1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 #include <asm/unaligned.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include "internal.h"
30
31 /*
32 * Sometimes for failures during very early init the trace
33 * infrastructure isn't available early enough to be used. For this
34 * sort of problem defining LOG_DEVICE will add printks for basic
35 * register I/O on a specific device.
36 */
37 #undef LOG_DEVICE
38
39 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
40 unsigned int mask, unsigned int val,
41 bool *change, bool force_write);
42
43 static int _regmap_bus_reg_read(void *context, unsigned int reg,
44 unsigned int *val);
45 static int _regmap_bus_read(void *context, unsigned int reg,
46 unsigned int *val);
47 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
48 unsigned int val);
49 static int _regmap_bus_reg_write(void *context, unsigned int reg,
50 unsigned int val);
51 static int _regmap_bus_raw_write(void *context, unsigned int reg,
52 unsigned int val);
53
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)54 bool regmap_reg_in_ranges(unsigned int reg,
55 const struct regmap_range *ranges,
56 unsigned int nranges)
57 {
58 const struct regmap_range *r;
59 int i;
60
61 for (i = 0, r = ranges; i < nranges; i++, r++)
62 if (regmap_reg_in_range(reg, r))
63 return true;
64 return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)68 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69 const struct regmap_access_table *table)
70 {
71 /* Check "no ranges" first */
72 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 return false;
74
75 /* In case zero "yes ranges" are supplied, any reg is OK */
76 if (!table->n_yes_ranges)
77 return true;
78
79 return regmap_reg_in_ranges(reg, table->yes_ranges,
80 table->n_yes_ranges);
81 }
82 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83
regmap_writeable(struct regmap * map,unsigned int reg)84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 if (map->max_register && reg > map->max_register)
87 return false;
88
89 if (map->writeable_reg)
90 return map->writeable_reg(map->dev, reg);
91
92 if (map->wr_table)
93 return regmap_check_range_table(map, reg, map->wr_table);
94
95 return true;
96 }
97
regmap_cached(struct regmap * map,unsigned int reg)98 bool regmap_cached(struct regmap *map, unsigned int reg)
99 {
100 int ret;
101 unsigned int val;
102
103 if (map->cache_type == REGCACHE_NONE)
104 return false;
105
106 if (!map->cache_ops)
107 return false;
108
109 if (map->max_register && reg > map->max_register)
110 return false;
111
112 map->lock(map->lock_arg);
113 ret = regcache_read(map, reg, &val);
114 map->unlock(map->lock_arg);
115 if (ret)
116 return false;
117
118 return true;
119 }
120
regmap_readable(struct regmap * map,unsigned int reg)121 bool regmap_readable(struct regmap *map, unsigned int reg)
122 {
123 if (!map->reg_read)
124 return false;
125
126 if (map->max_register && reg > map->max_register)
127 return false;
128
129 if (map->format.format_write)
130 return false;
131
132 if (map->readable_reg)
133 return map->readable_reg(map->dev, reg);
134
135 if (map->rd_table)
136 return regmap_check_range_table(map, reg, map->rd_table);
137
138 return true;
139 }
140
regmap_volatile(struct regmap * map,unsigned int reg)141 bool regmap_volatile(struct regmap *map, unsigned int reg)
142 {
143 if (!map->format.format_write && !regmap_readable(map, reg))
144 return false;
145
146 if (map->volatile_reg)
147 return map->volatile_reg(map->dev, reg);
148
149 if (map->volatile_table)
150 return regmap_check_range_table(map, reg, map->volatile_table);
151
152 if (map->cache_ops)
153 return false;
154 else
155 return true;
156 }
157
regmap_precious(struct regmap * map,unsigned int reg)158 bool regmap_precious(struct regmap *map, unsigned int reg)
159 {
160 if (!regmap_readable(map, reg))
161 return false;
162
163 if (map->precious_reg)
164 return map->precious_reg(map->dev, reg);
165
166 if (map->precious_table)
167 return regmap_check_range_table(map, reg, map->precious_table);
168
169 return false;
170 }
171
regmap_readable_noinc(struct regmap * map,unsigned int reg)172 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
173 {
174 if (map->readable_noinc_reg)
175 return map->readable_noinc_reg(map->dev, reg);
176
177 if (map->rd_noinc_table)
178 return regmap_check_range_table(map, reg, map->rd_noinc_table);
179
180 return true;
181 }
182
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)183 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
184 size_t num)
185 {
186 unsigned int i;
187
188 for (i = 0; i < num; i++)
189 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
190 return false;
191
192 return true;
193 }
194
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)195 static void regmap_format_2_6_write(struct regmap *map,
196 unsigned int reg, unsigned int val)
197 {
198 u8 *out = map->work_buf;
199
200 *out = (reg << 6) | val;
201 }
202
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)203 static void regmap_format_4_12_write(struct regmap *map,
204 unsigned int reg, unsigned int val)
205 {
206 __be16 *out = map->work_buf;
207 *out = cpu_to_be16((reg << 12) | val);
208 }
209
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)210 static void regmap_format_7_9_write(struct regmap *map,
211 unsigned int reg, unsigned int val)
212 {
213 __be16 *out = map->work_buf;
214 *out = cpu_to_be16((reg << 9) | val);
215 }
216
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)217 static void regmap_format_10_14_write(struct regmap *map,
218 unsigned int reg, unsigned int val)
219 {
220 u8 *out = map->work_buf;
221
222 out[2] = val;
223 out[1] = (val >> 8) | (reg << 6);
224 out[0] = reg >> 2;
225 }
226
regmap_format_8(void * buf,unsigned int val,unsigned int shift)227 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
228 {
229 u8 *b = buf;
230
231 b[0] = val << shift;
232 }
233
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)234 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
235 {
236 put_unaligned_be16(val << shift, buf);
237 }
238
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)239 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
240 {
241 put_unaligned_le16(val << shift, buf);
242 }
243
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)244 static void regmap_format_16_native(void *buf, unsigned int val,
245 unsigned int shift)
246 {
247 u16 v = val << shift;
248
249 memcpy(buf, &v, sizeof(v));
250 }
251
regmap_format_24(void * buf,unsigned int val,unsigned int shift)252 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
253 {
254 u8 *b = buf;
255
256 val <<= shift;
257
258 b[0] = val >> 16;
259 b[1] = val >> 8;
260 b[2] = val;
261 }
262
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)263 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 put_unaligned_be32(val << shift, buf);
266 }
267
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)268 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 put_unaligned_le32(val << shift, buf);
271 }
272
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_32_native(void *buf, unsigned int val,
274 unsigned int shift)
275 {
276 u32 v = val << shift;
277
278 memcpy(buf, &v, sizeof(v));
279 }
280
281 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)282 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
283 {
284 put_unaligned_be64((u64) val << shift, buf);
285 }
286
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)287 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
288 {
289 put_unaligned_le64((u64) val << shift, buf);
290 }
291
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)292 static void regmap_format_64_native(void *buf, unsigned int val,
293 unsigned int shift)
294 {
295 u64 v = (u64) val << shift;
296
297 memcpy(buf, &v, sizeof(v));
298 }
299 #endif
300
regmap_parse_inplace_noop(void * buf)301 static void regmap_parse_inplace_noop(void *buf)
302 {
303 }
304
regmap_parse_8(const void * buf)305 static unsigned int regmap_parse_8(const void *buf)
306 {
307 const u8 *b = buf;
308
309 return b[0];
310 }
311
regmap_parse_16_be(const void * buf)312 static unsigned int regmap_parse_16_be(const void *buf)
313 {
314 return get_unaligned_be16(buf);
315 }
316
regmap_parse_16_le(const void * buf)317 static unsigned int regmap_parse_16_le(const void *buf)
318 {
319 return get_unaligned_le16(buf);
320 }
321
regmap_parse_16_be_inplace(void * buf)322 static void regmap_parse_16_be_inplace(void *buf)
323 {
324 u16 v = get_unaligned_be16(buf);
325
326 memcpy(buf, &v, sizeof(v));
327 }
328
regmap_parse_16_le_inplace(void * buf)329 static void regmap_parse_16_le_inplace(void *buf)
330 {
331 u16 v = get_unaligned_le16(buf);
332
333 memcpy(buf, &v, sizeof(v));
334 }
335
regmap_parse_16_native(const void * buf)336 static unsigned int regmap_parse_16_native(const void *buf)
337 {
338 u16 v;
339
340 memcpy(&v, buf, sizeof(v));
341 return v;
342 }
343
regmap_parse_24(const void * buf)344 static unsigned int regmap_parse_24(const void *buf)
345 {
346 const u8 *b = buf;
347 unsigned int ret = b[2];
348 ret |= ((unsigned int)b[1]) << 8;
349 ret |= ((unsigned int)b[0]) << 16;
350
351 return ret;
352 }
353
regmap_parse_32_be(const void * buf)354 static unsigned int regmap_parse_32_be(const void *buf)
355 {
356 return get_unaligned_be32(buf);
357 }
358
regmap_parse_32_le(const void * buf)359 static unsigned int regmap_parse_32_le(const void *buf)
360 {
361 return get_unaligned_le32(buf);
362 }
363
regmap_parse_32_be_inplace(void * buf)364 static void regmap_parse_32_be_inplace(void *buf)
365 {
366 u32 v = get_unaligned_be32(buf);
367
368 memcpy(buf, &v, sizeof(v));
369 }
370
regmap_parse_32_le_inplace(void * buf)371 static void regmap_parse_32_le_inplace(void *buf)
372 {
373 u32 v = get_unaligned_le32(buf);
374
375 memcpy(buf, &v, sizeof(v));
376 }
377
regmap_parse_32_native(const void * buf)378 static unsigned int regmap_parse_32_native(const void *buf)
379 {
380 u32 v;
381
382 memcpy(&v, buf, sizeof(v));
383 return v;
384 }
385
386 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)387 static unsigned int regmap_parse_64_be(const void *buf)
388 {
389 return get_unaligned_be64(buf);
390 }
391
regmap_parse_64_le(const void * buf)392 static unsigned int regmap_parse_64_le(const void *buf)
393 {
394 return get_unaligned_le64(buf);
395 }
396
regmap_parse_64_be_inplace(void * buf)397 static void regmap_parse_64_be_inplace(void *buf)
398 {
399 u64 v = get_unaligned_be64(buf);
400
401 memcpy(buf, &v, sizeof(v));
402 }
403
regmap_parse_64_le_inplace(void * buf)404 static void regmap_parse_64_le_inplace(void *buf)
405 {
406 u64 v = get_unaligned_le64(buf);
407
408 memcpy(buf, &v, sizeof(v));
409 }
410
regmap_parse_64_native(const void * buf)411 static unsigned int regmap_parse_64_native(const void *buf)
412 {
413 u64 v;
414
415 memcpy(&v, buf, sizeof(v));
416 return v;
417 }
418 #endif
419
regmap_lock_hwlock(void * __map)420 static void regmap_lock_hwlock(void *__map)
421 {
422 struct regmap *map = __map;
423
424 hwspin_lock_timeout(map->hwlock, UINT_MAX);
425 }
426
regmap_lock_hwlock_irq(void * __map)427 static void regmap_lock_hwlock_irq(void *__map)
428 {
429 struct regmap *map = __map;
430
431 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
432 }
433
regmap_lock_hwlock_irqsave(void * __map)434 static void regmap_lock_hwlock_irqsave(void *__map)
435 {
436 struct regmap *map = __map;
437
438 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
439 &map->spinlock_flags);
440 }
441
regmap_unlock_hwlock(void * __map)442 static void regmap_unlock_hwlock(void *__map)
443 {
444 struct regmap *map = __map;
445
446 hwspin_unlock(map->hwlock);
447 }
448
regmap_unlock_hwlock_irq(void * __map)449 static void regmap_unlock_hwlock_irq(void *__map)
450 {
451 struct regmap *map = __map;
452
453 hwspin_unlock_irq(map->hwlock);
454 }
455
regmap_unlock_hwlock_irqrestore(void * __map)456 static void regmap_unlock_hwlock_irqrestore(void *__map)
457 {
458 struct regmap *map = __map;
459
460 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
461 }
462
regmap_lock_unlock_none(void * __map)463 static void regmap_lock_unlock_none(void *__map)
464 {
465
466 }
467
regmap_lock_mutex(void * __map)468 static void regmap_lock_mutex(void *__map)
469 {
470 struct regmap *map = __map;
471 mutex_lock(&map->mutex);
472 }
473
regmap_unlock_mutex(void * __map)474 static void regmap_unlock_mutex(void *__map)
475 {
476 struct regmap *map = __map;
477 mutex_unlock(&map->mutex);
478 }
479
regmap_lock_spinlock(void * __map)480 static void regmap_lock_spinlock(void *__map)
481 __acquires(&map->spinlock)
482 {
483 struct regmap *map = __map;
484 unsigned long flags;
485
486 spin_lock_irqsave(&map->spinlock, flags);
487 map->spinlock_flags = flags;
488 }
489
regmap_unlock_spinlock(void * __map)490 static void regmap_unlock_spinlock(void *__map)
491 __releases(&map->spinlock)
492 {
493 struct regmap *map = __map;
494 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
495 }
496
dev_get_regmap_release(struct device * dev,void * res)497 static void dev_get_regmap_release(struct device *dev, void *res)
498 {
499 /*
500 * We don't actually have anything to do here; the goal here
501 * is not to manage the regmap but to provide a simple way to
502 * get the regmap back given a struct device.
