1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
of_node_name_eq(const struct device_node * np,const char * name)57 bool of_node_name_eq(const struct device_node *np, const char *name)
58 {
59 const char *node_name;
60 size_t len;
61
62 if (!np)
63 return false;
64
65 node_name = kbasename(np->full_name);
66 len = strchrnul(node_name, '@') - node_name;
67
68 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
69 }
70 EXPORT_SYMBOL(of_node_name_eq);
71
of_node_name_prefix(const struct device_node * np,const char * prefix)72 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
73 {
74 if (!np)
75 return false;
76
77 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
78 }
79 EXPORT_SYMBOL(of_node_name_prefix);
80
of_n_addr_cells(struct device_node * np)81 int of_n_addr_cells(struct device_node *np)
82 {
83 u32 cells;
84
85 do {
86 if (np->parent)
87 np = np->parent;
88 if (!of_property_read_u32(np, "#address-cells", &cells))
89 return cells;
90 } while (np->parent);
91 /* No #address-cells property for the root node */
92 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
93 }
94 EXPORT_SYMBOL(of_n_addr_cells);
95
of_n_size_cells(struct device_node * np)96 int of_n_size_cells(struct device_node *np)
97 {
98 u32 cells;
99
100 do {
101 if (np->parent)
102 np = np->parent;
103 if (!of_property_read_u32(np, "#size-cells", &cells))
104 return cells;
105 } while (np->parent);
106 /* No #size-cells property for the root node */
107 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
108 }
109 EXPORT_SYMBOL(of_n_size_cells);
110
111 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)112 int __weak of_node_to_nid(struct device_node *np)
113 {
114 return NUMA_NO_NODE;
115 }
116 #endif
117
118 /*
119 * Assumptions behind phandle_cache implementation:
120 * - phandle property values are in a contiguous range of 1..n
121 *
122 * If the assumptions do not hold, then
123 * - the phandle lookup overhead reduction provided by the cache
124 * will likely be less
125 */
126
127 static struct device_node **phandle_cache;
128 static u32 phandle_cache_mask;
129
130 /*
131 * Caller must hold devtree_lock.
132 */
__of_free_phandle_cache(void)133 static void __of_free_phandle_cache(void)
134 {
135 u32 cache_entries = phandle_cache_mask + 1;
136 u32 k;
137
138 if (!phandle_cache)
139 return;
140
141 for (k = 0; k < cache_entries; k++)
142 of_node_put(phandle_cache[k]);
143
144 kfree(phandle_cache);
145 phandle_cache = NULL;
146 }
147
of_free_phandle_cache(void)148 int of_free_phandle_cache(void)
149 {
150 unsigned long flags;
151
152 raw_spin_lock_irqsave(&devtree_lock, flags);
153
154 __of_free_phandle_cache();
155
156 raw_spin_unlock_irqrestore(&devtree_lock, flags);
157
158 return 0;
159 }
160 #if !defined(CONFIG_MODULES)
161 late_initcall_sync(of_free_phandle_cache);
162 #endif
163
164 /*
165 * Caller must hold devtree_lock.
166 */
__of_free_phandle_cache_entry(phandle handle)167 void __of_free_phandle_cache_entry(phandle handle)
168 {
169 phandle masked_handle;
170 struct device_node *np;
171
172 if (!handle)
173 return;
174
175 masked_handle = handle & phandle_cache_mask;
176
177 if (phandle_cache) {
178 np = phandle_cache[masked_handle];
179 if (np && handle == np->phandle) {
180 of_node_put(np);
181 phandle_cache[masked_handle] = NULL;
182 }
183 }
184 }
185
of_populate_phandle_cache(void)186 void of_populate_phandle_cache(void)
187 {
188 unsigned long flags;
189 u32 cache_entries;
190 struct device_node *np;
191 u32 phandles = 0;
192
193 raw_spin_lock_irqsave(&devtree_lock, flags);
194
195 __of_free_phandle_cache();
196
197 for_each_of_allnodes(np)
198 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
199 phandles++;
200
201 if (!phandles)
202 goto out;
203
204 cache_entries = roundup_pow_of_two(phandles);
205 phandle_cache_mask = cache_entries - 1;
206
207 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
208 GFP_ATOMIC);
209 if (!phandle_cache)
210 goto out;
211
212 for_each_of_allnodes(np)
213 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
214 of_node_get(np);
215 phandle_cache[np->phandle & phandle_cache_mask] = np;
216 }
217
218 out:
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 }
221
of_core_init(void)222 void __init of_core_init(void)
223 {
224 struct device_node *np;
225
226 of_populate_phandle_cache();
227
228 /* Create the kset, and register existing nodes */
229 mutex_lock(&of_mutex);
230 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
231 if (!of_kset) {
232 mutex_unlock(&of_mutex);
233 pr_err("failed to register existing nodes\n");
234 return;
235 }
236 for_each_of_allnodes(np)
237 __of_attach_node_sysfs(np);
238 mutex_unlock(&of_mutex);
239
240 /* Symlink in /proc as required by userspace ABI */
241 if (of_root)
242 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
243 }
244
__of_find_property(const struct device_node * np,const char * name,int * lenp)245 static struct property *__of_find_property(const struct device_node *np,
246 const char *name, int *lenp)
247 {
248 struct property *pp;
249
250 if (!np)
251 return NULL;
252
253 for (pp = np->properties; pp; pp = pp->next) {
254 if (of_prop_cmp(pp->name, name) == 0) {
255 if (lenp)
256 *lenp = pp->length;
257 break;
258 }
259 }
260
261 return pp;
262 }
263
of_find_property(const struct device_node * np,const char * name,int * lenp)264 struct property *of_find_property(const struct device_node *np,
265 const char *name,
266 int *lenp)
267 {
268 struct property *pp;
269 unsigned long flags;
270
271 raw_spin_lock_irqsave(&devtree_lock, flags);
272 pp = __of_find_property(np, name, lenp);
273 raw_spin_unlock_irqrestore(&devtree_lock, flags);
274
275 return pp;
276 }
277 EXPORT_SYMBOL(of_find_property);
278
__of_find_all_nodes(struct device_node * prev)279 struct device_node *__of_find_all_nodes(struct device_node *prev)
280 {
281 struct device_node *np;
282 if (!prev) {
283 np = of_root;
284 } else if (prev->child) {
285 np = prev->child;
286 } else {
287 /* Walk back up looking for a sibling, or the end of the structure */
288 np = prev;
289 while (np->parent && !np->sibling)
290 np = np->parent;
291 np = np->sibling; /* Might be null at the end of the tree */
292 }
293 return np;
294 }
295
296 /**
297 * of_find_all_nodes - Get next node in global list
298 * @prev: Previous node or NULL to start iteration
299 * of_node_put() will be called on it
300 *
301 * Returns a node pointer with refcount incremented, use
302 * of_node_put() on it when done.
303 */
of_find_all_nodes(struct device_node * prev)304 struct device_node *of_find_all_nodes(struct device_node *prev)
305 {
306 struct device_node *np;
307 unsigned long flags;
308
309 raw_spin_lock_irqsave(&devtree_lock, flags);
310 np = __of_find_all_nodes(prev);
311 of_node_get(np);
312 of_node_put(prev);
313 raw_spin_unlock_irqrestore(&devtree_lock, flags);
314 return np;
315 }
316 EXPORT_SYMBOL(of_find_all_nodes);
317
318 /*
319 * Find a property with a given name for a given node
320 * and return the value.
321 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)322 const void *__of_get_property(const struct device_node *np,
323 const char *name, int *lenp)
324 {
325 struct property *pp = __of_find_property(np, name, lenp);
326
327 return pp ? pp->value : NULL;
328 }
329
330 /*
331 * Find a property with a given name for a given node
332 * and return the value.
