1 /*
2 * Generic pwmlib implementation
3 *
4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
5 * Copyright (C) 2011-2012 Avionic Design GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/pwm.h>
24 #include <linux/radix-tree.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/device.h>
30 #include <linux/debugfs.h>
31 #include <linux/seq_file.h>
32
33 #include <dt-bindings/pwm/pwm.h>
34
35 #define MAX_PWMS 1024
36
37 static DEFINE_MUTEX(pwm_lookup_lock);
38 static LIST_HEAD(pwm_lookup_list);
39 static DEFINE_MUTEX(pwm_lock);
40 static LIST_HEAD(pwm_chips);
41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
42 static RADIX_TREE(pwm_tree, GFP_KERNEL);
43
pwm_to_device(unsigned int pwm)44 static struct pwm_device *pwm_to_device(unsigned int pwm)
45 {
46 return radix_tree_lookup(&pwm_tree, pwm);
47 }
48
alloc_pwms(int pwm,unsigned int count)49 static int alloc_pwms(int pwm, unsigned int count)
50 {
51 unsigned int from = 0;
52 unsigned int start;
53
54 if (pwm >= MAX_PWMS)
55 return -EINVAL;
56
57 if (pwm >= 0)
58 from = pwm;
59
60 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
61 count, 0);
62
63 if (pwm >= 0 && start != pwm)
64 return -EEXIST;
65
66 if (start + count > MAX_PWMS)
67 return -ENOSPC;
68
69 return start;
70 }
71
free_pwms(struct pwm_chip * chip)72 static void free_pwms(struct pwm_chip *chip)
73 {
74 unsigned int i;
75
76 for (i = 0; i < chip->npwm; i++) {
77 struct pwm_device *pwm = &chip->pwms[i];
78
79 radix_tree_delete(&pwm_tree, pwm->pwm);
80 }
81
82 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
83
84 kfree(chip->pwms);
85 chip->pwms = NULL;
86 }
87
pwmchip_find_by_name(const char * name)88 static struct pwm_chip *pwmchip_find_by_name(const char *name)
89 {
90 struct pwm_chip *chip;
91
92 if (!name)
93 return NULL;
94
95 mutex_lock(&pwm_lock);
96
97 list_for_each_entry(chip, &pwm_chips, list) {
98 const char *chip_name = dev_name(chip->dev);
99
100 if (chip_name && strcmp(chip_name, name) == 0) {
101 mutex_unlock(&pwm_lock);
102 return chip;
103 }
104 }
105
106 mutex_unlock(&pwm_lock);
107
108 return NULL;
109 }
110
pwm_device_request(struct pwm_device * pwm,const char * label)111 static int pwm_device_request(struct pwm_device *pwm, const char *label)
112 {
113 int err;
114
115 if (test_bit(PWMF_REQUESTED, &pwm->flags))
116 return -EBUSY;
117
118 if (!try_module_get(pwm->chip->ops->owner))
119 return -ENODEV;
120
121 if (pwm->chip->ops->request) {
122 err = pwm->chip->ops->request(pwm->chip, pwm);
123 if (err) {
124 module_put(pwm->chip->ops->owner);
125 return err;
126 }
127 }
128
129 set_bit(PWMF_REQUESTED, &pwm->flags);
130 pwm->label = label;
131
132 return 0;
133 }
134
135 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
137 {
138 struct pwm_device *pwm;
139
140 /* check, whether the driver supports a third cell for flags */
141 if (pc->of_pwm_n_cells < 3)
142 return ERR_PTR(-EINVAL);
143
144 /* flags in the third cell are optional */
145 if (args->args_count < 2)
146 return ERR_PTR(-EINVAL);
147
148 if (args->args[0] >= pc->npwm)
149 return ERR_PTR(-EINVAL);
150
151 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
152 if (IS_ERR(pwm))
153 return pwm;
154
155 pwm->args.period = args->args[1];
156 pwm->args.polarity = PWM_POLARITY_NORMAL;
157
158 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
159 pwm->args.polarity = PWM_POLARITY_INVERSED;
160
161 return pwm;
162 }
163 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
164
165 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)166 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
167 {
168 struct pwm_device *pwm;
169
170 /* sanity check driver support */
171 if (pc->of_pwm_n_cells < 2)
172 return ERR_PTR(-EINVAL);
173
174 /* all cells are required */
175 if (args->args_count != pc->of_pwm_n_cells)
176 return ERR_PTR(-EINVAL);
177
178 if (args->args[0] >= pc->npwm)
179 return ERR_PTR(-EINVAL);
180
181 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
182 if (IS_ERR(pwm))
183 return pwm;
184
185 pwm->args.period = args->args[1];
186
187 return pwm;
188 }
189
of_pwmchip_add(struct pwm_chip * chip)190 static void of_pwmchip_add(struct pwm_chip *chip)
191 {
192 if (!chip->dev || !chip->dev->of_node)
193 return;
194
195 if (!chip->of_xlate) {
196 chip->of_xlate = of_pwm_simple_xlate;
197 chip->of_pwm_n_cells = 2;
198 }
199
200 of_node_get(chip->dev->of_node);
201 }
202
of_pwmchip_remove(struct pwm_chip * chip)203 static void of_pwmchip_remove(struct pwm_chip *chip)
204 {
205 if (chip->dev)
206 of_node_put(chip->dev->of_node);
207 }
208
209 /**
210 * pwm_set_chip_data() - set private chip data for a PWM
211 * @pwm: PWM device
212 * @data: pointer to chip-specific data
213 *
214 * Returns: 0 on success or a negative error code on failure.