503 */
504 }
505
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)506 static bool _regmap_range_add(struct regmap *map,
507 struct regmap_range_node *data)
508 {
509 struct rb_root *root = &map->range_tree;
510 struct rb_node **new = &(root->rb_node), *parent = NULL;
511
512 while (*new) {
513 struct regmap_range_node *this =
514 rb_entry(*new, struct regmap_range_node, node);
515
516 parent = *new;
517 if (data->range_max < this->range_min)
518 new = &((*new)->rb_left);
519 else if (data->range_min > this->range_max)
520 new = &((*new)->rb_right);
521 else
522 return false;
523 }
524
525 rb_link_node(&data->node, parent, new);
526 rb_insert_color(&data->node, root);
527
528 return true;
529 }
530
_regmap_range_lookup(struct regmap * map,unsigned int reg)531 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
532 unsigned int reg)
533 {
534 struct rb_node *node = map->range_tree.rb_node;
535
536 while (node) {
537 struct regmap_range_node *this =
538 rb_entry(node, struct regmap_range_node, node);
539
540 if (reg < this->range_min)
541 node = node->rb_left;
542 else if (reg > this->range_max)
543 node = node->rb_right;
544 else
545 return this;
546 }
547
548 return NULL;
549 }
550
regmap_range_exit(struct regmap * map)551 static void regmap_range_exit(struct regmap *map)
552 {
553 struct rb_node *next;
554 struct regmap_range_node *range_node;
555
556 next = rb_first(&map->range_tree);
557 while (next) {
558 range_node = rb_entry(next, struct regmap_range_node, node);
559 next = rb_next(&range_node->node);
560 rb_erase(&range_node->node, &map->range_tree);
561 kfree(range_node);
562 }
563
564 kfree(map->selector_work_buf);
565 }
566
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)567 int regmap_attach_dev(struct device *dev, struct regmap *map,
568 const struct regmap_config *config)
569 {
570 struct regmap **m;
571
572 map->dev = dev;
573
574 regmap_debugfs_init(map, config->name);
575
576 /* Add a devres resource for dev_get_regmap() */
577 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
578 if (!m) {
579 regmap_debugfs_exit(map);
580 return -ENOMEM;
581 }
582 *m = map;
583 devres_add(dev, m);
584
585 return 0;
586 }
587 EXPORT_SYMBOL_GPL(regmap_attach_dev);
588
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)589 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
590 const struct regmap_config *config)
591 {
592 enum regmap_endian endian;
593
594 /* Retrieve the endianness specification from the regmap config */
595 endian = config->reg_format_endian;
596
597 /* If the regmap config specified a non-default value, use that */
598 if (endian != REGMAP_ENDIAN_DEFAULT)
599 return endian;
600
601 /* Retrieve the endianness specification from the bus config */
602 if (bus && bus->reg_format_endian_default)
603 endian = bus->reg_format_endian_default;
604
605 /* If the bus specified a non-default value, use that */
606 if (endian != REGMAP_ENDIAN_DEFAULT)
607 return endian;
608
609 /* Use this if no other value was found */
610 return REGMAP_ENDIAN_BIG;
611 }
612
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)613 enum regmap_endian regmap_get_val_endian(struct device *dev,
614 const struct regmap_bus *bus,
615 const struct regmap_config *config)
616 {
617 struct device_node *np;
618 enum regmap_endian endian;
619
620 /* Retrieve the endianness specification from the regmap config */
621 endian = config->val_format_endian;
622
623 /* If the regmap config specified a non-default value, use that */
624 if (endian != REGMAP_ENDIAN_DEFAULT)
625 return endian;
626
627 /* If the dev and dev->of_node exist try to get endianness from DT */
628 if (dev && dev->of_node) {
629 np = dev->of_node;
630
631 /* Parse the device's DT node for an endianness specification */
632 if (of_property_read_bool(np, "big-endian"))
633 endian = REGMAP_ENDIAN_BIG;
634 else if (of_property_read_bool(np, "little-endian"))
635 endian = REGMAP_ENDIAN_LITTLE;
636 else if (of_property_read_bool(np, "native-endian"))
637 endian = REGMAP_ENDIAN_NATIVE;
638
639 /* If the endianness was specified in DT, use that */
640 if (endian != REGMAP_ENDIAN_DEFAULT)
641 return endian;
642 }
643
644 /* Retrieve the endianness specification from the bus config */
645 if (bus && bus->val_format_endian_default)
646 endian = bus->val_format_endian_default;
647
648 /* If the bus specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* Use this if no other value was found */
653 return REGMAP_ENDIAN_BIG;
654 }
655 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
656
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)657 struct regmap *__regmap_init(struct device *dev,
658 const struct regmap_bus *bus,
659 void *bus_context,
660 const struct regmap_config *config,
661 struct lock_class_key *lock_key,
662 const char *lock_name)
663 {
664 struct regmap *map;
665 int ret = -EINVAL;
666 enum regmap_endian reg_endian, val_endian;
667 int i, j;
668
669 if (!config)
670 goto err;
671
672 map = kzalloc(sizeof(*map), GFP_KERNEL);
673 if (map == NULL) {
674 ret = -ENOMEM;
675 goto err;
676 }
677
678 if (config->name) {
679 map->name = kstrdup_const(config->name, GFP_KERNEL);
680 if (!map->name) {
681 ret = -ENOMEM;
682 goto err_map;
683 }
684 }
685
686 if (config->disable_locking) {
687 map->lock = map->unlock = regmap_lock_unlock_none;
688 regmap_debugfs_disable(map);
689 } else if (config->lock && config->unlock) {
690 map->lock = config->lock;
691 map->unlock = config->unlock;
692 map->lock_arg = config->lock_arg;
693 } else if (config->use_hwlock) {
694 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
695 if (!map->hwlock) {
696 ret = -ENXIO;
697 goto err_name;
698 }
699
700 switch (config->hwlock_mode) {
701 case HWLOCK_IRQSTATE:
702 map->lock = regmap_lock_hwlock_irqsave;
703 map->unlock = regmap_unlock_hwlock_irqrestore;
704 break;
705 case HWLOCK_IRQ:
706 map->lock = regmap_lock_hwlock_irq;
707 map->unlock = regmap_unlock_hwlock_irq;
708 break;
709 default:
710 map->lock = regmap_lock_hwlock;
711 map->unlock = regmap_unlock_hwlock;
712 break;
713 }
714
715 map->lock_arg = map;
716 } else {
717 if ((bus && bus->fast_io) ||
718 config->fast_io) {
719 spin_lock_init(&map->spinlock);
720 map->lock = regmap_lock_spinlock;
721 map->unlock = regmap_unlock_spinlock;
722 lockdep_set_class_and_name(&map->spinlock,
723 lock_key, lock_name);
724 } else {
725 mutex_init(&map->mutex);
726 map->lock = regmap_lock_mutex;
727 map->unlock = regmap_unlock_mutex;
728 lockdep_set_class_and_name(&map->mutex,
729 lock_key, lock_name);
730 }
731 map->lock_arg = map;
732 }
733
734 /*
735 * When we write in fast-paths with regmap_bulk_write() don't allocate
736 * scratch buffers with sleeping allocations.
