1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
get_task_root(struct task_struct * task,struct path * root)166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
proc_cwd_link(struct dentry * dentry,struct path * path)179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
proc_root_link(struct dentry * dentry,struct path * path)196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 /*
209 * If the user used setproctitle(), we just get the string from
210 * user space at arg_start, and limit it to a maximum of one page.
211 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)212 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
213 size_t count, unsigned long pos,
214 unsigned long arg_start)
215 {
216 char *page;
217 int ret, got;
218
219 if (pos >= PAGE_SIZE)
220 return 0;
221
222 page = (char *)__get_free_page(GFP_KERNEL);
223 if (!page)
224 return -ENOMEM;
225
226 ret = 0;
227 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
228 if (got > 0) {
229 int len = strnlen(page, got);
230
231 /* Include the NUL character if it was found */
232 if (len < got)
233 len++;
234
235 if (len > pos) {
236 len -= pos;
237 if (len > count)
238 len = count;
239 len -= copy_to_user(buf, page+pos, len);
240 if (!len)
241 len = -EFAULT;
242 ret = len;
243 }
244 }
245 free_page((unsigned long)page);
246 return ret;
247 }
248
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)249 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
250 size_t count, loff_t *ppos)
251 {
252 unsigned long arg_start, arg_end, env_start, env_end;
253 unsigned long pos, len;
254 char *page, c;
255
256 /* Check if process spawned far enough to have cmdline. */
257 if (!mm->env_end)
258 return 0;
259
260 spin_lock(&mm->arg_lock);
261 arg_start = mm->arg_start;
262 arg_end = mm->arg_end;
263 env_start = mm->env_start;
264 env_end = mm->env_end;
265 spin_unlock(&mm->arg_lock);
266
267 if (arg_start >= arg_end)
268 return 0;
269
270 /*
271 * We allow setproctitle() to overwrite the argument
272 * strings, and overflow past the original end. But
273 * only when it overflows into the environment area.
274 */
275 if (env_start != arg_end || env_end < env_start)
276 env_start = env_end = arg_end;
277 len = env_end - arg_start;
278
279 /* We're not going to care if "*ppos" has high bits set */
280 pos = *ppos;
281 if (pos >= len)
282 return 0;
283 if (count > len - pos)
284 count = len - pos;
285 if (!count)
286 return 0;
287
288 /*
289 * Magical special case: if the argv[] end byte is not
290 * zero, the user has overwritten it with setproctitle(3).
291 *
292 * Possible future enhancement: do this only once when
293 * pos is 0, and set a flag in the 'struct file'.
294 */
295 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
296 return get_mm_proctitle(mm, buf, count, pos, arg_start);
297
298 /*
299 * For the non-setproctitle() case we limit things strictly
300 * to the [arg_start, arg_end[ range.
301 */
302 pos += arg_start;
303 if (pos < arg_start || pos >= arg_end)
304 return 0;
305 if (count > arg_end - pos)
306 count = arg_end - pos;
307
308 page = (char *)__get_free_page(GFP_KERNEL);
309 if (!page)
310 return -ENOMEM;
311
312 len = 0;
313 while (count) {
314 int got;
315 size_t size = min_t(size_t, PAGE_SIZE, count);
316
317 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
318 if (got <= 0)
319 break;
320 got -= copy_to_user(buf, page, got);
321 if (unlikely(!got)) {
322 if (!len)
323 len = -EFAULT;
324 break;
325 }
326 pos += got;
327 buf += got;
328 len += got;
329 count -= got;
330 }
331
332 free_page((unsigned long)page);
333 return len;
334 }
335
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)336 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
337 size_t count, loff_t *pos)
338 {
339 struct mm_struct *mm;
340 ssize_t ret;
341
342 mm = get_task_mm(tsk);
343 if (!mm)
344 return 0;
345
346 ret = get_mm_cmdline(mm, buf, count, pos);
347 mmput(mm);
348 return ret;
349 }
350
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)351 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
352 size_t count, loff_t *pos)
353 {
354 struct task_struct *tsk;
355 ssize_t ret;
356
357 BUG_ON(*pos < 0);
358
359 tsk = get_proc_task(file_inode(file));
360 if (!tsk)
361 return -ESRCH;
362 ret = get_task_cmdline(tsk, buf, count, pos);
363 put_task_struct(tsk);
364 if (ret > 0)
365 *pos += ret;
366 return ret;
367 }
368
369 static const struct file_operations proc_pid_cmdline_ops = {
370 .read = proc_pid_cmdline_read,
371 .llseek = generic_file_llseek,
372 };
373
374 #ifdef CONFIG_KALLSYMS
375 /*
376 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
377 * Returns the resolved symbol. If that fails, simply return the address.
378 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)379 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
380 struct pid *pid, struct task_struct *task)
381 {
382 unsigned long wchan;
383 char symname[KSYM_NAME_LEN];
384
385 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
386 goto print0;
387
388 wchan = get_wchan(task);
389 if (wchan && !lookup_symbol_name(wchan, symname)) {
390 seq_puts(m, symname);
391 return 0;
392 }
393
394 print0:
395 seq_putc(m, '0');
396 return 0;
397 }
398 #endif /* CONFIG_KALLSYMS */
399
lock_trace(struct task_struct * task)400 static int lock_trace(struct task_struct *task)
401 {
402 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
403 if (err)
404 return err;
405 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
406 mutex_unlock(&task->signal->cred_guard_mutex);
407 return -EPERM;
408 }
409 return 0;
410 }
411
unlock_trace(struct task_struct * task)412 static void unlock_trace(struct task_struct *task)
413 {
414 mutex_unlock(&task->signal->cred_guard_mutex);
415 }
416
417 #ifdef CONFIG_STACKTRACE
418
419 #define MAX_STACK_TRACE_DEPTH 64
420
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)421 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
422 struct pid *pid, struct task_struct *task)
423 {
424 struct stack_trace trace;
425 unsigned long *entries;
426 int err;
427
428 /*
429 * The ability to racily run the kernel stack unwinder on a running task
430 * and then observe the unwinder output is scary; while it is useful for
431 * debugging kernel issues, it can also allow an attacker to leak kernel
432 * stack contents.
433 * Doing this in a manner that is at least safe from races would require
434 * some work to ensure that the remote task can not be scheduled; and
435 * even then, this would still expose the unwinder as local attack
436 * surface.
437 * Therefore, this interface is restricted to root.
438 */
439 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
440 return -EACCES;
441
442 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
443 GFP_KERNEL);
444 if (!entries)
445 return -ENOMEM;
446
447 trace.nr_entries = 0;
448 trace.max_entries = MAX_STACK_TRACE_DEPTH;
449 trace.entries = entries;
450 trace.skip = 0;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i;
455
456 save_stack_trace_tsk(task, &trace);
457
458 for (i = 0; i < trace.nr_entries; i++) {
459 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
460 }
461 unlock_trace(task);
462 }
463 kfree(entries);
464
465 return err;
466 }
467 #endif
468
469 #ifdef CONFIG_SCHED_INFO
470 /*
471 * Provides /proc/PID/schedstat
472 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
474 struct pid *pid, struct task_struct *task)
475 {
476 if (unlikely(!sched_info_on()))
477 seq_printf(m, "0 0 0\n");
478 else
479 seq_printf(m, "%llu %llu %lu\n",
480 (unsigned long long)task->se.sum_exec_runtime,
481 (unsigned long long)task->sched_info.run_delay,
482 task->sched_info.pcount);
483
484 return 0;
485 }
486 #endif
487
488 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)489 static int lstats_show_proc(struct seq_file *m, void *v)
490 {
491 int i;
492 struct inode *inode = m->private;
493 struct task_struct *task = get_proc_task(inode);
494
495 if (!task)
496 return -ESRCH;
497 seq_puts(m, "Latency Top version : v0.1\n");
498 for (i = 0; i < LT_SAVECOUNT; i++) {
499 struct latency_record *lr = &task->latency_record[i];
500 if (lr->backtrace[0]) {
501 int q;
502 seq_printf(m, "%i %li %li",
503 lr->count, lr->time, lr->max);
504 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
505 unsigned long bt = lr->backtrace[q];
506 if (!bt)
507 break;
508 if (bt == ULONG_MAX)
509 break;
510 seq_printf(m, " %ps", (void *)bt);
511 }
512 seq_putc(m, '\n');
513 }
514
515 }
516 put_task_struct(task);
517 return 0;
518 }
519
lstats_open(struct inode * inode,struct file * file)520 static int lstats_open(struct inode *inode, struct file *file)
521 {
522 return single_open(file, lstats_show_proc, inode);
523 }
524
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)525 static ssize_t lstats_write(struct file *file, const char __user *buf,
526 size_t count, loff_t *offs)
527 {
528 struct task_struct *task = get_proc_task(file_inode(file));
529
530 if (!task)
531 return -ESRCH;
532 clear_all_latency_tracing(task);
533 put_task_struct(task);
534
535 return count;
536 }
537
538 static const struct file_operations proc_lstats_operations = {
539 .open = lstats_open,
540 .read = seq_read,
541 .write = lstats_write,
542 .llseek = seq_lseek,
543 .release = single_release,
544 };
545
546 #endif
547
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)548 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
549 struct pid *pid, struct task_struct *task)
550 {
551 unsigned long totalpages = totalram_pages + total_swap_pages;
552 unsigned long points = 0;
553
554 points = oom_badness(task, NULL, NULL, totalpages) *
555 1000 / totalpages;
556 seq_printf(m, "%lu\n", points);
557
558 return 0;
559 }
560
561 struct limit_names {
562 const char *name;
563 const char *unit;
564 };
565
566 static const struct limit_names lnames[RLIM_NLIMITS] = {
567 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
568 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
569 [RLIMIT_DATA] = {"Max data size", "bytes"},
570 [RLIMIT_STACK] = {"Max stack size", "bytes"},
571 [RLIMIT_CORE] = {"Max core file size", "bytes"},
572 [RLIMIT_RSS] = {"Max resident set", "bytes"},
573 [RLIMIT_NPROC] = {"Max processes", "processes"},
574 [RLIMIT_NOFILE] = {"Max open files", "files"},
575 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
576 [RLIMIT_AS] = {"Max address space", "bytes"},
577 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
578 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
579 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
580 [RLIMIT_NICE] = {"Max nice priority", NULL},
581 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
582 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
583 };
584
585 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
587 struct pid *pid, struct task_struct *task)
588 {
589 unsigned int i;
590 unsigned long flags;
591
592 struct rlimit rlim[RLIM_NLIMITS];
593
594 if (!lock_task_sighand(task, &flags))
595 return 0;
596 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
597 unlock_task_sighand(task, &flags);
598
599 /*
600 * print the file header
601 */
602 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
603 "Limit", "Soft Limit", "Hard Limit", "Units");
604
605 for (i = 0; i < RLIM_NLIMITS; i++) {
606 if (rlim[i].rlim_cur == RLIM_INFINITY)
607 seq_printf(m, "%-25s %-20s ",
608 lnames[i].name, "unlimited");
609 else
610 seq_printf(m, "%-25s %-20lu ",
611 lnames[i].name, rlim[i].rlim_cur);
612
613 if (rlim[i].rlim_max == RLIM_INFINITY)
614 seq_printf(m, "%-20s ", "unlimited");
615 else
616 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
617
618 if (lnames[i].unit)
619 seq_printf(m, "%-10s\n", lnames[i].unit);
620 else
621 seq_putc(m, '\n');
622 }
623
624 return 0;
625 }
626
627 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)628 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
629 struct pid *pid, struct task_struct *task)
630 {
631 long nr;
632 unsigned long args[6], sp, pc;
633 int res;
634
635 res = lock_trace(task);
636 if (res)
637 return res;
638
639 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
640 seq_puts(m, "running\n");
641 else if (nr < 0)
642 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
643 else
644 seq_printf(m,
645 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
646 nr,
647 args[0], args[1], args[2], args[3], args[4], args[5],
648 sp, pc);
649 unlock_trace(task);
650
651 return 0;
652 }
653 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
654
655 /************************************************************************/
656 /* Here the fs part begins */
657 /************************************************************************/
658
659 /* permission checks */
proc_fd_access_allowed(struct inode * inode)660 static int proc_fd_access_allowed(struct inode *inode)
661 {
662 struct task_struct *task;
663 int allowed = 0;
664 /* Allow access to a task's file descriptors if it is us or we
665 * may use ptrace attach to the process and find out that
666 * information.
