1 /*
2  * Parallel-port resource manager code.
3  *
4  * Authors: David Campbell <campbell@tirian.che.curtin.edu.au>
5  *          Tim Waugh <tim@cyberelk.demon.co.uk>
6  *          Jose Renau <renau@acm.org>
7  *          Philip Blundell <philb@gnu.org>
8  *	    Andrea Arcangeli
9  *
10  * based on work by Grant Guenther <grant@torque.net>
11  *          and Philip Blundell
12  *
13  * Any part of this program may be used in documents licensed under
14  * the GNU Free Documentation License, Version 1.1 or any later version
15  * published by the Free Software Foundation.
16  */
17 
18 #undef PARPORT_DEBUG_SHARING		/* undef for production */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/threads.h>
23 #include <linux/parport.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/ioport.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/sched/signal.h>
31 #include <linux/kmod.h>
32 #include <linux/device.h>
33 
34 #include <linux/spinlock.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 
38 #undef PARPORT_PARANOID
39 
40 #define PARPORT_DEFAULT_TIMESLICE	(HZ/5)
41 
42 unsigned long parport_default_timeslice = PARPORT_DEFAULT_TIMESLICE;
43 int parport_default_spintime =  DEFAULT_SPIN_TIME;
44 
45 static LIST_HEAD(portlist);
46 static DEFINE_SPINLOCK(parportlist_lock);
47 
48 /* list of all allocated ports, sorted by ->number */
49 static LIST_HEAD(all_ports);
50 static DEFINE_SPINLOCK(full_list_lock);
51 
52 static LIST_HEAD(drivers);
53 
54 static DEFINE_MUTEX(registration_lock);
55 
56 /* What you can do to a port that's gone away.. */
dead_write_lines(struct parport * p,unsigned char b)57 static void dead_write_lines(struct parport *p, unsigned char b){}
dead_read_lines(struct parport * p)58 static unsigned char dead_read_lines(struct parport *p) { return 0; }
dead_frob_lines(struct parport * p,unsigned char b,unsigned char c)59 static unsigned char dead_frob_lines(struct parport *p, unsigned char b,
60 			     unsigned char c) { return 0; }
dead_onearg(struct parport * p)61 static void dead_onearg(struct parport *p){}
dead_initstate(struct pardevice * d,struct parport_state * s)62 static void dead_initstate(struct pardevice *d, struct parport_state *s) { }
dead_state(struct parport * p,struct parport_state * s)63 static void dead_state(struct parport *p, struct parport_state *s) { }
dead_write(struct parport * p,const void * b,size_t l,int f)64 static size_t dead_write(struct parport *p, const void *b, size_t l, int f)
65 { return 0; }
dead_read(struct parport * p,void * b,size_t l,int f)66 static size_t dead_read(struct parport *p, void *b, size_t l, int f)
67 { return 0; }
68 static struct parport_operations dead_ops = {
69 	.write_data	= dead_write_lines,	/* data */
70 	.read_data	= dead_read_lines,
71 
72 	.write_control	= dead_write_lines,	/* control */
73 	.read_control	= dead_read_lines,
74 	.frob_control	= dead_frob_lines,
75 
76 	.read_status	= dead_read_lines,	/* status */
77 
78 	.enable_irq	= dead_onearg,		/* enable_irq */
79 	.disable_irq	= dead_onearg,		/* disable_irq */
80 
81 	.data_forward	= dead_onearg,		/* data_forward */
82 	.data_reverse	= dead_onearg,		/* data_reverse */
83 
84 	.init_state	= dead_initstate,	/* init_state */
85 	.save_state	= dead_state,
86 	.restore_state	= dead_state,
87 
88 	.epp_write_data	= dead_write,		/* epp */
89 	.epp_read_data	= dead_read,
90 	.epp_write_addr	= dead_write,
91 	.epp_read_addr	= dead_read,
92 
93 	.ecp_write_data	= dead_write,		/* ecp */
94 	.ecp_read_data	= dead_read,
95 	.ecp_write_addr	= dead_write,
96 
97 	.compat_write_data	= dead_write,	/* compat */
98 	.nibble_read_data	= dead_read,	/* nibble */
99 	.byte_read_data		= dead_read,	/* byte */
100 
101 	.owner		= NULL,
102 };
103 
104 static struct device_type parport_device_type = {
105 	.name = "parport",
106 };
107 
is_parport(struct device * dev)108 static int is_parport(struct device *dev)
109 {
110 	return dev->type == &parport_device_type;
111 }
112 
parport_probe(struct device * dev)113 static int parport_probe(struct device *dev)
114 {
115 	struct parport_driver *drv;
116 
117 	if (is_parport(dev))
118 		return -ENODEV;
119 
120 	drv = to_parport_driver(dev->driver);
121 	if (!drv->probe) {
122 		/* if driver has not defined a custom probe */
123 		struct pardevice *par_dev = to_pardevice(dev);
124 
125 		if (strcmp(par_dev->name, drv->name))
126 			return -ENODEV;
127 		return 0;
128 	}
129 	/* if driver defined its own probe */
130 	return drv->probe(to_pardevice(dev));
131 }
132 
133 static struct bus_type parport_bus_type = {
134 	.name = "parport",
135 	.probe = parport_probe,
136 };
137 
parport_bus_init(void)138 int parport_bus_init(void)
139 {
140 	return bus_register(&parport_bus_type);
141 }
142 
parport_bus_exit(void)143 void parport_bus_exit(void)
144 {
145 	bus_unregister(&parport_bus_type);
146 }
147 
148 /*
149  * iterates through all the drivers registered with the bus and sends the port
150  * details to the match_port callback of the driver, so that the driver can
151  * know about the new port that just registered with the bus and decide if it
152  * wants to use this new port.
