1 /*
2 * linux/fs/pnode.c
3 *
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
7 *
8 */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15
16 /* return the next shared peer mount of @p */
next_peer(struct mount * p)17 static inline struct mount *next_peer(struct mount *p)
18 {
19 return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21
first_slave(struct mount * p)22 static inline struct mount *first_slave(struct mount *p)
23 {
24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26
last_slave(struct mount * p)27 static inline struct mount *last_slave(struct mount *p)
28 {
29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31
next_slave(struct mount * p)32 static inline struct mount *next_slave(struct mount *p)
33 {
34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36
get_peer_under_root(struct mount * mnt,struct mnt_namespace * ns,const struct path * root)37 static struct mount *get_peer_under_root(struct mount *mnt,
38 struct mnt_namespace *ns,
39 const struct path *root)
40 {
41 struct mount *m = mnt;
42
43 do {
44 /* Check the namespace first for optimization */
45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 return m;
47
48 m = next_peer(m);
49 } while (m != mnt);
50
51 return NULL;
52 }
53
54 /*
55 * Get ID of closest dominating peer group having a representative
56 * under the given root.
57 *
58 * Caller must hold namespace_sem
59 */
get_dominating_id(struct mount * mnt,const struct path * root)60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 struct mount *m;
63
64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 if (d)
67 return d->mnt_group_id;
68 }
69
70 return 0;
71 }
72
do_make_slave(struct mount * mnt)73 static int do_make_slave(struct mount *mnt)
74 {
75 struct mount *master, *slave_mnt;
76
77 if (list_empty(&mnt->mnt_share)) {
78 if (IS_MNT_SHARED(mnt)) {
79 mnt_release_group_id(mnt);
80 CLEAR_MNT_SHARED(mnt);
81 }
82 master = mnt->mnt_master;
83 if (!master) {
84 struct list_head *p = &mnt->mnt_slave_list;
85 while (!list_empty(p)) {
86 slave_mnt = list_first_entry(p,
87 struct mount, mnt_slave);
88 list_del_init(&slave_mnt->mnt_slave);
89 slave_mnt->mnt_master = NULL;
90 }
91 return 0;
92 }
93 } else {
94 struct mount *m;
95 /*
96 * slave 'mnt' to a peer mount that has the
97 * same root dentry. If none is available then
98 * slave it to anything that is available.
99 */
100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 master = m;
103 break;
104 }
105 }
106 list_del_init(&mnt->mnt_share);
107 mnt->mnt_group_id = 0;
108 CLEAR_MNT_SHARED(mnt);
109 }
110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 slave_mnt->mnt_master = master;
112 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 mnt->mnt_master = master;
116 return 0;
117 }
118
119 /*
120 * vfsmount lock must be held for write
121 */
change_mnt_propagation(struct mount * mnt,int type)122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 if (type == MS_SHARED) {
125 set_mnt_shared(mnt);
126 return;
127 }
128 do_make_slave(mnt);
129 if (type != MS_SLAVE) {
130 list_del_init(&mnt->mnt_slave);
131 mnt->mnt_master = NULL;
132 if (type == MS_UNBINDABLE)
133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 else
135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 }
137 }
138
139 /*
140 * get the next mount in the propagation tree.
141 * @m: the mount seen last
142 * @origin: the original mount from where the tree walk initiated
143 *
144 * Note that peer groups form contiguous segments of slave lists.
145 * We rely on that in get_source() to be able to find out if
146 * vfsmount found while iterating with propagation_next() is
147 * a peer of one we'd found earlier.
148 */
propagation_next(struct mount * m,struct mount * origin)149 static struct mount *propagation_next(struct mount *m,
150 struct mount *origin)
151 {
152 /* are there any slaves of this mount? */
153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 return first_slave(m);
155
156 while (1) {
157 struct mount *master = m->mnt_master;
158
159 if (master == origin->mnt_master) {
160 struct mount *next = next_peer(m);
161 return (next == origin) ? NULL : next;
162 } else if (m->mnt_slave.next != &master->mnt_slave_list)
163 return next_slave(m);
164
165 /* back at master */
166 m = master;
167 }
168 }
169
skip_propagation_subtree(struct mount * m,struct mount * origin)170 static struct mount *skip_propagation_subtree(struct mount *m,
171 struct mount *origin)
172 {
173 /*
174 * Advance m such that propagation_next will not return
175 * the slaves of m.