737 */
738 if ((bus && bus->fast_io) || config->fast_io)
739 map->alloc_flags = GFP_ATOMIC;
740 else
741 map->alloc_flags = GFP_KERNEL;
742
743 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
744 map->format.pad_bytes = config->pad_bits / 8;
745 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
746 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
747 config->val_bits + config->pad_bits, 8);
748 map->reg_shift = config->pad_bits % 8;
749 if (config->reg_stride)
750 map->reg_stride = config->reg_stride;
751 else
752 map->reg_stride = 1;
753 if (is_power_of_2(map->reg_stride))
754 map->reg_stride_order = ilog2(map->reg_stride);
755 else
756 map->reg_stride_order = -1;
757 map->use_single_read = config->use_single_rw || !bus || !bus->read;
758 map->use_single_write = config->use_single_rw || !bus || !bus->write;
759 map->can_multi_write = config->can_multi_write && bus && bus->write;
760 if (bus) {
761 map->max_raw_read = bus->max_raw_read;
762 map->max_raw_write = bus->max_raw_write;
763 }
764 map->dev = dev;
765 map->bus = bus;
766 map->bus_context = bus_context;
767 map->max_register = config->max_register;
768 map->wr_table = config->wr_table;
769 map->rd_table = config->rd_table;
770 map->volatile_table = config->volatile_table;
771 map->precious_table = config->precious_table;
772 map->rd_noinc_table = config->rd_noinc_table;
773 map->writeable_reg = config->writeable_reg;
774 map->readable_reg = config->readable_reg;
775 map->volatile_reg = config->volatile_reg;
776 map->precious_reg = config->precious_reg;
777 map->readable_noinc_reg = config->readable_noinc_reg;
778 map->cache_type = config->cache_type;
779
780 spin_lock_init(&map->async_lock);
781 INIT_LIST_HEAD(&map->async_list);
782 INIT_LIST_HEAD(&map->async_free);
783 init_waitqueue_head(&map->async_waitq);
784
785 if (config->read_flag_mask ||
786 config->write_flag_mask ||
787 config->zero_flag_mask) {
788 map->read_flag_mask = config->read_flag_mask;
789 map->write_flag_mask = config->write_flag_mask;
790 } else if (bus) {
791 map->read_flag_mask = bus->read_flag_mask;
792 }
793
794 if (!bus) {
795 map->reg_read = config->reg_read;
796 map->reg_write = config->reg_write;
797
798 map->defer_caching = false;
799 goto skip_format_initialization;
800 } else if (!bus->read || !bus->write) {
801 map->reg_read = _regmap_bus_reg_read;
802 map->reg_write = _regmap_bus_reg_write;
803
804 map->defer_caching = false;
805 goto skip_format_initialization;
806 } else {
807 map->reg_read = _regmap_bus_read;
808 map->reg_update_bits = bus->reg_update_bits;
809 }
810
811 reg_endian = regmap_get_reg_endian(bus, config);
812 val_endian = regmap_get_val_endian(dev, bus, config);
813
814 switch (config->reg_bits + map->reg_shift) {
815 case 2:
816 switch (config->val_bits) {
817 case 6:
818 map->format.format_write = regmap_format_2_6_write;
819 break;
820 default:
821 goto err_hwlock;
822 }
823 break;
824
825 case 4:
826 switch (config->val_bits) {
827 case 12:
828 map->format.format_write = regmap_format_4_12_write;
829 break;
830 default:
831 goto err_hwlock;
832 }
833 break;
834
835 case 7:
836 switch (config->val_bits) {
837 case 9:
838 map->format.format_write = regmap_format_7_9_write;
839 break;
840 default:
841 goto err_hwlock;
842 }
843 break;
844
845 case 10:
846 switch (config->val_bits) {
847 case 14:
848 map->format.format_write = regmap_format_10_14_write;
849 break;
850 default:
851 goto err_hwlock;
852 }
853 break;
854
855 case 8:
856 map->format.format_reg = regmap_format_8;
857 break;
858
859 case 16:
860 switch (reg_endian) {
861 case REGMAP_ENDIAN_BIG:
862 map->format.format_reg = regmap_format_16_be;
863 break;
864 case REGMAP_ENDIAN_LITTLE:
865 map->format.format_reg = regmap_format_16_le;
866 break;
867 case REGMAP_ENDIAN_NATIVE:
868 map->format.format_reg = regmap_format_16_native;
869 break;
870 default:
871 goto err_hwlock;
872 }
873 break;
874
875 case 24:
876 if (reg_endian != REGMAP_ENDIAN_BIG)
877 goto err_hwlock;
878 map->format.format_reg = regmap_format_24;
879 break;
880
881 case 32:
882 switch (reg_endian) {
883 case REGMAP_ENDIAN_BIG:
884 map->format.format_reg = regmap_format_32_be;
885 break;
886 case REGMAP_ENDIAN_LITTLE:
887 map->format.format_reg = regmap_format_32_le;
888 break;
889 case REGMAP_ENDIAN_NATIVE:
890 map->format.format_reg = regmap_format_32_native;
891 break;
892 default:
893 goto err_hwlock;
894 }
895 break;
896
897 #ifdef CONFIG_64BIT
898 case 64:
899 switch (reg_endian) {
900 case REGMAP_ENDIAN_BIG:
901 map->format.format_reg = regmap_format_64_be;
902 break;
903 case REGMAP_ENDIAN_LITTLE:
904 map->format.format_reg = regmap_format_64_le;
905 break;
906 case REGMAP_ENDIAN_NATIVE:
907 map->format.format_reg = regmap_format_64_native;
908 break;
909 default:
910 goto err_hwlock;
911 }
912 break;
913 #endif
914
915 default:
916 goto err_hwlock;
917 }
918
919 if (val_endian == REGMAP_ENDIAN_NATIVE)
920 map->format.parse_inplace = regmap_parse_inplace_noop;
921
922 switch (config->val_bits) {
923 case 8:
924 map->format.format_val = regmap_format_8;
925 map->format.parse_val = regmap_parse_8;
926 map->format.parse_inplace = regmap_parse_inplace_noop;
927 break;
928 case 16:
929 switch (val_endian) {
930 case REGMAP_ENDIAN_BIG:
931 map->format.format_val = regmap_format_16_be;
932 map->format.parse_val = regmap_parse_16_be;
933 map->format.parse_inplace = regmap_parse_16_be_inplace;
934 break;
935 case REGMAP_ENDIAN_LITTLE:
936 map->format.format_val = regmap_format_16_le;
937 map->format.parse_val = regmap_parse_16_le;
938 map->format.parse_inplace = regmap_parse_16_le_inplace;
939 break;
940 case REGMAP_ENDIAN_NATIVE:
941 map->format.format_val = regmap_format_16_native;
942 map->format.parse_val = regmap_parse_16_native;
943 break;
944 default:
945 goto err_hwlock;
946 }
947 break;
948 case 24:
949 if (val_endian != REGMAP_ENDIAN_BIG)
950 goto err_hwlock;
951 map->format.format_val = regmap_format_24;
952 map->format.parse_val = regmap_parse_24;
953 break;
954 case 32:
955 switch (val_endian) {
956 case REGMAP_ENDIAN_BIG:
957 map->format.format_val = regmap_format_32_be;
958 map->format.parse_val = regmap_parse_32_be;
959 map->format.parse_inplace = regmap_parse_32_be_inplace;
960 break;
961 case REGMAP_ENDIAN_LITTLE:
962 map->format.format_val = regmap_format_32_le;
963 map->format.parse_val = regmap_parse_32_le;
964 map->format.parse_inplace = regmap_parse_32_le_inplace;
965 break;
966 case REGMAP_ENDIAN_NATIVE:
967 map->format.format_val = regmap_format_32_native;
968 map->format.parse_val = regmap_parse_32_native;
969 break;
970 default:
971 goto err_hwlock;
972 }
973 break;
974 #ifdef CONFIG_64BIT
975 case 64:
976 switch (val_endian) {
977 case REGMAP_ENDIAN_BIG:
978 map->format.format_val = regmap_format_64_be;
979 map->format.parse_val = regmap_parse_64_be;
980 map->format.parse_inplace = regmap_parse_64_be_inplace;
981 break;
982 case REGMAP_ENDIAN_LITTLE:
983 map->format.format_val = regmap_format_64_le;
984 map->format.parse_val = regmap_parse_64_le;
985 map->format.parse_inplace = regmap_parse_64_le_inplace;
986 break;
987 case REGMAP_ENDIAN_NATIVE:
988 map->format.format_val = regmap_format_64_native;
989 map->format.parse_val = regmap_parse_64_native;
990 break;
991 default:
992 goto err_hwlock;
993 }
994 break;
995 #endif
996 }
997
998 if (map->format.format_write) {
999 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1000 (val_endian != REGMAP_ENDIAN_BIG))
1001 goto err_hwlock;
1002 map->use_single_write = true;
1003 }
1004
1005 if (!map->format.format_write &&
1006 !(map->format.format_reg && map->format.format_val))
1007 goto err_hwlock;
1008
1009 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1010 if (map->work_buf == NULL) {
1011 ret = -ENOMEM;
1012 goto err_hwlock;
1013 }
1014
1015 if (map->format.format_write) {
1016 map->defer_caching = false;
1017 map->reg_write = _regmap_bus_formatted_write;
1018 } else if (map->format.format_val) {
1019 map->defer_caching = true;
1020 map->reg_write = _regmap_bus_raw_write;
1021 }
1022
1023 skip_format_initialization:
1024
1025 map->range_tree = RB_ROOT;
1026 for (i = 0; i < config->num_ranges; i++) {
1027 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1028 struct regmap_range_node *new;
1029
1030 /* Sanity check */
1031 if (range_cfg->range_max < range_cfg->range_min) {
1032 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1033 range_cfg->range_max, range_cfg->range_min);
1034 goto err_range;
1035 }
1036
1037 if (range_cfg->range_max > map->max_register) {
1038 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1039 range_cfg->range_max, map->max_register);
1040 goto err_range;
1041 }
1042
1043 if (range_cfg->selector_reg > map->max_register) {
1044 dev_err(map->dev,
1045 "Invalid range %d: selector out of map\n", i);
1046 goto err_range;
1047 }
1048
1049 if (range_cfg->window_len == 0) {
1050 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1051 i);
1052 goto err_range;
1053 }
1054
1055 /* Make sure, that this register range has no selector
1056 or data window within its boundary */
1057 for (j = 0; j < config->num_ranges; j++) {
1058 unsigned sel_reg = config->ranges[j].selector_reg;
1059 unsigned win_min = config->ranges[j].window_start;
1060 unsigned win_max = win_min +
1061 config->ranges[j].window_len - 1;
1062
1063 /* Allow data window inside its own virtual range */
1064 if (j == i)
1065 continue;
1066
1067 if (range_cfg->range_min <= sel_reg &&
1068 sel_reg <= range_cfg->range_max) {
1069 dev_err(map->dev,
1070 "Range %d: selector for %d in window\n",
1071 i, j);
1072 goto err_range;
1073 }
1074
1075 if (!(win_max < range_cfg->range_min ||
1076 win_min > range_cfg->range_max)) {
1077 dev_err(map->dev,
1078 "Range %d: window for %d in window\n",
1079 i, j);
1080 goto err_range;
1081 }
1082 }
1083
1084 new = kzalloc(sizeof(*new), GFP_KERNEL);
1085 if (new == NULL) {
1086 ret = -ENOMEM;
1087 goto err_range;
1088 }
1089
1090 new->map = map;
1091 new->name = range_cfg->name;
1092 new->range_min = range_cfg->range_min;
1093 new->range_max = range_cfg->range_max;
1094 new->selector_reg = range_cfg->selector_reg;
1095 new->selector_mask = range_cfg->selector_mask;
1096 new->selector_shift = range_cfg->selector_shift;
1097 new->window_start = range_cfg->window_start;
1098 new->window_len = range_cfg->window_len;
1099
1100 if (!_regmap_range_add(map, new)) {
1101 dev_err(map->dev, "Failed to add range %d\n", i);
1102 kfree(new);
1103 goto err_range;
1104 }
1105
1106 if (map->selector_work_buf == NULL) {
1107 map->selector_work_buf =
1108 kzalloc(map->format.buf_size, GFP_KERNEL);
1109 if (map->selector_work_buf == NULL) {
1110 ret = -ENOMEM;
1111 goto err_range;
1112 }
1113 }
1114 }
1115
1116 ret = regcache_init(map, config);
1117 if (ret != 0)
1118 goto err_range;
1119
1120 if (dev) {
1121 ret = regmap_attach_dev(dev, map, config);
1122 if (ret != 0)
1123 goto err_regcache;
1124 } else {
1125 regmap_debugfs_init(map, config->name);
1126 }
1127
1128 return map;
1129
1130 err_regcache:
1131 regcache_exit(map);
1132 err_range:
1133 regmap_range_exit(map);
1134 kfree(map->work_buf);
1135 err_hwlock:
1136 if (map->hwlock)
1137 hwspin_lock_free(map->hwlock);
1138 err_name:
1139 kfree_const(map->name);
1140 err_map:
1141 kfree(map);
1142 err:
1143 return ERR_PTR(ret);
1144 }
1145 EXPORT_SYMBOL_GPL(__regmap_init);
1146
devm_regmap_release(struct device * dev,void * res)1147 static void devm_regmap_release(struct device *dev, void *res)
1148 {
1149 regmap_exit(*(struct regmap **)res);
1150 }
1151
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1152 struct regmap *__devm_regmap_init(struct device *dev,
1153 const struct regmap_bus *bus,
1154 void *bus_context,
1155 const struct regmap_config *config,
1156 struct lock_class_key *lock_key,
1157 const char *lock_name)
1158 {
1159 struct regmap **ptr, *regmap;
1160
1161 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1162 if (!ptr)
1163 return ERR_PTR(-ENOMEM);
1164
1165 regmap = __regmap_init(dev, bus, bus_context, config,
1166 lock_key, lock_name);
1167 if (!IS_ERR(regmap)) {
1168 *ptr = regmap;
1169 devres_add(dev, ptr);
1170 } else {
1171 devres_free(ptr);
1172 }
1173
1174 return regmap;
1175 }
1176 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1177
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1178 static void regmap_field_init(struct regmap_field *rm_field,
1179 struct regmap *regmap, struct reg_field reg_field)
1180 {
1181 rm_field->regmap = regmap;
1182 rm_field->reg = reg_field.reg;
1183 rm_field->shift = reg_field.lsb;
1184 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1185 rm_field->id_size = reg_field.id_size;
1186 rm_field->id_offset = reg_field.id_offset;
1187 }
1188
1189 /**
1190 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1191 *
1192 * @dev: Device that will be interacted with
1193 * @regmap: regmap bank in which this register field is located.
