out
1796  * who-knows-how-many pointers to the data using get-property.
1797  * Instead we just move the property to the "dead properties"
1798  * list, so it won't be found any more.
1799  */
of_remove_property(struct device_node * np,struct property * prop)1800 int of_remove_property(struct device_node *np, struct property *prop)
1801 {
1802 	unsigned long flags;
1803 	int rc;
1804 
1805 	if (!prop)
1806 		return -ENODEV;
1807 
1808 	mutex_lock(&of_mutex);
1809 
1810 	raw_spin_lock_irqsave(&devtree_lock, flags);
1811 	rc = __of_remove_property(np, prop);
1812 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1813 
1814 	if (!rc)
1815 		__of_remove_property_sysfs(np, prop);
1816 
1817 	mutex_unlock(&of_mutex);
1818 
1819 	if (!rc)
1820 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1821 
1822 	return rc;
1823 }
1824 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1825 int __of_update_property(struct device_node *np, struct property *newprop,
1826 		struct property **oldpropp)
1827 {
1828 	struct property **next, *oldprop;
1829 
1830 	for (next = &np->properties; *next; next = &(*next)->next) {
1831 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1832 			break;
1833 	}
1834 	*oldpropp = oldprop = *next;
1835 
1836 	if (oldprop) {
1837 		/* replace the node */
1838 		newprop->next = oldprop->next;
1839 		*next = newprop;
1840 		oldprop->next = np->deadprops;
1841 		np->deadprops = oldprop;
1842 	} else {
1843 		/* new node */
1844 		newprop->next = NULL;
1845 		*next = newprop;
1846 	}
1847 
1848 	return 0;
1849 }
1850 
1851 /*
1852  * of_update_property - Update a property in a node, if the property does
1853  * not exist, add it.
1854  *
1855  * Note that we don't actually remove it, since we have given out
1856  * who-knows-how-many pointers to the data using get-property.
1857  * Instead we just move the property to the "dead properties" list,
1858  * and add the new property to the property list
1859  */
of_update_property(struct device_node * np,struct property * newprop)1860 int of_update_property(struct device_node *np, struct property *newprop)
1861 {
1862 	struct property *oldprop;
1863 	unsigned long flags;
1864 	int rc;
1865 
1866 	if (!newprop->name)
1867 		return -EINVAL;
1868 
1869 	mutex_lock(&of_mutex);
1870 
1871 	raw_spin_lock_irqsave(&devtree_lock, flags);
1872 	rc = __of_update_property(np, newprop, &oldprop);
1873 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1874 
1875 	if (!rc)
1876 		__of_update_property_sysfs(np, newprop, oldprop);
1877 
1878 	mutex_unlock(&of_mutex);
1879 
1880 	if (!rc)
1881 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1882 
1883 	return rc;
1884 }
1885 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1886 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1887 			 int id, const char *stem, int stem_len)
1888 {
1889 	ap->np = np;
1890 	ap->id = id;
1891 	strncpy(ap->stem, stem, stem_len);
1892 	ap->stem[stem_len] = 0;
1893 	list_add_tail(&ap->link, &aliases_lookup);
1894 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1895 		 ap->alias, ap->stem, ap->id, np);
1896 }
1897 
1898 /**
1899  * of_alias_scan - Scan all properties of the 'aliases' node
1900  *
1901  * The function scans all the properties of the 'aliases' node and populates
1902  * the global lookup table with the properties.  It returns the
1903  * number of alias properties found, or an error code in case of failure.
1904  *
1905  * @dt_alloc:	An allocator that provides a virtual address to memory
1906  *		for storing the resulting tree
1907  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1908 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1909 {
1910 	struct property *pp;
1911 
1912 	of_aliases = of_find_node_by_path("/aliases");
1913 	of_chosen = of_find_node_by_path("/chosen");
1914 	if (of_chosen == NULL)
1915 		of_chosen = of_find_node_by_path("/chosen@0");
1916 
1917 	if (of_chosen) {
1918 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1919 		const char *name = NULL;
1920 
1921 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1922 			of_property_read_string(of_chosen, "linux,stdout-path",
1923 						&name);
1924 		if (IS_ENABLED(CONFIG_PPC) && !name)
1925 			of_property_read_string(of_aliases, "stdout", &name);
1926 		if (name)
1927 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1928 	}
1929 
1930 	if (!of_aliases)
1931 		return;
1932 
1933 	for_each_property_of_node(of_aliases, pp) {
1934 		const char *start = pp->name;
1935 		const char *end = start + strlen(start);
1936 		struct device_node *np;
1937 		struct alias_prop *ap;
1938 		int id, len;
1939 
1940 		/* Skip those we do not want to proceed */
1941 		if (!strcmp(pp->name, "name") ||
1942 		    !strcmp(pp->name, "phandle") ||
1943 		    !strcmp(pp->name, "linux,phandle"))
1944 			continue;
1945 
1946 		np = of_find_node_by_path(pp->value);
1947 		if (!np)
1948 			continue;
1949 
1950 		/* walk the alias backwards to extract the id and work out
1951 		 * the 'stem' string */
1952 		while (isdigit(*(end-1)) && end > start)
1953 			end--;
1954 		len = end - start;
1955 
1956 		if (kstrtoint(end, 10, &id) < 0)
1957 			continue;
1958 
1959 		/* Allocate an alias_prop with enough space for the stem */
1960 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1961 		if (!ap)
1962 			continue;
1963 		memset(ap, 0, sizeof(*ap) + len + 1);
1964 		ap->alias = start;
1965 		of_alias_add(ap, np, id, start, len);
1966 	}
1967 }
1968 
1969 /**
1970  * of_alias_get_id - Get alias id for the given device_node
1971  * @np:		Pointer to the given device_node
1972  * @stem:	Alias stem of the given device_node
1973  *
1974  * The function travels the lookup table to get the alias id for the given
1975  * device_node and alias stem.  It returns the alias id if found.