153  */
driver_check(struct device_driver * dev_drv,void * _port)154 static int driver_check(struct device_driver *dev_drv, void *_port)
155 {
156 	struct parport *port = _port;
157 	struct parport_driver *drv = to_parport_driver(dev_drv);
158 
159 	if (drv->match_port)
160 		drv->match_port(port);
161 	return 0;
162 }
163 
164 /* Call attach(port) for each registered driver. */
attach_driver_chain(struct parport * port)165 static void attach_driver_chain(struct parport *port)
166 {
167 	/* caller has exclusive registration_lock */
168 	struct parport_driver *drv;
169 
170 	list_for_each_entry(drv, &drivers, list)
171 		drv->attach(port);
172 
173 	/*
174 	 * call the driver_check function of the drivers registered in
175 	 * new device model
176 	 */
177 
178 	bus_for_each_drv(&parport_bus_type, NULL, port, driver_check);
179 }
180 
driver_detach(struct device_driver * _drv,void * _port)181 static int driver_detach(struct device_driver *_drv, void *_port)
182 {
183 	struct parport *port = _port;
184 	struct parport_driver *drv = to_parport_driver(_drv);
185 
186 	if (drv->detach)
187 		drv->detach(port);
188 	return 0;
189 }
190 
191 /* Call detach(port) for each registered driver. */
detach_driver_chain(struct parport * port)192 static void detach_driver_chain(struct parport *port)
193 {
194 	struct parport_driver *drv;
195 	/* caller has exclusive registration_lock */
196 	list_for_each_entry(drv, &drivers, list)
197 		drv->detach(port);
198 
199 	/*
200 	 * call the detach function of the drivers registered in
201 	 * new device model
202 	 */
203 
204 	bus_for_each_drv(&parport_bus_type, NULL, port, driver_detach);
205 }
206 
207 /* Ask kmod for some lowlevel drivers. */
get_lowlevel_driver(void)208 static void get_lowlevel_driver(void)
209 {
210 	/*
211 	 * There is no actual module called this: you should set
212 	 * up an alias for modutils.
213 	 */
214 	request_module("parport_lowlevel");
215 }
216 
217 /*
218  * iterates through all the devices connected to the bus and sends the device
219  * details to the match_port callback of the driver, so that the driver can
220  * know what are all the ports that are connected to the bus and choose the
221  * port to which it wants to register its device.
222  */
port_check(struct device * dev,void * dev_drv)223 static int port_check(struct device *dev, void *dev_drv)
224 {
225 	struct parport_driver *drv = dev_drv;
226 
227 	/* only send ports, do not send other devices connected to bus */
228 	if (is_parport(dev))
229 		drv->match_port(to_parport_dev(dev));
230 	return 0;
231 }
232 
233 /*
234  * Iterates through all the devices connected to the bus and return 1
235  * if the device is a parallel port.
236  */
237 
port_detect(struct device * dev,void * dev_drv)238 static int port_detect(struct device *dev, void *dev_drv)
239 {
240 	if (is_parport(dev))
241 		return 1;
242 	return 0;
243 }
244 
245 /**
246  *	parport_register_driver - register a parallel port device driver
247  *	@drv: structure describing the driver
248  *	@owner: owner module of drv
249  *	@mod_name: module name string
250  *
251  *	This can be called by a parallel port device driver in order
252  *	to receive notifications about ports being found in the
253  *	system, as well as ports no longer available.
254  *
255  *	If devmodel is true then the new device model is used
256  *	for registration.
257  *
258  *	The @drv structure is allocated by the caller and must not be
259  *	deallocated until after calling parport_unregister_driver().
260  *
261  *	If using the non device model:
262  *	The driver's attach() function may block.  The port that
263  *	attach() is given will be valid for the duration of the
264  *	callback, but if the driver wants to take a copy of the
265  *	pointer it must call parport_get_port() to do so.  Calling
266  *	parport_register_device() on that port will do this for you.
267  *
268  *	The driver's detach() function may block.  The port that
269  *	detach() is given will be valid for the duration of the
270  *	callback, but if the driver wants to take a copy of the
271  *	pointer it must call parport_get_port() to do so.
272  *
273  *
274  *	Returns 0 on success. The non device model will always succeeds.
275  *	but the new device model can fail and will return the error code.
276  **/
277 
__parport_register_driver(struct parport_driver * drv,struct module * owner,const char * mod_name)278 int __parport_register_driver(struct parport_driver *drv, struct module *owner,
279 			      const char *mod_name)
280 {
281 	if (list_empty(&portlist))
282 		get_lowlevel_driver();
283 
284 	if (drv->devmodel) {
285 		/* using device model */
286 		int ret;
287 
288 		/* initialize common driver fields */
289 		drv->driver.name = drv->name;
290 		drv->driver.bus = &parport_bus_type;
291 		drv->driver.owner = owner;
292 		drv->driver.mod_name = mod_name;
293 		ret = driver_register(&drv->driver);
294 		if (ret)
295 			return ret;
296 
297 		/*
298 		 * check if bus has any parallel port registered, if
299 		 * none is found then load the lowlevel driver.
300 		 */
301 		ret = bus_for_each_dev(&parport_bus_type, NULL, NULL,
302 				       port_detect);
303 		if (!ret)
304 			get_lowlevel_driver();
305 
306 		mutex_lock(&registration_lock);
307 		if (drv->match_port)
308 			bus_for_each_dev(&parport_bus_type, NULL, drv,
309 					 port_check);
310 		mutex_unlock(&registration_lock);
311 	} else {
312 		struct parport *port;
313 
314 		drv->devmodel = false;
315 
316 		mutex_lock(&registration_lock);
317 		list_for_each_entry(port, &portlist, list)
318 			drv->attach(port);
319 		list_add(&drv->list, &drivers);
320 		mutex_unlock(&registration_lock);
321 	}
322 
323 	return 0;
324 }
325 EXPORT_SYMBOL(__parport_register_driver);
326 
port_detach(struct device * dev,void * _drv)327 static int port_detach(struct device *dev, void *_drv)
328 {
329 	struct parport_driver *drv = _drv;
330 
331 	if (is_parport(dev) && drv->detach)
332 		drv->detach(to_parport_dev(dev));
333 
334 	return 0;
335 }
336 
337 /**
338  *	parport_unregister_driver - deregister a parallel port device driver
339  *	@drv: structure describing the driver that was given to
340  *	      parport_register_driver()
341  *
342  *	This should be called by a parallel port device driver that
343  *	has registered itself using parport_register_driver() when it
344  *	is about to be unloaded.
345  *
346  *	When it returns, the driver's attach() routine will no longer
347  *	be called, and for each port that attach() was called for, the
348  *	detach() routine will have been called.
349  *
350  *	All the driver's attach() and detach() calls are guaranteed to have
351  *	finished by the time this function returns.