1194 * @reg_field: Register field with in the bank.
1195 *
1196 * The return value will be an ERR_PTR() on error or a valid pointer
1197 * to a struct regmap_field. The regmap_field will be automatically freed
1198 * by the device management code.
1199 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1200 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1201 struct regmap *regmap, struct reg_field reg_field)
1202 {
1203 struct regmap_field *rm_field = devm_kzalloc(dev,
1204 sizeof(*rm_field), GFP_KERNEL);
1205 if (!rm_field)
1206 return ERR_PTR(-ENOMEM);
1207
1208 regmap_field_init(rm_field, regmap, reg_field);
1209
1210 return rm_field;
1211
1212 }
1213 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1214
1215 /**
1216 * devm_regmap_field_free() - Free a register field allocated using
1217 * devm_regmap_field_alloc.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @field: regmap field which should be freed.
1221 *
1222 * Free register field allocated using devm_regmap_field_alloc(). Usually
1223 * drivers need not call this function, as the memory allocated via devm
1224 * will be freed as per device-driver life-cyle.
1225 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1226 void devm_regmap_field_free(struct device *dev,
1227 struct regmap_field *field)
1228 {
1229 devm_kfree(dev, field);
1230 }
1231 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1232
1233 /**
1234 * regmap_field_alloc() - Allocate and initialise a register field.
1235 *
1236 * @regmap: regmap bank in which this register field is located.
1237 * @reg_field: Register field with in the bank.
1238 *
1239 * The return value will be an ERR_PTR() on error or a valid pointer
1240 * to a struct regmap_field. The regmap_field should be freed by the
1241 * user once its finished working with it using regmap_field_free().
1242 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1243 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1244 struct reg_field reg_field)
1245 {
1246 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1247
1248 if (!rm_field)
1249 return ERR_PTR(-ENOMEM);
1250
1251 regmap_field_init(rm_field, regmap, reg_field);
1252
1253 return rm_field;
1254 }
1255 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1256
1257 /**
1258 * regmap_field_free() - Free register field allocated using
1259 * regmap_field_alloc.
1260 *
1261 * @field: regmap field which should be freed.
1262 */
regmap_field_free(struct regmap_field * field)1263 void regmap_field_free(struct regmap_field *field)
1264 {
1265 kfree(field);
1266 }
1267 EXPORT_SYMBOL_GPL(regmap_field_free);
1268
1269 /**
1270 * regmap_reinit_cache() - Reinitialise the current register cache
1271 *
1272 * @map: Register map to operate on.
1273 * @config: New configuration. Only the cache data will be used.
1274 *
1275 * Discard any existing register cache for the map and initialize a
1276 * new cache. This can be used to restore the cache to defaults or to
1277 * update the cache configuration to reflect runtime discovery of the
1278 * hardware.
1279 *
1280 * No explicit locking is done here, the user needs to ensure that
1281 * this function will not race with other calls to regmap.
1282 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1283 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1284 {
1285 regcache_exit(map);
1286 regmap_debugfs_exit(map);
1287
1288 map->max_register = config->max_register;
1289 map->writeable_reg = config->writeable_reg;
1290 map->readable_reg = config->readable_reg;
1291 map->volatile_reg = config->volatile_reg;
1292 map->precious_reg = config->precious_reg;
1293 map->readable_noinc_reg = config->readable_noinc_reg;
1294 map->cache_type = config->cache_type;
1295
1296 regmap_debugfs_init(map, config->name);
1297
1298 map->cache_bypass = false;
1299 map->cache_only = false;
1300
1301 return regcache_init(map, config);
1302 }
1303 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1304
1305 /**
1306 * regmap_exit() - Free a previously allocated register map
1307 *
1308 * @map: Register map to operate on.
1309 */
regmap_exit(struct regmap * map)1310 void regmap_exit(struct regmap *map)
1311 {
1312 struct regmap_async *async;
1313
1314 regcache_exit(map);
1315 regmap_debugfs_exit(map);
1316 regmap_range_exit(map);
1317 if (map->bus && map->bus->free_context)
1318 map->bus->free_context(map->bus_context);
1319 kfree(map->work_buf);
1320 while (!list_empty(&map->async_free)) {
1321 async = list_first_entry_or_null(&map->async_free,
1322 struct regmap_async,
1323 list);
1324 list_del(&async->list);
1325 kfree(async->work_buf);
1326 kfree(async);
1327 }
1328 if (map->hwlock)
1329 hwspin_lock_free(map->hwlock);
1330 kfree_const(map->name);
1331 kfree(map->patch);
1332 kfree(map);
1333 }
1334 EXPORT_SYMBOL_GPL(regmap_exit);
1335
dev_get_regmap_match(struct device * dev,void * res,void * data)1336 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1337 {
1338 struct regmap **r = res;
1339 if (!r || !*r) {
1340 WARN_ON(!r || !*r);
1341 return 0;
1342 }
1343
1344 /* If the user didn't specify a name match any */
1345 if (data)
1346 return !strcmp((*r)->name, data);
1347 else
1348 return 1;
1349 }
1350
1351 /**
1352 * dev_get_regmap() - Obtain the regmap (if any) for a device
1353 *
1354 * @dev: Device to retrieve the map for
1355 * @name: Optional name for the register map, usually NULL.
1356 *
1357 * Returns the regmap for the device if one is present, or NULL. If
1358 * name is specified then it must match the name specified when
1359 * registering the device, if it is NULL then the first regmap found
1360 * will be used. Devices with multiple register maps are very rare,
1361 * generic code should normally not need to specify a name.
1362 */
dev_get_regmap(struct device * dev,const char * name)1363 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1364 {
1365 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1366 dev_get_regmap_match, (void *)name);
1367
1368 if (!r)
1369 return NULL;
1370 return *r;
1371 }
1372 EXPORT_SYMBOL_GPL(dev_get_regmap);
1373
1374 /**
1375 * regmap_get_device() - Obtain the device from a regmap
1376 *
1377 * @map: Register map to operate on.
1378 *
1379 * Returns the underlying device that the regmap has been created for.
1380 */
regmap_get_device(struct regmap * map)1381 struct device *regmap_get_device(struct regmap *map)
1382 {
1383 return map->dev;
1384 }
1385 EXPORT_SYMBOL_GPL(regmap_get_device);
1386
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1387 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1388 struct regmap_range_node *range,
1389 unsigned int val_num)
1390 {
1391 void *orig_work_buf;
1392 unsigned int win_offset;
1393 unsigned int win_page;
1394 bool page_chg;
1395 int ret;
1396
1397 win_offset = (*reg - range->range_min) % range->window_len;
1398 win_page = (*reg - range->range_min) / range->window_len;
1399
1400 if (val_num > 1) {
1401 /* Bulk write shouldn't cross range boundary */
1402 if (*reg + val_num - 1 > range->range_max)
1403 return -EINVAL;
1404
1405 /* ... or single page boundary */
1406 if (val_num > range->window_len - win_offset)
1407 return -EINVAL;
1408 }
1409
1410 /* It is possible to have selector register inside data window.
1411 In that case, selector register is located on every page and
1412 it needs no page switching, when accessed alone. */
1413 if (val_num > 1 ||
1414 range->window_start + win_offset != range->selector_reg) {
1415 /* Use separate work_buf during page switching */
1416 orig_work_buf = map->work_buf;
1417 map->work_buf = map->selector_work_buf;
1418
1419 ret = _regmap_update_bits(map, range->selector_reg,
1420 range->selector_mask,
1421 win_page << range->selector_shift,
1422 &page_chg, false);
1423
1424 map->work_buf = orig_work_buf;
1425
1426 if (ret != 0)
1427 return ret;
1428 }
1429
1430 *reg = range->window_start + win_offset;
1431
1432 return 0;
1433 }
1434
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1435 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1436 unsigned long mask)
1437 {
1438 u8 *buf;
1439 int i;
1440
1441 if (!mask || !map->work_buf)
1442 return;
1443
1444 buf = map->work_buf;
1445
1446 for (i = 0; i < max_bytes; i++)
1447 buf[i] |= (mask >> (8 * i)) & 0xff;
1448 }
1449
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1450 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1451 const void *val, size_t val_len)
1452 {
1453 struct regmap_range_node *range;
1454 unsigned long flags;
1455 void *work_val = map->work_buf + map->format.reg_bytes +
1456 map->format.pad_bytes;
1457 void *buf;
1458 int ret = -ENOTSUPP;
1459 size_t len;
1460 int i;
1461
1462 WARN_ON(!map->bus);
1463
1464 /* Check for unwritable registers before we start */
1465 if (map->writeable_reg)
1466 for (i = 0; i < val_len / map->format.val_bytes; i++)
1467 if (!map->writeable_reg(map->dev,
1468 reg + regmap_get_offset(map, i)))
1469 return -EINVAL;
1470
1471 if (!map->cache_bypass && map->format.parse_val) {
1472 unsigned int ival;
1473 int val_bytes = map->format.val_bytes;
1474 for (i = 0; i < val_len / val_bytes; i++) {
1475 ival = map->format.parse_val(val + (i * val_bytes));
1476 ret = regcache_write(map,
1477 reg + regmap_get_offset(map, i),
1478 ival);
1479 if (ret) {
1480 dev_err(map->dev,
1481 "Error in caching of register: %x ret: %d\n",
1482 reg + regmap_get_offset(map, i), ret);
1483 return ret;
1484 }
1485 }
1486 if (map->cache_only) {
1487 map->cache_dirty = true;
1488 return 0;
1489 }
1490 }
1491
1492 range = _regmap_range_lookup(map, reg);
1493 if (range) {
1494 int val_num = val_len / map->format.val_bytes;
1495 int win_offset = (reg - range->range_min) % range->window_len;
1496 int win_residue = range->window_len - win_offset;
1497
1498 /* If the write goes beyond the end of the window split it */
1499 while (val_num > win_residue) {
1500 dev_dbg(map->dev, "Writing window %d/%zu\n",
1501 win_residue, val_len / map->format.val_bytes);
1502 ret = _regmap_raw_write_impl(map, reg, val,
1503 win_residue *
1504 map->format.val_bytes);
1505 if (ret != 0)
1506 return ret;
1507
1508 reg += win_residue;
1509 val_num -= win_residue;
1510 val += win_residue * map->format.val_bytes;
1511 val_len -= win_residue * map->format.val_bytes;
1512
1513 win_offset = (reg - range->range_min) %
1514 range->window_len;
1515 win_residue = range->window_len - win_offset;
1516 }
1517
1518 ret = _regmap_select_page(map, ®, range, val_num);
1519 if (ret != 0)
1520 return ret;
1521 }
1522
1523 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1524 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1525 map->write_flag_mask);
1526
1527 /*
1528 * Essentially all I/O mechanisms will be faster with a single
1529 * buffer to write. Since register syncs often generate raw
1530 * writes of single registers optimise that case.