333 */
of_get_property(const struct device_node * np,const char * name,int * lenp)334 const void *of_get_property(const struct device_node *np, const char *name,
335 int *lenp)
336 {
337 struct property *pp = of_find_property(np, name, lenp);
338
339 return pp ? pp->value : NULL;
340 }
341 EXPORT_SYMBOL(of_get_property);
342
343 /*
344 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
345 *
346 * @cpu: logical cpu index of a core/thread
347 * @phys_id: physical identifier of a core/thread
348 *
349 * CPU logical to physical index mapping is architecture specific.
350 * However this __weak function provides a default match of physical
351 * id to logical cpu index. phys_id provided here is usually values read
352 * from the device tree which must match the hardware internal registers.
353 *
354 * Returns true if the physical identifier and the logical cpu index
355 * correspond to the same core/thread, false otherwise.
356 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)357 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
358 {
359 return (u32)phys_id == cpu;
360 }
361
362 /**
363 * Checks if the given "prop_name" property holds the physical id of the
364 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
365 * NULL, local thread number within the core is returned in it.
366 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)367 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
368 const char *prop_name, int cpu, unsigned int *thread)
369 {
370 const __be32 *cell;
371 int ac, prop_len, tid;
372 u64 hwid;
373
374 ac = of_n_addr_cells(cpun);
375 cell = of_get_property(cpun, prop_name, &prop_len);
376 if (!cell || !ac)
377 return false;
378 prop_len /= sizeof(*cell) * ac;
379 for (tid = 0; tid < prop_len; tid++) {
380 hwid = of_read_number(cell, ac);
381 if (arch_match_cpu_phys_id(cpu, hwid)) {
382 if (thread)
383 *thread = tid;
384 return true;
385 }
386 cell += ac;
387 }
388 return false;
389 }
390
391 /*
392 * arch_find_n_match_cpu_physical_id - See if the given device node is
393 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
394 * else false. If 'thread' is non-NULL, the local thread number within the
395 * core is returned in it.
396 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)397 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
398 int cpu, unsigned int *thread)
399 {
400 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
401 * for thread ids on PowerPC. If it doesn't exist fallback to
402 * standard "reg" property.
403 */
404 if (IS_ENABLED(CONFIG_PPC) &&
405 __of_find_n_match_cpu_property(cpun,
406 "ibm,ppc-interrupt-server#s",
407 cpu, thread))
408 return true;
409
410 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
411 }
412
413 /**
414 * of_get_cpu_node - Get device node associated with the given logical CPU
415 *
416 * @cpu: CPU number(logical index) for which device node is required
417 * @thread: if not NULL, local thread number within the physical core is
418 * returned
419 *
420 * The main purpose of this function is to retrieve the device node for the
421 * given logical CPU index. It should be used to initialize the of_node in
422 * cpu device. Once of_node in cpu device is populated, all the further
423 * references can use that instead.
424 *
425 * CPU logical to physical index mapping is architecture specific and is built
426 * before booting secondary cores. This function uses arch_match_cpu_phys_id
427 * which can be overridden by architecture specific implementation.
428 *
429 * Returns a node pointer for the logical cpu with refcount incremented, use
430 * of_node_put() on it when done. Returns NULL if not found.
431 */
of_get_cpu_node(int cpu,unsigned int * thread)432 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
433 {
434 struct device_node *cpun;
435
436 for_each_node_by_type(cpun, "cpu") {
437 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
438 return cpun;
439 }
440 return NULL;
441 }
442 EXPORT_SYMBOL(of_get_cpu_node);
443
444 /**
445 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
446 *
447 * @cpu_node: Pointer to the device_node for CPU.
448 *
449 * Returns the logical CPU number of the given CPU device_node.
450 * Returns -ENODEV if the CPU is not found.
451 */
of_cpu_node_to_id(struct device_node * cpu_node)452 int of_cpu_node_to_id(struct device_node *cpu_node)
453 {
454 int cpu;
455 bool found = false;
456 struct device_node *np;
457
458 for_each_possible_cpu(cpu) {
459 np = of_cpu_device_node_get(cpu);
460 found = (cpu_node == np);
461 of_node_put(np);
462 if (found)
463 return cpu;
464 }
465
466 return -ENODEV;
467 }
468 EXPORT_SYMBOL(of_cpu_node_to_id);
469
470 /**
471 * __of_device_is_compatible() - Check if the node matches given constraints
472 * @device: pointer to node
473 * @compat: required compatible string, NULL or "" for any match
474 * @type: required device_type value, NULL or "" for any match
475 * @name: required node name, NULL or "" for any match
476 *
477 * Checks if the given @compat, @type and @name strings match the
478 * properties of the given @device. A constraints can be skipped by
479 * passing NULL or an empty string as the constraint.
480 *
481 * Returns 0 for no match, and a positive integer on match. The return
482 * value is a relative score with larger values indicating better
483 * matches. The score is weighted for the most specific compatible value
484 * to get the highest score. Matching type is next, followed by matching
485 * name. Practically speaking, this results in the following priority
486 * order for matches:
487 *
488 * 1. specific compatible && type && name
489 * 2. specific compatible && type
490 * 3. specific compatible && name
491 * 4. specific compatible
492 * 5. general compatible && type && name
493 * 6. general compatible && type
494 * 7. general compatible && name
495 * 8. general compatible
496 * 9. type && name
497 * 10. type
498 * 11. name
499 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)500 static int __of_device_is_compatible(const struct device_node *device,
501 const char *compat, const char *type, const char *name)
502 {
503 struct property *prop;
504 const char *cp;
505 int index = 0, score = 0;
506
507 /* Compatible match has highest priority */
508 if (compat && compat[0]) {
509 prop = __of_find_property(device, "compatible", NULL);
510 for (cp = of_prop_next_string(prop, NULL); cp;
511 cp = of_prop_next_string(prop, cp), index++) {
512 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
513 score = INT_MAX/2 - (index << 2);
514 break;
515 }
516 }
517 if (!score)
518 return 0;
519 }
520
521 /* Matching type is better than matching name */
522 if (type && type[0]) {
523 if (!device->type || of_node_cmp(type, device->type))
524 return 0;
525 score += 2;
526 }
527
528 /* Matching name is a bit better than not */
529 if (name && name[0]) {
530 if (!device->name || of_node_cmp(name, device->name))
531 return 0;
532 score++;
533 }
534
535 return score;
536 }
537
538 /** Checks if the given "compat" string matches one of the strings in
539 * the device's "compatible" property
540 */
of_device_is_compatible(const struct device_node * device,const char * compat)541 int of_device_is_compatible(const struct device_node *device,
542 const char *compat)
543 {
544 unsigned long flags;
545 int res;
546
547 raw_spin_lock_irqsave(&devtree_lock, flags);
548 res = __of_device_is_compatible(device, compat, NULL, NULL);
549 raw_spin_unlock_irqrestore(&devtree_lock, flags);
550 return res;
551 }
552 EXPORT_SYMBOL(of_device_is_compatible);
553
554 /** Checks if the device is compatible with any of the entries in
555 * a NULL terminated array of strings. Returns the best match
556 * score or 0.
557 */
of_device_compatible_match(struct device_node * device,const char * const * compat)558 int of_device_compatible_match(struct device_node *device,
559 const char *const *compat)
560 {
561 unsigned int tmp, score = 0;
562
563 if (!compat)
564 return 0;
565
566 while (*compat) {
567 tmp = of_device_is_compatible(device, *compat);
568 if (tmp > score)
569 score = tmp;
570 compat++;
571 }
572
573 return score;
574 }
575
576 /**
577 * of_machine_is_compatible - Test root of device tree for a given compatible value
578 * @compat: compatible string to look for in root node's compatible property.