215 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)216 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
217 {
218 if (!pwm)
219 return -EINVAL;
220
221 pwm->chip_data = data;
222
223 return 0;
224 }
225 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
226
227 /**
228 * pwm_get_chip_data() - get private chip data for a PWM
229 * @pwm: PWM device
230 *
231 * Returns: A pointer to the chip-private data for the PWM device.
232 */
pwm_get_chip_data(struct pwm_device * pwm)233 void *pwm_get_chip_data(struct pwm_device *pwm)
234 {
235 return pwm ? pwm->chip_data : NULL;
236 }
237 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
238
pwm_ops_check(const struct pwm_ops * ops)239 static bool pwm_ops_check(const struct pwm_ops *ops)
240 {
241 /* driver supports legacy, non-atomic operation */
242 if (ops->config && ops->enable && ops->disable)
243 return true;
244
245 /* driver supports atomic operation */
246 if (ops->apply)
247 return true;
248
249 return false;
250 }
251
252 /**
253 * pwmchip_add_with_polarity() - register a new PWM chip
254 * @chip: the PWM chip to add
255 * @polarity: initial polarity of PWM channels
256 *
257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
258 * will be used. The initial polarity for all channels is specified by the
259 * @polarity parameter.
260 *
261 * Returns: 0 on success or a negative error code on failure.
262 */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)263 int pwmchip_add_with_polarity(struct pwm_chip *chip,
264 enum pwm_polarity polarity)
265 {
266 struct pwm_device *pwm;
267 unsigned int i;
268 int ret;
269
270 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
271 return -EINVAL;
272
273 if (!pwm_ops_check(chip->ops))
274 return -EINVAL;
275
276 mutex_lock(&pwm_lock);
277
278 ret = alloc_pwms(chip->base, chip->npwm);
279 if (ret < 0)
280 goto out;
281
282 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
283 if (!chip->pwms) {
284 ret = -ENOMEM;
285 goto out;
286 }
287
288 chip->base = ret;
289
290 for (i = 0; i < chip->npwm; i++) {
291 pwm = &chip->pwms[i];
292
293 pwm->chip = chip;
294 pwm->pwm = chip->base + i;
295 pwm->hwpwm = i;
296 pwm->state.polarity = polarity;
297
298 if (chip->ops->get_state)
299 chip->ops->get_state(chip, pwm, &pwm->state);
300
301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
302 }
303
304 bitmap_set(allocated_pwms, chip->base, chip->npwm);
305
306 INIT_LIST_HEAD(&chip->list);
307 list_add(&chip->list, &pwm_chips);
308
309 ret = 0;
310
311 if (IS_ENABLED(CONFIG_OF))
312 of_pwmchip_add(chip);
313
314 out:
315 mutex_unlock(&pwm_lock);
316
317 if (!ret)
318 pwmchip_sysfs_export(chip);
319
320 return ret;
321 }
322 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
323
324 /**
325 * pwmchip_add() - register a new PWM chip
326 * @chip: the PWM chip to add
327 *
328 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
329 * will be used. The initial polarity for all channels is normal.
330 *
331 * Returns: 0 on success or a negative error code on failure.
