1 /*
2 * Copyright (C) 2012 Google, Inc.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 */
14
15 #define pr_fmt(fmt) "persistent_ram: " fmt
16
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/pstore_ram.h>
26 #include <linux/rslib.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <asm/page.h>
31
32 struct persistent_ram_buffer {
33 uint32_t sig;
34 atomic_t start;
35 atomic_t size;
36 uint8_t data[0];
37 };
38
39 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
40
buffer_size(struct persistent_ram_zone * prz)41 static inline size_t buffer_size(struct persistent_ram_zone *prz)
42 {
43 return atomic_read(&prz->buffer->size);
44 }
45
buffer_start(struct persistent_ram_zone * prz)46 static inline size_t buffer_start(struct persistent_ram_zone *prz)
47 {
48 return atomic_read(&prz->buffer->start);
49 }
50
51 /* increase and wrap the start pointer, returning the old value */
buffer_start_add(struct persistent_ram_zone * prz,size_t a)52 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
53 {
54 int old;
55 int new;
56 unsigned long flags = 0;
57
58 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
59 raw_spin_lock_irqsave(&prz->buffer_lock, flags);
60
61 old = atomic_read(&prz->buffer->start);
62 new = old + a;
63 while (unlikely(new >= prz->buffer_size))
64 new -= prz->buffer_size;
65 atomic_set(&prz->buffer->start, new);
66
67 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
68 raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
69
70 return old;
71 }
72
73 /* increase the size counter until it hits the max size */
buffer_size_add(struct persistent_ram_zone * prz,size_t a)74 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
75 {
76 size_t old;
77 size_t new;
78 unsigned long flags = 0;
79
80 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
81 raw_spin_lock_irqsave(&prz->buffer_lock, flags);
82
83 old = atomic_read(&prz->buffer->size);
84 if (old == prz->buffer_size)
85 goto exit;
86
87 new = old + a;
88 if (new > prz->buffer_size)
89 new = prz->buffer_size;
90 atomic_set(&prz->buffer->size, new);
91
92 exit:
93 if (!(prz->flags & PRZ_FLAG_NO_LOCK))
94 raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
95 }
96
persistent_ram_encode_rs8(struct persistent_ram_zone * prz,uint8_t * data,size_t len,uint8_t * ecc)97 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
98 uint8_t *data, size_t len, uint8_t *ecc)
99 {
100 int i;
101
102 /* Initialize the parity buffer */
103 memset(prz->ecc_info.par, 0,
104 prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
105 encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
106 for (i = 0; i < prz->ecc_info.ecc_size; i++)
107 ecc[i] = prz->ecc_info.par[i];
108 }
109
persistent_ram_decode_rs8(struct persistent_ram_zone * prz,void * data,size_t len,uint8_t * ecc)110 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
111 void *data, size_t len, uint8_t *ecc)
112 {
113 int i;
114
115 for (i = 0; i < prz->ecc_info.ecc_size; i++)
116 prz->ecc_info.par[i] = ecc[i];
117 return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
118 NULL, 0, NULL, 0, NULL);
119 }
120
persistent_ram_update_ecc(struct persistent_ram_zone * prz,unsigned int start,unsigned int count)121 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
122 unsigned int start, unsigned int count)
123 {
124 struct persistent_ram_buffer *buffer = prz->buffer;
125 uint8_t *buffer_end = buffer->data + prz->buffer_size;
126 uint8_t *block;
127 uint8_t *par;
128 int ecc_block_size = prz->ecc_info.block_size;
129 int ecc_size = prz->ecc_info.ecc_size;
130 int size = ecc_block_size;
131
132 if (!ecc_size)
133 return;
134
135 block = buffer->data + (start & ~(ecc_block_size - 1));
136 par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
137
138 do {
139 if (block + ecc_block_size > buffer_end)
140 size = buffer_end - block;
141 persistent_ram_encode_rs8(prz, block, size, par);
142 block += ecc_block_size;
143 par += ecc_size;
144 } while (block < buffer->data + start + count);
145 }
146
persistent_ram_update_header_ecc(struct persistent_ram_zone * prz)147 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
148 {
149 struct persistent_ram_buffer *buffer = prz->buffer;
150
151 if (!prz->ecc_info.ecc_size)
152 return;
153
154 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
155 prz->par_header);
156 }
157