579 *
580 * Returns a positive integer if the root node has the given value in its
581 * compatible property.
582 */
of_machine_is_compatible(const char * compat)583 int of_machine_is_compatible(const char *compat)
584 {
585 struct device_node *root;
586 int rc = 0;
587
588 root = of_find_node_by_path("/");
589 if (root) {
590 rc = of_device_is_compatible(root, compat);
591 of_node_put(root);
592 }
593 return rc;
594 }
595 EXPORT_SYMBOL(of_machine_is_compatible);
596
597 /**
598 * __of_device_is_available - check if a device is available for use
599 *
600 * @device: Node to check for availability, with locks already held
601 *
602 * Returns true if the status property is absent or set to "okay" or "ok",
603 * false otherwise
604 */
__of_device_is_available(const struct device_node * device)605 static bool __of_device_is_available(const struct device_node *device)
606 {
607 const char *status;
608 int statlen;
609
610 if (!device)
611 return false;
612
613 status = __of_get_property(device, "status", &statlen);
614 if (status == NULL)
615 return true;
616
617 if (statlen > 0) {
618 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
619 return true;
620 }
621
622 return false;
623 }
624
625 /**
626 * of_device_is_available - check if a device is available for use
627 *
628 * @device: Node to check for availability
629 *
630 * Returns true if the status property is absent or set to "okay" or "ok",
631 * false otherwise
632 */
of_device_is_available(const struct device_node * device)633 bool of_device_is_available(const struct device_node *device)
634 {
635 unsigned long flags;
636 bool res;
637
638 raw_spin_lock_irqsave(&devtree_lock, flags);
639 res = __of_device_is_available(device);
640 raw_spin_unlock_irqrestore(&devtree_lock, flags);
641 return res;
642
643 }
644 EXPORT_SYMBOL(of_device_is_available);
645
646 /**
647 * of_device_is_big_endian - check if a device has BE registers
648 *
649 * @device: Node to check for endianness
650 *
651 * Returns true if the device has a "big-endian" property, or if the kernel
652 * was compiled for BE *and* the device has a "native-endian" property.
653 * Returns false otherwise.
654 *
655 * Callers would nominally use ioread32be/iowrite32be if
656 * of_device_is_big_endian() == true, or readl/writel otherwise.
657 */
of_device_is_big_endian(const struct device_node * device)658 bool of_device_is_big_endian(const struct device_node *device)
659 {
660 if (of_property_read_bool(device, "big-endian"))
661 return true;
662 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
663 of_property_read_bool(device, "native-endian"))
664 return true;
665 return false;
666 }
667 EXPORT_SYMBOL(of_device_is_big_endian);
668
669 /**
670 * of_get_parent - Get a node's parent if any
671 * @node: Node to get parent
672 *
673 * Returns a node pointer with refcount incremented, use
674 * of_node_put() on it when done.
675 */
of_get_parent(const struct device_node * node)676 struct device_node *of_get_parent(const struct device_node *node)
677 {
678 struct device_node *np;
679 unsigned long flags;
680
681 if (!node)
682 return NULL;
683
684 raw_spin_lock_irqsave(&devtree_lock, flags);
685 np = of_node_get(node->parent);
686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
687 return np;
688 }
689 EXPORT_SYMBOL(of_get_parent);
690
691 /**
692 * of_get_next_parent - Iterate to a node's parent
693 * @node: Node to get parent of
694 *
695 * This is like of_get_parent() except that it drops the
696 * refcount on the passed node, making it suitable for iterating
697 * through a node's parents.
698 *
699 * Returns a node pointer with refcount incremented, use
700 * of_node_put() on it when done.
701 */
of_get_next_parent(struct device_node * node)702 struct device_node *of_get_next_parent(struct device_node *node)
703 {
704 struct device_node *parent;
705 unsigned long flags;
706
707 if (!node)
708 return NULL;
709
710 raw_spin_lock_irqsave(&devtree_lock, flags);
711 parent = of_node_get(node->parent);
712 of_node_put(node);
713 raw_spin_unlock_irqrestore(&devtree_lock, flags);
714 return parent;
715 }
716 EXPORT_SYMBOL(of_get_next_parent);
717
__of_get_next_child(const struct device_node * node,struct device_node * prev)718 static struct device_node *__of_get_next_child(const struct device_node *node,
719 struct device_node *prev)
720 {
721 struct device_node *next;
722
723 if (!node)
724 return NULL;
725
726 next = prev ? prev->sibling : node->child;
727 for (; next; next = next->sibling)
728 if (of_node_get(next))
729 break;
730 of_node_put(prev);
731 return next;
732 }
733 #define __for_each_child_of_node(parent, child) \
734 for (child = __of_get_next_child(parent, NULL); child != NULL; \
735 child = __of_get_next_child(parent, child))
736
737 /**
738 * of_get_next_child - Iterate a node childs
739 * @node: parent node
740 * @prev: previous child of the parent node, or NULL to get first
741 *
742 * Returns a node pointer with refcount incremented, use of_node_put() on
743 * it when done. Returns NULL when prev is the last child. Decrements the
744 * refcount of prev.
745 */
of_get_next_child(const struct device_node * node,struct device_node * prev)746 struct device_node *of_get_next_child(const struct device_node *node,
747 struct device_node *prev)
748 {
749 struct device_node *next;
750 unsigned long flags;
751
752 raw_spin_lock_irqsave(&devtree_lock, flags);
753 next = __of_get_next_child(node, prev);
754 raw_spin_unlock_irqrestore(&devtree_lock, flags);
755 return next;
756 }
757 EXPORT_SYMBOL(of_get_next_child);
758
759 /**
760 * of_get_next_available_child - Find the next available child node
761 * @node: parent node
762 * @prev: previous child of the parent node, or NULL to get first
763 *
764 * This function is like of_get_next_child(), except that it
765 * automatically skips any disabled nodes (i.e. status = "disabled").
766 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)767 struct device_node *of_get_next_available_child(const struct device_node *node,
768 struct device_node *prev)
769 {
770 struct device_node *next;
771 unsigned long flags;
772
773 if (!node)
774 return NULL;
775
776 raw_spin_lock_irqsave(&devtree_lock, flags);
777 next = prev ? prev->sibling : node->child;
778 for (; next; next = next->sibling) {
779 if (!__of_device_is_available(next))
780 continue;
781 if (of_node_get(next))
782 break;
783 }
784 of_node_put(prev);
785 raw_spin_unlock_irqrestore(&devtree_lock, flags);
786 return next;
787 }
788 EXPORT_SYMBOL(of_get_next_available_child);
789
790 /**
791 * of_get_compatible_child - Find compatible child node
792 * @parent: parent node
793 * @compatible: compatible string
794 *
795 * Lookup child node whose compatible property contains the given compatible
796 * string.
797 *
798 * Returns a node pointer with refcount incremented, use of_node_put() on it
799 * when done; or NULL if not found.
800 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)801 struct device_node *of_get_compatible_child(const struct device_node *parent,
802 const char *compatible)
803 {
804 struct device_node *child;
805
806 for_each_child_of_node(parent, child) {
807 if (of_device_is_compatible(child, compatible))
808 break;
809 }
810
811 return child;
812 }
813 EXPORT_SYMBOL(of_get_compatible_child);
814
815 /**
816 * of_get_child_by_name - Find the child node by name for a given parent
817 * @node: parent node
818 * @name: child name to look for.
819 *
820 * This function looks for child node for given matching name
821 *
822 * Returns a node pointer if found, with refcount incremented, use
823 * of_node_put() on it when done.
824 * Returns NULL if node is not found.