352  **/
353 
parport_unregister_driver(struct parport_driver * drv)354 void parport_unregister_driver(struct parport_driver *drv)
355 {
356 	struct parport *port;
357 
358 	mutex_lock(&registration_lock);
359 	if (drv->devmodel) {
360 		bus_for_each_dev(&parport_bus_type, NULL, drv, port_detach);
361 		driver_unregister(&drv->driver);
362 	} else {
363 		list_del_init(&drv->list);
364 		list_for_each_entry(port, &portlist, list)
365 			drv->detach(port);
366 	}
367 	mutex_unlock(&registration_lock);
368 }
369 EXPORT_SYMBOL(parport_unregister_driver);
370 
free_port(struct device * dev)371 static void free_port(struct device *dev)
372 {
373 	int d;
374 	struct parport *port = to_parport_dev(dev);
375 
376 	spin_lock(&full_list_lock);
377 	list_del(&port->full_list);
378 	spin_unlock(&full_list_lock);
379 	for (d = 0; d < 5; d++) {
380 		kfree(port->probe_info[d].class_name);
381 		kfree(port->probe_info[d].mfr);
382 		kfree(port->probe_info[d].model);
383 		kfree(port->probe_info[d].cmdset);
384 		kfree(port->probe_info[d].description);
385 	}
386 
387 	kfree(port->name);
388 	kfree(port);
389 }
390 
391 /**
392  *	parport_get_port - increment a port's reference count
393  *	@port: the port
394  *
395  *	This ensures that a struct parport pointer remains valid
396  *	until the matching parport_put_port() call.
397  **/
398 
parport_get_port(struct parport * port)399 struct parport *parport_get_port(struct parport *port)
400 {
401 	struct device *dev = get_device(&port->bus_dev);
402 
403 	return to_parport_dev(dev);
404 }
405 EXPORT_SYMBOL(parport_get_port);
406 
parport_del_port(struct parport * port)407 void parport_del_port(struct parport *port)
408 {
409 	device_unregister(&port->bus_dev);
410 }
411 EXPORT_SYMBOL(parport_del_port);
412 
413 /**
414  *	parport_put_port - decrement a port's reference count
415  *	@port: the port
416  *
417  *	This should be called once for each call to parport_get_port(),
418  *	once the port is no longer needed. When the reference count reaches
419  *	zero (port is no longer used), free_port is called.
420  **/
421 
parport_put_port(struct parport * port)422 void parport_put_port(struct parport *port)
423 {
424 	put_device(&port->bus_dev);
425 }
426 EXPORT_SYMBOL(parport_put_port);
427 
428 /**
429  *	parport_register_port - register a parallel port
430  *	@base: base I/O address
431  *	@irq: IRQ line
432  *	@dma: DMA channel
433  *	@ops: pointer to the port driver's port operations structure
434  *
435  *	When a parallel port (lowlevel) driver finds a port that
436  *	should be made available to parallel port device drivers, it
437  *	should call parport_register_port().  The @base, @irq, and
438  *	@dma parameters are for the convenience of port drivers, and
439  *	for ports where they aren't meaningful needn't be set to
440  *	anything special.  They can be altered afterwards by adjusting
441  *	the relevant members of the parport structure that is returned
442  *	and represents the port.  They should not be tampered with
443  *	after calling parport_announce_port, however.
444  *
445  *	If there are parallel port device drivers in the system that
446  *	have registered themselves using parport_register_driver(),
447  *	they are not told about the port at this time; that is done by
448  *	parport_announce_port().
449  *
450  *	The @ops structure is allocated by the caller, and must not be
451  *	deallocated before calling parport_remove_port().
452  *
453  *	If there is no memory to allocate a new parport structure,
454  *	this function will return %NULL.
455  **/
456 
parport_register_port(unsigned long base,int irq,int dma,struct parport_operations * ops)457 struct parport *parport_register_port(unsigned long base, int irq, int dma,
458 				      struct parport_operations *ops)
459 {
460 	struct list_head *l;
461 	struct parport *tmp;
462 	int num;
463 	int device;
464 	char *name;
465 	int ret;
466 
467 	tmp = kzalloc(sizeof(struct parport), GFP_KERNEL);
468 	if (!tmp)
469 		return NULL;
470 
471 	/* Init our structure */
472 	tmp->base = base;
473 	tmp->irq = irq;
474 	tmp->dma = dma;
475 	tmp->muxport = tmp->daisy = tmp->muxsel = -1;
476 	tmp->modes = 0;
477 	INIT_LIST_HEAD(&tmp->list);
478 	tmp->devices = tmp->cad = NULL;
479 	tmp->flags = 0;
480 	tmp->ops = ops;
481 	tmp->physport = tmp;
482 	memset(tmp->probe_info, 0, 5 * sizeof(struct parport_device_info));
483 	rwlock_init(&tmp->cad_lock);
484 	spin_lock_init(&tmp->waitlist_lock);
485 	spin_lock_init(&tmp->pardevice_lock);
486 	tmp->ieee1284.mode = IEEE1284_MODE_COMPAT;
487 	tmp->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
488 	sema_init(&tmp->ieee1284.irq, 0);
489 	tmp->spintime = parport_default_spintime;
490 	atomic_set(&tmp->ref_count, 1);
491 	INIT_LIST_HEAD(&tmp->full_list);
492 
493 	name = kmalloc(15, GFP_KERNEL);
494 	if (!name) {
495 		kfree(tmp);
496 		return NULL;
497 	}
498 	/* Search for the lowest free parport number. */
499 
500 	spin_lock(&full_list_lock);
501 	for (l = all_ports.next, num = 0; l != &all_ports; l = l->next, num++) {
502 		struct parport *p = list_entry(l, struct parport, full_list);
503 		if (p->number != num)
504 			break;
505 	}
506 	tmp->portnum = tmp->number = num;
507 	list_add_tail(&tmp->full_list, l);
508 	spin_unlock(&full_list_lock);
509 
510 	/*
511 	 * Now that the portnum is known finish doing the Init.
512 	 */
513 	sprintf(name, "parport%d", tmp->portnum = tmp->number);
514 	tmp->name = name;
515 	tmp->bus_dev.bus = &parport_bus_type;
516 	tmp->bus_dev.release = free_port;
517 	dev_set_name(&tmp->bus_dev, name);
518 	tmp->bus_dev.type = &parport_device_type;
519 
520 	for (device = 0; device < 5; device++)
521 		/* assume the worst */
522 		tmp->probe_info[device].class = PARPORT_CLASS_LEGACY;
523 
524 	tmp->waithead = tmp->waittail = NULL;
525 
526 	ret = device_register(&tmp->bus_dev);
527 	if (ret) {
528 		put_device(&tmp->bus_dev);
529 		return NULL;
530 	}
531 
532 	return tmp;
533 }
534 EXPORT_SYMBOL(parport_register_port);
535 
536 /**
537  *	parport_announce_port - tell device drivers about a parallel port
538  *	@port: parallel port to announce
539  *
540  *	After a port driver has registered a parallel port with
541  *	parport_register_port, and performed any necessary
542  *	initialisation or adjustments, it should call
543  *	parport_announce_port() in order to notify all device drivers
544  *	that have called parport_register_driver().  Their attach()
545  *	functions will be called, with @port as the parameter.