176 */
177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 m = last_slave(m);
179
180 return m;
181 }
182
next_group(struct mount * m,struct mount * origin)183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 while (1) {
186 while (1) {
187 struct mount *next;
188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 return first_slave(m);
190 next = next_peer(m);
191 if (m->mnt_group_id == origin->mnt_group_id) {
192 if (next == origin)
193 return NULL;
194 } else if (m->mnt_slave.next != &next->mnt_slave)
195 break;
196 m = next;
197 }
198 /* m is the last peer */
199 while (1) {
200 struct mount *master = m->mnt_master;
201 if (m->mnt_slave.next != &master->mnt_slave_list)
202 return next_slave(m);
203 m = next_peer(master);
204 if (master->mnt_group_id == origin->mnt_group_id)
205 break;
206 if (master->mnt_slave.next == &m->mnt_slave)
207 break;
208 m = master;
209 }
210 if (m == origin)
211 return NULL;
212 }
213 }
214
215 /* all accesses are serialized by namespace_sem */
216 static struct user_namespace *user_ns;
217 static struct mount *last_dest, *first_source, *last_source, *dest_master;
218 static struct mountpoint *mp;
219 static struct hlist_head *list;
220
peers(struct mount * m1,struct mount * m2)221 static inline bool peers(struct mount *m1, struct mount *m2)
222 {
223 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
224 }
225
propagate_one(struct mount * m)226 static int propagate_one(struct mount *m)
227 {
228 struct mount *child;
229 int type;
230 /* skip ones added by this propagate_mnt() */
231 if (IS_MNT_NEW(m))
232 return 0;
233 /* skip if mountpoint isn't covered by it */
234 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
235 return 0;
236 if (peers(m, last_dest)) {
237 type = CL_MAKE_SHARED;
238 } else {
239 struct mount *n, *p;
240 bool done;
241 for (n = m; ; n = p) {
242 p = n->mnt_master;
243 if (p == dest_master || IS_MNT_MARKED(p))
244 break;
245 }
246 do {
247 struct mount *parent = last_source->mnt_parent;
248 if (peers(last_source, first_source))
249 break;
250 done = parent->mnt_master == p;
251 if (done && peers(n, parent))
252 break;
253 last_source = last_source->mnt_master;
254 } while (!done);
255
256 type = CL_SLAVE;
257 /* beginning of peer group among the slaves? */
258 if (IS_MNT_SHARED(m))
259 type |= CL_MAKE_SHARED;
260 }
261
262 /* Notice when we are propagating across user namespaces */
263 if (m->mnt_ns->user_ns != user_ns)
264 type |= CL_UNPRIVILEGED;
265 child = copy_tree(last_source, last_source->mnt.mnt_root, type);
266 if (IS_ERR(child))
267 return PTR_ERR(child);
268 child->mnt.mnt_flags &= ~MNT_LOCKED;
269 read_seqlock_excl(&mount_lock);
270 mnt_set_mountpoint(m, mp, child);
271 if (m->mnt_master != dest_master)
272 SET_MNT_MARK(m->mnt_master);
273 read_sequnlock_excl(&mount_lock);
274 last_dest = m;
275 last_source = child;
276 hlist_add_head(&child->mnt_hash, list);
277 return count_mounts(m->mnt_ns, child);
278 }
279
280 /*
281 * mount 'source_mnt' under the destination 'dest_mnt' at
282 * dentry 'dest_dentry'. And propagate that mount to
283 * all the peer and slave mounts of 'dest_mnt'.
284 * Link all the new mounts into a propagation tree headed at
285 * source_mnt. Also link all the new mounts using ->mnt_list
286 * headed at source_mnt's ->mnt_list
287 *
288 * @dest_mnt: destination mount.
289 * @dest_dentry: destination dentry.
290 * @source_mnt: source mount.
291 * @tree_list : list of heads of trees to be attached.
292 */
propagate_mnt(struct mount * dest_mnt,struct mountpoint * dest_mp,struct mount * source_mnt,struct hlist_head * tree_list)293 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
294 struct mount *source_mnt, struct hlist_head *tree_list)
295 {
296 struct mount *m, *n;
297 int ret = 0;
298
299 /*
300 * we don't want to bother passing tons of arguments to
301 * propagate_one(); everything is serialized by namespace_sem,
302 * so globals will do just fine.