825 */
of_get_child_by_name(const struct device_node * node,const char * name)826 struct device_node *of_get_child_by_name(const struct device_node *node,
827 const char *name)
828 {
829 struct device_node *child;
830
831 for_each_child_of_node(node, child)
832 if (child->name && (of_node_cmp(child->name, name) == 0))
833 break;
834 return child;
835 }
836 EXPORT_SYMBOL(of_get_child_by_name);
837
__of_find_node_by_path(struct device_node * parent,const char * path)838 struct device_node *__of_find_node_by_path(struct device_node *parent,
839 const char *path)
840 {
841 struct device_node *child;
842 int len;
843
844 len = strcspn(path, "/:");
845 if (!len)
846 return NULL;
847
848 __for_each_child_of_node(parent, child) {
849 const char *name = kbasename(child->full_name);
850 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
851 return child;
852 }
853 return NULL;
854 }
855
__of_find_node_by_full_path(struct device_node * node,const char * path)856 struct device_node *__of_find_node_by_full_path(struct device_node *node,
857 const char *path)
858 {
859 const char *separator = strchr(path, ':');
860
861 while (node && *path == '/') {
862 struct device_node *tmp = node;
863
864 path++; /* Increment past '/' delimiter */
865 node = __of_find_node_by_path(node, path);
866 of_node_put(tmp);
867 path = strchrnul(path, '/');
868 if (separator && separator < path)
869 break;
870 }
871 return node;
872 }
873
874 /**
875 * of_find_node_opts_by_path - Find a node matching a full OF path
876 * @path: Either the full path to match, or if the path does not
877 * start with '/', the name of a property of the /aliases
878 * node (an alias). In the case of an alias, the node
879 * matching the alias' value will be returned.
880 * @opts: Address of a pointer into which to store the start of
881 * an options string appended to the end of the path with
882 * a ':' separator.
883 *
884 * Valid paths:
885 * /foo/bar Full path
886 * foo Valid alias
887 * foo/bar Valid alias + relative path
888 *
889 * Returns a node pointer with refcount incremented, use
890 * of_node_put() on it when done.
891 */
of_find_node_opts_by_path(const char * path,const char ** opts)892 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
893 {
894 struct device_node *np = NULL;
895 struct property *pp;
896 unsigned long flags;
897 const char *separator = strchr(path, ':');
898
899 if (opts)
900 *opts = separator ? separator + 1 : NULL;
901
902 if (strcmp(path, "/") == 0)
903 return of_node_get(of_root);
904
905 /* The path could begin with an alias */
906 if (*path != '/') {
907 int len;
908 const char *p = separator;
909
910 if (!p)
911 p = strchrnul(path, '/');
912 len = p - path;
913
914 /* of_aliases must not be NULL */
915 if (!of_aliases)
916 return NULL;
917
918 for_each_property_of_node(of_aliases, pp) {
919 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
920 np = of_find_node_by_path(pp->value);
921 break;
922 }
923 }
924 if (!np)
925 return NULL;
926 path = p;
927 }
928
929 /* Step down the tree matching path components */
930 raw_spin_lock_irqsave(&devtree_lock, flags);
931 if (!np)
932 np = of_node_get(of_root);
933 np = __of_find_node_by_full_path(np, path);
934 raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 return np;
936 }
937 EXPORT_SYMBOL(of_find_node_opts_by_path);
938
939 /**
940 * of_find_node_by_name - Find a node by its "name" property
941 * @from: The node to start searching from or NULL; the node
942 * you pass will not be searched, only the next one
943 * will. Typically, you pass what the previous call
944 * returned. of_node_put() will be called on @from.
945 * @name: The name string to match against
946 *
947 * Returns a node pointer with refcount incremented, use
948 * of_node_put() on it when done.
949 */
of_find_node_by_name(struct device_node * from,const char * name)950 struct device_node *of_find_node_by_name(struct device_node *from,
951 const char *name)
952 {
953 struct device_node *np;
954 unsigned long flags;
955
956 raw_spin_lock_irqsave(&devtree_lock, flags);
957 for_each_of_allnodes_from(from, np)
958 if (np->name && (of_node_cmp(np->name, name) == 0)
959 && of_node_get(np))
960 break;
961 of_node_put(from);
962 raw_spin_unlock_irqrestore(&devtree_lock, flags);
963 return np;
964 }
965 EXPORT_SYMBOL(of_find_node_by_name);
966
967 /**
968 * of_find_node_by_type - Find a node by its "device_type" property
969 * @from: The node to start searching from, or NULL to start searching
970 * the entire device tree. The node you pass will not be
971 * searched, only the next one will; typically, you pass
972 * what the previous call returned. of_node_put() will be
973 * called on from for you.
974 * @type: The type string to match against
975 *
976 * Returns a node pointer with refcount incremented, use
977 * of_node_put() on it when done.
978 */
of_find_node_by_type(struct device_node * from,const char * type)979 struct device_node *of_find_node_by_type(struct device_node *from,
980 const char *type)
981 {
982 struct device_node *np;
983 unsigned long flags;
984
985 raw_spin_lock_irqsave(&devtree_lock, flags);
986 for_each_of_allnodes_from(from, np)
987 if (np->type && (of_node_cmp(np->type, type) == 0)
988 && of_node_get(np))
989 break;
990 of_node_put(from);
991 raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 return np;
993 }
994 EXPORT_SYMBOL(of_find_node_by_type);
995
996 /**
997 * of_find_compatible_node - Find a node based on type and one of the
998 * tokens in its "compatible" property
999 * @from: The node to start searching from or NULL, the node
1000 * you pass will not be searched, only the next one
1001 * will; typically, you pass what the previous call
1002 * returned. of_node_put() will be called on it
1003 * @type: The type string to match "device_type" or NULL to ignore
1004 * @compatible: The string to match to one of the tokens in the device
1005 * "compatible" list.
1006 *
1007 * Returns a node pointer with refcount incremented, use
1008 * of_node_put() on it when done.
1009 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1010 struct device_node *of_find_compatible_node(struct device_node *from,
1011 const char *type, const char *compatible)
1012 {
1013 struct device_node *np;
1014 unsigned long flags;
1015
1016 raw_spin_lock_irqsave(&devtree_lock, flags);
1017 for_each_of_allnodes_from(from, np)
1018 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1019 of_node_get(np))
1020 break;
1021 of_node_put(from);
1022 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1023 return np;
1024 }
1025 EXPORT_SYMBOL(of_find_compatible_node);
1026
1027 /**
1028 * of_find_node_with_property - Find a node which has a property with
1029 * the given name.
1030 * @from: The node to start searching from or NULL, the node
1031 * you pass will not be searched, only the next one
1032 * will; typically, you pass what the previous call
1033 * returned. of_node_put() will be called on it
1034 * @prop_name: The name of the property to look for.
1035 *
1036 * Returns a node pointer with refcount incremented, use
1037 * of_node_put() on it when done.
1038 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1039 struct device_node *of_find_node_with_property(struct device_node *from,
1040 const char *prop_name)
1041 {
1042 struct device_node *np;
1043 struct property *pp;
1044 unsigned long flags;
1045
1046 raw_spin_lock_irqsave(&devtree_lock, flags);
1047 for_each_of_allnodes_from(from, np) {
1048 for (pp = np->properties; pp; pp = pp->next) {
1049 if (of_prop_cmp(pp->name, prop_name) == 0) {
1050 of_node_get(np);
1051 goto out;
1052 }
1053 }
1054 }
1055 out:
1056 of_node_put(from);
1057 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058 return np;
1059 }
1060 EXPORT_SYMBOL(of_find_node_with_property);
1061
1062 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1063 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1064 const struct device_node *node)
1065 {
1066 const struct of_device_id *best_match = NULL;
1067 int score, best_score = 0;
1068
1069 if (!matches)
1070 return NULL;
1071
1072 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1073 score = __of_device_is_compatible(node, matches->compatible,
1074 matches->type, matches->name);
1075 if (score > best_score) {
1076 best_match = matches;
1077 best_score = score;
1078 }
1079 }
1080
1081 return best_match;
1082 }
1083
1084 /**
1085 * of_match_node - Tell if a device_node has a matching of_match structure
1086 * @matches: array of of device match structures to search in
1087 * @node: the of device structure to match against
1088 *
1089 * Low level utility function used by device matching.
