1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *		http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32 
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35 
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
45 
46 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a)		(*(long *)(&(a)))
49 
50 /* Exported common interfaces */
51 
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define	call_rcu	call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57 
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void rcu_barrier_tasks(void);
62 
63 #ifdef CONFIG_PREEMPT_RCU
64 
65 void __rcu_read_lock(void);
66 void __rcu_read_unlock(void);
67 void synchronize_rcu(void);
68 
69 /*
70  * Defined as a macro as it is a very low level header included from
71  * areas that don't even know about current.  This gives the rcu_read_lock()
72  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
73  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
74  */
75 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
76 
77 #else /* #ifdef CONFIG_PREEMPT_RCU */
78 
__rcu_read_lock(void)79 static inline void __rcu_read_lock(void)
80 {
81 	preempt_disable();
82 }
83 
__rcu_read_unlock(void)84 static inline void __rcu_read_unlock(void)
85 {
86 	preempt_enable();
87 }
88 
synchronize_rcu(void)89 static inline void synchronize_rcu(void)
90 {
91 	synchronize_sched();
92 }
93 
rcu_preempt_depth(void)94 static inline int rcu_preempt_depth(void)
95 {
96 	return 0;
97 }
98 
99 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
100 
101 /* Internal to kernel */
102 void rcu_init(void);
103 extern int rcu_scheduler_active __read_mostly;
104 void rcu_sched_qs(void);
105 void rcu_bh_qs(void);
106 void rcu_check_callbacks(int user);
107 void rcu_report_dead(unsigned int cpu);
108 void rcutree_migrate_callbacks(int cpu);
109 
110 #ifdef CONFIG_RCU_STALL_COMMON
111 void rcu_sysrq_start(void);
112 void rcu_sysrq_end(void);
113 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)114 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)115 static inline void rcu_sysrq_end(void) { }
116 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
117 
118 #ifdef CONFIG_NO_HZ_FULL
119 void rcu_user_enter(void);
120 void rcu_user_exit(void);
121 #else
rcu_user_enter(void)122 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)123 static inline void rcu_user_exit(void) { }
124 #endif /* CONFIG_NO_HZ_FULL */
125 
126 #ifdef CONFIG_RCU_NOCB_CPU
127 void rcu_init_nohz(void);
128 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)129 static inline void rcu_init_nohz(void) { }
130 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
131 
132 /**
133  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
134  * @a: Code that RCU needs to pay attention to.
135  *
136  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
137  * in the inner idle loop, that is, between the rcu_idle_enter() and
138  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
139  * critical sections.  However, things like powertop need tracepoints
140  * in the inner idle loop.
141  *
142  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
143  * will tell RCU that it needs to pay attention, invoke its argument
144  * (in this example, calling the do_something_with_RCU() function),
145  * and then tell RCU to go back to ignoring this CPU.  It is permissible
146  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
147  * on the order of a million or so, even on 32-bit systems).  It is
148  * not legal to block within RCU_NONIDLE(), nor is it permissible to
149  * transfer control either into or out of RCU_NONIDLE()'s statement.
150  */
151 #define RCU_NONIDLE(a) \
152 	do { \
153 		rcu_irq_enter_irqson(); \
154 		do { a; } while (0); \
155 		rcu_irq_exit_irqson(); \
156 	} while (0)
157 
158 /*
159  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
160  * This is a macro rather than an inline function to avoid #include hell.
161  */
162 #ifdef CONFIG_TASKS_RCU
163 #define rcu_tasks_qs(t) \
164 	do { \
165 		if (READ_ONCE((t)->rcu_tasks_holdout)) \
166 			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
167 	} while (0)
168 #define rcu_note_voluntary_context_switch(t) \
169 	do { \
170 		rcu_all_qs(); \
171 		rcu_tasks_qs(t); \
172 	} while (0)
173 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
174 void synchronize_rcu_tasks(void);
175 void exit_tasks_rcu_start(void);
176 void exit_tasks_rcu_finish(void);
177 #else /* #ifdef CONFIG_TASKS_RCU */
178 #define rcu_tasks_qs(t)	do { } while (0)
179 #define rcu_note_voluntary_context_switch(t)		rcu_all_qs()
180 #define call_rcu_tasks call_rcu_sched
181 #define synchronize_rcu_tasks synchronize_sched
exit_tasks_rcu_start(void)182 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)183 static inline void exit_tasks_rcu_finish(void) { }
184 #endif /* #else #ifdef CONFIG_TASKS_RCU */
185 
186 /**
187  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
188  *
189  * This macro resembles cond_resched(), except that it is defined to
190  * report potential quiescent states to RCU-tasks even if the cond_resched()
191  * machinery were to be shut off, as some advocate for PREEMPT kernels.