persistent_ram_ecc_old(struct persistent_ram_zone * prz)158 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
159 {
160 struct persistent_ram_buffer *buffer = prz->buffer;
161 uint8_t *block;
162 uint8_t *par;
163
164 if (!prz->ecc_info.ecc_size)
165 return;
166
167 block = buffer->data;
168 par = prz->par_buffer;
169 while (block < buffer->data + buffer_size(prz)) {
170 int numerr;
171 int size = prz->ecc_info.block_size;
172 if (block + size > buffer->data + prz->buffer_size)
173 size = buffer->data + prz->buffer_size - block;
174 numerr = persistent_ram_decode_rs8(prz, block, size, par);
175 if (numerr > 0) {
176 pr_devel("error in block %p, %d\n", block, numerr);
177 prz->corrected_bytes += numerr;
178 } else if (numerr < 0) {
179 pr_devel("uncorrectable error in block %p\n", block);
180 prz->bad_blocks++;
181 }
182 block += prz->ecc_info.block_size;
183 par += prz->ecc_info.ecc_size;
184 }
185 }
186
persistent_ram_init_ecc(struct persistent_ram_zone * prz,struct persistent_ram_ecc_info * ecc_info)187 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
188 struct persistent_ram_ecc_info *ecc_info)
189 {
190 int numerr;
191 struct persistent_ram_buffer *buffer = prz->buffer;
192 int ecc_blocks;
193 size_t ecc_total;
194
195 if (!ecc_info || !ecc_info->ecc_size)
196 return 0;
197
198 prz->ecc_info.block_size = ecc_info->block_size ?: 128;
199 prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
200 prz->ecc_info.symsize = ecc_info->symsize ?: 8;
201 prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
202
203 ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
204 prz->ecc_info.block_size +
205 prz->ecc_info.ecc_size);
206 ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
207 if (ecc_total >= prz->buffer_size) {
208 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
209 __func__, prz->ecc_info.ecc_size,
210 ecc_total, prz->buffer_size);
211 return -EINVAL;
212 }
213
214 prz->buffer_size -= ecc_total;
215 prz->par_buffer = buffer->data + prz->buffer_size;
216 prz->par_header = prz->par_buffer +
217 ecc_blocks * prz->ecc_info.ecc_size;
218
219 /*
220 * first consecutive root is 0
221 * primitive element to generate roots = 1
222 */
223 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
224 0, 1, prz->ecc_info.ecc_size);
225 if (prz->rs_decoder == NULL) {
226 pr_info("init_rs failed\n");
227 return -EINVAL;
228 }
229
230 /* allocate workspace instead of using stack VLA */
231 prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
232 sizeof(*prz->ecc_info.par),
233 GFP_KERNEL);
234 if (!prz->ecc_info.par) {
235 pr_err("cannot allocate ECC parity workspace\n");
236 return -ENOMEM;
237 }
238
239 prz->corrected_bytes = 0;
240 prz->bad_blocks = 0;
241
242 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
243 prz->par_header);
244 if (numerr > 0) {
245 pr_info("error in header, %d\n", numerr);
246 prz->corrected_bytes += numerr;
247 } else if (numerr < 0) {
248 pr_info("uncorrectable error in header\n");
249 prz->bad_blocks++;
250 }
251
252 return 0;
253 }
254
persistent_ram_ecc_string(struct persistent_ram_zone * prz,char * str,size_t len)255 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
256 char *str, size_t len)
257 {
258 ssize_t ret;
259
260 if (!prz->ecc_info.ecc_size)
261 return 0;
262
263 if (prz->corrected_bytes || prz->bad_blocks)
264 ret = snprintf(str, len, ""
265 "\n%d Corrected bytes, %d unrecoverable blocks\n",
266 prz->corrected_bytes, prz->bad_blocks);
267 else
268 ret = snprintf(str, len, "\nNo errors detected\n");
269
270 return ret;
271 }
272
persistent_ram_update(struct persistent_ram_zone * prz,const void * s,unsigned int start,unsigned int count)273 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
274 const void *s, unsigned int start, unsigned int count)
275 {
276 struct persistent_ram_buffer *buffer = prz->buffer;
277 memcpy_toio(buffer->data + start, s, count);
278 persistent_ram_update_ecc(prz, start, count);
279 }
280
persistent_ram_update_user(struct persistent_ram_zone * prz,const void __user * s,unsigned int start,unsigned int count)281 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
282 const void __user *s, unsigned int start, unsigned int count)
283 {
284 struct persistent_ram_buffer *buffer = prz->buffer;
285 int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
286 -EFAULT : 0;
287 persistent_ram_update_ecc(prz, start, count);