1090 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1091 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1092 const struct device_node *node)
1093 {
1094 const struct of_device_id *match;
1095 unsigned long flags;
1096
1097 raw_spin_lock_irqsave(&devtree_lock, flags);
1098 match = __of_match_node(matches, node);
1099 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1100 return match;
1101 }
1102 EXPORT_SYMBOL(of_match_node);
1103
1104 /**
1105 * of_find_matching_node_and_match - Find a node based on an of_device_id
1106 * match table.
1107 * @from: The node to start searching from or NULL, the node
1108 * you pass will not be searched, only the next one
1109 * will; typically, you pass what the previous call
1110 * returned. of_node_put() will be called on it
1111 * @matches: array of of device match structures to search in
1112 * @match Updated to point at the matches entry which matched
1113 *
1114 * Returns a node pointer with refcount incremented, use
1115 * of_node_put() on it when done.
1116 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1117 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1118 const struct of_device_id *matches,
1119 const struct of_device_id **match)
1120 {
1121 struct device_node *np;
1122 const struct of_device_id *m;
1123 unsigned long flags;
1124
1125 if (match)
1126 *match = NULL;
1127
1128 raw_spin_lock_irqsave(&devtree_lock, flags);
1129 for_each_of_allnodes_from(from, np) {
1130 m = __of_match_node(matches, np);
1131 if (m && of_node_get(np)) {
1132 if (match)
1133 *match = m;
1134 break;
1135 }
1136 }
1137 of_node_put(from);
1138 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1139 return np;
1140 }
1141 EXPORT_SYMBOL(of_find_matching_node_and_match);
1142
1143 /**
1144 * of_modalias_node - Lookup appropriate modalias for a device node
1145 * @node: pointer to a device tree node
1146 * @modalias: Pointer to buffer that modalias value will be copied into
1147 * @len: Length of modalias value
1148 *
1149 * Based on the value of the compatible property, this routine will attempt
1150 * to choose an appropriate modalias value for a particular device tree node.
1151 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1152 * from the first entry in the compatible list property.
1153 *
1154 * This routine returns 0 on success, <0 on failure.
1155 */
of_modalias_node(struct device_node * node,char * modalias,int len)1156 int of_modalias_node(struct device_node *node, char *modalias, int len)
1157 {
1158 const char *compatible, *p;
1159 int cplen;
1160
1161 compatible = of_get_property(node, "compatible", &cplen);
1162 if (!compatible || strlen(compatible) > cplen)
1163 return -ENODEV;
1164 p = strchr(compatible, ',');
1165 strlcpy(modalias, p ? p + 1 : compatible, len);
1166 return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(of_modalias_node);
1169
1170 /**
1171 * of_find_node_by_phandle - Find a node given a phandle
1172 * @handle: phandle of the node to find
1173 *
1174 * Returns a node pointer with refcount incremented, use
1175 * of_node_put() on it when done.
1176 */
of_find_node_by_phandle(phandle handle)1177 struct device_node *of_find_node_by_phandle(phandle handle)
1178 {
1179 struct device_node *np = NULL;
1180 unsigned long flags;
1181 phandle masked_handle;
1182
1183 if (!handle)
1184 return NULL;
1185
1186 raw_spin_lock_irqsave(&devtree_lock, flags);
1187
1188 masked_handle = handle & phandle_cache_mask;
1189
1190 if (phandle_cache) {
1191 if (phandle_cache[masked_handle] &&
1192 handle == phandle_cache[masked_handle]->phandle)
1193 np = phandle_cache[masked_handle];
1194 if (np && of_node_check_flag(np, OF_DETACHED)) {
1195 WARN_ON(1); /* did not uncache np on node removal */
1196 of_node_put(np);
1197 phandle_cache[masked_handle] = NULL;
1198 np = NULL;
1199 }
1200 }
1201
1202 if (!np) {
1203 for_each_of_allnodes(np)
1204 if (np->phandle == handle &&
1205 !of_node_check_flag(np, OF_DETACHED)) {
1206 if (phandle_cache) {
1207 /* will put when removed from cache */
1208 of_node_get(np);
1209 phandle_cache[masked_handle] = np;
1210 }
1211 break;
1212 }
1213 }
1214
1215 of_node_get(np);
1216 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1217 return np;
1218 }
1219 EXPORT_SYMBOL(of_find_node_by_phandle);
1220
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1221 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1222 {
1223 int i;
1224 printk("%s %pOF", msg, args->np);
1225 for (i = 0; i < args->args_count; i++) {
1226 const char delim = i ? ',' : ':';
1227
1228 pr_cont("%c%08x", delim, args->args[i]);
1229 }
1230 pr_cont("\n");
1231 }
1232
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1233 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1234 const struct device_node *np,
1235 const char *list_name,
1236 const char *cells_name,
1237 int cell_count)
1238 {
1239 const __be32 *list;
1240 int size;
1241
1242 memset(it, 0, sizeof(*it));
1243
1244 list = of_get_property(np, list_name, &size);
1245 if (!list)
1246 return -ENOENT;
1247
1248 it->cells_name = cells_name;
1249 it->cell_count = cell_count;
1250 it->parent = np;
1251 it->list_end = list + size / sizeof(*list);
1252 it->phandle_end = list;
1253 it->cur = list;
1254
1255 return 0;
1256 }
1257 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1258
of_phandle_iterator_next(struct of_phandle_iterator * it)1259 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1260 {
1261 uint32_t count = 0;
1262
1263 if (it->node) {
1264 of_node_put(it->node);
1265 it->node = NULL;
1266 }
1267
1268 if (!it->cur || it->phandle_end >= it->list_end)
1269 return -ENOENT;
1270
1271 it->cur = it->phandle_end;
1272
1273 /* If phandle is 0, then it is an empty entry with no arguments. */
1274 it->phandle = be32_to_cpup(it->cur++);
1275
1276 if (it->phandle) {
1277
1278 /*
1279 * Find the provider node and parse the #*-cells property to
1280 * determine the argument length.
1281 */
1282 it->node = of_find_node_by_phandle(it->phandle);
1283
1284 if (it->cells_name) {
1285 if (!it->node) {
1286 pr_err("%pOF: could not find phandle\n",
1287 it->parent);
1288 goto err;
1289 }
1290
1291 if (of_property_read_u32(it->node, it->cells_name,
1292 &count)) {
1293 pr_err("%pOF: could not get %s for %pOF\n",
1294 it->parent,
1295 it->cells_name,
1296 it->node);
1297 goto err;
1298 }
1299 } else {
1300 count = it->cell_count;
1301 }
1302
1303 /*
1304 * Make sure that the arguments actually fit in the remaining
1305 * property data length
1306 */
1307 if (it->cur + count > it->list_end) {
1308 pr_err("%pOF: arguments longer than property\n",
1309 it->parent);
1310 goto err;
1311 }
1312 }
1313
1314 it->phandle_end = it->cur + count;
1315 it->cur_count = count;
1316
1317 return 0;
1318
1319 err:
1320 if (it->node) {
1321 of_node_put(it->node);
1322 it->node = NULL;
1323 }
1324
1325 return -EINVAL;
1326 }
1327 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1328
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1329 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1330 uint32_t *args,
1331 int size)
1332 {
1333 int i, count;
1334
1335 count = it->cur_count;
1336
1337 if (WARN_ON(size < count))
1338 count = size;
1339
1340 for (i = 0; i < count; i++)
1341 args[i] = be32_to_cpup(it->cur++);
1342
1343 return count;
1344 }
1345
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1346 static int __of_parse_phandle_with_args(const struct device_node *np,
1347 const char *list_name,
1348 const char *cells_name,
1349 int cell_count, int index,
1350 struct of_phandle_args *out_args)
1351 {
1352 struct of_phandle_iterator it;
1353 int rc, cur_index = 0;
1354
1355 /* Loop over the phandles until all the requested entry is found */
1356 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1357 /*
1358 * All of the error cases bail out of the loop, so at
1359 * this point, the parsing is successful. If the requested
1360 * index matches, then fill the out_args structure and return,
1361 * or return -ENOENT for an empty entry.