1531 */
1532 if (val != work_val && val_len == map->format.val_bytes) {
1533 memcpy(work_val, val, map->format.val_bytes);
1534 val = work_val;
1535 }
1536
1537 if (map->async && map->bus->async_write) {
1538 struct regmap_async *async;
1539
1540 trace_regmap_async_write_start(map, reg, val_len);
1541
1542 spin_lock_irqsave(&map->async_lock, flags);
1543 async = list_first_entry_or_null(&map->async_free,
1544 struct regmap_async,
1545 list);
1546 if (async)
1547 list_del(&async->list);
1548 spin_unlock_irqrestore(&map->async_lock, flags);
1549
1550 if (!async) {
1551 async = map->bus->async_alloc();
1552 if (!async)
1553 return -ENOMEM;
1554
1555 async->work_buf = kzalloc(map->format.buf_size,
1556 GFP_KERNEL | GFP_DMA);
1557 if (!async->work_buf) {
1558 kfree(async);
1559 return -ENOMEM;
1560 }
1561 }
1562
1563 async->map = map;
1564
1565 /* If the caller supplied the value we can use it safely. */
1566 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1567 map->format.reg_bytes + map->format.val_bytes);
1568
1569 spin_lock_irqsave(&map->async_lock, flags);
1570 list_add_tail(&async->list, &map->async_list);
1571 spin_unlock_irqrestore(&map->async_lock, flags);
1572
1573 if (val != work_val)
1574 ret = map->bus->async_write(map->bus_context,
1575 async->work_buf,
1576 map->format.reg_bytes +
1577 map->format.pad_bytes,
1578 val, val_len, async);
1579 else
1580 ret = map->bus->async_write(map->bus_context,
1581 async->work_buf,
1582 map->format.reg_bytes +
1583 map->format.pad_bytes +
1584 val_len, NULL, 0, async);
1585
1586 if (ret != 0) {
1587 dev_err(map->dev, "Failed to schedule write: %d\n",
1588 ret);
1589
1590 spin_lock_irqsave(&map->async_lock, flags);
1591 list_move(&async->list, &map->async_free);
1592 spin_unlock_irqrestore(&map->async_lock, flags);
1593 }
1594
1595 return ret;
1596 }
1597
1598 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1599
1600 /* If we're doing a single register write we can probably just
1601 * send the work_buf directly, otherwise try to do a gather
1602 * write.
1603 */
1604 if (val == work_val)
1605 ret = map->bus->write(map->bus_context, map->work_buf,
1606 map->format.reg_bytes +
1607 map->format.pad_bytes +
1608 val_len);
1609 else if (map->bus->gather_write)
1610 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1611 map->format.reg_bytes +
1612 map->format.pad_bytes,
1613 val, val_len);
1614 else
1615 ret = -ENOTSUPP;
1616
1617 /* If that didn't work fall back on linearising by hand. */
1618 if (ret == -ENOTSUPP) {
1619 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1620 buf = kzalloc(len, GFP_KERNEL);
1621 if (!buf)
1622 return -ENOMEM;
1623
1624 memcpy(buf, map->work_buf, map->format.reg_bytes);
1625 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1626 val, val_len);
1627 ret = map->bus->write(map->bus_context, buf, len);
1628
1629 kfree(buf);
1630 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1631 /* regcache_drop_region() takes lock that we already have,
1632 * thus call map->cache_ops->drop() directly
1633 */
1634 if (map->cache_ops && map->cache_ops->drop)
1635 map->cache_ops->drop(map, reg, reg + 1);
1636 }
1637
1638 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1639
1640 return ret;
1641 }
1642
1643 /**
1644 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1645 *
1646 * @map: Map to check.
1647 */
regmap_can_raw_write(struct regmap * map)1648 bool regmap_can_raw_write(struct regmap *map)
1649 {
1650 return map->bus && map->bus->write && map->format.format_val &&
1651 map->format.format_reg;
1652 }
1653 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1654
1655 /**
1656 * regmap_get_raw_read_max - Get the maximum size we can read
1657 *
1658 * @map: Map to check.
1659 */
regmap_get_raw_read_max(struct regmap * map)1660 size_t regmap_get_raw_read_max(struct regmap *map)
1661 {
1662 return map->max_raw_read;
1663 }
1664 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1665
1666 /**
1667 * regmap_get_raw_write_max - Get the maximum size we can read
1668 *
1669 * @map: Map to check.
1670 */
regmap_get_raw_write_max(struct regmap * map)1671 size_t regmap_get_raw_write_max(struct regmap *map)
1672 {
1673 return map->max_raw_write;
1674 }
1675 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1676
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1677 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1678 unsigned int val)
1679 {
1680 int ret;
1681 struct regmap_range_node *range;
1682 struct regmap *map = context;
1683
1684 WARN_ON(!map->bus || !map->format.format_write);
1685
1686 range = _regmap_range_lookup(map, reg);
1687 if (range) {
1688 ret = _regmap_select_page(map, ®, range, 1);
1689 if (ret != 0)
1690 return ret;
1691 }
1692
1693 map->format.format_write(map, reg, val);
1694
1695 trace_regmap_hw_write_start(map, reg, 1);
1696
1697 ret = map->bus->write(map->bus_context, map->work_buf,
1698 map->format.buf_size);
1699
1700 trace_regmap_hw_write_done(map, reg, 1);
1701
1702 return ret;
1703 }
1704
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1705 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1706 unsigned int val)
1707 {
1708 struct regmap *map = context;
1709
1710 return map->bus->reg_write(map->bus_context, reg, val);
1711 }
1712
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1713 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1714 unsigned int val)
1715 {
1716 struct regmap *map = context;
1717
1718 WARN_ON(!map->bus || !map->format.format_val);
1719
1720 map->format.format_val(map->work_buf + map->format.reg_bytes
1721 + map->format.pad_bytes, val, 0);
1722 return _regmap_raw_write_impl(map, reg,
1723 map->work_buf +
1724 map->format.reg_bytes +
1725 map->format.pad_bytes,
1726 map->format.val_bytes);
1727 }
1728
_regmap_map_get_context(struct regmap * map)1729 static inline void *_regmap_map_get_context(struct regmap *map)
1730 {
1731 return (map->bus) ? map : map->bus_context;
1732 }
1733
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1734 int _regmap_write(struct regmap *map, unsigned int reg,
1735 unsigned int val)
1736 {
1737 int ret;
1738 void *context = _regmap_map_get_context(map);
1739
1740 if (!regmap_writeable(map, reg))
1741 return -EIO;
1742
1743 if (!map->cache_bypass && !map->defer_caching) {
1744 ret = regcache_write(map, reg, val);
1745 if (ret != 0)
1746 return ret;
1747 if (map->cache_only) {
1748 map->cache_dirty = true;
1749 return 0;
1750 }
1751 }
1752
1753 #ifdef LOG_DEVICE
1754 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1755 dev_info(map->dev, "%x <= %x\n", reg, val);
1756 #endif
1757
1758 trace_regmap_reg_write(map, reg, val);
1759
1760 return map->reg_write(context, reg, val);
1761 }
1762
1763 /**
1764 * regmap_write() - Write a value to a single register
1765 *
1766 * @map: Register map to write to
1767 * @reg: Register to write to
1768 * @val: Value to be written
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1773 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1774 {
1775 int ret;
1776
1777 if (!IS_ALIGNED(reg, map->reg_stride))
1778 return -EINVAL;
1779
1780 map->lock(map->lock_arg);
1781
1782 ret = _regmap_write(map, reg, val);
1783
1784 map->unlock(map->lock_arg);
1785
1786 return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_write);
1789
1790 /**
1791 * regmap_write_async() - Write a value to a single register asynchronously
1792 *
1793 * @map: Register map to write to
1794 * @reg: Register to write to
1795 * @val: Value to be written
1796 *
1797 * A value of zero will be returned on success, a negative errno will
1798 * be returned in error cases.
1799 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1800 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1801 {
1802 int ret;
1803
1804 if (!IS_ALIGNED(reg, map->reg_stride))
1805 return -EINVAL;
1806
1807 map->lock(map->lock_arg);
1808
1809 map->async = true;
1810
1811 ret = _regmap_write(map, reg, val);
1812
1813 map->async = false;
1814
1815 map->unlock(map->lock_arg);
1816
1817 return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_write_async);
1820
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1821 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1822 const void *val, size_t val_len)
1823 {
1824 size_t val_bytes = map->format.val_bytes;
1825 size_t val_count = val_len / val_bytes;
1826 size_t chunk_count, chunk_bytes;
1827 size_t chunk_regs = val_count;
1828 size_t max_data = map->max_raw_write - map->format.reg_bytes -
1829 map->format.pad_bytes;
1830 int ret, i;
1831
1832 if (!val_count)
1833 return -EINVAL;
1834
1835 if (map->use_single_write)
1836 chunk_regs = 1;
1837 else if (map->max_raw_write && val_len > max_data)
1838 chunk_regs = max_data / val_bytes;
1839
1840 chunk_count = val_count / chunk_regs;
1841 chunk_bytes = chunk_regs * val_bytes;
1842
1843 /* Write as many bytes as possible with chunk_size */
1844 for (i = 0; i < chunk_count; i++) {
1845 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1846 if (ret)
1847 return ret;
1848
1849 reg += regmap_get_offset(map, chunk_regs);
1850 val += chunk_bytes;
1851 val_len -= chunk_bytes;
1852 }
1853
1854 /* Write remaining bytes */
1855 if (val_len)
1856 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1857
1858 return ret;
1859 }
1860
1861 /**
1862 * regmap_raw_write() - Write raw values to one or more registers
1863 *
1864 * @map: Register map to write to
1865 * @reg: Initial register to write to
1866 * @val: Block of data to be written, laid out for direct transmission to the
1867 * device
1868 * @val_len: Length of data pointed to by val.