667 */
668 task = get_proc_task(inode);
669 if (task) {
670 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
671 put_task_struct(task);
672 }
673 return allowed;
674 }
675
proc_setattr(struct dentry * dentry,struct iattr * attr)676 int proc_setattr(struct dentry *dentry, struct iattr *attr)
677 {
678 int error;
679 struct inode *inode = d_inode(dentry);
680
681 if (attr->ia_valid & ATTR_MODE)
682 return -EPERM;
683
684 error = setattr_prepare(dentry, attr);
685 if (error)
686 return error;
687
688 setattr_copy(inode, attr);
689 mark_inode_dirty(inode);
690 return 0;
691 }
692
693 /*
694 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
695 * or euid/egid (for hide_pid_min=2)?
696 */
has_pid_permissions(struct pid_namespace * pid,struct task_struct * task,int hide_pid_min)697 static bool has_pid_permissions(struct pid_namespace *pid,
698 struct task_struct *task,
699 int hide_pid_min)
700 {
701 if (pid->hide_pid < hide_pid_min)
702 return true;
703 if (in_group_p(pid->pid_gid))
704 return true;
705 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
706 }
707
708
proc_pid_permission(struct inode * inode,int mask)709 static int proc_pid_permission(struct inode *inode, int mask)
710 {
711 struct pid_namespace *pid = proc_pid_ns(inode);
712 struct task_struct *task;
713 bool has_perms;
714
715 task = get_proc_task(inode);
716 if (!task)
717 return -ESRCH;
718 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
719 put_task_struct(task);
720
721 if (!has_perms) {
722 if (pid->hide_pid == HIDEPID_INVISIBLE) {
723 /*
724 * Let's make getdents(), stat(), and open()
725 * consistent with each other. If a process
726 * may not stat() a file, it shouldn't be seen
727 * in procfs at all.
728 */
729 return -ENOENT;
730 }
731
732 return -EPERM;
733 }
734 return generic_permission(inode, mask);
735 }
736
737
738
739 static const struct inode_operations proc_def_inode_operations = {
740 .setattr = proc_setattr,
741 };
742
proc_single_show(struct seq_file * m,void * v)743 static int proc_single_show(struct seq_file *m, void *v)
744 {
745 struct inode *inode = m->private;
746 struct pid_namespace *ns = proc_pid_ns(inode);
747 struct pid *pid = proc_pid(inode);
748 struct task_struct *task;
749 int ret;
750
751 task = get_pid_task(pid, PIDTYPE_PID);
752 if (!task)
753 return -ESRCH;
754
755 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
756
757 put_task_struct(task);
758 return ret;
759 }
760
proc_single_open(struct inode * inode,struct file * filp)761 static int proc_single_open(struct inode *inode, struct file *filp)
762 {
763 return single_open(filp, proc_single_show, inode);
764 }
765
766 static const struct file_operations proc_single_file_operations = {
767 .open = proc_single_open,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773
proc_mem_open(struct inode * inode,unsigned int mode)774 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
775 {
776 struct task_struct *task = get_proc_task(inode);
777 struct mm_struct *mm = ERR_PTR(-ESRCH);
778
779 if (task) {
780 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
781 put_task_struct(task);
782
783 if (!IS_ERR_OR_NULL(mm)) {
784 /* ensure this mm_struct can't be freed */
785 mmgrab(mm);
786 /* but do not pin its memory */
787 mmput(mm);
788 }
789 }
790
791 return mm;
792 }
793
__mem_open(struct inode * inode,struct file * file,unsigned int mode)794 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
795 {
796 struct mm_struct *mm = proc_mem_open(inode, mode);
797
798 if (IS_ERR(mm))
799 return PTR_ERR(mm);
800
801 file->private_data = mm;
802 return 0;
803 }
804
mem_open(struct inode * inode,struct file * file)805 static int mem_open(struct inode *inode, struct file *file)
806 {
807 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
808
809 /* OK to pass negative loff_t, we can catch out-of-range */
810 file->f_mode |= FMODE_UNSIGNED_OFFSET;
811
812 return ret;
813 }
814
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)815 static ssize_t mem_rw(struct file *file, char __user *buf,
816 size_t count, loff_t *ppos, int write)
817 {
818 struct mm_struct *mm = file->private_data;
819 unsigned long addr = *ppos;
820 ssize_t copied;
821 char *page;
822 unsigned int flags;
823
824 if (!mm)
825 return 0;
826
827 page = (char *)__get_free_page(GFP_KERNEL);
828 if (!page)
829 return -ENOMEM;
830
831 copied = 0;
832 if (!mmget_not_zero(mm))
833 goto free;
834
835 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
836
837 while (count > 0) {
838 size_t this_len = min_t(size_t, count, PAGE_SIZE);
839
840 if (write && copy_from_user(page, buf, this_len)) {
841 copied = -EFAULT;
842 break;
843 }
844
845 this_len = access_remote_vm(mm, addr, page, this_len, flags);
846 if (!this_len) {
847 if (!copied)
848 copied = -EIO;
849 break;
850 }
851
852 if (!write && copy_to_user(buf, page, this_len)) {
853 copied = -EFAULT;
854 break;
855 }
856
857 buf += this_len;
858 addr += this_len;
859 copied += this_len;
860 count -= this_len;
861 }
862 *ppos = addr;
863
864 mmput(mm);
865 free:
866 free_page((unsigned long) page);
867 return copied;
868 }
869
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)870 static ssize_t mem_read(struct file *file, char __user *buf,
871 size_t count, loff_t *ppos)
872 {
873 return mem_rw(file, buf, count, ppos, 0);
874 }
875
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)876 static ssize_t mem_write(struct file *file, const char __user *buf,
877 size_t count, loff_t *ppos)
878 {
879 return mem_rw(file, (char __user*)buf, count, ppos, 1);
880 }
881
mem_lseek(struct file * file,loff_t offset,int orig)882 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
883 {
884 switch (orig) {
885 case 0:
886 file->f_pos = offset;
887 break;
888 case 1:
889 file->f_pos += offset;
890 break;
891 default:
892 return -EINVAL;
893 }
894 force_successful_syscall_return();
895 return file->f_pos;
896 }
897
mem_release(struct inode * inode,struct file * file)898 static int mem_release(struct inode *inode, struct file *file)
899 {
900 struct mm_struct *mm = file->private_data;
901 if (mm)
902 mmdrop(mm);
903 return 0;
904 }
905
906 static const struct file_operations proc_mem_operations = {
907 .llseek = mem_lseek,
908 .read = mem_read,
909 .write = mem_write,
910 .open = mem_open,
911 .release = mem_release,
912 };
913
environ_open(struct inode * inode,struct file * file)914 static int environ_open(struct inode *inode, struct file *file)
915 {
916 return __mem_open(inode, file, PTRACE_MODE_READ);
917 }
918
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)919 static ssize_t environ_read(struct file *file, char __user *buf,
920 size_t count, loff_t *ppos)
921 {
922 char *page;
923 unsigned long src = *ppos;
924 int ret = 0;
925 struct mm_struct *mm = file->private_data;
926 unsigned long env_start, env_end;
927
928 /* Ensure the process spawned far enough to have an environment. */
929 if (!mm || !mm->env_end)
930 return 0;
931
932 page = (char *)__get_free_page(GFP_KERNEL);
933 if (!page)
934 return -ENOMEM;
935
936 ret = 0;
937 if (!mmget_not_zero(mm))
938 goto free;
939
940 spin_lock(&mm->arg_lock);
941 env_start = mm->env_start;
942 env_end = mm->env_end;
943 spin_unlock(&mm->arg_lock);
944
945 while (count > 0) {
946 size_t this_len, max_len;
947 int retval;
948
949 if (src >= (env_end - env_start))
950 break;
951
952 this_len = env_end - (env_start + src);
953
954 max_len = min_t(size_t, PAGE_SIZE, count);
955 this_len = min(max_len, this_len);
956
957 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
958
959 if (retval <= 0) {
960 ret = retval;
961 break;
962 }
963
964 if (copy_to_user(buf, page, retval)) {
965 ret = -EFAULT;
966 break;
967 }
968
969 ret += retval;
970 src += retval;
971 buf += retval;
972 count -= retval;
973 }
974 *ppos = src;
975 mmput(mm);
976
977 free:
978 free_page((unsigned long) page);
979 return ret;
980 }
981
982 static const struct file_operations proc_environ_operations = {
983 .open = environ_open,
984 .read = environ_read,
985 .llseek = generic_file_llseek,
986 .release = mem_release,
987 };
988
auxv_open(struct inode * inode,struct file * file)989 static int auxv_open(struct inode *inode, struct file *file)
990 {
991 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
992 }
993
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)994 static ssize_t auxv_read(struct file *file, char __user *buf,
995 size_t count, loff_t *ppos)
996 {
997 struct mm_struct *mm = file->private_data;
998 unsigned int nwords = 0;
999
1000 if (!mm)
1001 return 0;
1002 do {
1003 nwords += 2;
1004 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1005 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1006 nwords * sizeof(mm->saved_auxv[0]));
1007 }
1008
1009 static const struct file_operations proc_auxv_operations = {
1010 .open = auxv_open,
1011 .read = auxv_read,
1012 .llseek = generic_file_llseek,
1013 .release = mem_release,
1014 };
1015
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1016 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1017 loff_t *ppos)
1018 {
1019 struct task_struct *task = get_proc_task(file_inode(file));
1020 char buffer[PROC_NUMBUF];
1021 int oom_adj = OOM_ADJUST_MIN;
1022 size_t len;
1023
1024 if (!task)
1025 return -ESRCH;
1026 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1027 oom_adj = OOM_ADJUST_MAX;
1028 else
1029 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1030 OOM_SCORE_ADJ_MAX;
1031 put_task_struct(task);
1032 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1033 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1034 }
1035
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1036 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1037 {
1038 struct mm_struct *mm = NULL;
1039 struct task_struct *task;
1040 int err = 0;
1041
1042 task = get_proc_task(file_inode(file));
1043 if (!task)
1044 return -ESRCH;
1045
1046 mutex_lock(&oom_adj_mutex);
1047 if (legacy) {
1048 if (oom_adj < task->signal->oom_score_adj &&
1049 !capable(CAP_SYS_RESOURCE)) {
1050 err = -EACCES;
1051 goto err_unlock;
1052 }
1053 /*
1054 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1055 * /proc/pid/oom_score_adj instead.
1056 */
1057 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1058 current->comm, task_pid_nr(current), task_pid_nr(task),
1059 task_pid_nr(task));
1060 } else {
1061 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1062 !capable(CAP_SYS_RESOURCE)) {
1063 err = -EACCES;
1064 goto err_unlock;
1065 }
1066 }
1067
1068 /*
1069 * Make sure we will check other processes sharing the mm if this is
1070 * not vfrok which wants its own oom_score_adj.
1071 * pin the mm so it doesn't go away and get reused after task_unlock
1072 */
1073 if (!task->vfork_done) {
1074 struct task_struct *p = find_lock_task_mm(task);
1075
1076 if (p) {
1077 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1078 mm = p->mm;
1079 mmgrab(mm);
1080 }
1081 task_unlock(p);
1082 }
1083 }
1084
1085 task->signal->oom_score_adj = oom_adj;
1086 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1087 task->signal->oom_score_adj_min = (short)oom_adj;
1088 trace_oom_score_adj_update(task);
1089
1090 if (mm) {
1091 struct task_struct *p;
1092
1093 rcu_read_lock();
1094 for_each_process(p) {
1095 if (same_thread_group(task, p))
1096 continue;
1097
1098 /* do not touch kernel threads or the global init */
1099 if (p->flags & PF_KTHREAD || is_global_init(p))
1100 continue;
1101
1102 task_lock(p);
1103 if (!p->vfork_done && process_shares_mm(p, mm)) {
1104 p->signal->oom_score_adj = oom_adj;
1105 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1106 p->signal->oom_score_adj_min = (short)oom_adj;
1107 }
1108 task_unlock(p);
1109 }
1110 rcu_read_unlock();
1111 mmdrop(mm);
1112 }
1113 err_unlock:
1114 mutex_unlock(&oom_adj_mutex);
1115 put_task_struct(task);
1116 return err;
1117 }
1118
1119 /*
1120 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1121 * kernels. The effective policy is defined by oom_score_adj, which has a
1122 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1123 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1124 * Processes that become oom disabled via oom_adj will still be oom disabled
1125 * with this implementation.