303 */
304 user_ns = current->nsproxy->mnt_ns->user_ns;
305 last_dest = dest_mnt;
306 first_source = source_mnt;
307 last_source = source_mnt;
308 mp = dest_mp;
309 list = tree_list;
310 dest_master = dest_mnt->mnt_master;
311
312 /* all peers of dest_mnt, except dest_mnt itself */
313 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
314 ret = propagate_one(n);
315 if (ret)
316 goto out;
317 }
318
319 /* all slave groups */
320 for (m = next_group(dest_mnt, dest_mnt); m;
321 m = next_group(m, dest_mnt)) {
322 /* everything in that slave group */
323 n = m;
324 do {
325 ret = propagate_one(n);
326 if (ret)
327 goto out;
328 n = next_peer(n);
329 } while (n != m);
330 }
331 out:
332 read_seqlock_excl(&mount_lock);
333 hlist_for_each_entry(n, tree_list, mnt_hash) {
334 m = n->mnt_parent;
335 if (m->mnt_master != dest_mnt->mnt_master)
336 CLEAR_MNT_MARK(m->mnt_master);
337 }
338 read_sequnlock_excl(&mount_lock);
339 return ret;
340 }
341
find_topper(struct mount * mnt)342 static struct mount *find_topper(struct mount *mnt)
343 {
344 /* If there is exactly one mount covering mnt completely return it. */
345 struct mount *child;
346
347 if (!list_is_singular(&mnt->mnt_mounts))
348 return NULL;
349
350 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
351 if (child->mnt_mountpoint != mnt->mnt.mnt_root)
352 return NULL;
353
354 return child;
355 }
356
357 /*
358 * return true if the refcount is greater than count
359 */
do_refcount_check(struct mount * mnt,int count)360 static inline int do_refcount_check(struct mount *mnt, int count)
361 {
362 return mnt_get_count(mnt) > count;
363 }
364
365 /*
366 * check if the mount 'mnt' can be unmounted successfully.
367 * @mnt: the mount to be checked for unmount
368 * NOTE: unmounting 'mnt' would naturally propagate to all
369 * other mounts its parent propagates to.
370 * Check if any of these mounts that **do not have submounts**
371 * have more references than 'refcnt'. If so return busy.
372 *
373 * vfsmount lock must be held for write
374 */
propagate_mount_busy(struct mount * mnt,int refcnt)375 int propagate_mount_busy(struct mount *mnt, int refcnt)
376 {
377 struct mount *m, *child, *topper;
378 struct mount *parent = mnt->mnt_parent;
379
380 if (mnt == parent)
381 return do_refcount_check(mnt, refcnt);
382
383 /*
384 * quickly check if the current mount can be unmounted.
385 * If not, we don't have to go checking for all other
386 * mounts
387 */
388 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
389 return 1;
390
391 for (m = propagation_next(parent, parent); m;
392 m = propagation_next(m, parent)) {
393 int count = 1;
394 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
395 if (!child)
396 continue;
397
398 /* Is there exactly one mount on the child that covers
399 * it completely whose reference should be ignored?
400 */
401 topper = find_topper(child);
402 if (topper)
403 count += 1;
404 else if (!list_empty(&child->mnt_mounts))
405 continue;
406
407 if (do_refcount_check(child, count))
408 return 1;
409 }
410 return 0;
411 }
412
413 /*
414 * Clear MNT_LOCKED when it can be shown to be safe.
415 *
416 * mount_lock lock must be held for write
417 */
propagate_mount_unlock(struct mount * mnt)418 void propagate_mount_unlock(struct mount *mnt)
419 {
420 struct mount *parent = mnt->mnt_parent;
421 struct mount *m, *child;
422
423 BUG_ON(parent == mnt);
424
425 for (m = propagation_next(parent, parent); m;
426 m = propagation_next(m, parent)) {
427 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
428 if (child)
429 child->mnt.mnt_flags &= ~MNT_LOCKED;
430 }
431 }
432
umount_one(struct mount * mnt,struct list_head * to_umount)433 static void umount_one(struct mount *mnt, struct list_head *to_umount)
434 {
435 CLEAR_MNT_MARK(mnt);
436 mnt->mnt.mnt_flags |= MNT_UMOUNT;
437 list_del_init(&mnt->mnt_child);
438 list_del_init(&mnt->mnt_umounting);
439 list_move_tail(&mnt->mnt_list, to_umount);
440 }
441
442 /*
443 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
444 * parent propagates to.
445 */
__propagate_umount(struct mount * mnt,struct list_head * to_umount,struct list_head * to_restore)446 static bool __propagate_umount(struct mount *mnt,
447 struct list_head *to_umount,
448 struct list_head *to_restore)
449 {
450 bool progress = false;
451 struct mount *child;
452
453 /*
454 * The state of the parent won't change if this mount is
455 * already unmounted or marked as without children.
456 */
457 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
458 goto out;
459
460 /* Verify topper is the only grandchild that has not been
461 * speculatively unmounted.