1362 */
1363 rc = -ENOENT;
1364 if (cur_index == index) {
1365 if (!it.phandle)
1366 goto err;
1367
1368 if (out_args) {
1369 int c;
1370
1371 c = of_phandle_iterator_args(&it,
1372 out_args->args,
1373 MAX_PHANDLE_ARGS);
1374 out_args->np = it.node;
1375 out_args->args_count = c;
1376 } else {
1377 of_node_put(it.node);
1378 }
1379
1380 /* Found it! return success */
1381 return 0;
1382 }
1383
1384 cur_index++;
1385 }
1386
1387 /*
1388 * Unlock node before returning result; will be one of:
1389 * -ENOENT : index is for empty phandle
1390 * -EINVAL : parsing error on data
1391 */
1392
1393 err:
1394 of_node_put(it.node);
1395 return rc;
1396 }
1397
1398 /**
1399 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1400 * @np: Pointer to device node holding phandle property
1401 * @phandle_name: Name of property holding a phandle value
1402 * @index: For properties holding a table of phandles, this is the index into
1403 * the table
1404 *
1405 * Returns the device_node pointer with refcount incremented. Use
1406 * of_node_put() on it when done.
1407 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1408 struct device_node *of_parse_phandle(const struct device_node *np,
1409 const char *phandle_name, int index)
1410 {
1411 struct of_phandle_args args;
1412
1413 if (index < 0)
1414 return NULL;
1415
1416 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1417 index, &args))
1418 return NULL;
1419
1420 return args.np;
1421 }
1422 EXPORT_SYMBOL(of_parse_phandle);
1423
1424 /**
1425 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1426 * @np: pointer to a device tree node containing a list
1427 * @list_name: property name that contains a list
1428 * @cells_name: property name that specifies phandles' arguments count
1429 * @index: index of a phandle to parse out
1430 * @out_args: optional pointer to output arguments structure (will be filled)
1431 *
1432 * This function is useful to parse lists of phandles and their arguments.
1433 * Returns 0 on success and fills out_args, on error returns appropriate
1434 * errno value.
1435 *
1436 * Caller is responsible to call of_node_put() on the returned out_args->np
1437 * pointer.
1438 *
1439 * Example:
1440 *
1441 * phandle1: node1 {
1442 * #list-cells = <2>;
1443 * }
1444 *
1445 * phandle2: node2 {
1446 * #list-cells = <1>;
1447 * }
1448 *
1449 * node3 {
1450 * list = <&phandle1 1 2 &phandle2 3>;
1451 * }
1452 *
1453 * To get a device_node of the `node2' node you may call this:
1454 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1455 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1456 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1457 const char *cells_name, int index,
1458 struct of_phandle_args *out_args)
1459 {
1460 if (index < 0)
1461 return -EINVAL;
1462 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1463 index, out_args);
1464 }
1465 EXPORT_SYMBOL(of_parse_phandle_with_args);
1466
1467 /**
1468 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1469 * @np: pointer to a device tree node containing a list
1470 * @list_name: property name that contains a list
1471 * @stem_name: stem of property names that specify phandles' arguments count
1472 * @index: index of a phandle to parse out
1473 * @out_args: optional pointer to output arguments structure (will be filled)
1474 *
1475 * This function is useful to parse lists of phandles and their arguments.
1476 * Returns 0 on success and fills out_args, on error returns appropriate errno
1477 * value. The difference between this function and of_parse_phandle_with_args()
1478 * is that this API remaps a phandle if the node the phandle points to has
1479 * a <@stem_name>-map property.
1480 *
1481 * Caller is responsible to call of_node_put() on the returned out_args->np
1482 * pointer.
1483 *
1484 * Example:
1485 *
1486 * phandle1: node1 {
1487 * #list-cells = <2>;
1488 * }
1489 *
1490 * phandle2: node2 {
1491 * #list-cells = <1>;
1492 * }
1493 *
1494 * phandle3: node3 {
1495 * #list-cells = <1>;
1496 * list-map = <0 &phandle2 3>,
1497 * <1 &phandle2 2>,
1498 * <2 &phandle1 5 1>;
1499 * list-map-mask = <0x3>;
1500 * };
1501 *
1502 * node4 {
1503 * list = <&phandle1 1 2 &phandle3 0>;
1504 * }
1505 *
1506 * To get a device_node of the `node2' node you may call this:
1507 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1508 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1509 int of_parse_phandle_with_args_map(const struct device_node *np,
1510 const char *list_name,
1511 const char *stem_name,
1512 int index, struct of_phandle_args *out_args)
1513 {
1514 char *cells_name, *map_name = NULL, *mask_name = NULL;
1515 char *pass_name = NULL;
1516 struct device_node *cur, *new = NULL;
1517 const __be32 *map, *mask, *pass;
1518 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1519 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1520 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1521 const __be32 *match_array = initial_match_array;
1522 int i, ret, map_len, match;
1523 u32 list_size, new_size;
1524
1525 if (index < 0)
1526 return -EINVAL;
1527
1528 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1529 if (!cells_name)
1530 return -ENOMEM;
1531
1532 ret = -ENOMEM;
1533 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1534 if (!map_name)
1535 goto free;
1536
1537 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1538 if (!mask_name)
1539 goto free;
1540
1541 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1542 if (!pass_name)
1543 goto free;
1544
1545 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1546 out_args);
1547 if (ret)
1548 goto free;
1549
1550 /* Get the #<list>-cells property */
1551 cur = out_args->np;
1552 ret = of_property_read_u32(cur, cells_name, &list_size);
1553 if (ret < 0)
1554 goto put;
1555
1556 /* Precalculate the match array - this simplifies match loop */
1557 for (i = 0; i < list_size; i++)
1558 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1559
1560 ret = -EINVAL;
1561 while (cur) {
1562 /* Get the <list>-map property */
1563 map = of_get_property(cur, map_name, &map_len);
1564 if (!map) {
1565 ret = 0;
1566 goto free;
1567 }
1568 map_len /= sizeof(u32);
1569
1570 /* Get the <list>-map-mask property (optional) */
1571 mask = of_get_property(cur, mask_name, NULL);
1572 if (!mask)
1573 mask = dummy_mask;
1574 /* Iterate through <list>-map property */
1575 match = 0;
1576 while (map_len > (list_size + 1) && !match) {
1577 /* Compare specifiers */
1578 match = 1;
1579 for (i = 0; i < list_size; i++, map_len--)
1580 match &= !((match_array[i] ^ *map++) & mask[i]);
1581
1582 of_node_put(new);
1583 new = of_find_node_by_phandle(be32_to_cpup(map));
1584 map++;
1585 map_len--;
1586
1587 /* Check if not found */
1588 if (!new)
1589 goto put;
1590
1591 if (!of_device_is_available(new))
1592 match = 0;
1593
1594 ret = of_property_read_u32(new, cells_name, &new_size);
1595 if (ret)
1596 goto put;
1597
1598 /* Check for malformed properties */
1599 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1600 goto put;
1601 if (map_len < new_size)
1602 goto put;
1603
1604 /* Move forward by new node's #<list>-cells amount */
1605 map += new_size;
1606 map_len -= new_size;
1607 }
1608 if (!match)
1609 goto put;
1610
1611 /* Get the <list>-map-pass-thru property (optional) */
1612 pass = of_get_property(cur, pass_name, NULL);
1613 if (!pass)
1614 pass = dummy_pass;
1615
1616 /*
1617 * Successfully parsed a <list>-map translation; copy new
1618 * specifier into the out_args structure, keeping the
1619 * bits specified in <list>-map-pass-thru.