546  **/
547 
parport_announce_port(struct parport * port)548 void parport_announce_port(struct parport *port)
549 {
550 	int i;
551 
552 #ifdef CONFIG_PARPORT_1284
553 	/* Analyse the IEEE1284.3 topology of the port. */
554 	parport_daisy_init(port);
555 #endif
556 
557 	if (!port->dev)
558 		printk(KERN_WARNING "%s: fix this legacy no-device port driver!\n",
559 		       port->name);
560 
561 	parport_proc_register(port);
562 	mutex_lock(&registration_lock);
563 	spin_lock_irq(&parportlist_lock);
564 	list_add_tail(&port->list, &portlist);
565 	for (i = 1; i < 3; i++) {
566 		struct parport *slave = port->slaves[i-1];
567 		if (slave)
568 			list_add_tail(&slave->list, &portlist);
569 	}
570 	spin_unlock_irq(&parportlist_lock);
571 
572 	/* Let drivers know that new port(s) has arrived. */
573 	attach_driver_chain(port);
574 	for (i = 1; i < 3; i++) {
575 		struct parport *slave = port->slaves[i-1];
576 		if (slave)
577 			attach_driver_chain(slave);
578 	}
579 	mutex_unlock(&registration_lock);
580 }
581 EXPORT_SYMBOL(parport_announce_port);
582 
583 /**
584  *	parport_remove_port - deregister a parallel port
585  *	@port: parallel port to deregister
586  *
587  *	When a parallel port driver is forcibly unloaded, or a
588  *	parallel port becomes inaccessible, the port driver must call
589  *	this function in order to deal with device drivers that still
590  *	want to use it.
591  *
592  *	The parport structure associated with the port has its
593  *	operations structure replaced with one containing 'null'
594  *	operations that return errors or just don't do anything.
595  *
596  *	Any drivers that have registered themselves using
597  *	parport_register_driver() are notified that the port is no
598  *	longer accessible by having their detach() routines called
599  *	with @port as the parameter.
600  **/
601 
parport_remove_port(struct parport * port)602 void parport_remove_port(struct parport *port)
603 {
604 	int i;
605 
606 	mutex_lock(&registration_lock);
607 
608 	/* Spread the word. */
609 	detach_driver_chain(port);
610 
611 #ifdef CONFIG_PARPORT_1284
612 	/* Forget the IEEE1284.3 topology of the port. */
613 	parport_daisy_fini(port);
614 	for (i = 1; i < 3; i++) {
615 		struct parport *slave = port->slaves[i-1];
616 		if (!slave)
617 			continue;
618 		detach_driver_chain(slave);
619 		parport_daisy_fini(slave);
620 	}
621 #endif
622 
623 	port->ops = &dead_ops;
624 	spin_lock(&parportlist_lock);
625 	list_del_init(&port->list);
626 	for (i = 1; i < 3; i++) {
627 		struct parport *slave = port->slaves[i-1];
628 		if (slave)
629 			list_del_init(&slave->list);
630 	}
631 	spin_unlock(&parportlist_lock);
632 
633 	mutex_unlock(&registration_lock);
634 
635 	parport_proc_unregister(port);
636 
637 	for (i = 1; i < 3; i++) {
638 		struct parport *slave = port->slaves[i-1];
639 		if (slave)
640 			parport_put_port(slave);
641 	}
642 }
643 EXPORT_SYMBOL(parport_remove_port);
644 
645 /**
646  *	parport_register_device - register a device on a parallel port
647  *	@port: port to which the device is attached
648  *	@name: a name to refer to the device
649  *	@pf: preemption callback
650  *	@kf: kick callback (wake-up)
651  *	@irq_func: interrupt handler
652  *	@flags: registration flags
653  *	@handle: data for callback functions
654  *
655  *	This function, called by parallel port device drivers,
656  *	declares that a device is connected to a port, and tells the
657  *	system all it needs to know.
658  *
659  *	The @name is allocated by the caller and must not be
660  *	deallocated until the caller calls @parport_unregister_device
661  *	for that device.
662  *
663  *	The preemption callback function, @pf, is called when this
664  *	device driver has claimed access to the port but another
665  *	device driver wants to use it.  It is given @handle as its
666  *	parameter, and should return zero if it is willing for the
667  *	system to release the port to another driver on its behalf.
668  *	If it wants to keep control of the port it should return
669  *	non-zero, and no action will be taken.  It is good manners for
670  *	the driver to try to release the port at the earliest
671  *	opportunity after its preemption callback rejects a preemption
672  *	attempt.  Note that if a preemption callback is happy for
673  *	preemption to go ahead, there is no need to release the port;
674  *	it is done automatically.  This function may not block, as it
675  *	may be called from interrupt context.  If the device driver
676  *	does not support preemption, @pf can be %NULL.
677  *
678  *	The wake-up ("kick") callback function, @kf, is called when
679  *	the port is available to be claimed for exclusive access; that
680  *	is, parport_claim() is guaranteed to succeed when called from
681  *	inside the wake-up callback function.  If the driver wants to
682  *	claim the port it should do so; otherwise, it need not take
683  *	any action.  This function may not block, as it may be called
684  *	from interrupt context.  If the device driver does not want to
685  *	be explicitly invited to claim the port in this way, @kf can
686  *	be %NULL.
687  *
688  *	The interrupt handler, @irq_func, is called when an interrupt
689  *	arrives from the parallel port.  Note that if a device driver
690  *	wants to use interrupts it should use parport_enable_irq(),
691  *	and can also check the irq member of the parport structure
692  *	representing the port.
693  *
694  *	The parallel port (lowlevel) driver is the one that has called
695  *	request_irq() and whose interrupt handler is called first.