192  */
193 #define cond_resched_tasks_rcu_qs() \
194 do { \
195 	rcu_tasks_qs(current); \
196 	cond_resched(); \
197 } while (0)
198 
199 /*
200  * Infrastructure to implement the synchronize_() primitives in
201  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
202  */
203 
204 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
205 #include <linux/rcutree.h>
206 #elif defined(CONFIG_TINY_RCU)
207 #include <linux/rcutiny.h>
208 #else
209 #error "Unknown RCU implementation specified to kernel configuration"
210 #endif
211 
212 /*
213  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
214  * are needed for dynamic initialization and destruction of rcu_head
215  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
216  * dynamic initialization and destruction of statically allocated rcu_head
217  * structures.  However, rcu_head structures allocated dynamically in the
218  * heap don't need any initialization.
219  */
220 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
221 void init_rcu_head(struct rcu_head *head);
222 void destroy_rcu_head(struct rcu_head *head);
223 void init_rcu_head_on_stack(struct rcu_head *head);
224 void destroy_rcu_head_on_stack(struct rcu_head *head);
225 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)226 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)227 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)228 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)229 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
230 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
231 
232 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
233 bool rcu_lockdep_current_cpu_online(void);
234 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)235 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
236 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
237 
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 
rcu_lock_acquire(struct lockdep_map * map)240 static inline void rcu_lock_acquire(struct lockdep_map *map)
241 {
242 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
243 }
244 
rcu_lock_release(struct lockdep_map * map)245 static inline void rcu_lock_release(struct lockdep_map *map)
246 {
247 	lock_release(map, 1, _THIS_IP_);
248 }
249 
250 extern struct lockdep_map rcu_lock_map;
251 extern struct lockdep_map rcu_bh_lock_map;
252 extern struct lockdep_map rcu_sched_lock_map;
253 extern struct lockdep_map rcu_callback_map;
254 int debug_lockdep_rcu_enabled(void);
255 int rcu_read_lock_held(void);
256 int rcu_read_lock_bh_held(void);
257 int rcu_read_lock_sched_held(void);
258 
259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260 
261 # define rcu_lock_acquire(a)		do { } while (0)
262 # define rcu_lock_release(a)		do { } while (0)
263 
rcu_read_lock_held(void)264 static inline int rcu_read_lock_held(void)
265 {
266 	return 1;
267 }
268 
rcu_read_lock_bh_held(void)269 static inline int rcu_read_lock_bh_held(void)
270 {
271 	return 1;
272 }
273 
rcu_read_lock_sched_held(void)274 static inline int rcu_read_lock_sched_held(void)
275 {
276 	return !preemptible();
277 }
278 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
279 
280 #ifdef CONFIG_PROVE_RCU
281 
282 /**
283  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
284  * @c: condition to check
285  * @s: informative message
286  */
287 #define RCU_LOCKDEP_WARN(c, s)						\
288 	do {								\
289 		static bool __section(.data.unlikely) __warned;		\
290 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
291 			__warned = true;				\
292 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
293 		}							\
294 	} while (0)
295 
296 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)297 static inline void rcu_preempt_sleep_check(void)
298 {
299 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
300 			 "Illegal context switch in RCU read-side critical section");
301 }
302 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)303 static inline void rcu_preempt_sleep_check(void) { }
304 #endif /* #else #ifdef CONFIG_PROVE_RCU */
305 
306 #define rcu_sleep_check()						\
307 	do {								\
308 		rcu_preempt_sleep_check();				\
309 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
310 				 "Illegal context switch in RCU-bh read-side critical section"); \
311 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
312 				 "Illegal context switch in RCU-sched read-side critical section"); \
313 	} while (0)
314 
315 #else /* #ifdef CONFIG_PROVE_RCU */
316 
317 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
318 #define rcu_sleep_check() do { } while (0)
319 
320 #endif /* #else #ifdef CONFIG_PROVE_RCU */
321 
322 /*
323  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
324  * and rcu_assign_pointer().  Some of these could be folded into their
325  * callers, but they are left separate in order to ease introduction of
326  * multiple flavors of pointers to match the multiple flavors of RCU
327  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
328  * the future.