1126 *
1127 * oom_adj cannot be removed since existing userspace binaries use it.
1128 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1129 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1130 size_t count, loff_t *ppos)
1131 {
1132 char buffer[PROC_NUMBUF];
1133 int oom_adj;
1134 int err;
1135
1136 memset(buffer, 0, sizeof(buffer));
1137 if (count > sizeof(buffer) - 1)
1138 count = sizeof(buffer) - 1;
1139 if (copy_from_user(buffer, buf, count)) {
1140 err = -EFAULT;
1141 goto out;
1142 }
1143
1144 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1145 if (err)
1146 goto out;
1147 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1148 oom_adj != OOM_DISABLE) {
1149 err = -EINVAL;
1150 goto out;
1151 }
1152
1153 /*
1154 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1155 * value is always attainable.
1156 */
1157 if (oom_adj == OOM_ADJUST_MAX)
1158 oom_adj = OOM_SCORE_ADJ_MAX;
1159 else
1160 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1161
1162 err = __set_oom_adj(file, oom_adj, true);
1163 out:
1164 return err < 0 ? err : count;
1165 }
1166
1167 static const struct file_operations proc_oom_adj_operations = {
1168 .read = oom_adj_read,
1169 .write = oom_adj_write,
1170 .llseek = generic_file_llseek,
1171 };
1172
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1173 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1174 size_t count, loff_t *ppos)
1175 {
1176 struct task_struct *task = get_proc_task(file_inode(file));
1177 char buffer[PROC_NUMBUF];
1178 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1179 size_t len;
1180
1181 if (!task)
1182 return -ESRCH;
1183 oom_score_adj = task->signal->oom_score_adj;
1184 put_task_struct(task);
1185 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1186 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1187 }
1188
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1189 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1190 size_t count, loff_t *ppos)
1191 {
1192 char buffer[PROC_NUMBUF];
1193 int oom_score_adj;
1194 int err;
1195
1196 memset(buffer, 0, sizeof(buffer));
1197 if (count > sizeof(buffer) - 1)
1198 count = sizeof(buffer) - 1;
1199 if (copy_from_user(buffer, buf, count)) {
1200 err = -EFAULT;
1201 goto out;
1202 }
1203
1204 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1205 if (err)
1206 goto out;
1207 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1208 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1209 err = -EINVAL;
1210 goto out;
1211 }
1212
1213 err = __set_oom_adj(file, oom_score_adj, false);
1214 out:
1215 return err < 0 ? err : count;
1216 }
1217
1218 static const struct file_operations proc_oom_score_adj_operations = {
1219 .read = oom_score_adj_read,
1220 .write = oom_score_adj_write,
1221 .llseek = default_llseek,
1222 };
1223
1224 #ifdef CONFIG_AUDITSYSCALL
1225 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1226 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1227 size_t count, loff_t *ppos)
1228 {
1229 struct inode * inode = file_inode(file);
1230 struct task_struct *task = get_proc_task(inode);
1231 ssize_t length;
1232 char tmpbuf[TMPBUFLEN];
1233
1234 if (!task)
1235 return -ESRCH;
1236 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1237 from_kuid(file->f_cred->user_ns,
1238 audit_get_loginuid(task)));
1239 put_task_struct(task);
1240 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1241 }
1242
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1243 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1244 size_t count, loff_t *ppos)
1245 {
1246 struct inode * inode = file_inode(file);
1247 uid_t loginuid;
1248 kuid_t kloginuid;
1249 int rv;
1250
1251 rcu_read_lock();
1252 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1253 rcu_read_unlock();
1254 return -EPERM;
1255 }
1256 rcu_read_unlock();
1257
1258 if (*ppos != 0) {
1259 /* No partial writes. */
1260 return -EINVAL;
1261 }
1262
1263 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1264 if (rv < 0)
1265 return rv;
1266
1267 /* is userspace tring to explicitly UNSET the loginuid? */
1268 if (loginuid == AUDIT_UID_UNSET) {
1269 kloginuid = INVALID_UID;
1270 } else {
1271 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1272 if (!uid_valid(kloginuid))
1273 return -EINVAL;
1274 }
1275
1276 rv = audit_set_loginuid(kloginuid);
1277 if (rv < 0)
1278 return rv;
1279 return count;
1280 }
1281
1282 static const struct file_operations proc_loginuid_operations = {
1283 .read = proc_loginuid_read,
1284 .write = proc_loginuid_write,
1285 .llseek = generic_file_llseek,
1286 };
1287
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1288 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1289 size_t count, loff_t *ppos)
1290 {
1291 struct inode * inode = file_inode(file);
1292 struct task_struct *task = get_proc_task(inode);
1293 ssize_t length;
1294 char tmpbuf[TMPBUFLEN];
1295
1296 if (!task)
1297 return -ESRCH;
1298 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1299 audit_get_sessionid(task));
1300 put_task_struct(task);
1301 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1302 }
1303
1304 static const struct file_operations proc_sessionid_operations = {
1305 .read = proc_sessionid_read,
1306 .llseek = generic_file_llseek,
1307 };
1308 #endif
1309
1310 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1311 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1312 size_t count, loff_t *ppos)
1313 {
1314 struct task_struct *task = get_proc_task(file_inode(file));
1315 char buffer[PROC_NUMBUF];
1316 size_t len;
1317 int make_it_fail;
1318
1319 if (!task)
1320 return -ESRCH;
1321 make_it_fail = task->make_it_fail;
1322 put_task_struct(task);
1323
1324 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1325
1326 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1327 }
1328
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1329 static ssize_t proc_fault_inject_write(struct file * file,
1330 const char __user * buf, size_t count, loff_t *ppos)
1331 {
1332 struct task_struct *task;
1333 char buffer[PROC_NUMBUF];
1334 int make_it_fail;
1335 int rv;
1336
1337 if (!capable(CAP_SYS_RESOURCE))
1338 return -EPERM;
1339 memset(buffer, 0, sizeof(buffer));
1340 if (count > sizeof(buffer) - 1)
1341 count = sizeof(buffer) - 1;
1342 if (copy_from_user(buffer, buf, count))
1343 return -EFAULT;
1344 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1345 if (rv < 0)
1346 return rv;
1347 if (make_it_fail < 0 || make_it_fail > 1)
1348 return -EINVAL;
1349
1350 task = get_proc_task(file_inode(file));
1351 if (!task)
1352 return -ESRCH;
1353 task->make_it_fail = make_it_fail;
1354 put_task_struct(task);
1355
1356 return count;
1357 }
1358
1359 static const struct file_operations proc_fault_inject_operations = {
1360 .read = proc_fault_inject_read,
1361 .write = proc_fault_inject_write,
1362 .llseek = generic_file_llseek,
1363 };
1364
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1365 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1366 size_t count, loff_t *ppos)
1367 {
1368 struct task_struct *task;
1369 int err;
1370 unsigned int n;
1371
1372 err = kstrtouint_from_user(buf, count, 0, &n);
1373 if (err)
1374 return err;
1375
1376 task = get_proc_task(file_inode(file));
1377 if (!task)
1378 return -ESRCH;
1379 task->fail_nth = n;
1380 put_task_struct(task);
1381
1382 return count;
1383 }
1384
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1385 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1386 size_t count, loff_t *ppos)
1387 {
1388 struct task_struct *task;
1389 char numbuf[PROC_NUMBUF];
1390 ssize_t len;
1391
1392 task = get_proc_task(file_inode(file));
1393 if (!task)
1394 return -ESRCH;
1395 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1396 put_task_struct(task);
1397 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1398 }
1399
1400 static const struct file_operations proc_fail_nth_operations = {
1401 .read = proc_fail_nth_read,
1402 .write = proc_fail_nth_write,
1403 };
1404 #endif
1405
1406
1407 #ifdef CONFIG_SCHED_DEBUG
1408 /*
1409 * Print out various scheduling related per-task fields:
1410 */
sched_show(struct seq_file * m,void * v)1411 static int sched_show(struct seq_file *m, void *v)
1412 {
1413 struct inode *inode = m->private;
1414 struct pid_namespace *ns = proc_pid_ns(inode);
1415 struct task_struct *p;
1416
1417 p = get_proc_task(inode);
1418 if (!p)
1419 return -ESRCH;
1420 proc_sched_show_task(p, ns, m);
1421
1422 put_task_struct(p);
1423
1424 return 0;
1425 }
1426
1427 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1428 sched_write(struct file *file, const char __user *buf,
1429 size_t count, loff_t *offset)
1430 {
1431 struct inode *inode = file_inode(file);
1432 struct task_struct *p;
1433
1434 p = get_proc_task(inode);
1435 if (!p)
1436 return -ESRCH;
1437 proc_sched_set_task(p);
1438
1439 put_task_struct(p);
1440
1441 return count;
1442 }
1443
sched_open(struct inode * inode,struct file * filp)1444 static int sched_open(struct inode *inode, struct file *filp)
1445 {
1446 return single_open(filp, sched_show, inode);
1447 }
1448
1449 static const struct file_operations proc_pid_sched_operations = {
1450 .open = sched_open,
1451 .read = seq_read,
1452 .write = sched_write,
1453 .llseek = seq_lseek,
1454 .release = single_release,
1455 };
1456
1457 #endif
1458
1459 #ifdef CONFIG_SCHED_AUTOGROUP
1460 /*
1461 * Print out autogroup related information:
1462 */
sched_autogroup_show(struct seq_file * m,void * v)1463 static int sched_autogroup_show(struct seq_file *m, void *v)
1464 {
1465 struct inode *inode = m->private;
1466 struct task_struct *p;
1467
1468 p = get_proc_task(inode);
1469 if (!p)
1470 return -ESRCH;
1471 proc_sched_autogroup_show_task(p, m);
1472
1473 put_task_struct(p);
1474
1475 return 0;
1476 }
1477
1478 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1479 sched_autogroup_write(struct file *file, const char __user *buf,
1480 size_t count, loff_t *offset)
1481 {
1482 struct inode *inode = file_inode(file);
1483 struct task_struct *p;
1484 char buffer[PROC_NUMBUF];
1485 int nice;
1486 int err;
1487
1488 memset(buffer, 0, sizeof(buffer));
1489 if (count > sizeof(buffer) - 1)
1490 count = sizeof(buffer) - 1;
1491 if (copy_from_user(buffer, buf, count))
1492 return -EFAULT;
1493
1494 err = kstrtoint(strstrip(buffer), 0, &nice);
1495 if (err < 0)
1496 return err;
1497
1498 p = get_proc_task(inode);
1499 if (!p)
1500 return -ESRCH;
1501
1502 err = proc_sched_autogroup_set_nice(p, nice);
1503 if (err)
1504 count = err;
1505
1506 put_task_struct(p);
1507
1508 return count;
1509 }
1510
sched_autogroup_open(struct inode * inode,struct file * filp)1511 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1512 {
1513 int ret;
1514
1515 ret = single_open(filp, sched_autogroup_show, NULL);
1516 if (!ret) {
1517 struct seq_file *m = filp->private_data;
1518
1519 m->private = inode;
1520 }
1521 return ret;
1522 }
1523
1524 static const struct file_operations proc_pid_sched_autogroup_operations = {
1525 .open = sched_autogroup_open,
1526 .read = seq_read,
1527 .write = sched_autogroup_write,
1528 .llseek = seq_lseek,
1529 .release = single_release,
1530 };
1531
1532 #endif /* CONFIG_SCHED_AUTOGROUP */
1533
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1534 static ssize_t comm_write(struct file *file, const char __user *buf,
1535 size_t count, loff_t *offset)
1536 {
1537 struct inode *inode = file_inode(file);
1538 struct task_struct *p;
1539 char buffer[TASK_COMM_LEN];
1540 const size_t maxlen = sizeof(buffer) - 1;
1541
1542 memset(buffer, 0, sizeof(buffer));
1543 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1544 return -EFAULT;
1545
1546 p = get_proc_task(inode);
1547 if (!p)
1548 return -ESRCH;
1549
1550 if (same_thread_group(current, p))
1551 set_task_comm(p, buffer);
1552 else
1553 count = -EINVAL;
1554
1555 put_task_struct(p);
1556
1557 return count;
1558 }
1559
comm_show(struct seq_file * m,void * v)1560 static int comm_show(struct seq_file *m, void *v)
1561 {
1562 struct inode *inode = m->private;
1563 struct task_struct *p;
1564
1565 p = get_proc_task(inode);
1566 if (!p)
1567 return -ESRCH;
1568
1569 proc_task_name(m, p, false);
1570 seq_putc(m, '\n');
1571
1572 put_task_struct(p);
1573
1574 return 0;
1575 }
1576
comm_open(struct inode * inode,struct file * filp)1577 static int comm_open(struct inode *inode, struct file *filp)
1578 {
1579 return single_open(filp, comm_show, inode);
1580 }
1581
1582 static const struct file_operations proc_pid_set_comm_operations = {
1583 .open = comm_open,
1584 .read = seq_read,
1585 .write = comm_write,
1586 .llseek = seq_lseek,
1587 .release = single_release,
1588 };
1589
proc_exe_link(struct dentry * dentry,struct path * exe_path)1590 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1591 {
1592 struct task_struct *task;
1593 struct file *exe_file;
1594
1595 task = get_proc_task(d_inode(dentry));
1596 if (!task)
1597 return -ENOENT;
1598 exe_file = get_task_exe_file(task);
1599 put_task_struct(task);
1600 if (exe_file) {
1601 *exe_path = exe_file->f_path;
1602 path_get(&exe_file->f_path);
1603 fput(exe_file);
1604 return 0;
1605 } else
1606 return -ENOENT;
1607 }
1608
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1609 static const char *proc_pid_get_link(struct dentry *dentry,
1610 struct inode *inode,
1611 struct delayed_call *done)
1612 {
1613 struct path path;
1614 int error = -EACCES;
1615
1616 if (!dentry)
1617 return ERR_PTR(-ECHILD);
1618
1619 /* Are we allowed to snoop on the tasks file descriptors? */
1620 if (!proc_fd_access_allowed(inode))
1621 goto out;
1622
1623 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1624 if (error)
1625 goto out;
1626
1627 nd_jump_link(&path);
1628 return NULL;
1629 out:
1630 return ERR_PTR(error);
1631 }
1632
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1633 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1634 {
1635 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1636 char *pathname;
1637 int len;
1638
1639 if (!tmp)
1640 return -ENOMEM;
1641
1642 pathname = d_path(path, tmp, PAGE_SIZE);
1643 len = PTR_ERR(pathname);
1644 if (IS_ERR(pathname))
1645 goto out;
1646 len = tmp + PAGE_SIZE - 1 - pathname;
1647
1648 if (len > buflen)
1649 len = buflen;
1650 if (copy_to_user(buffer, pathname, len))
1651 len = -EFAULT;
1652 out:
1653 free_page((unsigned long)tmp);
1654 return len;
1655 }
1656
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1657 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1658 {
1659 int error = -EACCES;
1660 struct inode *inode = d_inode(dentry);
1661 struct path path;
1662
1663 /* Are we allowed to snoop on the tasks file descriptors? */
1664 if (!proc_fd_access_allowed(inode))
1665 goto out;
1666
1667 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1668 if (error)
1669 goto out;
1670
1671 error = do_proc_readlink(&path, buffer, buflen);
1672 path_put(&path);
1673 out:
1674 return error;
1675 }
1676
1677 const struct inode_operations proc_pid_link_inode_operations = {
1678 .readlink = proc_pid_readlink,
1679 .get_link = proc_pid_get_link,
1680 .setattr = proc_setattr,
1681 };
1682
1683
1684 /* building an inode */
1685
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1686 void task_dump_owner(struct task_struct *task, umode_t mode,
1687 kuid_t *ruid, kgid_t *rgid)
1688 {
1689 /* Depending on the state of dumpable compute who should own a
1690 * proc file for a task.