288 return ret;
289 }
290
persistent_ram_save_old(struct persistent_ram_zone * prz)291 void persistent_ram_save_old(struct persistent_ram_zone *prz)
292 {
293 struct persistent_ram_buffer *buffer = prz->buffer;
294 size_t size = buffer_size(prz);
295 size_t start = buffer_start(prz);
296
297 if (!size)
298 return;
299
300 if (!prz->old_log) {
301 persistent_ram_ecc_old(prz);
302 prz->old_log = kmalloc(size, GFP_KERNEL);
303 }
304 if (!prz->old_log) {
305 pr_err("failed to allocate buffer\n");
306 return;
307 }
308
309 prz->old_log_size = size;
310 memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
311 memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
312 }
313
persistent_ram_write(struct persistent_ram_zone * prz,const void * s,unsigned int count)314 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
315 const void *s, unsigned int count)
316 {
317 int rem;
318 int c = count;
319 size_t start;
320
321 if (unlikely(c > prz->buffer_size)) {
322 s += c - prz->buffer_size;
323 c = prz->buffer_size;
324 }
325
326 buffer_size_add(prz, c);
327
328 start = buffer_start_add(prz, c);
329
330 rem = prz->buffer_size - start;
331 if (unlikely(rem < c)) {
332 persistent_ram_update(prz, s, start, rem);
333 s += rem;
334 c -= rem;
335 start = 0;
336 }
337 persistent_ram_update(prz, s, start, c);
338
339 persistent_ram_update_header_ecc(prz);
340
341 return count;
342 }
343
persistent_ram_write_user(struct persistent_ram_zone * prz,const void __user * s,unsigned int count)344 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
345 const void __user *s, unsigned int count)
346 {
347 int rem, ret = 0, c = count;
348 size_t start;
349
350 if (unlikely(!access_ok(VERIFY_READ, s, count)))
351 return -EFAULT;
352 if (unlikely(c > prz->buffer_size)) {
353 s += c - prz->buffer_size;
354 c = prz->buffer_size;
355 }
356
357 buffer_size_add(prz, c);
358
359 start = buffer_start_add(prz, c);
360
361 rem = prz->buffer_size - start;
362 if (unlikely(rem < c)) {
363 ret = persistent_ram_update_user(prz, s, start, rem);
364 s += rem;
365 c -= rem;
366 start = 0;
367 }
368 if (likely(!ret))
369 ret = persistent_ram_update_user(prz, s, start, c);
370
371 persistent_ram_update_header_ecc(prz);
372
373 return unlikely(ret) ? ret : count;
374 }
375
persistent_ram_old_size(struct persistent_ram_zone * prz)376 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
377 {
378 return prz->old_log_size;
379 }
380
persistent_ram_old(struct persistent_ram_zone * prz)381 void *persistent_ram_old(struct persistent_ram_zone *prz)
382 {
383 return prz->old_log;
384 }
385
persistent_ram_free_old(struct persistent_ram_zone * prz)386 void persistent_ram_free_old(struct persistent_ram_zone *prz)
387 {
388 kfree(prz->old_log);
389 prz->old_log = NULL;
390 prz->old_log_size = 0;
391 }
392
persistent_ram_zap(struct persistent_ram_zone * prz)393 void persistent_ram_zap(struct persistent_ram_zone *prz)
394 {
395 atomic_set(&prz->buffer->start, 0);
396 atomic_set(&prz->buffer->size, 0);
397 persistent_ram_update_header_ecc(prz);
398 }
399
persistent_ram_vmap(phys_addr_t start,size_t size,unsigned int memtype)400 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
401 unsigned int memtype)
402 {
403 struct page **pages;
404 phys_addr_t page_start;
405 unsigned int page_count;
406 pgprot_t prot;
407 unsigned int i;
408 void *vaddr;
409
410 page_start = start - offset_in_page(start);
411 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
412
413 if (memtype)
414 prot = pgprot_noncached(PAGE_KERNEL);
415 else
416 prot = pgprot_writecombine(PAGE_KERNEL);
417
418 pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
419 if (!pages) {
420 pr_err("%s: Failed to allocate array for %u pages\n",
421 __func__, page_count);
422 return NULL;
423 }
424
425 for (i = 0; i < page_count; i++) {
426 phys_addr_t addr = page_start + i * PAGE_SIZE;
427 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
428 }
429 /*
430 * VM_IOREMAP used here to bypass this region during vread()
431 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
432 */
433 vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
434 kfree(pages);
435
436 /*
437 * Since vmap() uses page granularity, we must add the offset
438 * into the page here, to get the byte granularity address
439 * into the mapping to represent the actual "start" location.