329  */
330 
331 #ifdef __CHECKER__
332 #define rcu_dereference_sparse(p, space) \
333 	((void)(((typeof(*p) space *)p) == p))
334 #else /* #ifdef __CHECKER__ */
335 #define rcu_dereference_sparse(p, space)
336 #endif /* #else #ifdef __CHECKER__ */
337 
338 #define __rcu_access_pointer(p, space) \
339 ({ \
340 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
341 	rcu_dereference_sparse(p, space); \
342 	((typeof(*p) __force __kernel *)(_________p1)); \
343 })
344 #define __rcu_dereference_check(p, c, space) \
345 ({ \
346 	/* Dependency order vs. p above. */ \
347 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
348 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
349 	rcu_dereference_sparse(p, space); \
350 	((typeof(*p) __force __kernel *)(________p1)); \
351 })
352 #define __rcu_dereference_protected(p, c, space) \
353 ({ \
354 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
355 	rcu_dereference_sparse(p, space); \
356 	((typeof(*p) __force __kernel *)(p)); \
357 })
358 #define rcu_dereference_raw(p) \
359 ({ \
360 	/* Dependency order vs. p above. */ \
361 	typeof(p) ________p1 = READ_ONCE(p); \
362 	((typeof(*p) __force __kernel *)(________p1)); \
363 })
364 
365 /**
366  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
367  * @v: The value to statically initialize with.
368  */
369 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
370 
371 /**
372  * rcu_assign_pointer() - assign to RCU-protected pointer
373  * @p: pointer to assign to
374  * @v: value to assign (publish)
375  *
376  * Assigns the specified value to the specified RCU-protected
377  * pointer, ensuring that any concurrent RCU readers will see
378  * any prior initialization.
379  *
380  * Inserts memory barriers on architectures that require them
381  * (which is most of them), and also prevents the compiler from
382  * reordering the code that initializes the structure after the pointer
383  * assignment.  More importantly, this call documents which pointers
384  * will be dereferenced by RCU read-side code.
385  *
386  * In some special cases, you may use RCU_INIT_POINTER() instead
387  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
388  * to the fact that it does not constrain either the CPU or the compiler.
389  * That said, using RCU_INIT_POINTER() when you should have used
390  * rcu_assign_pointer() is a very bad thing that results in
391  * impossible-to-diagnose memory corruption.  So please be careful.
392  * See the RCU_INIT_POINTER() comment header for details.
393  *
394  * Note that rcu_assign_pointer() evaluates each of its arguments only
395  * once, appearances notwithstanding.  One of the "extra" evaluations
396  * is in typeof() and the other visible only to sparse (__CHECKER__),
397  * neither of which actually execute the argument.  As with most cpp
398  * macros, this execute-arguments-only-once property is important, so
399  * please be careful when making changes to rcu_assign_pointer() and the
400  * other macros that it invokes.
401  */
402 #define rcu_assign_pointer(p, v)					      \
403 ({									      \
404 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
405 									      \
406 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
407 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
408 	else								      \
409 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
410 	_r_a_p__v;							      \
411 })
412 
413 /**
414  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
415  * @rcu_ptr: RCU pointer, whose old value is returned
416  * @ptr: regular pointer
417  * @c: the lockdep conditions under which the dereference will take place
418  *
419  * Perform a replacement, where @rcu_ptr is an RCU-annotated
420  * pointer and @c is the lockdep argument that is passed to the
421  * rcu_dereference_protected() call used to read that pointer.  The old
422  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
423  */
424 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
425 ({									\
426 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
427 	rcu_assign_pointer((rcu_ptr), (ptr));				\
428 	__tmp;								\
429 })
430 
431 /**
432  * rcu_swap_protected() - swap an RCU and a regular pointer
433  * @rcu_ptr: RCU pointer
434  * @ptr: regular pointer
435  * @c: the conditions under which the dereference will take place
436  *
437  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
438  * @c is the argument that is passed to the rcu_dereference_protected() call
439  * used to read that pointer.