1691 */
1692 const struct cred *cred;
1693 kuid_t uid;
1694 kgid_t gid;
1695
1696 if (unlikely(task->flags & PF_KTHREAD)) {
1697 *ruid = GLOBAL_ROOT_UID;
1698 *rgid = GLOBAL_ROOT_GID;
1699 return;
1700 }
1701
1702 /* Default to the tasks effective ownership */
1703 rcu_read_lock();
1704 cred = __task_cred(task);
1705 uid = cred->euid;
1706 gid = cred->egid;
1707 rcu_read_unlock();
1708
1709 /*
1710 * Before the /proc/pid/status file was created the only way to read
1711 * the effective uid of a /process was to stat /proc/pid. Reading
1712 * /proc/pid/status is slow enough that procps and other packages
1713 * kept stating /proc/pid. To keep the rules in /proc simple I have
1714 * made this apply to all per process world readable and executable
1715 * directories.
1716 */
1717 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1718 struct mm_struct *mm;
1719 task_lock(task);
1720 mm = task->mm;
1721 /* Make non-dumpable tasks owned by some root */
1722 if (mm) {
1723 if (get_dumpable(mm) != SUID_DUMP_USER) {
1724 struct user_namespace *user_ns = mm->user_ns;
1725
1726 uid = make_kuid(user_ns, 0);
1727 if (!uid_valid(uid))
1728 uid = GLOBAL_ROOT_UID;
1729
1730 gid = make_kgid(user_ns, 0);
1731 if (!gid_valid(gid))
1732 gid = GLOBAL_ROOT_GID;
1733 }
1734 } else {
1735 uid = GLOBAL_ROOT_UID;
1736 gid = GLOBAL_ROOT_GID;
1737 }
1738 task_unlock(task);
1739 }
1740 *ruid = uid;
1741 *rgid = gid;
1742 }
1743
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1744 struct inode *proc_pid_make_inode(struct super_block * sb,
1745 struct task_struct *task, umode_t mode)
1746 {
1747 struct inode * inode;
1748 struct proc_inode *ei;
1749
1750 /* We need a new inode */
1751
1752 inode = new_inode(sb);
1753 if (!inode)
1754 goto out;
1755
1756 /* Common stuff */
1757 ei = PROC_I(inode);
1758 inode->i_mode = mode;
1759 inode->i_ino = get_next_ino();
1760 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1761 inode->i_op = &proc_def_inode_operations;
1762
1763 /*
1764 * grab the reference to task.
1765 */
1766 ei->pid = get_task_pid(task, PIDTYPE_PID);
1767 if (!ei->pid)
1768 goto out_unlock;
1769
1770 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1771 security_task_to_inode(task, inode);
1772
1773 out:
1774 return inode;
1775
1776 out_unlock:
1777 iput(inode);
1778 return NULL;
1779 }
1780
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1781 int pid_getattr(const struct path *path, struct kstat *stat,
1782 u32 request_mask, unsigned int query_flags)
1783 {
1784 struct inode *inode = d_inode(path->dentry);
1785 struct pid_namespace *pid = proc_pid_ns(inode);
1786 struct task_struct *task;
1787
1788 generic_fillattr(inode, stat);
1789
1790 stat->uid = GLOBAL_ROOT_UID;
1791 stat->gid = GLOBAL_ROOT_GID;
1792 rcu_read_lock();
1793 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1794 if (task) {
1795 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1796 rcu_read_unlock();
1797 /*
1798 * This doesn't prevent learning whether PID exists,
1799 * it only makes getattr() consistent with readdir().
1800 */
1801 return -ENOENT;
1802 }
1803 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1804 }
1805 rcu_read_unlock();
1806 return 0;
1807 }
1808
1809 /* dentry stuff */
1810
1811 /*
1812 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1813 */
pid_update_inode(struct task_struct * task,struct inode * inode)1814 void pid_update_inode(struct task_struct *task, struct inode *inode)
1815 {
1816 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1817
1818 inode->i_mode &= ~(S_ISUID | S_ISGID);
1819 security_task_to_inode(task, inode);
1820 }
1821
1822 /*
1823 * Rewrite the inode's ownerships here because the owning task may have
1824 * performed a setuid(), etc.
1825 *
1826 */
pid_revalidate(struct dentry * dentry,unsigned int flags)1827 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1828 {
1829 struct inode *inode;
1830 struct task_struct *task;
1831
1832 if (flags & LOOKUP_RCU)
1833 return -ECHILD;
1834
1835 inode = d_inode(dentry);
1836 task = get_proc_task(inode);
1837
1838 if (task) {
1839 pid_update_inode(task, inode);
1840 put_task_struct(task);
1841 return 1;
1842 }
1843 return 0;
1844 }
1845
proc_inode_is_dead(struct inode * inode)1846 static inline bool proc_inode_is_dead(struct inode *inode)
1847 {
1848 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1849 }
1850
pid_delete_dentry(const struct dentry * dentry)1851 int pid_delete_dentry(const struct dentry *dentry)
1852 {
1853 /* Is the task we represent dead?
1854 * If so, then don't put the dentry on the lru list,
1855 * kill it immediately.
1856 */
1857 return proc_inode_is_dead(d_inode(dentry));
1858 }
1859
1860 const struct dentry_operations pid_dentry_operations =
1861 {
1862 .d_revalidate = pid_revalidate,
1863 .d_delete = pid_delete_dentry,
1864 };
1865
1866 /* Lookups */
1867
1868 /*
1869 * Fill a directory entry.
1870 *
1871 * If possible create the dcache entry and derive our inode number and
1872 * file type from dcache entry.
1873 *
1874 * Since all of the proc inode numbers are dynamically generated, the inode
1875 * numbers do not exist until the inode is cache. This means creating the
1876 * the dcache entry in readdir is necessary to keep the inode numbers
1877 * reported by readdir in sync with the inode numbers reported
1878 * by stat.
1879 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)1880 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1881 const char *name, unsigned int len,
1882 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1883 {
1884 struct dentry *child, *dir = file->f_path.dentry;
1885 struct qstr qname = QSTR_INIT(name, len);
1886 struct inode *inode;
1887 unsigned type = DT_UNKNOWN;
1888 ino_t ino = 1;
1889
1890 child = d_hash_and_lookup(dir, &qname);
1891 if (!child) {
1892 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1893 child = d_alloc_parallel(dir, &qname, &wq);
1894 if (IS_ERR(child))
1895 goto end_instantiate;
1896 if (d_in_lookup(child)) {
1897 struct dentry *res;
1898 res = instantiate(child, task, ptr);
1899 d_lookup_done(child);
1900 if (unlikely(res)) {
1901 dput(child);
1902 child = res;
1903 if (IS_ERR(child))
1904 goto end_instantiate;
1905 }
1906 }
1907 }
1908 inode = d_inode(child);
1909 ino = inode->i_ino;
1910 type = inode->i_mode >> 12;
1911 dput(child);
1912 end_instantiate:
1913 return dir_emit(ctx, name, len, ino, type);
1914 }
1915
1916 /*
1917 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1918 * which represent vma start and end addresses.