332 */
pwmchip_add(struct pwm_chip * chip)333 int pwmchip_add(struct pwm_chip *chip)
334 {
335 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
336 }
337 EXPORT_SYMBOL_GPL(pwmchip_add);
338
339 /**
340 * pwmchip_remove() - remove a PWM chip
341 * @chip: the PWM chip to remove
342 *
343 * Removes a PWM chip. This function may return busy if the PWM chip provides
344 * a PWM device that is still requested.
345 *
346 * Returns: 0 on success or a negative error code on failure.
347 */
pwmchip_remove(struct pwm_chip * chip)348 int pwmchip_remove(struct pwm_chip *chip)
349 {
350 unsigned int i;
351 int ret = 0;
352
353 pwmchip_sysfs_unexport(chip);
354
355 mutex_lock(&pwm_lock);
356
357 for (i = 0; i < chip->npwm; i++) {
358 struct pwm_device *pwm = &chip->pwms[i];
359
360 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
361 ret = -EBUSY;
362 goto out;
363 }
364 }
365
366 list_del_init(&chip->list);
367
368 if (IS_ENABLED(CONFIG_OF))
369 of_pwmchip_remove(chip);
370
371 free_pwms(chip);
372
373 out:
374 mutex_unlock(&pwm_lock);
375 return ret;
376 }
377 EXPORT_SYMBOL_GPL(pwmchip_remove);
378
379 /**
380 * pwm_request() - request a PWM device
381 * @pwm: global PWM device index
382 * @label: PWM device label
383 *
384 * This function is deprecated, use pwm_get() instead.
385 *
386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
387 * failure.
388 */
pwm_request(int pwm,const char * label)389 struct pwm_device *pwm_request(int pwm, const char *label)
390 {
391 struct pwm_device *dev;
392 int err;
393
394 if (pwm < 0 || pwm >= MAX_PWMS)
395 return ERR_PTR(-EINVAL);
396
397 mutex_lock(&pwm_lock);
398
399 dev = pwm_to_device(pwm);
400 if (!dev) {
401 dev = ERR_PTR(-EPROBE_DEFER);
402 goto out;
403 }
404
405 err = pwm_device_request(dev, label);
406 if (err < 0)
407 dev = ERR_PTR(err);
408
409 out:
410 mutex_unlock(&pwm_lock);
411
412 return dev;
413 }
414 EXPORT_SYMBOL_GPL(pwm_request);
415
416 /**
417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
418 * @chip: PWM chip
419 * @index: per-chip index of the PWM to request
420 * @label: a literal description string of this PWM
421 *
422 * Returns: A pointer to the PWM device at the given index of the given PWM
423 * chip. A negative error code is returned if the index is not valid for the
424 * specified PWM chip or if the PWM device cannot be requested.
425 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)426 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
427 unsigned int index,
428 const char *label)
429 {
430 struct pwm_device *pwm;
431 int err;
432
433 if (!chip || index >= chip->npwm)
434 return ERR_PTR(-EINVAL);
435
436 mutex_lock(&pwm_lock);
437 pwm = &chip->pwms[index];
438
439 err = pwm_device_request(pwm, label);
440 if (err < 0)
441 pwm = ERR_PTR(err);
442
443 mutex_unlock(&pwm_lock);
444 return pwm;
445 }
446 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
447
448 /**
449 * pwm_free() - free a PWM device
450 * @pwm: PWM device
451 *
452 * This function is deprecated, use pwm_put() instead.
453 */
pwm_free(struct pwm_device * pwm)454 void pwm_free(struct pwm_device *pwm)
455 {
456 pwm_put(pwm);
457 }
458 EXPORT_SYMBOL_GPL(pwm_free);
459
460 /**
461 * pwm_apply_state() - atomically apply a new state to a PWM device
462 * @pwm: PWM device
463 * @state: new state to apply. This can be adjusted by the PWM driver
464 * if the requested config is not achievable, for example,
465 * ->duty_cycle and ->period might be approximated.
466 */
pwm_apply_state(struct pwm_device * pwm,struct pwm_state * state)467 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
468 {
469 int err;
470
471 if (!pwm || !state || !state->period ||
472 state->duty_cycle > state->period)
473 return -EINVAL;
474
475 if (!memcmp(state, &pwm->state, sizeof(*state)))
476 return 0;
477
478 if (pwm->chip->ops->apply) {
479 err = pwm->chip->ops->apply(pwm->chip, pwm, state);
480 if (err)
481 return err;
482
483 pwm->state = *state;
484 } else {
485 /*
486 * FIXME: restore the initial state in case of error.