440  */
441 #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
442 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
443 	rcu_assign_pointer((rcu_ptr), (ptr));				\
444 	(ptr) = __tmp;							\
445 } while (0)
446 
447 /**
448  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
449  * @p: The pointer to read
450  *
451  * Return the value of the specified RCU-protected pointer, but omit the
452  * lockdep checks for being in an RCU read-side critical section.  This is
453  * useful when the value of this pointer is accessed, but the pointer is
454  * not dereferenced, for example, when testing an RCU-protected pointer
455  * against NULL.  Although rcu_access_pointer() may also be used in cases
456  * where update-side locks prevent the value of the pointer from changing,
457  * you should instead use rcu_dereference_protected() for this use case.
458  *
459  * It is also permissible to use rcu_access_pointer() when read-side
460  * access to the pointer was removed at least one grace period ago, as
461  * is the case in the context of the RCU callback that is freeing up
462  * the data, or after a synchronize_rcu() returns.  This can be useful
463  * when tearing down multi-linked structures after a grace period
464  * has elapsed.
465  */
466 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
467 
468 /**
469  * rcu_dereference_check() - rcu_dereference with debug checking
470  * @p: The pointer to read, prior to dereferencing
471  * @c: The conditions under which the dereference will take place
472  *
473  * Do an rcu_dereference(), but check that the conditions under which the
474  * dereference will take place are correct.  Typically the conditions
475  * indicate the various locking conditions that should be held at that
476  * point.  The check should return true if the conditions are satisfied.
477  * An implicit check for being in an RCU read-side critical section
478  * (rcu_read_lock()) is included.
479  *
480  * For example:
481  *
482  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
483  *
484  * could be used to indicate to lockdep that foo->bar may only be dereferenced
485  * if either rcu_read_lock() is held, or that the lock required to replace
486  * the bar struct at foo->bar is held.
487  *
488  * Note that the list of conditions may also include indications of when a lock
489  * need not be held, for example during initialisation or destruction of the
490  * target struct:
491  *
492  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
493  *					      atomic_read(&foo->usage) == 0);
494  *
495  * Inserts memory barriers on architectures that require them
496  * (currently only the Alpha), prevents the compiler from refetching
497  * (and from merging fetches), and, more importantly, documents exactly
498  * which pointers are protected by RCU and checks that the pointer is
499  * annotated as __rcu.
500  */
501 #define rcu_dereference_check(p, c) \
502 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
503 
504 /**
505  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
506  * @p: The pointer to read, prior to dereferencing
507  * @c: The conditions under which the dereference will take place
508  *
509  * This is the RCU-bh counterpart to rcu_dereference_check().
510  */
511 #define rcu_dereference_bh_check(p, c) \
512 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
513 
514 /**
515  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
516  * @p: The pointer to read, prior to dereferencing
517  * @c: The conditions under which the dereference will take place
518  *
519  * This is the RCU-sched counterpart to rcu_dereference_check().
520  */
521 #define rcu_dereference_sched_check(p, c) \
522 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
523 				__rcu)
524 
525 /*
526  * The tracing infrastructure traces RCU (we want that), but unfortunately
527  * some of the RCU checks causes tracing to lock up the system.
528  *
529  * The no-tracing version of rcu_dereference_raw() must not call
530  * rcu_read_lock_held().
531  */
532 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
533 
534 /**
535  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
536  * @p: The pointer to read, prior to dereferencing
537  * @c: The conditions under which the dereference will take place
538  *
539  * Return the value of the specified RCU-protected pointer, but omit
540  * the READ_ONCE().  This is useful in cases where update-side locks
541  * prevent the value of the pointer from changing.  Please note that this
542  * primitive does *not* prevent the compiler from repeating this reference
543  * or combining it with other references, so it should not be used without
544  * protection of appropriate locks.
545  *
546  * This function is only for update-side use.  Using this function
547  * when protected only by rcu_read_lock() will result in infrequent
548  * but very ugly failures.
