1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
head_hashfn(struct rhashtable * ht,const struct bucket_table * tbl,const struct rhash_head * he)41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
lockdep_rht_mutex_is_held(struct rhashtable * ht)51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
lockdep_rht_bucket_is_held(const struct bucket_table * tbl,u32 hash)57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
nested_table_free(union nested_table * ntbl,unsigned int size)68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 	const unsigned int len = 1 << shift;
72 	unsigned int i;
73 
74 	ntbl = rcu_dereference_raw(ntbl->table);
75 	if (!ntbl)
76 		return;
77 
78 	if (size > len) {
79 		size >>= shift;
80 		for (i = 0; i < len; i++)
81 			nested_table_free(ntbl + i, size);
82 	}
83 
84 	kfree(ntbl);
85 }
86 
nested_bucket_table_free(const struct bucket_table * tbl)87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89 	unsigned int size = tbl->size >> tbl->nest;
90 	unsigned int len = 1 << tbl->nest;
91 	union nested_table *ntbl;
92 	unsigned int i;
93 
94 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95 
96 	for (i = 0; i < len; i++)
97 		nested_table_free(ntbl + i, size);
98 
99 	kfree(ntbl);
100 }
101 
bucket_table_free(const struct bucket_table * tbl)102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 	if (tbl->nest)
105 		nested_bucket_table_free(tbl);
106 
107 	free_bucket_spinlocks(tbl->locks);
108 	kvfree(tbl);
109 }
110 
bucket_table_free_rcu(struct rcu_head * head)111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 	bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115 
nested_table_alloc(struct rhashtable * ht,union nested_table __rcu ** prev,bool leaf)116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 					      union nested_table __rcu **prev,
118 					      bool leaf)
119 {
120 	union nested_table *ntbl;
121 	int i;
122 
123 	ntbl = rcu_dereference(*prev);
124 	if (ntbl)
125 		return ntbl;
126 
127 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128 
129 	if (ntbl && leaf) {
130 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132 	}
133 
134 	rcu_assign_pointer(*prev, ntbl);
135 
136 	return ntbl;
137 }
138 
nested_bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
140 						      size_t nbuckets,
141 						      gfp_t gfp)
142 {
143 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
144 	struct bucket_table *tbl;
145 	size_t size;
146 
147 	if (nbuckets < (1 << (shift + 1)))
148 		return NULL;
149 
150 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
151 
152 	tbl = kzalloc(size, gfp);
153 	if (!tbl)
154 		return NULL;
155 
156 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
157 				false)) {
158 		kfree(tbl);
159 		return NULL;
160 	}
161 
162 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
163 
164 	return tbl;
165 }
166 
bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
168 					       size_t nbuckets,
169 					       gfp_t gfp)
170 {
171 	struct bucket_table *tbl = NULL;
172 	size_t size, max_locks;
173 	int i;
174 
175 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
176 	tbl = kvzalloc(size, gfp);
177 
178 	size = nbuckets;
179 
180 	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
181 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
182 		nbuckets = 0;
183 	}
184 
185 	if (tbl == NULL)
186 		return NULL;
187 
188 	tbl->size = size;
189 
190 	max_locks = size >> 1;
191 	if (tbl->nest)
192 		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
193 
194 	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
195 				   ht->p.locks_mul, gfp) < 0) {
196 		bucket_table_free(tbl);
197 		return NULL;
198 	}
199 
200 	INIT_LIST_HEAD(&tbl->walkers);
201 
202 	tbl->hash_rnd = get_random_u32();
203 
204 	for (i = 0; i < nbuckets; i++)
205 		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
206 
207 	return tbl;
208 }
209 
rhashtable_last_table(struct rhashtable * ht,struct bucket_table * tbl)210 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
211 						  struct bucket_table *tbl)
212 {
213 	struct bucket_table *new_tbl;
214 
215 	do {
216 		new_tbl = tbl;
217 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
218 	} while (tbl);
219 
220 	return new_tbl;
221 }
222 
rhashtable_rehash_one(struct rhashtable * ht,unsigned int old_hash)223 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
224 {
225 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
226 	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