487 */
488 if (state->polarity != pwm->state.polarity) {
489 if (!pwm->chip->ops->set_polarity)
490 return -ENOTSUPP;
491
492 /*
493 * Changing the polarity of a running PWM is
494 * only allowed when the PWM driver implements
495 * ->apply().
496 */
497 if (pwm->state.enabled) {
498 pwm->chip->ops->disable(pwm->chip, pwm);
499 pwm->state.enabled = false;
500 }
501
502 err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
503 state->polarity);
504 if (err)
505 return err;
506
507 pwm->state.polarity = state->polarity;
508 }
509
510 if (state->period != pwm->state.period ||
511 state->duty_cycle != pwm->state.duty_cycle) {
512 err = pwm->chip->ops->config(pwm->chip, pwm,
513 state->duty_cycle,
514 state->period);
515 if (err)
516 return err;
517
518 pwm->state.duty_cycle = state->duty_cycle;
519 pwm->state.period = state->period;
520 }
521
522 if (state->enabled != pwm->state.enabled) {
523 if (state->enabled) {
524 err = pwm->chip->ops->enable(pwm->chip, pwm);
525 if (err)
526 return err;
527 } else {
528 pwm->chip->ops->disable(pwm->chip, pwm);
529 }
530
531 pwm->state.enabled = state->enabled;
532 }
533 }
534
535 return 0;
536 }
537 EXPORT_SYMBOL_GPL(pwm_apply_state);
538
539 /**
540 * pwm_capture() - capture and report a PWM signal
541 * @pwm: PWM device
542 * @result: structure to fill with capture result
543 * @timeout: time to wait, in milliseconds, before giving up on capture
544 *
545 * Returns: 0 on success or a negative error code on failure.
546 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)547 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
548 unsigned long timeout)
549 {
550 int err;
551
552 if (!pwm || !pwm->chip->ops)
553 return -EINVAL;
554
555 if (!pwm->chip->ops->capture)
556 return -ENOSYS;
557
558 mutex_lock(&pwm_lock);
559 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
560 mutex_unlock(&pwm_lock);
561
562 return err;
563 }
564 EXPORT_SYMBOL_GPL(pwm_capture);
565
566 /**
567 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
568 * @pwm: PWM device
569 *
570 * This function will adjust the PWM config to the PWM arguments provided
571 * by the DT or PWM lookup table. This is particularly useful to adapt
572 * the bootloader config to the Linux one.
573 */
pwm_adjust_config(struct pwm_device * pwm)574 int pwm_adjust_config(struct pwm_device *pwm)
575 {
576 struct pwm_state state;
577 struct pwm_args pargs;
578
579 pwm_get_args(pwm, &pargs);
580 pwm_get_state(pwm, &state);
581
582 /*
583 * If the current period is zero it means that either the PWM driver
584 * does not support initial state retrieval or the PWM has not yet
585 * been configured.
586 *
587 * In either case, we setup the new period and polarity, and assign a
588 * duty cycle of 0.
589 */
590 if (!state.period) {
591 state.duty_cycle = 0;
592 state.period = pargs.period;
593 state.polarity = pargs.polarity;
594
595 return pwm_apply_state(pwm, &state);
596 }
597
598 /*
599 * Adjust the PWM duty cycle/period based on the period value provided
600 * in PWM args.
601 */
602 if (pargs.period != state.period) {
603 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
604
605 do_div(dutycycle, state.period);
606 state.duty_cycle = dutycycle;
607 state.period = pargs.period;
608 }
609
610 /*
611 * If the polarity changed, we should also change the duty cycle.
612 */
613 if (pargs.polarity != state.polarity) {
614 state.polarity = pargs.polarity;
615 state.duty_cycle = state.period - state.duty_cycle;
616 }
617
618 return pwm_apply_state(pwm, &state);
619 }
620 EXPORT_SYMBOL_GPL(pwm_adjust_config);
621
of_node_to_pwmchip(struct device_node * np)622 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
623 {
624 struct pwm_chip *chip;
625
626 mutex_lock(&pwm_lock);
627
628 list_for_each_entry(chip, &pwm_chips, list)
629 if (chip->dev && chip->dev->of_node == np) {
630 mutex_unlock(&pwm_lock);
631 return chip;
632 }
633
634 mutex_unlock(&pwm_lock);
635
636 return ERR_PTR(-EPROBE_DEFER);
637 }
638
639 /**
640 * of_pwm_get() - request a PWM via the PWM framework
641 * @np: device node to get the PWM from
642 * @con_id: consumer name
643 *
644 * Returns the PWM device parsed from the phandle and index specified in the
645 * "pwms" property of a device tree node or a negative error-code on failure.