1919 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)1920 static int dname_to_vma_addr(struct dentry *dentry,
1921 unsigned long *start, unsigned long *end)
1922 {
1923 const char *str = dentry->d_name.name;
1924 unsigned long long sval, eval;
1925 unsigned int len;
1926
1927 if (str[0] == '0' && str[1] != '-')
1928 return -EINVAL;
1929 len = _parse_integer(str, 16, &sval);
1930 if (len & KSTRTOX_OVERFLOW)
1931 return -EINVAL;
1932 if (sval != (unsigned long)sval)
1933 return -EINVAL;
1934 str += len;
1935
1936 if (*str != '-')
1937 return -EINVAL;
1938 str++;
1939
1940 if (str[0] == '0' && str[1])
1941 return -EINVAL;
1942 len = _parse_integer(str, 16, &eval);
1943 if (len & KSTRTOX_OVERFLOW)
1944 return -EINVAL;
1945 if (eval != (unsigned long)eval)
1946 return -EINVAL;
1947 str += len;
1948
1949 if (*str != '\0')
1950 return -EINVAL;
1951
1952 *start = sval;
1953 *end = eval;
1954
1955 return 0;
1956 }
1957
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)1958 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1959 {
1960 unsigned long vm_start, vm_end;
1961 bool exact_vma_exists = false;
1962 struct mm_struct *mm = NULL;
1963 struct task_struct *task;
1964 struct inode *inode;
1965 int status = 0;
1966
1967 if (flags & LOOKUP_RCU)
1968 return -ECHILD;
1969
1970 inode = d_inode(dentry);
1971 task = get_proc_task(inode);
1972 if (!task)
1973 goto out_notask;
1974
1975 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1976 if (IS_ERR_OR_NULL(mm))
1977 goto out;
1978
1979 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1980 status = down_read_killable(&mm->mmap_sem);
1981 if (!status) {
1982 exact_vma_exists = !!find_exact_vma(mm, vm_start,
1983 vm_end);
1984 up_read(&mm->mmap_sem);
1985 }
1986 }
1987
1988 mmput(mm);
1989
1990 if (exact_vma_exists) {
1991 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1992
1993 security_task_to_inode(task, inode);
1994 status = 1;
1995 }
1996
1997 out:
1998 put_task_struct(task);
1999
2000 out_notask:
2001 return status;
2002 }
2003
2004 static const struct dentry_operations tid_map_files_dentry_operations = {
2005 .d_revalidate = map_files_d_revalidate,
2006 .d_delete = pid_delete_dentry,
2007 };
2008
map_files_get_link(struct dentry * dentry,struct path * path)2009 static int map_files_get_link(struct dentry *dentry, struct path *path)
2010 {
2011 unsigned long vm_start, vm_end;
2012 struct vm_area_struct *vma;
2013 struct task_struct *task;
2014 struct mm_struct *mm;
2015 int rc;
2016
2017 rc = -ENOENT;
2018 task = get_proc_task(d_inode(dentry));
2019 if (!task)
2020 goto out;
2021
2022 mm = get_task_mm(task);
2023 put_task_struct(task);
2024 if (!mm)
2025 goto out;
2026
2027 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2028 if (rc)
2029 goto out_mmput;
2030
2031 rc = down_read_killable(&mm->mmap_sem);
2032 if (rc)
2033 goto out_mmput;
2034
2035 rc = -ENOENT;
2036 vma = find_exact_vma(mm, vm_start, vm_end);
2037 if (vma && vma->vm_file) {
2038 *path = vma->vm_file->f_path;
2039 path_get(path);
2040 rc = 0;
2041 }
2042 up_read(&mm->mmap_sem);
2043
2044 out_mmput:
2045 mmput(mm);
2046 out:
2047 return rc;
2048 }
2049
2050 struct map_files_info {
2051 unsigned long start;
2052 unsigned long end;
2053 fmode_t mode;
2054 };
2055
2056 /*
2057 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2058 * symlinks may be used to bypass permissions on ancestor directories in the
2059 * path to the file in question.
2060 */
2061 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2062 proc_map_files_get_link(struct dentry *dentry,
2063 struct inode *inode,
2064 struct delayed_call *done)
2065 {
2066 if (!capable(CAP_SYS_ADMIN))
2067 return ERR_PTR(-EPERM);
2068
2069 return proc_pid_get_link(dentry, inode, done);
2070 }
2071
2072 /*
2073 * Identical to proc_pid_link_inode_operations except for get_link()
2074 */
2075 static const struct inode_operations proc_map_files_link_inode_operations = {
2076 .readlink = proc_pid_readlink,
2077 .get_link = proc_map_files_get_link,
2078 .setattr = proc_setattr,
2079 };
2080
2081 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2082 proc_map_files_instantiate(struct dentry *dentry,
2083 struct task_struct *task, const void *ptr)
2084 {
2085 fmode_t mode = (fmode_t)(unsigned long)ptr;
2086 struct proc_inode *ei;
2087 struct inode *inode;
2088
2089 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2090 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2091 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2092 if (!inode)
2093 return ERR_PTR(-ENOENT);
2094
2095 ei = PROC_I(inode);
2096 ei->op.proc_get_link = map_files_get_link;
2097
2098 inode->i_op = &proc_map_files_link_inode_operations;
2099 inode->i_size = 64;
2100
2101 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2102 return d_splice_alias(inode, dentry);
2103 }
2104
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2105 static struct dentry *proc_map_files_lookup(struct inode *dir,
2106 struct dentry *dentry, unsigned int flags)
2107 {
2108 unsigned long vm_start, vm_end;
2109 struct vm_area_struct *vma;
2110 struct task_struct *task;
2111 struct dentry *result;
2112 struct mm_struct *mm;
2113
2114 result = ERR_PTR(-ENOENT);
2115 task = get_proc_task(dir);
2116 if (!task)
2117 goto out;
2118
2119 result = ERR_PTR(-EACCES);
2120 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2121 goto out_put_task;
2122
2123 result = ERR_PTR(-ENOENT);
2124 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2125 goto out_put_task;
2126
2127 mm = get_task_mm(task);
2128 if (!mm)
2129 goto out_put_task;
2130
2131 result = ERR_PTR(-EINTR);
2132 if (down_read_killable(&mm->mmap_sem))
2133 goto out_put_mm;
2134
2135 result = ERR_PTR(-ENOENT);
2136 vma = find_exact_vma(mm, vm_start, vm_end);
2137 if (!vma)
2138 goto out_no_vma;
2139
2140 if (vma->vm_file)
2141 result = proc_map_files_instantiate(dentry, task,
2142 (void *)(unsigned long)vma->vm_file->f_mode);
2143
2144 out_no_vma:
2145 up_read(&mm->mmap_sem);
2146 out_put_mm:
2147 mmput(mm);
2148 out_put_task:
2149 put_task_struct(task);
2150 out:
2151 return result;
2152 }
2153
2154 static const struct inode_operations proc_map_files_inode_operations = {
2155 .lookup = proc_map_files_lookup,
2156 .permission = proc_fd_permission,
2157 .setattr = proc_setattr,
2158 };
2159
2160 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2161 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2162 {
2163 struct vm_area_struct *vma;
2164 struct task_struct *task;
2165 struct mm_struct *mm;
2166 unsigned long nr_files, pos, i;
2167 struct flex_array *fa = NULL;
2168 struct map_files_info info;
2169 struct map_files_info *p;
2170 int ret;
2171
2172 ret = -ENOENT;
2173 task = get_proc_task(file_inode(file));
2174 if (!task)
2175 goto out;
2176
2177 ret = -EACCES;
2178 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2179 goto out_put_task;
2180
2181 ret = 0;
2182 if (!dir_emit_dots(file, ctx))
2183 goto out_put_task;
2184
2185 mm = get_task_mm(task);
2186 if (!mm)
2187 goto out_put_task;
2188
2189 ret = down_read_killable(&mm->mmap_sem);
2190 if (ret) {
2191 mmput(mm);
2192 goto out_put_task;
2193 }
2194
2195 nr_files = 0;
2196
2197 /*
2198 * We need two passes here:
2199 *
2200 * 1) Collect vmas of mapped files with mmap_sem taken
2201 * 2) Release mmap_sem and instantiate entries
2202 *
2203 * otherwise we get lockdep complained, since filldir()
2204 * routine might require mmap_sem taken in might_fault().
2205 */
2206
2207 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2208 if (vma->vm_file && ++pos > ctx->pos)
2209 nr_files++;
2210 }
2211
2212 if (nr_files) {
2213 fa = flex_array_alloc(sizeof(info), nr_files,
2214 GFP_KERNEL);
2215 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2216 GFP_KERNEL)) {
2217 ret = -ENOMEM;
2218 if (fa)
2219 flex_array_free(fa);
2220 up_read(&mm->mmap_sem);
2221 mmput(mm);
2222 goto out_put_task;
2223 }
2224 for (i = 0, vma = mm->mmap, pos = 2; vma;
2225 vma = vma->vm_next) {
2226 if (!vma->vm_file)
2227 continue;
2228 if (++pos <= ctx->pos)
2229 continue;
2230
2231 info.start = vma->vm_start;
2232 info.end = vma->vm_end;
2233 info.mode = vma->vm_file->f_mode;
2234 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2235 BUG();
2236 }
2237 }
2238 up_read(&mm->mmap_sem);
2239 mmput(mm);
2240
2241 for (i = 0; i < nr_files; i++) {
2242 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2243 unsigned int len;
2244
2245 p = flex_array_get(fa, i);
2246 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2247 if (!proc_fill_cache(file, ctx,
2248 buf, len,
2249 proc_map_files_instantiate,
2250 task,
2251 (void *)(unsigned long)p->mode))
2252 break;
2253 ctx->pos++;
2254 }
2255 if (fa)
2256 flex_array_free(fa);
2257
2258 out_put_task:
2259 put_task_struct(task);
2260 out:
2261 return ret;
2262 }
2263
2264 static const struct file_operations proc_map_files_operations = {
2265 .read = generic_read_dir,
2266 .iterate_shared = proc_map_files_readdir,
2267 .llseek = generic_file_llseek,
2268 };
2269
2270 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2271 struct timers_private {
2272 struct pid *pid;
2273 struct task_struct *task;
2274 struct sighand_struct *sighand;
2275 struct pid_namespace *ns;
2276 unsigned long flags;
2277 };
2278
timers_start(struct seq_file * m,loff_t * pos)2279 static void *timers_start(struct seq_file *m, loff_t *pos)
2280 {
2281 struct timers_private *tp = m->private;
2282
2283 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2284 if (!tp->task)
2285 return ERR_PTR(-ESRCH);
2286
2287 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2288 if (!tp->sighand)
2289 return ERR_PTR(-ESRCH);
2290
2291 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2292 }
2293
timers_next(struct seq_file * m,void * v,loff_t * pos)2294 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2295 {
2296 struct timers_private *tp = m->private;
2297 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2298 }
2299
timers_stop(struct seq_file * m,void * v)2300 static void timers_stop(struct seq_file *m, void *v)
2301 {
2302 struct timers_private *tp = m->private;
2303
2304 if (tp->sighand) {
2305 unlock_task_sighand(tp->task, &tp->flags);
2306 tp->sighand = NULL;
2307 }
2308
2309 if (tp->task) {
2310 put_task_struct(tp->task);
2311 tp->task = NULL;
2312 }
2313 }
2314
show_timer(struct seq_file * m,void * v)2315 static int show_timer(struct seq_file *m, void *v)
2316 {
2317 struct k_itimer *timer;
2318 struct timers_private *tp = m->private;
2319 int notify;
2320 static const char * const nstr[] = {
2321 [SIGEV_SIGNAL] = "signal",
2322 [SIGEV_NONE] = "none",
2323 [SIGEV_THREAD] = "thread",
2324 };
2325
2326 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2327 notify = timer->it_sigev_notify;
2328
2329 seq_printf(m, "ID: %d\n", timer->it_id);
2330 seq_printf(m, "signal: %d/%px\n",
2331 timer->sigq->info.si_signo,
2332 timer->sigq->info.si_value.sival_ptr);
2333 seq_printf(m, "notify: %s/%s.%d\n",
2334 nstr[notify & ~SIGEV_THREAD_ID],
2335 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2336 pid_nr_ns(timer->it_pid, tp->ns));
2337 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2338
2339 return 0;
2340 }
2341
2342 static const struct seq_operations proc_timers_seq_ops = {
2343 .start = timers_start,
2344 .next = timers_next,
2345 .stop = timers_stop,
2346 .show = show_timer,
2347 };
2348
proc_timers_open(struct inode * inode,struct file * file)2349 static int proc_timers_open(struct inode *inode, struct file *file)
2350 {
2351 struct timers_private *tp;
2352
2353 tp = __seq_open_private(file, &proc_timers_seq_ops,
2354 sizeof(struct timers_private));
2355 if (!tp)
2356 return -ENOMEM;
2357
2358 tp->pid = proc_pid(inode);
2359 tp->ns = proc_pid_ns(inode);
2360 return 0;
2361 }
2362
2363 static const struct file_operations proc_timers_operations = {
2364 .open = proc_timers_open,
2365 .read = seq_read,
2366 .llseek = seq_lseek,
2367 .release = seq_release_private,
2368 };
2369 #endif
2370
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2371 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2372 size_t count, loff_t *offset)
2373 {
2374 struct inode *inode = file_inode(file);
2375 struct task_struct *p;
2376 u64 slack_ns;
2377 int err;
2378
2379 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2380 if (err < 0)
2381 return err;
2382
2383 p = get_proc_task(inode);
2384 if (!p)
2385 return -ESRCH;
2386
2387 if (p != current) {
2388 if (!capable(CAP_SYS_NICE)) {
2389 count = -EPERM;
2390 goto out;
2391 }
2392
2393 err = security_task_setscheduler(p);
2394 if (err) {
2395 count = err;
2396 goto out;
2397 }
2398 }
2399
2400 task_lock(p);
2401 if (slack_ns == 0)
2402 p->timer_slack_ns = p->default_timer_slack_ns;
2403 else
2404 p->timer_slack_ns = slack_ns;
2405 task_unlock(p);
2406
2407 out:
2408 put_task_struct(p);
2409
2410 return count;
2411 }
2412
timerslack_ns_show(struct seq_file * m,void * v)2413 static int timerslack_ns_show(struct seq_file *m, void *v)
2414 {
2415 struct inode *inode = m->private;
2416 struct task_struct *p;
2417 int err = 0;
2418
2419 p = get_proc_task(inode);
2420 if (!p)
2421 return -ESRCH;
2422
2423 if (p != current) {
2424
2425 if (!capable(CAP_SYS_NICE)) {
2426 err = -EPERM;
2427 goto out;
2428 }
2429 err = security_task_getscheduler(p);
2430 if (err)
2431 goto out;
2432 }
2433
2434 task_lock(p);
2435 seq_printf(m, "%llu\n", p->timer_slack_ns);
2436 task_unlock(p);
2437
2438 out:
2439 put_task_struct(p);
2440
2441 return err;
2442 }
2443
timerslack_ns_open(struct inode * inode,struct file * filp)2444 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2445 {
2446 return single_open(filp, timerslack_ns_show, inode);
2447 }
2448
2449 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2450 .open = timerslack_ns_open,
2451 .read = seq_read,
2452 .write = timerslack_ns_write,
2453 .llseek = seq_lseek,
2454 .release = single_release,
2455 };
2456
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2457 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2458 struct task_struct *task, const void *ptr)
2459 {
2460 const struct pid_entry *p = ptr;
2461 struct inode *inode;
2462 struct proc_inode *ei;
2463
2464 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2465 if (!inode)
2466 return ERR_PTR(-ENOENT);
2467
2468 ei = PROC_I(inode);
2469 if (S_ISDIR(inode->i_mode))
2470 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2471 if (p->iop)
2472 inode->i_op = p->iop;
2473 if (p->fop)
2474 inode->i_fop = p->fop;
2475 ei->op = p->op;
2476 pid_update_inode(task, inode);
2477 d_set_d_op(dentry, &pid_dentry_operations);
2478 return d_splice_alias(inode, dentry);
2479 }
2480
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * ents,unsigned int nents)2481 static struct dentry *proc_pident_lookup(struct inode *dir,
2482 struct dentry *dentry,
2483 const struct pid_entry *ents,
2484 unsigned int nents)
2485 {
2486 struct task_struct *task = get_proc_task(dir);
2487 const struct pid_entry *p, *last;
2488 struct dentry *res = ERR_PTR(-ENOENT);
2489
2490 if (!task)
2491 goto out_no_task;
2492
2493 /*
2494 * Yes, it does not scale. And it should not. Don't add
2495 * new entries into /proc/<tgid>/ without very good reasons.