227 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
228 	int err = -EAGAIN;
229 	struct rhash_head *head, *next, *entry;
230 	spinlock_t *new_bucket_lock;
231 	unsigned int new_hash;
232 
233 	if (new_tbl->nest)
234 		goto out;
235 
236 	err = -ENOENT;
237 
238 	rht_for_each(entry, old_tbl, old_hash) {
239 		err = 0;
240 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
241 
242 		if (rht_is_a_nulls(next))
243 			break;
244 
245 		pprev = &entry->next;
246 	}
247 
248 	if (err)
249 		goto out;
250 
251 	new_hash = head_hashfn(ht, new_tbl, entry);
252 
253 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
254 
255 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
256 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
257 				      new_tbl, new_hash);
258 
259 	RCU_INIT_POINTER(entry->next, head);
260 
261 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
262 	spin_unlock(new_bucket_lock);
263 
264 	rcu_assign_pointer(*pprev, next);
265 
266 out:
267 	return err;
268 }
269 
rhashtable_rehash_chain(struct rhashtable * ht,unsigned int old_hash)270 static int rhashtable_rehash_chain(struct rhashtable *ht,
271 				    unsigned int old_hash)
272 {
273 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
274 	spinlock_t *old_bucket_lock;
275 	int err;
276 
277 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
278 
279 	spin_lock_bh(old_bucket_lock);
280 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
281 		;
282 
283 	if (err == -ENOENT) {
284 		old_tbl->rehash++;
285 		err = 0;
286 	}
287 	spin_unlock_bh(old_bucket_lock);
288 
289 	return err;
290 }
291 
rhashtable_rehash_attach(struct rhashtable * ht,struct bucket_table * old_tbl,struct bucket_table * new_tbl)292 static int rhashtable_rehash_attach(struct rhashtable *ht,
293 				    struct bucket_table *old_tbl,
294 				    struct bucket_table *new_tbl)
295 {
296 	/* Make insertions go into the new, empty table right away. Deletions
297 	 * and lookups will be attempted in both tables until we synchronize.
298 	 * As cmpxchg() provides strong barriers, we do not need
299 	 * rcu_assign_pointer().
300 	 */
301 
302 	if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
303 		return -EEXIST;
304 
305 	return 0;
306 }
307 
rhashtable_rehash_table(struct rhashtable * ht)308 static int rhashtable_rehash_table(struct rhashtable *ht)
309 {
310 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311 	struct bucket_table *new_tbl;
312 	struct rhashtable_walker *walker;
313 	unsigned int old_hash;
314 	int err;
315 
316 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
317 	if (!new_tbl)
318 		return 0;
319 
320 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
321 		err = rhashtable_rehash_chain(ht, old_hash);
322 		if (err)
323 			return err;
324 		cond_resched();
325 	}
326 
327 	/* Publish the new table pointer. */
328 	rcu_assign_pointer(ht->tbl, new_tbl);
329 
330 	spin_lock(&ht->lock);
331 	list_for_each_entry(walker, &old_tbl->walkers, list)
332 		walker->tbl = NULL;
333 	spin_unlock(&ht->lock);
334 
335 	/* Wait for readers. All new readers will see the new
336 	 * table, and thus no references to the old table will
337 	 * remain.
338 	 */
339 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
340 
341 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343 
rhashtable_rehash_alloc(struct rhashtable * ht,struct bucket_table * old_tbl,unsigned int size)344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345 				   struct bucket_table *old_tbl,
346 				   unsigned int size)
347 {
348 	struct bucket_table *new_tbl;
349 	int err;
350 
351 	ASSERT_RHT_MUTEX(ht);
352 
353 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354 	if (new_tbl == NULL)
355 		return -ENOMEM;
356 
357 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358 	if (err)
359 		bucket_table_free(new_tbl);
360 
361 	return err;
362 }
363 
364 /**
365  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366  * @ht:		the hash table to shrink
367  *
368  * This function shrinks the hash table to fit, i.e., the smallest
369  * size would not cause it to expand right away automatically.
370  *
371  * The caller must ensure that no concurrent resizing occurs by holding
372  * ht->mutex.
373  *
374  * The caller must ensure that no concurrent table mutations take place.
375  * It is however valid to have concurrent lookups if they are RCU protected.
376  *
377  * It is valid to have concurrent insertions and deletions protected by per
378  * bucket locks or concurrent RCU protected lookups and traversals.