646 * Values parsed from the device tree are stored in the returned PWM device
647 * object.
648 *
649 * If con_id is NULL, the first PWM device listed in the "pwms" property will
650 * be requested. Otherwise the "pwm-names" property is used to do a reverse
651 * lookup of the PWM index. This also means that the "pwm-names" property
652 * becomes mandatory for devices that look up the PWM device via the con_id
653 * parameter.
654 *
655 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
656 * error code on failure.
657 */
of_pwm_get(struct device_node * np,const char * con_id)658 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
659 {
660 struct pwm_device *pwm = NULL;
661 struct of_phandle_args args;
662 struct pwm_chip *pc;
663 int index = 0;
664 int err;
665
666 if (con_id) {
667 index = of_property_match_string(np, "pwm-names", con_id);
668 if (index < 0)
669 return ERR_PTR(index);
670 }
671
672 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
673 &args);
674 if (err) {
675 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
676 return ERR_PTR(err);
677 }
678
679 pc = of_node_to_pwmchip(args.np);
680 if (IS_ERR(pc)) {
681 if (PTR_ERR(pc) != -EPROBE_DEFER)
682 pr_err("%s(): PWM chip not found\n", __func__);
683
684 pwm = ERR_CAST(pc);
685 goto put;
686 }
687
688 pwm = pc->of_xlate(pc, &args);
689 if (IS_ERR(pwm))
690 goto put;
691
692 /*
693 * If a consumer name was not given, try to look it up from the
694 * "pwm-names" property if it exists. Otherwise use the name of
695 * the user device node.
696 */
697 if (!con_id) {
698 err = of_property_read_string_index(np, "pwm-names", index,
699 &con_id);
700 if (err < 0)
701 con_id = np->name;
702 }
703
704 pwm->label = con_id;
705
706 put:
707 of_node_put(args.np);
708
709 return pwm;
710 }
711 EXPORT_SYMBOL_GPL(of_pwm_get);
712
713 /**
714 * pwm_add_table() - register PWM device consumers
715 * @table: array of consumers to register
716 * @num: number of consumers in table
717 */
pwm_add_table(struct pwm_lookup * table,size_t num)718 void pwm_add_table(struct pwm_lookup *table, size_t num)
719 {
720 mutex_lock(&pwm_lookup_lock);
721
722 while (num--) {
723 list_add_tail(&table->list, &pwm_lookup_list);
724 table++;
725 }
726
727 mutex_unlock(&pwm_lookup_lock);
728 }
729
730 /**
731 * pwm_remove_table() - unregister PWM device consumers
732 * @table: array of consumers to unregister
733 * @num: number of consumers in table
734 */
pwm_remove_table(struct pwm_lookup * table,size_t num)735 void pwm_remove_table(struct pwm_lookup *table, size_t num)
736 {
737 mutex_lock(&pwm_lookup_lock);
738
739 while (num--) {
740 list_del(&table->list);
741 table++;
742 }
743
744 mutex_unlock(&pwm_lookup_lock);
745 }
746
747 /**
748 * pwm_get() - look up and request a PWM device
749 * @dev: device for PWM consumer
750 * @con_id: consumer name
751 *
752 * Lookup is first attempted using DT. If the device was not instantiated from
753 * a device tree, a PWM chip and a relative index is looked up via a table
754 * supplied by board setup code (see pwm_add_table()).
755 *
756 * Once a PWM chip has been found the specified PWM device will be requested
757 * and is ready to be used.
758 *
759 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
760 * error code on failure.
761 */
pwm_get(struct device * dev,const char * con_id)762 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
763 {
764 const char *dev_id = dev ? dev_name(dev) : NULL;
765 struct pwm_device *pwm;
766 struct pwm_chip *chip;
767 unsigned int best = 0;
768 struct pwm_lookup *p, *chosen = NULL;
769 unsigned int match;
770 int err;
771
772 /* look up via DT first */
773 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
774 return of_pwm_get(dev->of_node, con_id);
775
776 /*
777 * We look up the provider in the static table typically provided by
778 * board setup code. We first try to lookup the consumer device by
779 * name. If the consumer device was passed in as NULL or if no match
780 * was found, we try to find the consumer by directly looking it up
781 * by name.