462 */
463 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
464 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
465 continue;
466 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
467 continue;
468 /* Found a mounted child */
469 goto children;
470 }
471
472 /* Mark mounts that can be unmounted if not locked */
473 SET_MNT_MARK(mnt);
474 progress = true;
475
476 /* If a mount is without children and not locked umount it. */
477 if (!IS_MNT_LOCKED(mnt)) {
478 umount_one(mnt, to_umount);
479 } else {
480 children:
481 list_move_tail(&mnt->mnt_umounting, to_restore);
482 }
483 out:
484 return progress;
485 }
486
umount_list(struct list_head * to_umount,struct list_head * to_restore)487 static void umount_list(struct list_head *to_umount,
488 struct list_head *to_restore)
489 {
490 struct mount *mnt, *child, *tmp;
491 list_for_each_entry(mnt, to_umount, mnt_list) {
492 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
493 /* topper? */
494 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
495 list_move_tail(&child->mnt_umounting, to_restore);
496 else
497 umount_one(child, to_umount);
498 }
499 }
500 }
501
restore_mounts(struct list_head * to_restore)502 static void restore_mounts(struct list_head *to_restore)
503 {
504 /* Restore mounts to a clean working state */
505 while (!list_empty(to_restore)) {
506 struct mount *mnt, *parent;
507 struct mountpoint *mp;
508
509 mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
510 CLEAR_MNT_MARK(mnt);
511 list_del_init(&mnt->mnt_umounting);
512
513 /* Should this mount be reparented? */
514 mp = mnt->mnt_mp;
515 parent = mnt->mnt_parent;
516 while (parent->mnt.mnt_flags & MNT_UMOUNT) {
517 mp = parent->mnt_mp;
518 parent = parent->mnt_parent;
519 }
520 if (parent != mnt->mnt_parent)
521 mnt_change_mountpoint(parent, mp, mnt);
522 }
523 }
524
cleanup_umount_visitations(struct list_head * visited)525 static void cleanup_umount_visitations(struct list_head *visited)
526 {
527 while (!list_empty(visited)) {
528 struct mount *mnt =
529 list_first_entry(visited, struct mount, mnt_umounting);
530 list_del_init(&mnt->mnt_umounting);
531 }
532 }
533
534 /*
535 * collect all mounts that receive propagation from the mount in @list,
536 * and return these additional mounts in the same list.
537 * @list: the list of mounts to be unmounted.
538 *
539 * vfsmount lock must be held for write
540 */
propagate_umount(struct list_head * list)541 int propagate_umount(struct list_head *list)
542 {
543 struct mount *mnt;
544 LIST_HEAD(to_restore);
545 LIST_HEAD(to_umount);
546 LIST_HEAD(visited);
547
548 /* Find candidates for unmounting */
549 list_for_each_entry_reverse(mnt, list, mnt_list) {
550 struct mount *parent = mnt->mnt_parent;
551 struct mount *m;
552
553 /*
554 * If this mount has already been visited it is known that it's
555 * entire peer group and all of their slaves in the propagation
556 * tree for the mountpoint has already been visited and there is
557 * no need to visit them again.
558 */
559 if (!list_empty(&mnt->mnt_umounting))
560 continue;
561
562 list_add_tail(&mnt->mnt_umounting, &visited);
563 for (m = propagation_next(parent, parent); m;
564 m = propagation_next(m, parent)) {
565 struct mount *child = __lookup_mnt(&m->mnt,
566 mnt->mnt_mountpoint);
567 if (!child)
568 continue;
569
570 if (!list_empty(&child->mnt_umounting)) {
571 /*
572 * If the child has already been visited it is
573 * know that it's entire peer group and all of
574 * their slaves in the propgation tree for the
575 * mountpoint has already been visited and there
576 * is no need to visit this subtree again.
577 */
578 m = skip_propagation_subtree(m, parent);
579 continue;
580 } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
581 /*
582 * We have come accross an partially unmounted
583 * mount in list that has not been visited yet.
584 * Remember it has been visited and continue
585 * about our merry way.
586 */
587 list_add_tail(&child->mnt_umounting, &visited);
588 continue;
589 }
590
591 /* Check the child and parents while progress is made */
592 while (__propagate_umount(child,
593 &to_umount, &to_restore)) {
594 /* Is the parent a umount candidate? */
595 child = child->mnt_parent;
596 if (list_empty(&child->mnt_umounting))
597 break;
598 }
599 }
600 }
601
602 umount_list(&to_umount, &to_restore);
603 restore_mounts(&to_restore);
604 cleanup_umount_visitations(&visited);
605 list_splice_tail(&to_umount, list);
606
607 return 0;
608 }
609