440 */
441 return vaddr + offset_in_page(start);
442 }
443
persistent_ram_iomap(phys_addr_t start,size_t size,unsigned int memtype)444 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
445 unsigned int memtype)
446 {
447 void *va;
448
449 if (!request_mem_region(start, size, "persistent_ram")) {
450 pr_err("request mem region (0x%llx@0x%llx) failed\n",
451 (unsigned long long)size, (unsigned long long)start);
452 return NULL;
453 }
454
455 if (memtype)
456 va = ioremap(start, size);
457 else
458 va = ioremap_wc(start, size);
459
460 /*
461 * Since request_mem_region() and ioremap() are byte-granularity
462 * there is no need handle anything special like we do when the
463 * vmap() case in persistent_ram_vmap() above.
464 */
465 return va;
466 }
467
persistent_ram_buffer_map(phys_addr_t start,phys_addr_t size,struct persistent_ram_zone * prz,int memtype)468 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
469 struct persistent_ram_zone *prz, int memtype)
470 {
471 prz->paddr = start;
472 prz->size = size;
473
474 if (pfn_valid(start >> PAGE_SHIFT))
475 prz->vaddr = persistent_ram_vmap(start, size, memtype);
476 else
477 prz->vaddr = persistent_ram_iomap(start, size, memtype);
478
479 if (!prz->vaddr) {
480 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
481 (unsigned long long)size, (unsigned long long)start);
482 return -ENOMEM;
483 }
484
485 prz->buffer = prz->vaddr;
486 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
487
488 return 0;
489 }
490
persistent_ram_post_init(struct persistent_ram_zone * prz,u32 sig,struct persistent_ram_ecc_info * ecc_info)491 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
492 struct persistent_ram_ecc_info *ecc_info)
493 {
494 int ret;
495
496 ret = persistent_ram_init_ecc(prz, ecc_info);
497 if (ret)
498 return ret;
499
500 sig ^= PERSISTENT_RAM_SIG;
501
502 if (prz->buffer->sig == sig) {
503 if (buffer_size(prz) == 0 && buffer_start(prz) == 0) {
504 pr_debug("found existing empty buffer\n");
505 return 0;
506 }
507
508 if (buffer_size(prz) > prz->buffer_size ||
509 buffer_start(prz) > buffer_size(prz))
510 pr_info("found existing invalid buffer, size %zu, start %zu\n",
511 buffer_size(prz), buffer_start(prz));
512 else {
513 pr_debug("found existing buffer, size %zu, start %zu\n",
514 buffer_size(prz), buffer_start(prz));
515 persistent_ram_save_old(prz);
516 return 0;
517 }
518 } else {
519 pr_debug("no valid data in buffer (sig = 0x%08x)\n",
520 prz->buffer->sig);
521 }
522
523 /* Rewind missing or invalid memory area. */
524 prz->buffer->sig = sig;
525 persistent_ram_zap(prz);
526
527 return 0;
528 }
529
persistent_ram_free(struct persistent_ram_zone * prz)530 void persistent_ram_free(struct persistent_ram_zone *prz)
531 {
532 if (!prz)
533 return;
534
535 if (prz->vaddr) {
536 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
537 /* We must vunmap() at page-granularity. */
538 vunmap(prz->vaddr - offset_in_page(prz->paddr));
539 } else {
540 iounmap(prz->vaddr);
541 release_mem_region(prz->paddr, prz->size);
542 }
543 prz->vaddr = NULL;
544 }
545 if (prz->rs_decoder) {
546 free_rs(prz->rs_decoder);
547 prz->rs_decoder = NULL;
548 }
549 kfree(prz->ecc_info.par);
550 prz->ecc_info.par = NULL;
551
552 persistent_ram_free_old(prz);
553 kfree(prz);
554 }
555
persistent_ram_new(phys_addr_t start,size_t size,u32 sig,struct persistent_ram_ecc_info * ecc_info,unsigned int memtype,u32 flags)556 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
557 u32 sig, struct persistent_ram_ecc_info *ecc_info,
558 unsigned int memtype, u32 flags)
559 {
560 struct persistent_ram_zone *prz;
561 int ret = -ENOMEM;
562
563 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
564 if (!prz) {
565 pr_err("failed to allocate persistent ram zone\n");
566 goto err;
567 }
568
569 /* Initialize general buffer state. */
570 raw_spin_lock_init(&prz->buffer_lock);
571 prz->flags = flags;
572
573 ret = persistent_ram_buffer_map(start, size, prz, memtype);
574 if (ret)
575 goto err;
576
577 ret = persistent_ram_post_init(prz, sig, ecc_info);
578 if (ret)
579 goto err;
580
581 return prz;
582 err:
583 persistent_ram_free(prz);
584 return ERR_PTR(ret);
585 }
586