1620 */
1621 match_array = map - new_size;
1622 for (i = 0; i < new_size; i++) {
1623 __be32 val = *(map - new_size + i);
1624
1625 if (i < list_size) {
1626 val &= ~pass[i];
1627 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1628 }
1629
1630 out_args->args[i] = be32_to_cpu(val);
1631 }
1632 out_args->args_count = list_size = new_size;
1633 /* Iterate again with new provider */
1634 out_args->np = new;
1635 of_node_put(cur);
1636 cur = new;
1637 }
1638 put:
1639 of_node_put(cur);
1640 of_node_put(new);
1641 free:
1642 kfree(mask_name);
1643 kfree(map_name);
1644 kfree(cells_name);
1645 kfree(pass_name);
1646
1647 return ret;
1648 }
1649 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1650
1651 /**
1652 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1653 * @np: pointer to a device tree node containing a list
1654 * @list_name: property name that contains a list
1655 * @cell_count: number of argument cells following the phandle
1656 * @index: index of a phandle to parse out
1657 * @out_args: optional pointer to output arguments structure (will be filled)
1658 *
1659 * This function is useful to parse lists of phandles and their arguments.
1660 * Returns 0 on success and fills out_args, on error returns appropriate
1661 * errno value.
1662 *
1663 * Caller is responsible to call of_node_put() on the returned out_args->np
1664 * pointer.
1665 *
1666 * Example:
1667 *
1668 * phandle1: node1 {
1669 * }
1670 *
1671 * phandle2: node2 {
1672 * }
1673 *
1674 * node3 {
1675 * list = <&phandle1 0 2 &phandle2 2 3>;
1676 * }
1677 *
1678 * To get a device_node of the `node2' node you may call this:
1679 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1680 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1681 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1682 const char *list_name, int cell_count,
1683 int index, struct of_phandle_args *out_args)
1684 {
1685 if (index < 0)
1686 return -EINVAL;
1687 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1688 index, out_args);
1689 }
1690 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1691
1692 /**
1693 * of_count_phandle_with_args() - Find the number of phandles references in a property
1694 * @np: pointer to a device tree node containing a list
1695 * @list_name: property name that contains a list
1696 * @cells_name: property name that specifies phandles' arguments count
1697 *
1698 * Returns the number of phandle + argument tuples within a property. It
1699 * is a typical pattern to encode a list of phandle and variable
1700 * arguments into a single property. The number of arguments is encoded
1701 * by a property in the phandle-target node. For example, a gpios
1702 * property would contain a list of GPIO specifies consisting of a
1703 * phandle and 1 or more arguments. The number of arguments are
1704 * determined by the #gpio-cells property in the node pointed to by the
1705 * phandle.
1706 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1707 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1708 const char *cells_name)
1709 {
1710 struct of_phandle_iterator it;
1711 int rc, cur_index = 0;
1712
1713 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1714 if (rc)
1715 return rc;
1716
1717 while ((rc = of_phandle_iterator_next(&it)) == 0)
1718 cur_index += 1;
1719
1720 if (rc != -ENOENT)
1721 return rc;
1722
1723 return cur_index;
1724 }
1725 EXPORT_SYMBOL(of_count_phandle_with_args);
1726
1727 /**
1728 * __of_add_property - Add a property to a node without lock operations
1729 */
__of_add_property(struct device_node * np,struct property * prop)1730 int __of_add_property(struct device_node *np, struct property *prop)
1731 {
1732 struct property **next;
1733
1734 prop->next = NULL;
1735 next = &np->properties;
1736 while (*next) {
1737 if (strcmp(prop->name, (*next)->name) == 0)
1738 /* duplicate ! don't insert it */
1739 return -EEXIST;
1740
1741 next = &(*next)->next;
1742 }
1743 *next = prop;
1744
1745 return 0;
1746 }
1747
1748 /**
1749 * of_add_property - Add a property to a node
1750 */
of_add_property(struct device_node * np,struct property * prop)1751 int of_add_property(struct device_node *np, struct property *prop)
1752 {
1753 unsigned long flags;
1754 int rc;
1755
1756 mutex_lock(&of_mutex);
1757
1758 raw_spin_lock_irqsave(&devtree_lock, flags);
1759 rc = __of_add_property(np, prop);
1760 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1761
1762 if (!rc)
1763 __of_add_property_sysfs(np, prop);
1764
1765 mutex_unlock(&of_mutex);
1766
1767 if (!rc)
1768 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1769
1770 return rc;
1771 }
1772
__of_remove_property(struct device_node * np,struct property * prop)1773 int __of_remove_property(struct device_node *np, struct property *prop)
1774 {
1775 struct property **next;
1776
1777 for (next = &np->properties; *next; next = &(*next)->next) {
1778 if (*next == prop)
1779 break;
1780 }
1781 if (*next == NULL)
1782 return -ENODEV;
1783
1784 /* found the node */
1785 *next = prop->next;
1786 prop->next = np->deadprops;
1787 np->deadprops = prop;
1788
1789 return 0;
1790 }
1791
1792 /**
1793 * of_remove_property - Remove a property from a node.
1794 *
1795 * Note that we don't actually remove it, since we have given out
1796 * who-knows-how-many pointers to the data using get-property.
1797 * Instead we just move the property to the "dead properties"
1798 * list, so it won't be found any more.
1799 */
of_remove_property(struct device_node * np,struct property * prop)1800 int of_remove_property(struct device_node *np, struct property *prop)
1801 {
1802 unsigned long flags;
1803 int rc;
1804
1805 if (!prop)
1806 return -ENODEV;
1807
1808 mutex_lock(&of_mutex);
1809
1810 raw_spin_lock_irqsave(&devtree_lock, flags);
1811 rc = __of_remove_property(np, prop);
1812 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1813
1814 if (!rc)
1815 __of_remove_property_sysfs(np, prop);
1816
1817 mutex_unlock(&of_mutex);
1818
1819 if (!rc)
1820 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1821
1822 return rc;
1823 }
1824
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1825 int __of_update_property(struct device_node *np, struct property *newprop,
1826 struct property **oldpropp)
1827 {
1828 struct property **next, *oldprop;
1829
1830 for (next = &np->properties; *next; next = &(*next)->next) {
1831 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1832 break;
1833 }
1834 *oldpropp = oldprop = *next;
1835
1836 if (oldprop) {
1837 /* replace the node */
1838 newprop->next = oldprop->next;
1839 *next = newprop;
1840 oldprop->next = np->deadprops;
1841 np->deadprops = oldprop;
1842 } else {
1843 /* new node */
1844 newprop->next = NULL;
1845 *next = newprop;
1846 }
1847
1848 return 0;
1849 }
1850
1851 /*
1852 * of_update_property - Update a property in a node, if the property does
1853 * not exist, add it.
1854 *
1855 * Note that we don't actually remove it, since we have given out
1856 * who-knows-how-many pointers to the data using get-property.