1976  */
of_alias_get_id(struct device_node * np,const char * stem)1977 int of_alias_get_id(struct device_node *np, const char *stem)
1978 {
1979 	struct alias_prop *app;
1980 	int id = -ENODEV;
1981 
1982 	mutex_lock(&of_mutex);
1983 	list_for_each_entry(app, &aliases_lookup, link) {
1984 		if (strcmp(app->stem, stem) != 0)
1985 			continue;
1986 
1987 		if (np == app->np) {
1988 			id = app->id;
1989 			break;
1990 		}
1991 	}
1992 	mutex_unlock(&of_mutex);
1993 
1994 	return id;
1995 }
1996 EXPORT_SYMBOL_GPL(of_alias_get_id);
1997 
1998 /**
1999  * of_alias_get_highest_id - Get highest alias id for the given stem
2000  * @stem:	Alias stem to be examined
2001  *
2002  * The function travels the lookup table to get the highest alias id for the
2003  * given alias stem.  It returns the alias id if found.
2004  */
of_alias_get_highest_id(const char * stem)2005 int of_alias_get_highest_id(const char *stem)
2006 {
2007 	struct alias_prop *app;
2008 	int id = -ENODEV;
2009 
2010 	mutex_lock(&of_mutex);
2011 	list_for_each_entry(app, &aliases_lookup, link) {
2012 		if (strcmp(app->stem, stem) != 0)
2013 			continue;
2014 
2015 		if (app->id > id)
2016 			id = app->id;
2017 	}
2018 	mutex_unlock(&of_mutex);
2019 
2020 	return id;
2021 }
2022 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2023 
2024 /**
2025  * of_console_check() - Test and setup console for DT setup
2026  * @dn - Pointer to device node
2027  * @name - Name to use for preferred console without index. ex. "ttyS"
2028  * @index - Index to use for preferred console.
2029  *
2030  * Check if the given device node matches the stdout-path property in the
2031  * /chosen node. If it does then register it as the preferred console and return
2032  * TRUE. Otherwise return FALSE.
2033  */
of_console_check(struct device_node * dn,char * name,int index)2034 bool of_console_check(struct device_node *dn, char *name, int index)
2035 {
2036 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2037 		return false;
2038 
2039 	/*
2040 	 * XXX: cast `options' to char pointer to suppress complication
2041 	 * warnings: printk, UART and console drivers expect char pointer.
2042 	 */
2043 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2044 }
2045 EXPORT_SYMBOL_GPL(of_console_check);
2046 
2047 /**
2048  *	of_find_next_cache_node - Find a node's subsidiary cache
2049  *	@np:	node of type "cpu" or "cache"
2050  *
2051  *	Returns a node pointer with refcount incremented, use
2052  *	of_node_put() on it when done.  Caller should hold a reference
2053  *	to np.
2054  */
of_find_next_cache_node(const struct device_node * np)2055 struct device_node *of_find_next_cache_node(const struct device_node *np)
2056 {
2057 	struct device_node *child, *cache_node;
2058 
2059 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2060 	if (!cache_node)
2061 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2062 
2063 	if (cache_node)
2064 		return cache_node;
2065 
2066 	/* OF on pmac has nodes instead of properties named "l2-cache"
2067 	 * beneath CPU nodes.
2068 	 */
2069 	if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2070 		for_each_child_of_node(np, child)
2071 			if (!strcmp(child->type, "cache"))
2072 				return child;
2073 
2074 	return NULL;
2075 }
2076 
2077 /**
2078  * of_find_last_cache_level - Find the level at which the last cache is
2079  * 		present for the given logical cpu
2080  *
2081  * @cpu: cpu number(logical index) for which the last cache level is needed
2082  *
2083  * Returns the the level at which the last cache is present. It is exactly
2084  * same as  the total number of cache levels for the given logical cpu.
2085  */
of_find_last_cache_level(unsigned int cpu)2086 int of_find_last_cache_level(unsigned int cpu)
2087 {
2088 	u32 cache_level = 0;
2089 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2090 
2091 	while (np) {
2092 		prev = np;
2093 		of_node_put(np);
2094 		np = of_find_next_cache_node(np);
2095 	}
2096 
2097 	of_property_read_u32(prev, "cache-level", &cache_level);
2098 
2099 	return cache_level;
2100 }
2101