1869 *
1870 * This function is intended to be used for things like firmware
1871 * download where a large block of data needs to be transferred to the
1872 * device. No formatting will be done on the data provided.
1873 *
1874 * A value of zero will be returned on success, a negative errno will
1875 * be returned in error cases.
1876 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1877 int regmap_raw_write(struct regmap *map, unsigned int reg,
1878 const void *val, size_t val_len)
1879 {
1880 int ret;
1881
1882 if (!regmap_can_raw_write(map))
1883 return -EINVAL;
1884 if (val_len % map->format.val_bytes)
1885 return -EINVAL;
1886
1887 map->lock(map->lock_arg);
1888
1889 ret = _regmap_raw_write(map, reg, val, val_len);
1890
1891 map->unlock(map->lock_arg);
1892
1893 return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(regmap_raw_write);
1896
1897 /**
1898 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1899 * register field.
1900 *
1901 * @field: Register field to write to
1902 * @mask: Bitmask to change
1903 * @val: Value to be written
1904 * @change: Boolean indicating if a write was done
1905 * @async: Boolean indicating asynchronously
1906 * @force: Boolean indicating use force update
1907 *
1908 * Perform a read/modify/write cycle on the register field with change,
1909 * async, force option.
1910 *
1911 * A value of zero will be returned on success, a negative errno will
1912 * be returned in error cases.
1913 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)1914 int regmap_field_update_bits_base(struct regmap_field *field,
1915 unsigned int mask, unsigned int val,
1916 bool *change, bool async, bool force)
1917 {
1918 mask = (mask << field->shift) & field->mask;
1919
1920 return regmap_update_bits_base(field->regmap, field->reg,
1921 mask, val << field->shift,
1922 change, async, force);
1923 }
1924 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1925
1926 /**
1927 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1928 * register field with port ID
1929 *
1930 * @field: Register field to write to
1931 * @id: port ID
1932 * @mask: Bitmask to change
1933 * @val: Value to be written
1934 * @change: Boolean indicating if a write was done
1935 * @async: Boolean indicating asynchronously
1936 * @force: Boolean indicating use force update
1937 *
1938 * A value of zero will be returned on success, a negative errno will
1939 * be returned in error cases.
1940 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)1941 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1942 unsigned int mask, unsigned int val,
1943 bool *change, bool async, bool force)
1944 {
1945 if (id >= field->id_size)
1946 return -EINVAL;
1947
1948 mask = (mask << field->shift) & field->mask;
1949
1950 return regmap_update_bits_base(field->regmap,
1951 field->reg + (field->id_offset * id),
1952 mask, val << field->shift,
1953 change, async, force);
1954 }
1955 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1956
1957 /**
1958 * regmap_bulk_write() - Write multiple registers to the device
1959 *
1960 * @map: Register map to write to
1961 * @reg: First register to be write from
1962 * @val: Block of data to be written, in native register size for device
1963 * @val_count: Number of registers to write
1964 *
1965 * This function is intended to be used for writing a large block of
1966 * data to the device either in single transfer or multiple transfer.
1967 *
1968 * A value of zero will be returned on success, a negative errno will
1969 * be returned in error cases.
1970 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)1971 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1972 size_t val_count)
1973 {
1974 int ret = 0, i;
1975 size_t val_bytes = map->format.val_bytes;
1976
1977 if (!IS_ALIGNED(reg, map->reg_stride))
1978 return -EINVAL;
1979
1980 /*
1981 * Some devices don't support bulk write, for them we have a series of
1982 * single write operations.
1983 */
1984 if (!map->bus || !map->format.parse_inplace) {
1985 map->lock(map->lock_arg);
1986 for (i = 0; i < val_count; i++) {
1987 unsigned int ival;
1988
1989 switch (val_bytes) {
1990 case 1:
1991 ival = *(u8 *)(val + (i * val_bytes));
1992 break;
1993 case 2:
1994 ival = *(u16 *)(val + (i * val_bytes));
1995 break;
1996 case 4:
1997 ival = *(u32 *)(val + (i * val_bytes));
1998 break;
1999 #ifdef CONFIG_64BIT
2000 case 8:
2001 ival = *(u64 *)(val + (i * val_bytes));
2002 break;
2003 #endif
2004 default:
2005 ret = -EINVAL;
2006 goto out;
2007 }
2008
2009 ret = _regmap_write(map,
2010 reg + regmap_get_offset(map, i),
2011 ival);
2012 if (ret != 0)
2013 goto out;
2014 }
2015 out:
2016 map->unlock(map->lock_arg);
2017 } else {
2018 void *wval;
2019
2020 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2021 if (!wval)
2022 return -ENOMEM;
2023
2024 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2025 map->format.parse_inplace(wval + i);
2026
2027 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2028
2029 kfree(wval);
2030 }
2031 return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2034
2035 /*
2036 * _regmap_raw_multi_reg_write()
2037 *
2038 * the (register,newvalue) pairs in regs have not been formatted, but
2039 * they are all in the same page and have been changed to being page
2040 * relative. The page register has been written if that was necessary.
2041 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2042 static int _regmap_raw_multi_reg_write(struct regmap *map,
2043 const struct reg_sequence *regs,
2044 size_t num_regs)
2045 {
2046 int ret;
2047 void *buf;
2048 int i;
2049 u8 *u8;
2050 size_t val_bytes = map->format.val_bytes;
2051 size_t reg_bytes = map->format.reg_bytes;
2052 size_t pad_bytes = map->format.pad_bytes;
2053 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2054 size_t len = pair_size * num_regs;
2055
2056 if (!len)
2057 return -EINVAL;
2058
2059 buf = kzalloc(len, GFP_KERNEL);
2060 if (!buf)
2061 return -ENOMEM;
2062
2063 /* We have to linearise by hand. */
2064
2065 u8 = buf;
2066
2067 for (i = 0; i < num_regs; i++) {
2068 unsigned int reg = regs[i].reg;
2069 unsigned int val = regs[i].def;
2070 trace_regmap_hw_write_start(map, reg, 1);
2071 map->format.format_reg(u8, reg, map->reg_shift);
2072 u8 += reg_bytes + pad_bytes;
2073 map->format.format_val(u8, val, 0);
2074 u8 += val_bytes;
2075 }
2076 u8 = buf;
2077 *u8 |= map->write_flag_mask;
2078
2079 ret = map->bus->write(map->bus_context, buf, len);
2080
2081 kfree(buf);
2082
2083 for (i = 0; i < num_regs; i++) {
2084 int reg = regs[i].reg;
2085 trace_regmap_hw_write_done(map, reg, 1);
2086 }
2087 return ret;
2088 }
2089
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2090 static unsigned int _regmap_register_page(struct regmap *map,
2091 unsigned int reg,
2092 struct regmap_range_node *range)
2093 {
2094 unsigned int win_page = (reg - range->range_min) / range->window_len;
2095
2096 return win_page;
2097 }
2098
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2099 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2100 struct reg_sequence *regs,
2101 size_t num_regs)
2102 {
2103 int ret;
2104 int i, n;
2105 struct reg_sequence *base;
2106 unsigned int this_page = 0;
2107 unsigned int page_change = 0;
2108 /*
2109 * the set of registers are not neccessarily in order, but
2110 * since the order of write must be preserved this algorithm
2111 * chops the set each time the page changes. This also applies
2112 * if there is a delay required at any point in the sequence.
2113 */
2114 base = regs;
2115 for (i = 0, n = 0; i < num_regs; i++, n++) {
2116 unsigned int reg = regs[i].reg;
2117 struct regmap_range_node *range;
2118
2119 range = _regmap_range_lookup(map, reg);
2120 if (range) {
2121 unsigned int win_page = _regmap_register_page(map, reg,
2122 range);
2123
2124 if (i == 0)
2125 this_page = win_page;
2126 if (win_page != this_page) {
2127 this_page = win_page;
2128 page_change = 1;
2129 }
2130 }
2131
2132 /* If we have both a page change and a delay make sure to
2133 * write the regs and apply the delay before we change the
2134 * page.
2135 */
2136
2137 if (page_change || regs[i].delay_us) {
2138
2139 /* For situations where the first write requires
2140 * a delay we need to make sure we don't call
2141 * raw_multi_reg_write with n=0
2142 * This can't occur with page breaks as we
2143 * never write on the first iteration
2144 */
2145 if (regs[i].delay_us && i == 0)
2146 n = 1;
2147
2148 ret = _regmap_raw_multi_reg_write(map, base, n);
2149 if (ret != 0)
2150 return ret;
2151
2152 if (regs[i].delay_us)
2153 udelay(regs[i].delay_us);
2154
2155 base += n;
2156 n = 0;
2157
2158 if (page_change) {
2159 ret = _regmap_select_page(map,
2160 &base[n].reg,
2161 range, 1);
2162 if (ret != 0)
2163 return ret;
2164
2165 page_change = 0;
2166 }
2167
2168 }
2169
2170 }
2171 if (n > 0)
2172 return _regmap_raw_multi_reg_write(map, base, n);
2173 return 0;
2174 }
2175
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2176 static int _regmap_multi_reg_write(struct regmap *map,
2177 const struct reg_sequence *regs,
2178 size_t num_regs)
2179 {
2180 int i;
2181 int ret;
2182
2183 if (!map->can_multi_write) {
2184 for (i = 0; i < num_regs; i++) {
2185 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2186 if (ret != 0)
2187 return ret;
2188
2189 if (regs[i].delay_us)
2190 udelay(regs[i].delay_us);
2191 }
2192 return 0;
2193 }
2194
2195 if (!map->format.parse_inplace)
2196 return -EINVAL;
2197
2198 if (map->writeable_reg)
2199 for (i = 0; i < num_regs; i++) {
2200 int reg = regs[i].reg;
2201 if (!map->writeable_reg(map->dev, reg))
2202 return -EINVAL;
2203 if (!IS_ALIGNED(reg, map->reg_stride))
2204 return -EINVAL;
2205 }
2206
2207 if (!map->cache_bypass) {
2208 for (i = 0; i < num_regs; i++) {
2209 unsigned int val = regs[i].def;
2210 unsigned int reg = regs[i].reg;
2211 ret = regcache_write(map, reg, val);
2212 if (ret) {
2213 dev_err(map->dev,
2214 "Error in caching of register: %x ret: %d\n",
2215 reg, ret);
2216 return ret;
2217 }
2218 }
2219 if (map->cache_only) {
2220 map->cache_dirty = true;
2221 return 0;
2222 }
2223 }
2224
2225 WARN_ON(!map->bus);
2226
2227 for (i = 0; i < num_regs; i++) {
2228 unsigned int reg = regs[i].reg;
2229 struct regmap_range_node *range;
2230
2231 /* Coalesce all the writes between a page break or a delay
2232 * in a sequence
2233 */
2234 range = _regmap_range_lookup(map, reg);
2235 if (range || regs[i].delay_us) {
2236 size_t len = sizeof(struct reg_sequence)*num_regs;
2237 struct reg_sequence *base = kmemdup(regs, len,
2238 GFP_KERNEL);
2239 if (!base)
2240 return -ENOMEM;
2241 ret = _regmap_range_multi_paged_reg_write(map, base,
2242 num_regs);
2243 kfree(base);
2244
2245 return ret;
2246 }
2247 }
2248 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2249 }
2250
2251 /**
2252 * regmap_multi_reg_write() - Write multiple registers to the device
2253 *
2254 * @map: Register map to write to
2255 * @regs: Array of structures containing register,value to be written
2256 * @num_regs: Number of registers to write
2257 *
2258 * Write multiple registers to the device where the set of register, value
2259 * pairs are supplied in any order, possibly not all in a single range.