549  */
550 #define rcu_dereference_protected(p, c) \
551 	__rcu_dereference_protected((p), (c), __rcu)
552 
553 
554 /**
555  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
556  * @p: The pointer to read, prior to dereferencing
557  *
558  * This is a simple wrapper around rcu_dereference_check().
559  */
560 #define rcu_dereference(p) rcu_dereference_check(p, 0)
561 
562 /**
563  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
564  * @p: The pointer to read, prior to dereferencing
565  *
566  * Makes rcu_dereference_check() do the dirty work.
567  */
568 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
569 
570 /**
571  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
572  * @p: The pointer to read, prior to dereferencing
573  *
574  * Makes rcu_dereference_check() do the dirty work.
575  */
576 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
577 
578 /**
579  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
580  * @p: The pointer to hand off
581  *
582  * This is simply an identity function, but it documents where a pointer
583  * is handed off from RCU to some other synchronization mechanism, for
584  * example, reference counting or locking.  In C11, it would map to
585  * kill_dependency().  It could be used as follows::
586  *
587  *	rcu_read_lock();
588  *	p = rcu_dereference(gp);
589  *	long_lived = is_long_lived(p);
590  *	if (long_lived) {
591  *		if (!atomic_inc_not_zero(p->refcnt))
592  *			long_lived = false;
593  *		else
594  *			p = rcu_pointer_handoff(p);
595  *	}
596  *	rcu_read_unlock();
597  */
598 #define rcu_pointer_handoff(p) (p)
599 
600 /**
601  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
602  *
603  * When synchronize_rcu() is invoked on one CPU while other CPUs
604  * are within RCU read-side critical sections, then the
605  * synchronize_rcu() is guaranteed to block until after all the other
606  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
607  * on one CPU while other CPUs are within RCU read-side critical
608  * sections, invocation of the corresponding RCU callback is deferred
609  * until after the all the other CPUs exit their critical sections.
610  *
611  * Note, however, that RCU callbacks are permitted to run concurrently
612  * with new RCU read-side critical sections.  One way that this can happen
613  * is via the following sequence of events: (1) CPU 0 enters an RCU
614  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
615  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
616  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
617  * callback is invoked.  This is legal, because the RCU read-side critical
618  * section that was running concurrently with the call_rcu() (and which
619  * therefore might be referencing something that the corresponding RCU
620  * callback would free up) has completed before the corresponding
621  * RCU callback is invoked.
622  *
623  * RCU read-side critical sections may be nested.  Any deferred actions
624  * will be deferred until the outermost RCU read-side critical section
625  * completes.
626  *
627  * You can avoid reading and understanding the next paragraph by
628  * following this rule: don't put anything in an rcu_read_lock() RCU
629  * read-side critical section that would block in a !PREEMPT kernel.
630  * But if you want the full story, read on!
631  *
632  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
633  * it is illegal to block while in an RCU read-side critical section.
634  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
635  * kernel builds, RCU read-side critical sections may be preempted,
636  * but explicit blocking is illegal.  Finally, in preemptible RCU
637  * implementations in real-time (with -rt patchset) kernel builds, RCU
638  * read-side critical sections may be preempted and they may also block, but
639  * only when acquiring spinlocks that are subject to priority inheritance.
640  */
rcu_read_lock(void)641 static __always_inline void rcu_read_lock(void)
642 {
643 	__rcu_read_lock();
644 	__acquire(RCU);
645 	rcu_lock_acquire(&rcu_lock_map);
646 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
647 			 "rcu_read_lock() used illegally while idle");
648 }
649 
650 /*
651  * So where is rcu_write_lock()?  It does not exist, as there is no
652  * way for writers to lock out RCU readers.  This is a feature, not
653  * a bug -- this property is what provides RCU's performance benefits.
654  * Of course, writers must coordinate with each other.  The normal
655  * spinlock primitives work well for this, but any other technique may be
656  * used as well.  RCU does not care how the writers keep out of each
657  * others' way, as long as they do so.
658  */
659 
660 /**
661  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
662  *
663  * In most situations, rcu_read_unlock() is immune from deadlock.
664  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
665  * is responsible for deboosting, which it does via rt_mutex_unlock().
666  * Unfortunately, this function acquires the scheduler's runqueue and
667  * priority-inheritance spinlocks.  This means that deadlock could result
668  * if the caller of rcu_read_unlock() already holds one of these locks or
669  * any lock that is ever acquired while holding them.