2496 */
2497 last = &ents[nents];
2498 for (p = ents; p < last; p++) {
2499 if (p->len != dentry->d_name.len)
2500 continue;
2501 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2502 res = proc_pident_instantiate(dentry, task, p);
2503 break;
2504 }
2505 }
2506 put_task_struct(task);
2507 out_no_task:
2508 return res;
2509 }
2510
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2511 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2512 const struct pid_entry *ents, unsigned int nents)
2513 {
2514 struct task_struct *task = get_proc_task(file_inode(file));
2515 const struct pid_entry *p;
2516
2517 if (!task)
2518 return -ENOENT;
2519
2520 if (!dir_emit_dots(file, ctx))
2521 goto out;
2522
2523 if (ctx->pos >= nents + 2)
2524 goto out;
2525
2526 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2527 if (!proc_fill_cache(file, ctx, p->name, p->len,
2528 proc_pident_instantiate, task, p))
2529 break;
2530 ctx->pos++;
2531 }
2532 out:
2533 put_task_struct(task);
2534 return 0;
2535 }
2536
2537 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2538 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2539 {
2540 file->private_data = NULL;
2541 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2542 return 0;
2543 }
2544
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2545 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2546 size_t count, loff_t *ppos)
2547 {
2548 struct inode * inode = file_inode(file);
2549 char *p = NULL;
2550 ssize_t length;
2551 struct task_struct *task = get_proc_task(inode);
2552
2553 if (!task)
2554 return -ESRCH;
2555
2556 length = security_getprocattr(task,
2557 (char*)file->f_path.dentry->d_name.name,
2558 &p);
2559 put_task_struct(task);
2560 if (length > 0)
2561 length = simple_read_from_buffer(buf, count, ppos, p, length);
2562 kfree(p);
2563 return length;
2564 }
2565
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2566 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2567 size_t count, loff_t *ppos)
2568 {
2569 struct inode * inode = file_inode(file);
2570 struct task_struct *task;
2571 void *page;
2572 int rv;
2573
2574 /* A task may only write when it was the opener. */
2575 if (file->private_data != current->mm)
2576 return -EPERM;
2577
2578 rcu_read_lock();
2579 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2580 if (!task) {
2581 rcu_read_unlock();
2582 return -ESRCH;
2583 }
2584 /* A task may only write its own attributes. */
2585 if (current != task) {
2586 rcu_read_unlock();
2587 return -EACCES;
2588 }
2589 /* Prevent changes to overridden credentials. */
2590 if (current_cred() != current_real_cred()) {
2591 rcu_read_unlock();
2592 return -EBUSY;
2593 }
2594 rcu_read_unlock();
2595
2596 if (count > PAGE_SIZE)
2597 count = PAGE_SIZE;
2598
2599 /* No partial writes. */
2600 if (*ppos != 0)
2601 return -EINVAL;
2602
2603 page = memdup_user(buf, count);
2604 if (IS_ERR(page)) {
2605 rv = PTR_ERR(page);
2606 goto out;
2607 }
2608
2609 /* Guard against adverse ptrace interaction */
2610 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2611 if (rv < 0)
2612 goto out_free;
2613
2614 rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2615 mutex_unlock(¤t->signal->cred_guard_mutex);
2616 out_free:
2617 kfree(page);
2618 out:
2619 return rv;
2620 }
2621
2622 static const struct file_operations proc_pid_attr_operations = {
2623 .open = proc_pid_attr_open,
2624 .read = proc_pid_attr_read,
2625 .write = proc_pid_attr_write,
2626 .llseek = generic_file_llseek,
2627 .release = mem_release,
2628 };
2629
2630 static const struct pid_entry attr_dir_stuff[] = {
2631 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2632 REG("prev", S_IRUGO, proc_pid_attr_operations),
2633 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2634 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2635 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2636 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2637 };
2638
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2639 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2640 {
2641 return proc_pident_readdir(file, ctx,
2642 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2643 }
2644
2645 static const struct file_operations proc_attr_dir_operations = {
2646 .read = generic_read_dir,
2647 .iterate_shared = proc_attr_dir_readdir,
2648 .llseek = generic_file_llseek,
2649 };
2650
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2651 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2652 struct dentry *dentry, unsigned int flags)
2653 {
2654 return proc_pident_lookup(dir, dentry,
2655 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2656 }
2657
2658 static const struct inode_operations proc_attr_dir_inode_operations = {
2659 .lookup = proc_attr_dir_lookup,
2660 .getattr = pid_getattr,
2661 .setattr = proc_setattr,
2662 };
2663
2664 #endif
2665
2666 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2667 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2668 size_t count, loff_t *ppos)
2669 {
2670 struct task_struct *task = get_proc_task(file_inode(file));
2671 struct mm_struct *mm;
2672 char buffer[PROC_NUMBUF];
2673 size_t len;
2674 int ret;
2675
2676 if (!task)
2677 return -ESRCH;
2678
2679 ret = 0;
2680 mm = get_task_mm(task);
2681 if (mm) {
2682 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2683 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2684 MMF_DUMP_FILTER_SHIFT));
2685 mmput(mm);
2686 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2687 }
2688
2689 put_task_struct(task);
2690
2691 return ret;
2692 }
2693
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2694 static ssize_t proc_coredump_filter_write(struct file *file,
2695 const char __user *buf,
2696 size_t count,
2697 loff_t *ppos)
2698 {
2699 struct task_struct *task;
2700 struct mm_struct *mm;
2701 unsigned int val;
2702 int ret;
2703 int i;
2704 unsigned long mask;
2705
2706 ret = kstrtouint_from_user(buf, count, 0, &val);
2707 if (ret < 0)
2708 return ret;
2709
2710 ret = -ESRCH;
2711 task = get_proc_task(file_inode(file));
2712 if (!task)
2713 goto out_no_task;
2714
2715 mm = get_task_mm(task);
2716 if (!mm)
2717 goto out_no_mm;
2718 ret = 0;
2719
2720 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2721 if (val & mask)
2722 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2723 else
2724 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2725 }
2726
2727 mmput(mm);
2728 out_no_mm:
2729 put_task_struct(task);
2730 out_no_task:
2731 if (ret < 0)
2732 return ret;
2733 return count;
2734 }
2735
2736 static const struct file_operations proc_coredump_filter_operations = {
2737 .read = proc_coredump_filter_read,
2738 .write = proc_coredump_filter_write,
2739 .llseek = generic_file_llseek,
2740 };
2741 #endif
2742
2743 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2744 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2745 {
2746 struct task_io_accounting acct = task->ioac;
2747 unsigned long flags;
2748 int result;
2749
2750 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2751 if (result)
2752 return result;
2753
2754 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2755 result = -EACCES;
2756 goto out_unlock;
2757 }
2758
2759 if (whole && lock_task_sighand(task, &flags)) {
2760 struct task_struct *t = task;
2761
2762 task_io_accounting_add(&acct, &task->signal->ioac);
2763 while_each_thread(task, t)
2764 task_io_accounting_add(&acct, &t->ioac);
2765
2766 unlock_task_sighand(task, &flags);
2767 }
2768 seq_printf(m,
2769 "rchar: %llu\n"
2770 "wchar: %llu\n"
2771 "syscr: %llu\n"
2772 "syscw: %llu\n"
2773 "read_bytes: %llu\n"
2774 "write_bytes: %llu\n"
2775 "cancelled_write_bytes: %llu\n",
2776 (unsigned long long)acct.rchar,
2777 (unsigned long long)acct.wchar,
2778 (unsigned long long)acct.syscr,
2779 (unsigned long long)acct.syscw,
2780 (unsigned long long)acct.read_bytes,
2781 (unsigned long long)acct.write_bytes,
2782 (unsigned long long)acct.cancelled_write_bytes);
2783 result = 0;
2784
2785 out_unlock:
2786 mutex_unlock(&task->signal->cred_guard_mutex);
2787 return result;
2788 }
2789
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2790 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2791 struct pid *pid, struct task_struct *task)
2792 {
2793 return do_io_accounting(task, m, 0);
2794 }
2795
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2796 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2797 struct pid *pid, struct task_struct *task)
2798 {
2799 return do_io_accounting(task, m, 1);
2800 }
2801 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2802
2803 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)2804 static int proc_id_map_open(struct inode *inode, struct file *file,
2805 const struct seq_operations *seq_ops)
2806 {
2807 struct user_namespace *ns = NULL;
2808 struct task_struct *task;
2809 struct seq_file *seq;
2810 int ret = -EINVAL;
2811
2812 task = get_proc_task(inode);
2813 if (task) {
2814 rcu_read_lock();
2815 ns = get_user_ns(task_cred_xxx(task, user_ns));
2816 rcu_read_unlock();
2817 put_task_struct(task);
2818 }
2819 if (!ns)
2820 goto err;
2821
2822 ret = seq_open(file, seq_ops);
2823 if (ret)
2824 goto err_put_ns;
2825
2826 seq = file->private_data;
2827 seq->private = ns;
2828
2829 return 0;
2830 err_put_ns:
2831 put_user_ns(ns);
2832 err:
2833 return ret;
2834 }
2835
proc_id_map_release(struct inode * inode,struct file * file)2836 static int proc_id_map_release(struct inode *inode, struct file *file)
2837 {
2838 struct seq_file *seq = file->private_data;
2839 struct user_namespace *ns = seq->private;
2840 put_user_ns(ns);
2841 return seq_release(inode, file);
2842 }
2843
proc_uid_map_open(struct inode * inode,struct file * file)2844 static int proc_uid_map_open(struct inode *inode, struct file *file)
2845 {
2846 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2847 }
2848
proc_gid_map_open(struct inode * inode,struct file * file)2849 static int proc_gid_map_open(struct inode *inode, struct file *file)
2850 {
2851 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2852 }
2853
proc_projid_map_open(struct inode * inode,struct file * file)2854 static int proc_projid_map_open(struct inode *inode, struct file *file)
2855 {
2856 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2857 }
2858
2859 static const struct file_operations proc_uid_map_operations = {
2860 .open = proc_uid_map_open,
2861 .write = proc_uid_map_write,
2862 .read = seq_read,
2863 .llseek = seq_lseek,
2864 .release = proc_id_map_release,
2865 };
2866
2867 static const struct file_operations proc_gid_map_operations = {
2868 .open = proc_gid_map_open,
2869 .write = proc_gid_map_write,
2870 .read = seq_read,
2871 .llseek = seq_lseek,
2872 .release = proc_id_map_release,
2873 };
2874
2875 static const struct file_operations proc_projid_map_operations = {
2876 .open = proc_projid_map_open,
2877 .write = proc_projid_map_write,
2878 .read = seq_read,
2879 .llseek = seq_lseek,
2880 .release = proc_id_map_release,
2881 };
2882
proc_setgroups_open(struct inode * inode,struct file * file)2883 static int proc_setgroups_open(struct inode *inode, struct file *file)
2884 {
2885 struct user_namespace *ns = NULL;
2886 struct task_struct *task;
2887 int ret;
2888
2889 ret = -ESRCH;
2890 task = get_proc_task(inode);
2891 if (task) {
2892 rcu_read_lock();
2893 ns = get_user_ns(task_cred_xxx(task, user_ns));
2894 rcu_read_unlock();
2895 put_task_struct(task);
2896 }
2897 if (!ns)
2898 goto err;
2899