2260 *
2261 * The 'normal' block write mode will send ultimately send data on the
2262 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2263 * addressed. However, this alternative block multi write mode will send
2264 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2265 * must of course support the mode.
2266 *
2267 * A value of zero will be returned on success, a negative errno will be
2268 * returned in error cases.
2269 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2270 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2271 int num_regs)
2272 {
2273 int ret;
2274
2275 map->lock(map->lock_arg);
2276
2277 ret = _regmap_multi_reg_write(map, regs, num_regs);
2278
2279 map->unlock(map->lock_arg);
2280
2281 return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2284
2285 /**
2286 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2287 * device but not the cache
2288 *
2289 * @map: Register map to write to
2290 * @regs: Array of structures containing register,value to be written
2291 * @num_regs: Number of registers to write
2292 *
2293 * Write multiple registers to the device but not the cache where the set
2294 * of register are supplied in any order.
2295 *
2296 * This function is intended to be used for writing a large block of data
2297 * atomically to the device in single transfer for those I2C client devices
2298 * that implement this alternative block write mode.
2299 *
2300 * A value of zero will be returned on success, a negative errno will
2301 * be returned in error cases.
2302 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2303 int regmap_multi_reg_write_bypassed(struct regmap *map,
2304 const struct reg_sequence *regs,
2305 int num_regs)
2306 {
2307 int ret;
2308 bool bypass;
2309
2310 map->lock(map->lock_arg);
2311
2312 bypass = map->cache_bypass;
2313 map->cache_bypass = true;
2314
2315 ret = _regmap_multi_reg_write(map, regs, num_regs);
2316
2317 map->cache_bypass = bypass;
2318
2319 map->unlock(map->lock_arg);
2320
2321 return ret;
2322 }
2323 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2324
2325 /**
2326 * regmap_raw_write_async() - Write raw values to one or more registers
2327 * asynchronously
2328 *
2329 * @map: Register map to write to
2330 * @reg: Initial register to write to
2331 * @val: Block of data to be written, laid out for direct transmission to the
2332 * device. Must be valid until regmap_async_complete() is called.
2333 * @val_len: Length of data pointed to by val.
2334 *
2335 * This function is intended to be used for things like firmware
2336 * download where a large block of data needs to be transferred to the
2337 * device. No formatting will be done on the data provided.
2338 *
2339 * If supported by the underlying bus the write will be scheduled
2340 * asynchronously, helping maximise I/O speed on higher speed buses
2341 * like SPI. regmap_async_complete() can be called to ensure that all
2342 * asynchrnous writes have been completed.
2343 *
2344 * A value of zero will be returned on success, a negative errno will
2345 * be returned in error cases.
2346 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2347 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2348 const void *val, size_t val_len)
2349 {
2350 int ret;
2351
2352 if (val_len % map->format.val_bytes)
2353 return -EINVAL;
2354 if (!IS_ALIGNED(reg, map->reg_stride))
2355 return -EINVAL;
2356
2357 map->lock(map->lock_arg);
2358
2359 map->async = true;
2360
2361 ret = _regmap_raw_write(map, reg, val, val_len);
2362
2363 map->async = false;
2364
2365 map->unlock(map->lock_arg);
2366
2367 return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2370
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2371 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2372 unsigned int val_len, bool noinc)
2373 {
2374 struct regmap_range_node *range;
2375 int ret;
2376
2377 WARN_ON(!map->bus);
2378
2379 if (!map->bus || !map->bus->read)
2380 return -EINVAL;
2381
2382 range = _regmap_range_lookup(map, reg);
2383 if (range) {
2384 ret = _regmap_select_page(map, ®, range,
2385 noinc ? 1 : val_len / map->format.val_bytes);
2386 if (ret != 0)
2387 return ret;
2388 }
2389
2390 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2391 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2392 map->read_flag_mask);
2393 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2394
2395 ret = map->bus->read(map->bus_context, map->work_buf,
2396 map->format.reg_bytes + map->format.pad_bytes,
2397 val, val_len);
2398
2399 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2400
2401 return ret;
2402 }
2403
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2404 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2405 unsigned int *val)
2406 {
2407 struct regmap *map = context;
2408
2409 return map->bus->reg_read(map->bus_context, reg, val);
2410 }
2411
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2412 static int _regmap_bus_read(void *context, unsigned int reg,
2413 unsigned int *val)
2414 {
2415 int ret;
2416 struct regmap *map = context;
2417 void *work_val = map->work_buf + map->format.reg_bytes +
2418 map->format.pad_bytes;
2419
2420 if (!map->format.parse_val)
2421 return -EINVAL;
2422
2423 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2424 if (ret == 0)
2425 *val = map->format.parse_val(work_val);
2426
2427 return ret;
2428 }
2429
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2430 static int _regmap_read(struct regmap *map, unsigned int reg,
2431 unsigned int *val)
2432 {
2433 int ret;
2434 void *context = _regmap_map_get_context(map);
2435
2436 if (!map->cache_bypass) {
2437 ret = regcache_read(map, reg, val);
2438 if (ret == 0)
2439 return 0;
2440 }
2441
2442 if (map->cache_only)
2443 return -EBUSY;
2444
2445 if (!regmap_readable(map, reg))
2446 return -EIO;
2447
2448 ret = map->reg_read(context, reg, val);
2449 if (ret == 0) {
2450 #ifdef LOG_DEVICE
2451 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2452 dev_info(map->dev, "%x => %x\n", reg, *val);
2453 #endif
2454
2455 trace_regmap_reg_read(map, reg, *val);
2456
2457 if (!map->cache_bypass)
2458 regcache_write(map, reg, *val);
2459 }
2460
2461 return ret;
2462 }
2463
2464 /**
2465 * regmap_read() - Read a value from a single register
2466 *
2467 * @map: Register map to read from
2468 * @reg: Register to be read from
2469 * @val: Pointer to store read value
2470 *
2471 * A value of zero will be returned on success, a negative errno will
2472 * be returned in error cases.
2473 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2474 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2475 {
2476 int ret;
2477
2478 if (!IS_ALIGNED(reg, map->reg_stride))
2479 return -EINVAL;
2480
2481 map->lock(map->lock_arg);
2482
2483 ret = _regmap_read(map, reg, val);
2484
2485 map->unlock(map->lock_arg);
2486
2487 return ret;
2488 }
2489 EXPORT_SYMBOL_GPL(regmap_read);
2490
2491 /**
2492 * regmap_raw_read() - Read raw data from the device
2493 *
2494 * @map: Register map to read from
2495 * @reg: First register to be read from
2496 * @val: Pointer to store read value
2497 * @val_len: Size of data to read
2498 *
2499 * A value of zero will be returned on success, a negative errno will
2500 * be returned in error cases.
2501 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2502 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2503 size_t val_len)
2504 {
2505 size_t val_bytes = map->format.val_bytes;
2506 size_t val_count = val_len / val_bytes;
2507 unsigned int v;
2508 int ret, i;
2509
2510 if (!map->bus)
2511 return -EINVAL;
2512 if (val_len % map->format.val_bytes)
2513 return -EINVAL;
2514 if (!IS_ALIGNED(reg, map->reg_stride))
2515 return -EINVAL;
2516 if (val_count == 0)
2517 return -EINVAL;
2518
2519 map->lock(map->lock_arg);
2520
2521 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2522 map->cache_type == REGCACHE_NONE) {
2523 size_t chunk_count, chunk_bytes;
2524 size_t chunk_regs = val_count;
2525
2526 if (!map->bus->read) {
2527 ret = -ENOTSUPP;
2528 goto out;
2529 }
2530
2531 if (map->use_single_read)
2532 chunk_regs = 1;
2533 else if (map->max_raw_read && val_len > map->max_raw_read)
2534 chunk_regs = map->max_raw_read / val_bytes;
2535
2536 chunk_count = val_count / chunk_regs;
2537 chunk_bytes = chunk_regs * val_bytes;
2538
2539 /* Read bytes that fit into whole chunks */
2540 for (i = 0; i < chunk_count; i++) {
2541 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2542 if (ret != 0)
2543 goto out;
2544
2545 reg += regmap_get_offset(map, chunk_regs);
2546 val += chunk_bytes;
2547 val_len -= chunk_bytes;
2548 }
2549
2550 /* Read remaining bytes */
2551 if (val_len) {
2552 ret = _regmap_raw_read(map, reg, val, val_len, false);
2553 if (ret != 0)
2554 goto out;
2555 }
2556 } else {
2557 /* Otherwise go word by word for the cache; should be low
2558 * cost as we expect to hit the cache.
2559 */
2560 for (i = 0; i < val_count; i++) {
2561 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2562 &v);
2563 if (ret != 0)
2564 goto out;
2565
2566 map->format.format_val(val + (i * val_bytes), v, 0);
2567 }
2568 }
2569
2570 out:
2571 map->unlock(map->lock_arg);
2572
2573 return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regmap_raw_read);
2576
2577 /**
2578 * regmap_noinc_read(): Read data from a register without incrementing the
2579 * register number
2580 *
2581 * @map: Register map to read from
2582 * @reg: Register to read from
2583 * @val: Pointer to data buffer
2584 * @val_len: Length of output buffer in bytes.
2585 *
2586 * The regmap API usually assumes that bulk bus read operations will read a
2587 * range of registers. Some devices have certain registers for which a read
2588 * operation read will read from an internal FIFO.
2589 *
2590 * The target register must be volatile but registers after it can be
2591 * completely unrelated cacheable registers.
2592 *
2593 * This will attempt multiple reads as required to read val_len bytes.
2594 *
2595 * A value of zero will be returned on success, a negative errno will be
2596 * returned in error cases.
2597 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2598 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2599 void *val, size_t val_len)
2600 {
2601 size_t read_len;
2602 int ret;
2603
2604 if (!map->bus)
2605 return -EINVAL;
2606 if (!map->bus->read)
2607 return -ENOTSUPP;
2608 if (val_len % map->format.val_bytes)
2609 return -EINVAL;
2610 if (!IS_ALIGNED(reg, map->reg_stride))
2611 return -EINVAL;
2612 if (val_len == 0)
2613 return -EINVAL;
2614
2615 map->lock(map->lock_arg);
2616
2617 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2618 ret = -EINVAL;
2619 goto out_unlock;
2620 }
2621
2622 while (val_len) {
2623 if (map->max_raw_read && map->max_raw_read < val_len)
2624 read_len = map->max_raw_read;
2625 else
2626 read_len = val_len;
2627 ret = _regmap_raw_read(map, reg, val, read_len, true);
2628 if (ret)
2629 goto out_unlock;
2630 val = ((u8 *)val) + read_len;
2631 val_len -= read_len;
2632 }
2633
2634 out_unlock:
2635 map->unlock(map->lock_arg);
2636 return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2639
2640 /**
2641 * regmap_field_read(): Read a value to a single register field
2642 *
2643 * @field: Register field to read from
2644 * @val: Pointer to store read value
2645 *
2646 * A value of zero will be returned on success, a negative errno will
2647 * be returned in error cases.