670  *
671  * That said, RCU readers are never priority boosted unless they were
672  * preempted.  Therefore, one way to avoid deadlock is to make sure
673  * that preemption never happens within any RCU read-side critical
674  * section whose outermost rcu_read_unlock() is called with one of
675  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
676  * a number of ways, for example, by invoking preempt_disable() before
677  * critical section's outermost rcu_read_lock().
678  *
679  * Given that the set of locks acquired by rt_mutex_unlock() might change
680  * at any time, a somewhat more future-proofed approach is to make sure
681  * that that preemption never happens within any RCU read-side critical
682  * section whose outermost rcu_read_unlock() is called with irqs disabled.
683  * This approach relies on the fact that rt_mutex_unlock() currently only
684  * acquires irq-disabled locks.
685  *
686  * The second of these two approaches is best in most situations,
687  * however, the first approach can also be useful, at least to those
688  * developers willing to keep abreast of the set of locks acquired by
689  * rt_mutex_unlock().
690  *
691  * See rcu_read_lock() for more information.
692  */
rcu_read_unlock(void)693 static inline void rcu_read_unlock(void)
694 {
695 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
696 			 "rcu_read_unlock() used illegally while idle");
697 	__release(RCU);
698 	__rcu_read_unlock();
699 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
700 }
701 
702 /**
703  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
704  *
705  * This is equivalent of rcu_read_lock(), but to be used when updates
706  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
707  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
708  * softirq handler to be a quiescent state, a process in RCU read-side
709  * critical section must be protected by disabling softirqs. Read-side
710  * critical sections in interrupt context can use just rcu_read_lock(),
711  * though this should at least be commented to avoid confusing people
712  * reading the code.
713  *
714  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
715  * must occur in the same context, for example, it is illegal to invoke
716  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
717  * was invoked from some other task.
718  */
rcu_read_lock_bh(void)719 static inline void rcu_read_lock_bh(void)
720 {
721 	local_bh_disable();
722 	__acquire(RCU_BH);
723 	rcu_lock_acquire(&rcu_bh_lock_map);
724 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 			 "rcu_read_lock_bh() used illegally while idle");
726 }
727 
728 /*
729  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
730  *
731  * See rcu_read_lock_bh() for more information.
732  */
rcu_read_unlock_bh(void)733 static inline void rcu_read_unlock_bh(void)
734 {
735 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
736 			 "rcu_read_unlock_bh() used illegally while idle");
737 	rcu_lock_release(&rcu_bh_lock_map);
738 	__release(RCU_BH);
739 	local_bh_enable();
740 }
741 
742 /**
743  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
744  *
745  * This is equivalent of rcu_read_lock(), but to be used when updates
746  * are being done using call_rcu_sched() or synchronize_rcu_sched().
747  * Read-side critical sections can also be introduced by anything that
748  * disables preemption, including local_irq_disable() and friends.
749  *
750  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
751  * must occur in the same context, for example, it is illegal to invoke
752  * rcu_read_unlock_sched() from process context if the matching
753  * rcu_read_lock_sched() was invoked from an NMI handler.
754  */
rcu_read_lock_sched(void)755 static inline void rcu_read_lock_sched(void)
756 {
757 	preempt_disable();
758 	__acquire(RCU_SCHED);
759 	rcu_lock_acquire(&rcu_sched_lock_map);
760 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
761 			 "rcu_read_lock_sched() used illegally while idle");
762 }
763 
764 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)765 static inline notrace void rcu_read_lock_sched_notrace(void)
766 {
767 	preempt_disable_notrace();
768 	__acquire(RCU_SCHED);
769 }
770 
771 /*
772  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
773  *
774  * See rcu_read_lock_sched for more information.
775  */
rcu_read_unlock_sched(void)776 static inline void rcu_read_unlock_sched(void)
777 {
778 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
779 			 "rcu_read_unlock_sched() used illegally while idle");
780 	rcu_lock_release(&rcu_sched_lock_map);
781 	__release(RCU_SCHED);
782 	preempt_enable();
783 }
784 
785 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)786 static inline notrace void rcu_read_unlock_sched_notrace(void)
787 {
788 	__release(RCU_SCHED);
789 	preempt_enable_notrace();
790 }
791 
792 /**
793  * RCU_INIT_POINTER() - initialize an RCU protected pointer
794  * @p: The pointer to be initialized.