782 *
783 * If a match is found, the provider PWM chip is looked up by name
784 * and a PWM device is requested using the PWM device per-chip index.
785 *
786 * The lookup algorithm was shamelessly taken from the clock
787 * framework:
788 *
789 * We do slightly fuzzy matching here:
790 * An entry with a NULL ID is assumed to be a wildcard.
791 * If an entry has a device ID, it must match
792 * If an entry has a connection ID, it must match
793 * Then we take the most specific entry - with the following order
794 * of precedence: dev+con > dev only > con only.
795 */
796 mutex_lock(&pwm_lookup_lock);
797
798 list_for_each_entry(p, &pwm_lookup_list, list) {
799 match = 0;
800
801 if (p->dev_id) {
802 if (!dev_id || strcmp(p->dev_id, dev_id))
803 continue;
804
805 match += 2;
806 }
807
808 if (p->con_id) {
809 if (!con_id || strcmp(p->con_id, con_id))
810 continue;
811
812 match += 1;
813 }
814
815 if (match > best) {
816 chosen = p;
817
818 if (match != 3)
819 best = match;
820 else
821 break;
822 }
823 }
824
825 mutex_unlock(&pwm_lookup_lock);
826
827 if (!chosen)
828 return ERR_PTR(-ENODEV);
829
830 chip = pwmchip_find_by_name(chosen->provider);
831
832 /*
833 * If the lookup entry specifies a module, load the module and retry
834 * the PWM chip lookup. This can be used to work around driver load
835 * ordering issues if driver's can't be made to properly support the
836 * deferred probe mechanism.
837 */
838 if (!chip && chosen->module) {
839 err = request_module(chosen->module);
840 if (err == 0)
841 chip = pwmchip_find_by_name(chosen->provider);
842 }
843
844 if (!chip)
845 return ERR_PTR(-EPROBE_DEFER);
846
847 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
848 if (IS_ERR(pwm))
849 return pwm;
850
851 pwm->args.period = chosen->period;
852 pwm->args.polarity = chosen->polarity;
853
854 return pwm;
855 }
856 EXPORT_SYMBOL_GPL(pwm_get);
857
858 /**
859 * pwm_put() - release a PWM device
860 * @pwm: PWM device
861 */
pwm_put(struct pwm_device * pwm)862 void pwm_put(struct pwm_device *pwm)
863 {
864 if (!pwm)
865 return;
866
867 mutex_lock(&pwm_lock);
868
869 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
870 pr_warn("PWM device already freed\n");
871 goto out;
872 }
873
874 if (pwm->chip->ops->free)
875 pwm->chip->ops->free(pwm->chip, pwm);
876
877 pwm_set_chip_data(pwm, NULL);
878 pwm->label = NULL;
879
880 module_put(pwm->chip->ops->owner);
881 out:
882 mutex_unlock(&pwm_lock);
883 }
884 EXPORT_SYMBOL_GPL(pwm_put);
885
devm_pwm_release(struct device * dev,void * res)886 static void devm_pwm_release(struct device *dev, void *res)
887 {
888 pwm_put(*(struct pwm_device **)res);
889 }
890
891 /**
892 * devm_pwm_get() - resource managed pwm_get()
893 * @dev: device for PWM consumer
894 * @con_id: consumer name
895 *
896 * This function performs like pwm_get() but the acquired PWM device will
897 * automatically be released on driver detach.
898 *
899 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
900 * error code on failure.
901 */
devm_pwm_get(struct device * dev,const char * con_id)902 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
903 {
904 struct pwm_device **ptr, *pwm;
905
906 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
907 if (!ptr)
908 return ERR_PTR(-ENOMEM);
909
910 pwm = pwm_get(dev, con_id);
911 if (!IS_ERR(pwm)) {
912 *ptr = pwm;
913 devres_add(dev, ptr);
914 } else {
915 devres_free(ptr);
916 }
917
918 return pwm;
919 }
920 EXPORT_SYMBOL_GPL(devm_pwm_get);
921
922 /**
923 * devm_of_pwm_get() - resource managed of_pwm_get()
924 * @dev: device for PWM consumer
925 * @np: device node to get the PWM from
926 * @con_id: consumer name
927 *
928 * This function performs like of_pwm_get() but the acquired PWM device will
929 * automatically be released on driver detach.