2648 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2649 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2650 {
2651 int ret;
2652 unsigned int reg_val;
2653 ret = regmap_read(field->regmap, field->reg, ®_val);
2654 if (ret != 0)
2655 return ret;
2656
2657 reg_val &= field->mask;
2658 reg_val >>= field->shift;
2659 *val = reg_val;
2660
2661 return ret;
2662 }
2663 EXPORT_SYMBOL_GPL(regmap_field_read);
2664
2665 /**
2666 * regmap_fields_read() - Read a value to a single register field with port ID
2667 *
2668 * @field: Register field to read from
2669 * @id: port ID
2670 * @val: Pointer to store read value
2671 *
2672 * A value of zero will be returned on success, a negative errno will
2673 * be returned in error cases.
2674 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2675 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2676 unsigned int *val)
2677 {
2678 int ret;
2679 unsigned int reg_val;
2680
2681 if (id >= field->id_size)
2682 return -EINVAL;
2683
2684 ret = regmap_read(field->regmap,
2685 field->reg + (field->id_offset * id),
2686 ®_val);
2687 if (ret != 0)
2688 return ret;
2689
2690 reg_val &= field->mask;
2691 reg_val >>= field->shift;
2692 *val = reg_val;
2693
2694 return ret;
2695 }
2696 EXPORT_SYMBOL_GPL(regmap_fields_read);
2697
2698 /**
2699 * regmap_bulk_read() - Read multiple registers from the device
2700 *
2701 * @map: Register map to read from
2702 * @reg: First register to be read from
2703 * @val: Pointer to store read value, in native register size for device
2704 * @val_count: Number of registers to read
2705 *
2706 * A value of zero will be returned on success, a negative errno will
2707 * be returned in error cases.
2708 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2709 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2710 size_t val_count)
2711 {
2712 int ret, i;
2713 size_t val_bytes = map->format.val_bytes;
2714 bool vol = regmap_volatile_range(map, reg, val_count);
2715
2716 if (!IS_ALIGNED(reg, map->reg_stride))
2717 return -EINVAL;
2718 if (val_count == 0)
2719 return -EINVAL;
2720
2721 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2722 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2723 if (ret != 0)
2724 return ret;
2725
2726 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2727 map->format.parse_inplace(val + i);
2728 } else {
2729 #ifdef CONFIG_64BIT
2730 u64 *u64 = val;
2731 #endif
2732 u32 *u32 = val;
2733 u16 *u16 = val;
2734 u8 *u8 = val;
2735
2736 map->lock(map->lock_arg);
2737
2738 for (i = 0; i < val_count; i++) {
2739 unsigned int ival;
2740
2741 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2742 &ival);
2743 if (ret != 0)
2744 goto out;
2745
2746 switch (map->format.val_bytes) {
2747 #ifdef CONFIG_64BIT
2748 case 8:
2749 u64[i] = ival;
2750 break;
2751 #endif
2752 case 4:
2753 u32[i] = ival;
2754 break;
2755 case 2:
2756 u16[i] = ival;
2757 break;
2758 case 1:
2759 u8[i] = ival;
2760 break;
2761 default:
2762 ret = -EINVAL;
2763 goto out;
2764 }
2765 }
2766
2767 out:
2768 map->unlock(map->lock_arg);
2769 }
2770
2771 return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2774
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)2775 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2776 unsigned int mask, unsigned int val,
2777 bool *change, bool force_write)
2778 {
2779 int ret;
2780 unsigned int tmp, orig;
2781
2782 if (change)
2783 *change = false;
2784
2785 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2786 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2787 if (ret == 0 && change)
2788 *change = true;
2789 } else {
2790 ret = _regmap_read(map, reg, &orig);
2791 if (ret != 0)
2792 return ret;
2793
2794 tmp = orig & ~mask;
2795 tmp |= val & mask;
2796
2797 if (force_write || (tmp != orig)) {
2798 ret = _regmap_write(map, reg, tmp);
2799 if (ret == 0 && change)
2800 *change = true;
2801 }
2802 }
2803
2804 return ret;
2805 }
2806
2807 /**
2808 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2809 *
2810 * @map: Register map to update
2811 * @reg: Register to update
2812 * @mask: Bitmask to change
2813 * @val: New value for bitmask
2814 * @change: Boolean indicating if a write was done
2815 * @async: Boolean indicating asynchronously
2816 * @force: Boolean indicating use force update
2817 *
2818 * Perform a read/modify/write cycle on a register map with change, async, force
2819 * options.
2820 *
2821 * If async is true:
2822 *
2823 * With most buses the read must be done synchronously so this is most useful
2824 * for devices with a cache which do not need to interact with the hardware to
2825 * determine the current register value.
2826 *
2827 * Returns zero for success, a negative number on error.
2828 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2829 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2830 unsigned int mask, unsigned int val,
2831 bool *change, bool async, bool force)
2832 {
2833 int ret;
2834
2835 map->lock(map->lock_arg);
2836
2837 map->async = async;
2838
2839 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2840
2841 map->async = false;
2842
2843 map->unlock(map->lock_arg);
2844
2845 return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2848
regmap_async_complete_cb(struct regmap_async * async,int ret)2849 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2850 {
2851 struct regmap *map = async->map;
2852 bool wake;
2853
2854 trace_regmap_async_io_complete(map);
2855
2856 spin_lock(&map->async_lock);
2857 list_move(&async->list, &map->async_free);
2858 wake = list_empty(&map->async_list);
2859
2860 if (ret != 0)
2861 map->async_ret = ret;
2862
2863 spin_unlock(&map->async_lock);
2864
2865 if (wake)
2866 wake_up(&map->async_waitq);
2867 }
2868 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2869
regmap_async_is_done(struct regmap * map)2870 static int regmap_async_is_done(struct regmap *map)
2871 {
2872 unsigned long flags;
2873 int ret;
2874
2875 spin_lock_irqsave(&map->async_lock, flags);
2876 ret = list_empty(&map->async_list);
2877 spin_unlock_irqrestore(&map->async_lock, flags);
2878
2879 return ret;
2880 }
2881
2882 /**
2883 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2884 *
2885 * @map: Map to operate on.
2886 *
2887 * Blocks until any pending asynchronous I/O has completed. Returns
2888 * an error code for any failed I/O operations.
2889 */
regmap_async_complete(struct regmap * map)2890 int regmap_async_complete(struct regmap *map)
2891 {
2892 unsigned long flags;
2893 int ret;
2894
2895 /* Nothing to do with no async support */
2896 if (!map->bus || !map->bus->async_write)
2897 return 0;
2898
2899 trace_regmap_async_complete_start(map);
2900
2901 wait_event(map->async_waitq, regmap_async_is_done(map));
2902
2903 spin_lock_irqsave(&map->async_lock, flags);
2904 ret = map->async_ret;
2905 map->async_ret = 0;
2906 spin_unlock_irqrestore(&map->async_lock, flags);
2907
2908 trace_regmap_async_complete_done(map);
2909
2910 return ret;
2911 }
2912 EXPORT_SYMBOL_GPL(regmap_async_complete);
2913
2914 /**
2915 * regmap_register_patch - Register and apply register updates to be applied
2916 * on device initialistion
2917 *
2918 * @map: Register map to apply updates to.
2919 * @regs: Values to update.
2920 * @num_regs: Number of entries in regs.
2921 *
2922 * Register a set of register updates to be applied to the device
2923 * whenever the device registers are synchronised with the cache and
2924 * apply them immediately. Typically this is used to apply
2925 * corrections to be applied to the device defaults on startup, such
2926 * as the updates some vendors provide to undocumented registers.
2927 *
2928 * The caller must ensure that this function cannot be called
2929 * concurrently with either itself or regcache_sync().
2930 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)2931 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2932 int num_regs)
2933 {
2934 struct reg_sequence *p;
2935 int ret;
2936 bool bypass;
2937
2938 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2939 num_regs))
2940 return 0;
2941
2942 p = krealloc(map->patch,
2943 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2944 GFP_KERNEL);
2945 if (p) {
2946 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2947 map->patch = p;
2948 map->patch_regs += num_regs;
2949 } else {
2950 return -ENOMEM;
2951 }
2952
2953 map->lock(map->lock_arg);
2954
2955 bypass = map->cache_bypass;
2956
2957 map->cache_bypass = true;
2958 map->async = true;
2959
2960 ret = _regmap_multi_reg_write(map, regs, num_regs);
2961
2962 map->async = false;
2963 map->cache_bypass = bypass;
2964
2965 map->unlock(map->lock_arg);
2966
2967 regmap_async_complete(map);
2968
2969 return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(regmap_register_patch);
2972
2973 /**
2974 * regmap_get_val_bytes() - Report the size of a register value
2975 *
2976 * @map: Register map to operate on.
2977 *
2978 * Report the size of a register value, mainly intended to for use by
2979 * generic infrastructure built on top of regmap.
2980 */
regmap_get_val_bytes(struct regmap * map)2981 int regmap_get_val_bytes(struct regmap *map)
2982 {
2983 if (map->format.format_write)
2984 return -EINVAL;
2985
2986 return map->format.val_bytes;
2987 }
2988 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2989
2990 /**
2991 * regmap_get_max_register() - Report the max register value
2992 *
2993 * @map: Register map to operate on.
2994 *
2995 * Report the max register value, mainly intended to for use by
2996 * generic infrastructure built on top of regmap.
2997 */
regmap_get_max_register(struct regmap * map)2998 int regmap_get_max_register(struct regmap *map)
2999 {
3000 return map->max_register ? map->max_register : -EINVAL;
3001 }
3002 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3003
3004 /**
3005 * regmap_get_reg_stride() - Report the register address stride
3006 *
3007 * @map: Register map to operate on.
3008 *
3009 * Report the register address stride, mainly intended to for use by
3010 * generic infrastructure built on top of regmap.
3011 */
regmap_get_reg_stride(struct regmap * map)3012 int regmap_get_reg_stride(struct regmap *map)
3013 {
3014 return map->reg_stride;
3015 }
3016 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3017
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3018 int regmap_parse_val(struct regmap *map, const void *buf,
3019 unsigned int *val)
3020 {
3021 if (!map->format.parse_val)
3022 return -EINVAL;
3023
3024 *val = map->format.parse_val(buf);
3025
3026 return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(regmap_parse_val);
3029
regmap_initcall(void)3030 static int __init regmap_initcall(void)
3031 {
3032 regmap_debugfs_initcall();
3033
3034 return 0;
3035 }
3036 postcore_initcall(regmap_initcall);
3037