795  * @v: The value to initialized the pointer to.
796  *
797  * Initialize an RCU-protected pointer in special cases where readers
798  * do not need ordering constraints on the CPU or the compiler.  These
799  * special cases are:
800  *
801  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
802  * 2.	The caller has taken whatever steps are required to prevent
803  *	RCU readers from concurrently accessing this pointer *or*
804  * 3.	The referenced data structure has already been exposed to
805  *	readers either at compile time or via rcu_assign_pointer() *and*
806  *
807  *	a.	You have not made *any* reader-visible changes to
808  *		this structure since then *or*
809  *	b.	It is OK for readers accessing this structure from its
810  *		new location to see the old state of the structure.  (For
811  *		example, the changes were to statistical counters or to
812  *		other state where exact synchronization is not required.)
813  *
814  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
815  * result in impossible-to-diagnose memory corruption.  As in the structures
816  * will look OK in crash dumps, but any concurrent RCU readers might
817  * see pre-initialized values of the referenced data structure.  So
818  * please be very careful how you use RCU_INIT_POINTER()!!!
819  *
820  * If you are creating an RCU-protected linked structure that is accessed
821  * by a single external-to-structure RCU-protected pointer, then you may
822  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
823  * pointers, but you must use rcu_assign_pointer() to initialize the
824  * external-to-structure pointer *after* you have completely initialized
825  * the reader-accessible portions of the linked structure.
826  *
827  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
828  * ordering guarantees for either the CPU or the compiler.
829  */
830 #define RCU_INIT_POINTER(p, v) \
831 	do { \
832 		rcu_dereference_sparse(p, __rcu); \
833 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
834 	} while (0)
835 
836 /**
837  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
838  * @p: The pointer to be initialized.
839  * @v: The value to initialized the pointer to.
840  *
841  * GCC-style initialization for an RCU-protected pointer in a structure field.
842  */
843 #define RCU_POINTER_INITIALIZER(p, v) \
844 		.p = RCU_INITIALIZER(v)
845 
846 /*
847  * Does the specified offset indicate that the corresponding rcu_head
848  * structure can be handled by kfree_rcu()?
849  */
850 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
851 
852 /*
853  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
854  */
855 #define __kfree_rcu(head, offset) \
856 	do { \
857 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
858 		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
859 	} while (0)
860 
861 /**
862  * kfree_rcu() - kfree an object after a grace period.
863  * @ptr:	pointer to kfree
864  * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
865  *
866  * Many rcu callbacks functions just call kfree() on the base structure.
867  * These functions are trivial, but their size adds up, and furthermore
868  * when they are used in a kernel module, that module must invoke the
869  * high-latency rcu_barrier() function at module-unload time.
870  *
871  * The kfree_rcu() function handles this issue.  Rather than encoding a
872  * function address in the embedded rcu_head structure, kfree_rcu() instead
873  * encodes the offset of the rcu_head structure within the base structure.
874  * Because the functions are not allowed in the low-order 4096 bytes of
875  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
876  * If the offset is larger than 4095 bytes, a compile-time error will
877  * be generated in __kfree_rcu().  If this error is triggered, you can
878  * either fall back to use of call_rcu() or rearrange the structure to
879  * position the rcu_head structure into the first 4096 bytes.
880  *
881  * Note that the allowable offset might decrease in the future, for example,
882  * to allow something like kmem_cache_free_rcu().
883  *
884  * The BUILD_BUG_ON check must not involve any function calls, hence the
885  * checks are done in macros here.
886  */
887 #define kfree_rcu(ptr, rcu_head)					\
888 	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
889 
890 
891 /*
892  * Place this after a lock-acquisition primitive to guarantee that
893  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
894  * if the UNLOCK and LOCK are executed by the same CPU or if the
895  * UNLOCK and LOCK operate on the same lock variable.
896  */
897 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
898 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
899 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
900 #define smp_mb__after_unlock_lock()	do { } while (0)
901 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
902 
903 
904 #endif /* __LINUX_RCUPDATE_H */
905