2900 if (file->f_mode & FMODE_WRITE) {
2901 ret = -EACCES;
2902 if (!ns_capable(ns, CAP_SYS_ADMIN))
2903 goto err_put_ns;
2904 }
2905
2906 ret = single_open(file, &proc_setgroups_show, ns);
2907 if (ret)
2908 goto err_put_ns;
2909
2910 return 0;
2911 err_put_ns:
2912 put_user_ns(ns);
2913 err:
2914 return ret;
2915 }
2916
proc_setgroups_release(struct inode * inode,struct file * file)2917 static int proc_setgroups_release(struct inode *inode, struct file *file)
2918 {
2919 struct seq_file *seq = file->private_data;
2920 struct user_namespace *ns = seq->private;
2921 int ret = single_release(inode, file);
2922 put_user_ns(ns);
2923 return ret;
2924 }
2925
2926 static const struct file_operations proc_setgroups_operations = {
2927 .open = proc_setgroups_open,
2928 .write = proc_setgroups_write,
2929 .read = seq_read,
2930 .llseek = seq_lseek,
2931 .release = proc_setgroups_release,
2932 };
2933 #endif /* CONFIG_USER_NS */
2934
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2935 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2936 struct pid *pid, struct task_struct *task)
2937 {
2938 int err = lock_trace(task);
2939 if (!err) {
2940 seq_printf(m, "%08x\n", task->personality);
2941 unlock_trace(task);
2942 }
2943 return err;
2944 }
2945
2946 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2947 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2948 struct pid *pid, struct task_struct *task)
2949 {
2950 seq_printf(m, "%d\n", task->patch_state);
2951 return 0;
2952 }
2953 #endif /* CONFIG_LIVEPATCH */
2954
2955 /*
2956 * Thread groups
2957 */
2958 static const struct file_operations proc_task_operations;
2959 static const struct inode_operations proc_task_inode_operations;
2960
2961 static const struct pid_entry tgid_base_stuff[] = {
2962 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2963 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2964 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2965 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2966 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2967 #ifdef CONFIG_NET
2968 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2969 #endif
2970 REG("environ", S_IRUSR, proc_environ_operations),
2971 REG("auxv", S_IRUSR, proc_auxv_operations),
2972 ONE("status", S_IRUGO, proc_pid_status),
2973 ONE("personality", S_IRUSR, proc_pid_personality),
2974 ONE("limits", S_IRUGO, proc_pid_limits),
2975 #ifdef CONFIG_SCHED_DEBUG
2976 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2977 #endif
2978 #ifdef CONFIG_SCHED_AUTOGROUP
2979 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2980 #endif
2981 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2982 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2983 ONE("syscall", S_IRUSR, proc_pid_syscall),
2984 #endif
2985 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2986 ONE("stat", S_IRUGO, proc_tgid_stat),
2987 ONE("statm", S_IRUGO, proc_pid_statm),
2988 REG("maps", S_IRUGO, proc_pid_maps_operations),
2989 #ifdef CONFIG_NUMA
2990 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2991 #endif
2992 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2993 LNK("cwd", proc_cwd_link),
2994 LNK("root", proc_root_link),
2995 LNK("exe", proc_exe_link),
2996 REG("mounts", S_IRUGO, proc_mounts_operations),
2997 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2998 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2999 #ifdef CONFIG_PROC_PAGE_MONITOR
3000 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3001 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3002 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3003 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3004 #endif
3005 #ifdef CONFIG_SECURITY
3006 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3007 #endif
3008 #ifdef CONFIG_KALLSYMS
3009 ONE("wchan", S_IRUGO, proc_pid_wchan),
3010 #endif
3011 #ifdef CONFIG_STACKTRACE
3012 ONE("stack", S_IRUSR, proc_pid_stack),
3013 #endif
3014 #ifdef CONFIG_SCHED_INFO
3015 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3016 #endif
3017 #ifdef CONFIG_LATENCYTOP
3018 REG("latency", S_IRUGO, proc_lstats_operations),
3019 #endif
3020 #ifdef CONFIG_PROC_PID_CPUSET
3021 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3022 #endif
3023 #ifdef CONFIG_CGROUPS
3024 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3025 #endif
3026 ONE("oom_score", S_IRUGO, proc_oom_score),
3027 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3028 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3029 #ifdef CONFIG_AUDITSYSCALL
3030 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3031 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3032 #endif
3033 #ifdef CONFIG_FAULT_INJECTION
3034 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3035 REG("fail-nth", 0644, proc_fail_nth_operations),
3036 #endif
3037 #ifdef CONFIG_ELF_CORE
3038 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3039 #endif
3040 #ifdef CONFIG_TASK_IO_ACCOUNTING
3041 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3042 #endif
3043 #ifdef CONFIG_USER_NS
3044 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3045 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3046 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3047 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3048 #endif
3049 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3050 REG("timers", S_IRUGO, proc_timers_operations),
3051 #endif
3052 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3053 #ifdef CONFIG_LIVEPATCH
3054 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3055 #endif
3056 };
3057
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3058 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3059 {
3060 return proc_pident_readdir(file, ctx,
3061 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3062 }
3063
3064 static const struct file_operations proc_tgid_base_operations = {
3065 .read = generic_read_dir,
3066 .iterate_shared = proc_tgid_base_readdir,
3067 .llseek = generic_file_llseek,
3068 };
3069
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3070 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3071 {
3072 return proc_pident_lookup(dir, dentry,
3073 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3074 }
3075
3076 static const struct inode_operations proc_tgid_base_inode_operations = {
3077 .lookup = proc_tgid_base_lookup,
3078 .getattr = pid_getattr,
3079 .setattr = proc_setattr,
3080 .permission = proc_pid_permission,
3081 };
3082
proc_flush_task_mnt(struct vfsmount * mnt,pid_t pid,pid_t tgid)3083 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3084 {
3085 struct dentry *dentry, *leader, *dir;
3086 char buf[10 + 1];
3087 struct qstr name;
3088
3089 name.name = buf;
3090 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3091 /* no ->d_hash() rejects on procfs */
3092 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3093 if (dentry) {
3094 d_invalidate(dentry);
3095 dput(dentry);
3096 }
3097
3098 if (pid == tgid)
3099 return;
3100
3101 name.name = buf;
3102 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3103 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3104 if (!leader)
3105 goto out;
3106
3107 name.name = "task";
3108 name.len = strlen(name.name);
3109 dir = d_hash_and_lookup(leader, &name);
3110 if (!dir)
3111 goto out_put_leader;
3112
3113 name.name = buf;
3114 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3115 dentry = d_hash_and_lookup(dir, &name);
3116 if (dentry) {
3117 d_invalidate(dentry);
3118 dput(dentry);
3119 }
3120
3121 dput(dir);
3122 out_put_leader:
3123 dput(leader);
3124 out:
3125 return;
3126 }
3127
3128 /**
3129 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3130 * @task: task that should be flushed.
3131 *
3132 * When flushing dentries from proc, one needs to flush them from global
3133 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3134 * in. This call is supposed to do all of this job.
3135 *
3136 * Looks in the dcache for
3137 * /proc/@pid
3138 * /proc/@tgid/task/@pid
3139 * if either directory is present flushes it and all of it'ts children
3140 * from the dcache.
3141 *
3142 * It is safe and reasonable to cache /proc entries for a task until
3143 * that task exits. After that they just clog up the dcache with
3144 * useless entries, possibly causing useful dcache entries to be
3145 * flushed instead. This routine is proved to flush those useless
3146 * dcache entries at process exit time.
3147 *
3148 * NOTE: This routine is just an optimization so it does not guarantee
3149 * that no dcache entries will exist at process exit time it
3150 * just makes it very unlikely that any will persist.
3151 */
3152
proc_flush_task(struct task_struct * task)3153 void proc_flush_task(struct task_struct *task)
3154 {
3155 int i;
3156 struct pid *pid, *tgid;
3157 struct upid *upid;
3158
3159 pid = task_pid(task);
3160 tgid = task_tgid(task);
3161
3162 for (i = 0; i <= pid->level; i++) {
3163 upid = &pid->numbers[i];
3164 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3165 tgid->numbers[i].nr);
3166 }
3167 }
3168
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3169 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3170 struct task_struct *task, const void *ptr)
3171 {
3172 struct inode *inode;
3173
3174 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3175 if (!inode)
3176 return ERR_PTR(-ENOENT);
3177
3178 inode->i_op = &proc_tgid_base_inode_operations;
3179 inode->i_fop = &proc_tgid_base_operations;
3180 inode->i_flags|=S_IMMUTABLE;
3181
3182 set_nlink(inode, nlink_tgid);
3183 pid_update_inode(task, inode);
3184
3185 d_set_d_op(dentry, &pid_dentry_operations);
3186 return d_splice_alias(inode, dentry);
3187 }
3188
proc_pid_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3189 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3190 {
3191 struct task_struct *task;
3192 unsigned tgid;
3193 struct pid_namespace *ns;
3194 struct dentry *result = ERR_PTR(-ENOENT);
3195
3196 tgid = name_to_int(&dentry->d_name);
3197 if (tgid == ~0U)
3198 goto out;
3199
3200 ns = dentry->d_sb->s_fs_info;
3201 rcu_read_lock();
3202 task = find_task_by_pid_ns(tgid, ns);
3203 if (task)
3204 get_task_struct(task);
3205 rcu_read_unlock();
3206 if (!task)
3207 goto out;
3208
3209 result = proc_pid_instantiate(dentry, task, NULL);
3210 put_task_struct(task);
3211 out:
3212 return result;
3213 }
3214
3215 /*
3216 * Find the first task with tgid >= tgid
3217 *
3218 */
3219 struct tgid_iter {
3220 unsigned int tgid;
3221 struct task_struct *task;
3222 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3223 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3224 {
3225 struct pid *pid;
3226
3227 if (iter.task)
3228 put_task_struct(iter.task);
3229 rcu_read_lock();
3230 retry:
3231 iter.task = NULL;
3232 pid = find_ge_pid(iter.tgid, ns);
3233 if (pid) {
3234 iter.tgid = pid_nr_ns(pid, ns);
3235 iter.task = pid_task(pid, PIDTYPE_PID);
3236 /* What we to know is if the pid we have find is the
3237 * pid of a thread_group_leader. Testing for task
3238 * being a thread_group_leader is the obvious thing
3239 * todo but there is a window when it fails, due to
3240 * the pid transfer logic in de_thread.
3241 *
3242 * So we perform the straight forward test of seeing
3243 * if the pid we have found is the pid of a thread
3244 * group leader, and don't worry if the task we have
3245 * found doesn't happen to be a thread group leader.
3246 * As we don't care in the case of readdir.