696  *	This handler does whatever needs to be done to the hardware to
697  *	acknowledge the interrupt (for PC-style ports there is nothing
698  *	special to be done).  It then tells the IEEE 1284 code about
699  *	the interrupt, which may involve reacting to an IEEE 1284
700  *	event depending on the current IEEE 1284 phase.  After this,
701  *	it calls @irq_func.  Needless to say, @irq_func will be called
702  *	from interrupt context, and may not block.
703  *
704  *	The %PARPORT_DEV_EXCL flag is for preventing port sharing, and
705  *	so should only be used when sharing the port with other device
706  *	drivers is impossible and would lead to incorrect behaviour.
707  *	Use it sparingly!  Normally, @flags will be zero.
708  *
709  *	This function returns a pointer to a structure that represents
710  *	the device on the port, or %NULL if there is not enough memory
711  *	to allocate space for that structure.
712  **/
713 
714 struct pardevice *
parport_register_device(struct parport * port,const char * name,int (* pf)(void *),void (* kf)(void *),void (* irq_func)(void *),int flags,void * handle)715 parport_register_device(struct parport *port, const char *name,
716 			int (*pf)(void *), void (*kf)(void *),
717 			void (*irq_func)(void *),
718 			int flags, void *handle)
719 {
720 	struct pardevice *tmp;
721 
722 	if (port->physport->flags & PARPORT_FLAG_EXCL) {
723 		/* An exclusive device is registered. */
724 		printk(KERN_DEBUG "%s: no more devices allowed\n",
725 			port->name);
726 		return NULL;
727 	}
728 
729 	if (flags & PARPORT_DEV_LURK) {
730 		if (!pf || !kf) {
731 			printk(KERN_INFO "%s: refused to register lurking device (%s) without callbacks\n", port->name, name);
732 			return NULL;
733 		}
734 	}
735 
736 	if (flags & PARPORT_DEV_EXCL) {
737 		if (port->physport->devices) {
738 			/*
739 			 * If a device is already registered and this new
740 			 * device wants exclusive access, then no need to
741 			 * continue as we can not grant exclusive access to
742 			 * this device.
743 			 */
744 			pr_err("%s: cannot grant exclusive access for device %s\n",
745 			       port->name, name);
746 			return NULL;
747 		}
748 	}
749 
750 	/*
751 	 * We up our own module reference count, and that of the port
752 	 * on which a device is to be registered, to ensure that
753 	 * neither of us gets unloaded while we sleep in (e.g.)
754 	 * kmalloc.
755 	 */
756 	if (!try_module_get(port->ops->owner))
757 		return NULL;
758 
759 	parport_get_port(port);
760 
761 	tmp = kmalloc(sizeof(struct pardevice), GFP_KERNEL);
762 	if (!tmp)
763 		goto out;
764 
765 	tmp->state = kmalloc(sizeof(struct parport_state), GFP_KERNEL);
766 	if (!tmp->state)
767 		goto out_free_pardevice;
768 
769 	tmp->name = name;
770 	tmp->port = port;
771 	tmp->daisy = -1;
772 	tmp->preempt = pf;
773 	tmp->wakeup = kf;
774 	tmp->private = handle;
775 	tmp->flags = flags;
776 	tmp->irq_func = irq_func;
777 	tmp->waiting = 0;
778 	tmp->timeout = 5 * HZ;
779 	tmp->devmodel = false;
780 
781 	/* Chain this onto the list */
782 	tmp->prev = NULL;
783 	/*
784 	 * This function must not run from an irq handler so we don' t need
785 	 * to clear irq on the local CPU. -arca
786 	 */
787 	spin_lock(&port->physport->pardevice_lock);
788 
789 	if (flags & PARPORT_DEV_EXCL) {
790 		if (port->physport->devices) {
791 			spin_unlock(&port->physport->pardevice_lock);
792 			printk(KERN_DEBUG
793 				"%s: cannot grant exclusive access for device %s\n",
794 				port->name, name);
795 			goto out_free_all;
796 		}
797 		port->flags |= PARPORT_FLAG_EXCL;
798 	}
799 
800 	tmp->next = port->physport->devices;
801 	wmb(); /*
802 		* Make sure that tmp->next is written before it's
803 		* added to the list; see comments marked 'no locking
804 		* required'
805 		*/
806 	if (port->physport->devices)
807 		port->physport->devices->prev = tmp;
808 	port->physport->devices = tmp;
809 	spin_unlock(&port->physport->pardevice_lock);
810 
811 	init_waitqueue_head(&tmp->wait_q);
812 	tmp->timeslice = parport_default_timeslice;
813 	tmp->waitnext = tmp->waitprev = NULL;
814 
815 	/*
816 	 * This has to be run as last thing since init_state may need other
817 	 * pardevice fields. -arca
818 	 */
819 	port->ops->init_state(tmp, tmp->state);
820 	if (!test_and_set_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags)) {
821 		port->proc_device = tmp;
822 		parport_device_proc_register(tmp);
823 	}
824 	return tmp;
825 
826  out_free_all:
827 	kfree(tmp->state);
828  out_free_pardevice:
829 	kfree(tmp);
830  out:
831 	parport_put_port(port);
832 	module_put(port->ops->owner);
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(parport_register_device);
837 
free_pardevice(struct device * dev)838 static void free_pardevice(struct device *dev)
839 {
840 	struct pardevice *par_dev = to_pardevice(dev);
841 
842 	kfree(par_dev->name);
843 	kfree(par_dev);
844 }
845 
846 struct pardevice *
parport_register_dev_model(struct parport * port,const char * name,const struct pardev_cb * par_dev_cb,int id)847 parport_register_dev_model(struct parport *port, const char *name,
848 			   const struct pardev_cb *par_dev_cb, int id)
849 {
850 	struct pardevice *par_dev;
851 	int ret;
852 	char *devname;
853 
854 	if (port->physport->flags & PARPORT_FLAG_EXCL) {
855 		/* An exclusive device is registered. */
856 		pr_err("%s: no more devices allowed\n", port->name);
857 		return NULL;
858 	}
859 
860 	if (par_dev_cb->flags & PARPORT_DEV_LURK) {
861 		if (!par_dev_cb->preempt || !par_dev_cb->wakeup) {
862 			pr_info("%s: refused to register lurking device (%s) without callbacks\n",
863 				port->name, name);
864 			return NULL;
865 		}
866 	}
867 
868 	if (par_dev_cb->flags & PARPORT_DEV_EXCL) {
869 		if (port->physport->devices) {
870 			/*
871 			 * If a device is already registered and this new
872 			 * device wants exclusive access, then no need to
873 			 * continue as we can not grant exclusive access to
874 			 * this device.