1857 * Instead we just move the property to the "dead properties" list,
1858 * and add the new property to the property list
1859 */
of_update_property(struct device_node * np,struct property * newprop)1860 int of_update_property(struct device_node *np, struct property *newprop)
1861 {
1862 struct property *oldprop;
1863 unsigned long flags;
1864 int rc;
1865
1866 if (!newprop->name)
1867 return -EINVAL;
1868
1869 mutex_lock(&of_mutex);
1870
1871 raw_spin_lock_irqsave(&devtree_lock, flags);
1872 rc = __of_update_property(np, newprop, &oldprop);
1873 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1874
1875 if (!rc)
1876 __of_update_property_sysfs(np, newprop, oldprop);
1877
1878 mutex_unlock(&of_mutex);
1879
1880 if (!rc)
1881 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1882
1883 return rc;
1884 }
1885
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1886 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1887 int id, const char *stem, int stem_len)
1888 {
1889 ap->np = np;
1890 ap->id = id;
1891 strncpy(ap->stem, stem, stem_len);
1892 ap->stem[stem_len] = 0;
1893 list_add_tail(&ap->link, &aliases_lookup);
1894 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1895 ap->alias, ap->stem, ap->id, np);
1896 }
1897
1898 /**
1899 * of_alias_scan - Scan all properties of the 'aliases' node
1900 *
1901 * The function scans all the properties of the 'aliases' node and populates
1902 * the global lookup table with the properties. It returns the
1903 * number of alias properties found, or an error code in case of failure.
1904 *
1905 * @dt_alloc: An allocator that provides a virtual address to memory
1906 * for storing the resulting tree
1907 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1908 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1909 {
1910 struct property *pp;
1911
1912 of_aliases = of_find_node_by_path("/aliases");
1913 of_chosen = of_find_node_by_path("/chosen");
1914 if (of_chosen == NULL)
1915 of_chosen = of_find_node_by_path("/chosen@0");
1916
1917 if (of_chosen) {
1918 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1919 const char *name = NULL;
1920
1921 if (of_property_read_string(of_chosen, "stdout-path", &name))
1922 of_property_read_string(of_chosen, "linux,stdout-path",
1923 &name);
1924 if (IS_ENABLED(CONFIG_PPC) && !name)
1925 of_property_read_string(of_aliases, "stdout", &name);
1926 if (name)
1927 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1928 }
1929
1930 if (!of_aliases)
1931 return;
1932
1933 for_each_property_of_node(of_aliases, pp) {
1934 const char *start = pp->name;
1935 const char *end = start + strlen(start);
1936 struct device_node *np;
1937 struct alias_prop *ap;
1938 int id, len;
1939
1940 /* Skip those we do not want to proceed */
1941 if (!strcmp(pp->name, "name") ||
1942 !strcmp(pp->name, "phandle") ||
1943 !strcmp(pp->name, "linux,phandle"))
1944 continue;
1945
1946 np = of_find_node_by_path(pp->value);
1947 if (!np)
1948 continue;
1949
1950 /* walk the alias backwards to extract the id and work out
1951 * the 'stem' string */
1952 while (isdigit(*(end-1)) && end > start)
1953 end--;
1954 len = end - start;
1955
1956 if (kstrtoint(end, 10, &id) < 0)
1957 continue;
1958
1959 /* Allocate an alias_prop with enough space for the stem */
1960 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1961 if (!ap)
1962 continue;
1963 memset(ap, 0, sizeof(*ap) + len + 1);
1964 ap->alias = start;
1965 of_alias_add(ap, np, id, start, len);
1966 }
1967 }
1968
1969 /**
1970 * of_alias_get_id - Get alias id for the given device_node
1971 * @np: Pointer to the given device_node
1972 * @stem: Alias stem of the given device_node
1973 *
1974 * The function travels the lookup table to get the alias id for the given
1975 * device_node and alias stem. It returns the alias id if found.
1976 */
of_alias_get_id(struct device_node * np,const char * stem)1977 int of_alias_get_id(struct device_node *np, const char *stem)
1978 {
1979 struct alias_prop *app;
1980 int id = -ENODEV;
1981
1982 mutex_lock(&of_mutex);
1983 list_for_each_entry(app, &aliases_lookup, link) {
1984 if (strcmp(app->stem, stem) != 0)
1985 continue;
1986
1987 if (np == app->np) {
1988 id = app->id;
1989 break;
1990 }
1991 }
1992 mutex_unlock(&of_mutex);
1993
1994 return id;
1995 }
1996 EXPORT_SYMBOL_GPL(of_alias_get_id);
1997
1998 /**
1999 * of_alias_get_highest_id - Get highest alias id for the given stem
2000 * @stem: Alias stem to be examined
2001 *
2002 * The function travels the lookup table to get the highest alias id for the
2003 * given alias stem. It returns the alias id if found.
2004 */
of_alias_get_highest_id(const char * stem)2005 int of_alias_get_highest_id(const char *stem)
2006 {
2007 struct alias_prop *app;
2008 int id = -ENODEV;
2009
2010 mutex_lock(&of_mutex);
2011 list_for_each_entry(app, &aliases_lookup, link) {
2012 if (strcmp(app->stem, stem) != 0)
2013 continue;
2014
2015 if (app->id > id)
2016 id = app->id;
2017 }
2018 mutex_unlock(&of_mutex);
2019
2020 return id;
2021 }
2022 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2023
2024 /**
2025 * of_console_check() - Test and setup console for DT setup
2026 * @dn - Pointer to device node
2027 * @name - Name to use for preferred console without index. ex. "ttyS"
2028 * @index - Index to use for preferred console.
2029 *
2030 * Check if the given device node matches the stdout-path property in the
2031 * /chosen node. If it does then register it as the preferred console and return
2032 * TRUE. Otherwise return FALSE.
2033 */
of_console_check(struct device_node * dn,char * name,int index)2034 bool of_console_check(struct device_node *dn, char *name, int index)
2035 {
2036 if (!dn || dn != of_stdout || console_set_on_cmdline)
2037 return false;
2038
2039 /*
2040 * XXX: cast `options' to char pointer to suppress complication
2041 * warnings: printk, UART and console drivers expect char pointer.
2042 */
2043 return !add_preferred_console(name, index, (char *)of_stdout_options);
2044 }
2045 EXPORT_SYMBOL_GPL(of_console_check);
2046
2047 /**
2048 * of_find_next_cache_node - Find a node's subsidiary cache
2049 * @np: node of type "cpu" or "cache"
2050 *
2051 * Returns a node pointer with refcount incremented, use
2052 * of_node_put() on it when done. Caller should hold a reference
2053 * to np.
2054 */
of_find_next_cache_node(const struct device_node * np)2055 struct device_node *of_find_next_cache_node(const struct device_node *np)
2056 {
2057 struct device_node *child, *cache_node;
2058
2059 cache_node = of_parse_phandle(np, "l2-cache", 0);
2060 if (!cache_node)
2061 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2062
2063 if (cache_node)
2064 return cache_node;
2065
2066 /* OF on pmac has nodes instead of properties named "l2-cache"
2067 * beneath CPU nodes.
2068 */
2069 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2070 for_each_child_of_node(np, child)
2071 if (!strcmp(child->type, "cache"))
2072 return child;
2073
2074 return NULL;
2075 }
2076
2077 /**
2078 * of_find_last_cache_level - Find the level at which the last cache is
2079 * present for the given logical cpu
2080 *
2081 * @cpu: cpu number(logical index) for which the last cache level is needed
2082 *
2083 * Returns the the level at which the last cache is present. It is exactly
2084 * same as the total number of cache levels for the given logical cpu.
2085 */
of_find_last_cache_level(unsigned int cpu)2086 int of_find_last_cache_level(unsigned int cpu)
2087 {
2088 u32 cache_level = 0;
2089 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2090
2091 while (np) {
2092 prev = np;
2093 of_node_put(np);
2094 np = of_find_next_cache_node(np);
2095 }
2096
2097 of_property_read_u32(prev, "cache-level", &cache_level);
2098
2099 return cache_level;
2100 }
2101