3247 */
3248 if (!iter.task || !has_group_leader_pid(iter.task)) {
3249 iter.tgid += 1;
3250 goto retry;
3251 }
3252 get_task_struct(iter.task);
3253 }
3254 rcu_read_unlock();
3255 return iter;
3256 }
3257
3258 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3259
3260 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3261 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3262 {
3263 struct tgid_iter iter;
3264 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3265 loff_t pos = ctx->pos;
3266
3267 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3268 return 0;
3269
3270 if (pos == TGID_OFFSET - 2) {
3271 struct inode *inode = d_inode(ns->proc_self);
3272 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3273 return 0;
3274 ctx->pos = pos = pos + 1;
3275 }
3276 if (pos == TGID_OFFSET - 1) {
3277 struct inode *inode = d_inode(ns->proc_thread_self);
3278 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3279 return 0;
3280 ctx->pos = pos = pos + 1;
3281 }
3282 iter.tgid = pos - TGID_OFFSET;
3283 iter.task = NULL;
3284 for (iter = next_tgid(ns, iter);
3285 iter.task;
3286 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3287 char name[10 + 1];
3288 unsigned int len;
3289
3290 cond_resched();
3291 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3292 continue;
3293
3294 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3295 ctx->pos = iter.tgid + TGID_OFFSET;
3296 if (!proc_fill_cache(file, ctx, name, len,
3297 proc_pid_instantiate, iter.task, NULL)) {
3298 put_task_struct(iter.task);
3299 return 0;
3300 }
3301 }
3302 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3303 return 0;
3304 }
3305
3306 /*
3307 * proc_tid_comm_permission is a special permission function exclusively
3308 * used for the node /proc/<pid>/task/<tid>/comm.
3309 * It bypasses generic permission checks in the case where a task of the same
3310 * task group attempts to access the node.
3311 * The rationale behind this is that glibc and bionic access this node for
3312 * cross thread naming (pthread_set/getname_np(!self)). However, if
3313 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3314 * which locks out the cross thread naming implementation.
3315 * This function makes sure that the node is always accessible for members of
3316 * same thread group.
3317 */
proc_tid_comm_permission(struct inode * inode,int mask)3318 static int proc_tid_comm_permission(struct inode *inode, int mask)
3319 {
3320 bool is_same_tgroup;
3321 struct task_struct *task;
3322
3323 task = get_proc_task(inode);
3324 if (!task)
3325 return -ESRCH;
3326 is_same_tgroup = same_thread_group(current, task);
3327 put_task_struct(task);
3328
3329 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3330 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3331 * read or written by the members of the corresponding
3332 * thread group.
3333 */
3334 return 0;
3335 }
3336
3337 return generic_permission(inode, mask);
3338 }
3339
3340 static const struct inode_operations proc_tid_comm_inode_operations = {
3341 .setattr = proc_setattr,
3342 .permission = proc_tid_comm_permission,
3343 };
3344
3345 /*
3346 * Tasks
3347 */
3348 static const struct pid_entry tid_base_stuff[] = {
3349 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3350 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3351 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3352 #ifdef CONFIG_NET
3353 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3354 #endif
3355 REG("environ", S_IRUSR, proc_environ_operations),
3356 REG("auxv", S_IRUSR, proc_auxv_operations),
3357 ONE("status", S_IRUGO, proc_pid_status),
3358 ONE("personality", S_IRUSR, proc_pid_personality),
3359 ONE("limits", S_IRUGO, proc_pid_limits),
3360 #ifdef CONFIG_SCHED_DEBUG
3361 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3362 #endif
3363 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3364 &proc_tid_comm_inode_operations,
3365 &proc_pid_set_comm_operations, {}),
3366 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3367 ONE("syscall", S_IRUSR, proc_pid_syscall),
3368 #endif
3369 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3370 ONE("stat", S_IRUGO, proc_tid_stat),
3371 ONE("statm", S_IRUGO, proc_pid_statm),
3372 REG("maps", S_IRUGO, proc_pid_maps_operations),
3373 #ifdef CONFIG_PROC_CHILDREN
3374 REG("children", S_IRUGO, proc_tid_children_operations),
3375 #endif
3376 #ifdef CONFIG_NUMA
3377 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3378 #endif
3379 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3380 LNK("cwd", proc_cwd_link),
3381 LNK("root", proc_root_link),
3382 LNK("exe", proc_exe_link),
3383 REG("mounts", S_IRUGO, proc_mounts_operations),
3384 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3385 #ifdef CONFIG_PROC_PAGE_MONITOR
3386 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3387 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3388 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3389 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3390 #endif
3391 #ifdef CONFIG_SECURITY
3392 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3393 #endif
3394 #ifdef CONFIG_KALLSYMS
3395 ONE("wchan", S_IRUGO, proc_pid_wchan),
3396 #endif
3397 #ifdef CONFIG_STACKTRACE
3398 ONE("stack", S_IRUSR, proc_pid_stack),
3399 #endif
3400 #ifdef CONFIG_SCHED_INFO
3401 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3402 #endif
3403 #ifdef CONFIG_LATENCYTOP
3404 REG("latency", S_IRUGO, proc_lstats_operations),
3405 #endif
3406 #ifdef CONFIG_PROC_PID_CPUSET
3407 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3408 #endif
3409 #ifdef CONFIG_CGROUPS
3410 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3411 #endif
3412 ONE("oom_score", S_IRUGO, proc_oom_score),
3413 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3414 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3415 #ifdef CONFIG_AUDITSYSCALL
3416 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3417 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3418 #endif
3419 #ifdef CONFIG_FAULT_INJECTION
3420 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3421 REG("fail-nth", 0644, proc_fail_nth_operations),
3422 #endif
3423 #ifdef CONFIG_TASK_IO_ACCOUNTING
3424 ONE("io", S_IRUSR, proc_tid_io_accounting),
3425 #endif
3426 #ifdef CONFIG_USER_NS
3427 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3428 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3429 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3430 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3431 #endif
3432 #ifdef CONFIG_LIVEPATCH
3433 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3434 #endif
3435 };
3436
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3437 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3438 {
3439 return proc_pident_readdir(file, ctx,
3440 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3441 }
3442
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3443 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444 {
3445 return proc_pident_lookup(dir, dentry,
3446 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3447 }
3448
3449 static const struct file_operations proc_tid_base_operations = {
3450 .read = generic_read_dir,
3451 .iterate_shared = proc_tid_base_readdir,
3452 .llseek = generic_file_llseek,
3453 };
3454
3455 static const struct inode_operations proc_tid_base_inode_operations = {
3456 .lookup = proc_tid_base_lookup,
3457 .getattr = pid_getattr,
3458 .setattr = proc_setattr,
3459 };
3460
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3461 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3462 struct task_struct *task, const void *ptr)
3463 {
3464 struct inode *inode;
3465 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3466 if (!inode)
3467 return ERR_PTR(-ENOENT);
3468
3469 inode->i_op = &proc_tid_base_inode_operations;
3470 inode->i_fop = &proc_tid_base_operations;
3471 inode->i_flags |= S_IMMUTABLE;
3472
3473 set_nlink(inode, nlink_tid);
3474 pid_update_inode(task, inode);
3475
3476 d_set_d_op(dentry, &pid_dentry_operations);
3477 return d_splice_alias(inode, dentry);
3478 }
3479
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3480 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3481 {
3482 struct task_struct *task;
3483 struct task_struct *leader = get_proc_task(dir);
3484 unsigned tid;
3485 struct pid_namespace *ns;
3486 struct dentry *result = ERR_PTR(-ENOENT);
3487
3488 if (!leader)
3489 goto out_no_task;
3490
3491 tid = name_to_int(&dentry->d_name);
3492 if (tid == ~0U)
3493 goto out;
3494
3495 ns = dentry->d_sb->s_fs_info;
3496 rcu_read_lock();
3497 task = find_task_by_pid_ns(tid, ns);
3498 if (task)
3499 get_task_struct(task);
3500 rcu_read_unlock();
3501 if (!task)
3502 goto out;
3503 if (!same_thread_group(leader, task))
3504 goto out_drop_task;
3505
3506 result = proc_task_instantiate(dentry, task, NULL);
3507 out_drop_task:
3508 put_task_struct(task);
3509 out:
3510 put_task_struct(leader);
3511 out_no_task:
3512 return result;
3513 }
3514
3515 /*
3516 * Find the first tid of a thread group to return to user space.
3517 *
3518 * Usually this is just the thread group leader, but if the users
3519 * buffer was too small or there was a seek into the middle of the
3520 * directory we have more work todo.
3521 *
3522 * In the case of a short read we start with find_task_by_pid.
3523 *
3524 * In the case of a seek we start with the leader and walk nr
3525 * threads past it.
3526 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3527 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3528 struct pid_namespace *ns)
3529 {
3530 struct task_struct *pos, *task;
3531 unsigned long nr = f_pos;
3532
3533 if (nr != f_pos) /* 32bit overflow? */
3534 return NULL;
3535
3536 rcu_read_lock();
3537 task = pid_task(pid, PIDTYPE_PID);
3538 if (!task)
3539 goto fail;
3540
3541 /* Attempt to start with the tid of a thread */
3542 if (tid && nr) {
3543 pos = find_task_by_pid_ns(tid, ns);
3544 if (pos && same_thread_group(pos, task))
3545 goto found;
3546 }
3547
3548 /* If nr exceeds the number of threads there is nothing todo */
3549 if (nr >= get_nr_threads(task))
3550 goto fail;
3551
3552 /* If we haven't found our starting place yet start
3553 * with the leader and walk nr threads forward.
3554 */
3555 pos = task = task->group_leader;
3556 do {
3557 if (!nr--)
3558 goto found;
3559 } while_each_thread(task, pos);
3560 fail:
3561 pos = NULL;
3562 goto out;
3563 found:
3564 get_task_struct(pos);
3565 out:
3566 rcu_read_unlock();
3567 return pos;
3568 }
3569
3570 /*
3571 * Find the next thread in the thread list.
3572 * Return NULL if there is an error or no next thread.
3573 *
3574 * The reference to the input task_struct is released.
3575 */
next_tid(struct task_struct * start)3576 static struct task_struct *next_tid(struct task_struct *start)
3577 {
3578 struct task_struct *pos = NULL;
3579 rcu_read_lock();
3580 if (pid_alive(start)) {
3581 pos = next_thread(start);
3582 if (thread_group_leader(pos))
3583 pos = NULL;
3584 else
3585 get_task_struct(pos);
3586 }
3587 rcu_read_unlock();
3588 put_task_struct(start);
3589 return pos;
3590 }
3591
3592 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3593 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3594 {
3595 struct inode *inode = file_inode(file);
3596 struct task_struct *task;
3597 struct pid_namespace *ns;
3598 int tid;
3599
3600 if (proc_inode_is_dead(inode))
3601 return -ENOENT;
3602
3603 if (!dir_emit_dots(file, ctx))
3604 return 0;
3605
3606 /* f_version caches the tgid value that the last readdir call couldn't
3607 * return. lseek aka telldir automagically resets f_version to 0.
3608 */
3609 ns = proc_pid_ns(inode);
3610 tid = (int)file->f_version;
3611 file->f_version = 0;
3612 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3613 task;
3614 task = next_tid(task), ctx->pos++) {
3615 char name[10 + 1];
3616 unsigned int len;
3617 tid = task_pid_nr_ns(task, ns);
3618 len = snprintf(name, sizeof(name), "%u", tid);
3619 if (!proc_fill_cache(file, ctx, name, len,
3620 proc_task_instantiate, task, NULL)) {
3621 /* returning this tgid failed, save it as the first
3622 * pid for the next readir call */
3623 file->f_version = (u64)tid;
3624 put_task_struct(task);
3625 break;
3626 }
3627 }
3628
3629 return 0;
3630 }
3631
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3632 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3633 u32 request_mask, unsigned int query_flags)
3634 {
3635 struct inode *inode = d_inode(path->dentry);
3636 struct task_struct *p = get_proc_task(inode);
3637 generic_fillattr(inode, stat);
3638
3639 if (p) {
3640 stat->nlink += get_nr_threads(p);
3641 put_task_struct(p);
3642 }
3643
3644 return 0;
3645 }
3646
3647 static const struct inode_operations proc_task_inode_operations = {
3648 .lookup = proc_task_lookup,
3649 .getattr = proc_task_getattr,
3650 .setattr = proc_setattr,
3651 .permission = proc_pid_permission,
3652 };
3653
3654 static const struct file_operations proc_task_operations = {
3655 .read = generic_read_dir,
3656 .iterate_shared = proc_task_readdir,
3657 .llseek = generic_file_llseek,
3658 };
3659
set_proc_pid_nlink(void)3660 void __init set_proc_pid_nlink(void)
3661 {
3662 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3663 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3664 }
3665