875 			 */
876 			pr_err("%s: cannot grant exclusive access for device %s\n",
877 			       port->name, name);
878 			return NULL;
879 		}
880 	}
881 
882 	if (!try_module_get(port->ops->owner))
883 		return NULL;
884 
885 	parport_get_port(port);
886 
887 	par_dev = kzalloc(sizeof(*par_dev), GFP_KERNEL);
888 	if (!par_dev)
889 		goto err_put_port;
890 
891 	par_dev->state = kzalloc(sizeof(*par_dev->state), GFP_KERNEL);
892 	if (!par_dev->state)
893 		goto err_put_par_dev;
894 
895 	devname = kstrdup(name, GFP_KERNEL);
896 	if (!devname)
897 		goto err_free_par_dev;
898 
899 	par_dev->name = devname;
900 	par_dev->port = port;
901 	par_dev->daisy = -1;
902 	par_dev->preempt = par_dev_cb->preempt;
903 	par_dev->wakeup = par_dev_cb->wakeup;
904 	par_dev->private = par_dev_cb->private;
905 	par_dev->flags = par_dev_cb->flags;
906 	par_dev->irq_func = par_dev_cb->irq_func;
907 	par_dev->waiting = 0;
908 	par_dev->timeout = 5 * HZ;
909 
910 	par_dev->dev.parent = &port->bus_dev;
911 	par_dev->dev.bus = &parport_bus_type;
912 	ret = dev_set_name(&par_dev->dev, "%s.%d", devname, id);
913 	if (ret)
914 		goto err_free_devname;
915 	par_dev->dev.release = free_pardevice;
916 	par_dev->devmodel = true;
917 	ret = device_register(&par_dev->dev);
918 	if (ret) {
919 		kfree(par_dev->state);
920 		put_device(&par_dev->dev);
921 		goto err_put_port;
922 	}
923 
924 	/* Chain this onto the list */
925 	par_dev->prev = NULL;
926 	/*
927 	 * This function must not run from an irq handler so we don' t need
928 	 * to clear irq on the local CPU. -arca
929 	 */
930 	spin_lock(&port->physport->pardevice_lock);
931 
932 	if (par_dev_cb->flags & PARPORT_DEV_EXCL) {
933 		if (port->physport->devices) {
934 			spin_unlock(&port->physport->pardevice_lock);
935 			pr_debug("%s: cannot grant exclusive access for device %s\n",
936 				 port->name, name);
937 			kfree(par_dev->state);
938 			device_unregister(&par_dev->dev);
939 			goto err_put_port;
940 		}
941 		port->flags |= PARPORT_FLAG_EXCL;
942 	}
943 
944 	par_dev->next = port->physport->devices;
945 	wmb();	/*
946 		 * Make sure that tmp->next is written before it's
947 		 * added to the list; see comments marked 'no locking
948 		 * required'
949 		 */
950 	if (port->physport->devices)
951 		port->physport->devices->prev = par_dev;
952 	port->physport->devices = par_dev;
953 	spin_unlock(&port->physport->pardevice_lock);
954 
955 	init_waitqueue_head(&par_dev->wait_q);
956 	par_dev->timeslice = parport_default_timeslice;
957 	par_dev->waitnext = NULL;
958 	par_dev->waitprev = NULL;
959 
960 	/*
961 	 * This has to be run as last thing since init_state may need other
962 	 * pardevice fields. -arca
963 	 */
964 	port->ops->init_state(par_dev, par_dev->state);
965 	if (!test_and_set_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags)) {
966 		port->proc_device = par_dev;
967 		parport_device_proc_register(par_dev);
968 	}
969 
970 	return par_dev;
971 
972 err_free_devname:
973 	kfree(devname);
974 err_free_par_dev:
975 	kfree(par_dev->state);
976 err_put_par_dev:
977 	if (!par_dev->devmodel)
978 		kfree(par_dev);
979 err_put_port:
980 	parport_put_port(port);
981 	module_put(port->ops->owner);
982 
983 	return NULL;
984 }
985 EXPORT_SYMBOL(parport_register_dev_model);
986 
987 /**
988  *	parport_unregister_device - deregister a device on a parallel port
989  *	@dev: pointer to structure representing device
990  *
991  *	This undoes the effect of parport_register_device().
992  **/
993 
parport_unregister_device(struct pardevice * dev)994 void parport_unregister_device(struct pardevice *dev)
995 {
996 	struct parport *port;
997 
998 #ifdef PARPORT_PARANOID
999 	if (!dev) {
1000 		printk(KERN_ERR "parport_unregister_device: passed NULL\n");
1001 		return;
1002 	}
1003 #endif
1004 
1005 	port = dev->port->physport;
1006 
1007 	if (port->proc_device == dev) {
1008 		port->proc_device = NULL;
1009 		clear_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags);
1010 		parport_device_proc_unregister(dev);
1011 	}
1012 
1013 	if (port->cad == dev) {
1014 		printk(KERN_DEBUG "%s: %s forgot to release port\n",
1015 		       port->name, dev->name);
1016 		parport_release(dev);
1017 	}
1018 
1019 	spin_lock(&port->pardevice_lock);
1020 	if (dev->next)
1021 		dev->next->prev = dev->prev;
1022 	if (dev->prev)
1023 		dev->prev->next = dev->next;
1024 	else
1025 		port->devices = dev->next;
1026 
1027 	if (dev->flags & PARPORT_DEV_EXCL)
1028 		port->flags &= ~PARPORT_FLAG_EXCL;
1029 
1030 	spin_unlock(&port->pardevice_lock);
1031 
1032 	/*
1033 	 * Make sure we haven't left any pointers around in the wait
1034 	 * list.
1035 	 */
1036 	spin_lock_irq(&port->waitlist_lock);
1037 	if (dev->waitprev || dev->waitnext || port->waithead == dev) {
1038 		if (dev->waitprev)
1039 			dev->waitprev->waitnext = dev->waitnext;
1040 		else
1041 			port->waithead = dev->waitnext;
1042 		if (dev->waitnext)
1043 			dev->waitnext->waitprev = dev->waitprev;
1044 		else
1045 			port->waittail = dev->waitprev;
1046 	}
1047 	spin_unlock_irq(&port->waitlist_lock);
1048 
1049 	kfree(dev->state);
1050 	if (dev->devmodel)
1051 		device_unregister(&dev->dev);
1052 	else
1053 		kfree(dev);
1054 
1055 	module_put(port->ops->owner);
1056 	parport_put_port(port);
1057 }
1058 EXPORT_SYMBOL(parport_unregister_device);
1059 
1060 /**
1061  *	parport_find_number - find a parallel port by number
1062  *	@number: parallel port number
1063  *
1064  *	This returns the parallel port with the specified number, or
1065  *	%NULL if there is none.