930 *
931 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
932 * error code on failure.
933 */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)934 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
935 const char *con_id)
936 {
937 struct pwm_device **ptr, *pwm;
938
939 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
940 if (!ptr)
941 return ERR_PTR(-ENOMEM);
942
943 pwm = of_pwm_get(np, con_id);
944 if (!IS_ERR(pwm)) {
945 *ptr = pwm;
946 devres_add(dev, ptr);
947 } else {
948 devres_free(ptr);
949 }
950
951 return pwm;
952 }
953 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
954
devm_pwm_match(struct device * dev,void * res,void * data)955 static int devm_pwm_match(struct device *dev, void *res, void *data)
956 {
957 struct pwm_device **p = res;
958
959 if (WARN_ON(!p || !*p))
960 return 0;
961
962 return *p == data;
963 }
964
965 /**
966 * devm_pwm_put() - resource managed pwm_put()
967 * @dev: device for PWM consumer
968 * @pwm: PWM device
969 *
970 * Release a PWM previously allocated using devm_pwm_get(). Calling this
971 * function is usually not needed because devm-allocated resources are
972 * automatically released on driver detach.
973 */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)974 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
975 {
976 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
977 }
978 EXPORT_SYMBOL_GPL(devm_pwm_put);
979
980 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)981 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
982 {
983 unsigned int i;
984
985 for (i = 0; i < chip->npwm; i++) {
986 struct pwm_device *pwm = &chip->pwms[i];
987 struct pwm_state state;
988
989 pwm_get_state(pwm, &state);
990
991 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
992
993 if (test_bit(PWMF_REQUESTED, &pwm->flags))
994 seq_puts(s, " requested");
995
996 if (state.enabled)
997 seq_puts(s, " enabled");
998
999 seq_printf(s, " period: %u ns", state.period);
1000 seq_printf(s, " duty: %u ns", state.duty_cycle);
1001 seq_printf(s, " polarity: %s",
1002 state.polarity ? "inverse" : "normal");
1003
1004 seq_puts(s, "\n");
1005 }
1006 }
1007
pwm_seq_start(struct seq_file * s,loff_t * pos)1008 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1009 {
1010 mutex_lock(&pwm_lock);
1011 s->private = "";
1012
1013 return seq_list_start(&pwm_chips, *pos);
1014 }
1015
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1016 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1017 {
1018 s->private = "\n";
1019
1020 return seq_list_next(v, &pwm_chips, pos);
1021 }
1022
pwm_seq_stop(struct seq_file * s,void * v)1023 static void pwm_seq_stop(struct seq_file *s, void *v)
1024 {
1025 mutex_unlock(&pwm_lock);
1026 }
1027
pwm_seq_show(struct seq_file * s,void * v)1028 static int pwm_seq_show(struct seq_file *s, void *v)
1029 {
1030 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1031
1032 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1033 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1034 dev_name(chip->dev), chip->npwm,
1035 (chip->npwm != 1) ? "s" : "");
1036
1037 if (chip->ops->dbg_show)
1038 chip->ops->dbg_show(chip, s);
1039 else
1040 pwm_dbg_show(chip, s);
1041
1042 return 0;
1043 }
1044
1045 static const struct seq_operations pwm_seq_ops = {
1046 .start = pwm_seq_start,
1047 .next = pwm_seq_next,
1048 .stop = pwm_seq_stop,
1049 .show = pwm_seq_show,
1050 };
1051
pwm_seq_open(struct inode * inode,struct file * file)1052 static int pwm_seq_open(struct inode *inode, struct file *file)
1053 {
1054 return seq_open(file, &pwm_seq_ops);
1055 }
1056
1057 static const struct file_operations pwm_debugfs_ops = {
1058 .owner = THIS_MODULE,
1059 .open = pwm_seq_open,
1060 .read = seq_read,
1061 .llseek = seq_lseek,
1062 .release = seq_release,
1063 };
1064
pwm_debugfs_init(void)1065 static int __init pwm_debugfs_init(void)
1066 {
1067 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1068 &pwm_debugfs_ops);
1069
1070 return 0;
1071 }
1072 subsys_initcall(pwm_debugfs_init);
1073 #endif /* CONFIG_DEBUG_FS */
1074