1066  *
1067  *	There is an implicit parport_get_port() done already; to throw
1068  *	away the reference to the port that parport_find_number()
1069  *	gives you, use parport_put_port().
1070  */
1071 
parport_find_number(int number)1072 struct parport *parport_find_number(int number)
1073 {
1074 	struct parport *port, *result = NULL;
1075 
1076 	if (list_empty(&portlist))
1077 		get_lowlevel_driver();
1078 
1079 	spin_lock(&parportlist_lock);
1080 	list_for_each_entry(port, &portlist, list) {
1081 		if (port->number == number) {
1082 			result = parport_get_port(port);
1083 			break;
1084 		}
1085 	}
1086 	spin_unlock(&parportlist_lock);
1087 	return result;
1088 }
1089 EXPORT_SYMBOL(parport_find_number);
1090 
1091 /**
1092  *	parport_find_base - find a parallel port by base address
1093  *	@base: base I/O address
1094  *
1095  *	This returns the parallel port with the specified base
1096  *	address, or %NULL if there is none.
1097  *
1098  *	There is an implicit parport_get_port() done already; to throw
1099  *	away the reference to the port that parport_find_base()
1100  *	gives you, use parport_put_port().
1101  */
1102 
parport_find_base(unsigned long base)1103 struct parport *parport_find_base(unsigned long base)
1104 {
1105 	struct parport *port, *result = NULL;
1106 
1107 	if (list_empty(&portlist))
1108 		get_lowlevel_driver();
1109 
1110 	spin_lock(&parportlist_lock);
1111 	list_for_each_entry(port, &portlist, list) {
1112 		if (port->base == base) {
1113 			result = parport_get_port(port);
1114 			break;
1115 		}
1116 	}
1117 	spin_unlock(&parportlist_lock);
1118 	return result;
1119 }
1120 EXPORT_SYMBOL(parport_find_base);
1121 
1122 /**
1123  *	parport_claim - claim access to a parallel port device
1124  *	@dev: pointer to structure representing a device on the port
1125  *
1126  *	This function will not block and so can be used from interrupt
1127  *	context.  If parport_claim() succeeds in claiming access to
1128  *	the port it returns zero and the port is available to use.  It
1129  *	may fail (returning non-zero) if the port is in use by another
1130  *	driver and that driver is not willing to relinquish control of
1131  *	the port.
1132  **/
1133 
parport_claim(struct pardevice * dev)1134 int parport_claim(struct pardevice *dev)
1135 {
1136 	struct pardevice *oldcad;
1137 	struct parport *port = dev->port->physport;
1138 	unsigned long flags;
1139 
1140 	if (port->cad == dev) {
1141 		printk(KERN_INFO "%s: %s already owner\n",
1142 		       dev->port->name,dev->name);
1143 		return 0;
1144 	}
1145 
1146 	/* Preempt any current device */
1147 	write_lock_irqsave(&port->cad_lock, flags);
1148 	oldcad = port->cad;
1149 	if (oldcad) {
1150 		if (oldcad->preempt) {
1151 			if (oldcad->preempt(oldcad->private))
1152 				goto blocked;
1153 			port->ops->save_state(port, dev->state);
1154 		} else
1155 			goto blocked;
1156 
1157 		if (port->cad != oldcad) {
1158 			/*
1159 			 * I think we'll actually deadlock rather than
1160 			 * get here, but just in case..
1161 			 */
1162 			printk(KERN_WARNING
1163 			       "%s: %s released port when preempted!\n",
1164 			       port->name, oldcad->name);
1165 			if (port->cad)
1166 				goto blocked;
1167 		}
1168 	}
1169 
1170 	/* Can't fail from now on, so mark ourselves as no longer waiting.  */
1171 	if (dev->waiting & 1) {
1172 		dev->waiting = 0;
1173 
1174 		/* Take ourselves out of the wait list again.  */
1175 		spin_lock_irq(&port->waitlist_lock);
1176 		if (dev->waitprev)
1177 			dev->waitprev->waitnext = dev->waitnext;
1178 		else
1179 			port->waithead = dev->waitnext;
1180 		if (dev->waitnext)
1181 			dev->waitnext->waitprev = dev->waitprev;
1182 		else
1183 			port->waittail = dev->waitprev;
1184 		spin_unlock_irq(&port->waitlist_lock);
1185 		dev->waitprev = dev->waitnext = NULL;
1186 	}
1187 
1188 	/* Now we do the change of devices */
1189 	port->cad = dev;
1190 
1191 #ifdef CONFIG_PARPORT_1284
1192 	/* If it's a mux port, select it. */
1193 	if (dev->port->muxport >= 0) {
1194 		/* FIXME */
1195 		port->muxsel = dev->port->muxport;
1196 	}
1197 
1198 	/* If it's a daisy chain device, select it. */
1199 	if (dev->daisy >= 0) {
1200 		/* This could be lazier. */
1201 		if (!parport_daisy_select(port, dev->daisy,
1202 					   IEEE1284_MODE_COMPAT))
1203 			port->daisy = dev->daisy;
1204 	}
1205 #endif /* IEEE1284.3 support */
1206 
1207 	/* Restore control registers */
1208 	port->ops->restore_state(port, dev->state);
1209 	write_unlock_irqrestore(&port->cad_lock, flags);
1210 	dev->time = jiffies;
1211 	return 0;
1212 
1213 blocked:
1214 	/*
1215 	 * If this is the first time we tried to claim the port, register an
1216 	 * interest.  This is only allowed for devices sleeping in
1217 	 * parport_claim_or_block(), or those with a wakeup function.
1218 	 */
1219 
1220 	/* The cad_lock is still held for writing here */
1221 	if (dev->waiting & 2 || dev->wakeup) {
1222 		spin_lock(&port->waitlist_lock);
1223 		if (test_and_set_bit(0, &dev->waiting) == 0) {
1224 			/* First add ourselves to the end of the wait list. */
1225 			dev->waitnext = NULL;
1226 			dev->waitprev = port->waittail;
1227 			if (port->waittail) {
1228 				port->waittail->waitnext = dev;
1229 				port->waittail = dev;
1230 			} else
1231 				port->waithead = port->waittail = dev;
1232 		}
1233 		spin_unlock(&port->waitlist_lock);
1234 	}
1235 	write_unlock_irqrestore(&port->cad_lock, flags);
1236 	return -EAGAIN;
1237 }
1238 EXPORT_SYMBOL(parport_claim);
1239 
1240 /**
1241  *	parport_claim_or_block - claim access to a parallel port device
1242  *	@dev: pointer to structure representing a device on the port
1243  *
1244  *	This behaves like parport_claim(), but will block if necessary
1245  *	to wait for the port to be free.  A return value of 1
1246  *	indicates that it slept; 0 means that it succeeded without
1247  *	needing to sleep.  A negative error code indicates failure.
1248  **/
1249 
parport_claim_or_block(struct pardevice * dev)1250 int parport_claim_or_block(struct pardevice *dev)
1251 {
1252 	int r;
1253 
1254 	/*
1255 	 * Signal to parport_claim() that we can wait even without a
1256 	 * wakeup function.
1257 	 */
1258 	dev->waiting = 2;
1259 
1260 	/* Try to claim the port.  If this fails, we need to sleep.  */
1261 	r = parport_claim(dev);
1262 	if (r == -EAGAIN) {
1263 #ifdef PARPORT_DEBUG_SHARING
1264 		printk(KERN_DEBUG "%s: parport_claim() returned -EAGAIN\n", dev->name);
1265 #endif
1266 		/*
1267 		 * FIXME!!! Use the proper locking for dev->waiting,
1268 		 * and make this use the "wait_event_interruptible()"
1269 		 * interfaces. The cli/sti that used to be here
1270 		 * did nothing.
1271 		 *
1272 		 * See also parport_release()
1273 		 */
1274 
1275 		/*
1276 		 * If dev->waiting is clear now, an interrupt
1277 		 * gave us the port and we would deadlock if we slept.
1278 		 */
1279 		if (dev->waiting) {
1280 			wait_event_interruptible(dev->wait_q,
1281 						 !dev->waiting);
1282 			if (signal_pending(current))
1283 				return -EINTR;
1284 			r = 1;
1285 		} else {
1286 			r = 0;
1287 #ifdef PARPORT_DEBUG_SHARING
1288 			printk(KERN_DEBUG "%s: didn't sleep in parport_claim_or_block()\n",
1289 			       dev->name);
1290 #endif
1291 		}
1292 
1293 #ifdef PARPORT_DEBUG_SHARING
1294 		if (dev->port->physport->cad != dev)
1295 			printk(KERN_DEBUG "%s: exiting parport_claim_or_block but %s owns port!\n",
1296 			       dev->name, dev->port->physport->cad ?
1297 			       dev->port->physport->cad->name:"nobody");
1298 #endif
1299 	}
1300 	dev->waiting = 0;
1301 	return r;
1302 }
1303 EXPORT_SYMBOL(parport_claim_or_block);
1304 
1305 /**
1306  *	parport_release - give up access to a parallel port device
1307  *	@dev: pointer to structure representing parallel port device
1308  *
1309  *	This function cannot fail, but it should not be called without
1310  *	the port claimed.  Similarly, if the port is already claimed
1311  *	you should not try claiming it again.
1312  **/
1313 
parport_release(struct pardevice * dev)1314 void parport_release(struct pardevice *dev)
1315 {
1316 	struct parport *port = dev->port->physport;
1317 	struct pardevice *pd;
1318 	unsigned long flags;
1319 
1320 	/* Make sure that dev is the current device */
1321 	write_lock_irqsave(&port->cad_lock, flags);
1322 	if (port->cad != dev) {
1323 		write_unlock_irqrestore(&port->cad_lock, flags);
1324 		printk(KERN_WARNING "%s: %s tried to release parport when not owner\n",
1325 		       port->name, dev->name);
1326 		return;
1327 	}
1328 
1329 #ifdef CONFIG_PARPORT_1284
1330 	/* If this is on a mux port, deselect it. */
1331 	if (dev->port->muxport >= 0) {
1332 		/* FIXME */
1333 		port->muxsel = -1;
1334 	}
1335 
1336 	/* If this is a daisy device, deselect it. */
1337 	if (dev->daisy >= 0) {
1338 		parport_daisy_deselect_all(port);
1339 		port->daisy = -1;
1340 	}
1341 #endif
1342 
1343 	port->cad = NULL;
1344 	write_unlock_irqrestore(&port->cad_lock, flags);
1345 
1346 	/* Save control registers */
1347 	port->ops->save_state(port, dev->state);
1348 
1349 	/*
1350 	 * If anybody is waiting, find out who's been there longest and
1351 	 * then wake them up. (Note: no locking required)
1352 	 */
1353 	/* !!! LOCKING IS NEEDED HERE */
1354 	for (pd = port->waithead; pd; pd = pd->waitnext) {
1355 		if (pd->waiting & 2) { /* sleeping in claim_or_block */
1356 			parport_claim(pd);
1357 			if (waitqueue_active(&pd->wait_q))
1358 				wake_up_interruptible(&pd->wait_q);
1359 			return;
1360 		} else if (pd->wakeup) {
1361 			pd->wakeup(pd->private);
1362 			if (dev->port->cad) /* racy but no matter */
1363 				return;
1364 		} else {
1365 			printk(KERN_ERR "%s: don't know how to wake %s\n", port->name, pd->name);
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * Nobody was waiting, so walk the list to see if anyone is
1371 	 * interested in being woken up. (Note: no locking required)
1372 	 */
1373 	/* !!! LOCKING IS NEEDED HERE */
1374 	for (pd = port->devices; !port->cad && pd; pd = pd->next) {
1375 		if (pd->wakeup && pd != dev)
1376 			pd->wakeup(pd->private);
1377 	}
1378 }
1379 EXPORT_SYMBOL(parport_release);
1380 
parport_irq_handler(int irq,void * dev_id)1381 irqreturn_t parport_irq_handler(int irq, void *dev_id)
1382 {
1383 	struct parport *port = dev_id;
1384 
1385 	parport_generic_irq(port);
1386 
1387 	return IRQ_HANDLED;
1388 }
1389 EXPORT_SYMBOL(parport_irq_handler);
1390 
1391 MODULE_LICENSE("GPL");
1392