379  */
rhashtable_shrink(struct rhashtable * ht)380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383 	unsigned int nelems = atomic_read(&ht->nelems);
384 	unsigned int size = 0;
385 
386 	if (nelems)
387 		size = roundup_pow_of_two(nelems * 3 / 2);
388 	if (size < ht->p.min_size)
389 		size = ht->p.min_size;
390 
391 	if (old_tbl->size <= size)
392 		return 0;
393 
394 	if (rht_dereference(old_tbl->future_tbl, ht))
395 		return -EEXIST;
396 
397 	return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399 
rht_deferred_worker(struct work_struct * work)400 static void rht_deferred_worker(struct work_struct *work)
401 {
402 	struct rhashtable *ht;
403 	struct bucket_table *tbl;
404 	int err = 0;
405 
406 	ht = container_of(work, struct rhashtable, run_work);
407 	mutex_lock(&ht->mutex);
408 
409 	tbl = rht_dereference(ht->tbl, ht);
410 	tbl = rhashtable_last_table(ht, tbl);
411 
412 	if (rht_grow_above_75(ht, tbl))
413 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415 		err = rhashtable_shrink(ht);
416 	else if (tbl->nest)
417 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418 
419 	if (!err || err == -EEXIST) {
420 		int nerr;
421 
422 		nerr = rhashtable_rehash_table(ht);
423 		err = err ?: nerr;
424 	}
425 
426 	mutex_unlock(&ht->mutex);
427 
428 	if (err)
429 		schedule_work(&ht->run_work);
430 }
431 
rhashtable_insert_rehash(struct rhashtable * ht,struct bucket_table * tbl)432 static int rhashtable_insert_rehash(struct rhashtable *ht,
433 				    struct bucket_table *tbl)
434 {
435 	struct bucket_table *old_tbl;
436 	struct bucket_table *new_tbl;
437 	unsigned int size;
438 	int err;
439 
440 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
441 
442 	size = tbl->size;
443 
444 	err = -EBUSY;
445 
446 	if (rht_grow_above_75(ht, tbl))
447 		size *= 2;
448 	/* Do not schedule more than one rehash */
449 	else if (old_tbl != tbl)
450 		goto fail;
451 
452 	err = -ENOMEM;
453 
454 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
455 	if (new_tbl == NULL)
456 		goto fail;
457 
458 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
459 	if (err) {
460 		bucket_table_free(new_tbl);
461 		if (err == -EEXIST)
462 			err = 0;
463 	} else
464 		schedule_work(&ht->run_work);
465 
466 	return err;
467 
468 fail:
469 	/* Do not fail the insert if someone else did a rehash. */
470 	if (likely(rcu_access_pointer(tbl->future_tbl)))
471 		return 0;
472 
473 	/* Schedule async rehash to retry allocation in process context. */
474 	if (err == -ENOMEM)
475 		schedule_work(&ht->run_work);
476 
477 	return err;
478 }
479 
rhashtable_lookup_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,const void * key,struct rhash_head * obj)480 static void *rhashtable_lookup_one(struct rhashtable *ht,
481 				   struct bucket_table *tbl, unsigned int hash,
482 				   const void *key, struct rhash_head *obj)
483 {
484 	struct rhashtable_compare_arg arg = {
485 		.ht = ht,
486 		.key = key,
487 	};
488 	struct rhash_head __rcu **pprev;
489 	struct rhash_head *head;
490 	int elasticity;
491 
492 	elasticity = RHT_ELASTICITY;
493 	pprev = rht_bucket_var(tbl, hash);
494 	rht_for_each_continue(head, *pprev, tbl, hash) {
495 		struct rhlist_head *list;
496 		struct rhlist_head *plist;
497 
498 		elasticity--;
499 		if (!key ||
500 		    (ht->p.obj_cmpfn ?
501 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
502 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
503 			pprev = &head->next;
504 			continue;
505 		}
506 
507 		if (!ht->rhlist)
508 			return rht_obj(ht, head);
509 
510 		list = container_of(obj, struct rhlist_head, rhead);
511 		plist = container_of(head, struct rhlist_head, rhead);
512 
513 		RCU_INIT_POINTER(list->next, plist);
514 		head = rht_dereference_bucket(head->next, tbl, hash);
515 		RCU_INIT_POINTER(list->rhead.next, head);
516 		rcu_assign_pointer(*pprev, obj);
517 
518 		return NULL;
519 	}
520 
521 	if (elasticity <= 0)
522 		return ERR_PTR(-EAGAIN);
523 
524 	return ERR_PTR(-ENOENT);
525 }
526 
rhashtable_insert_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,struct rhash_head * obj,void * data)527 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
528 						  struct bucket_table *tbl,
529 						  unsigned int hash,
530 						  struct rhash_head *obj,
531 						  void *data)
532 {
533 	struct rhash_head __rcu **pprev;
534 	struct bucket_table *new_tbl;
535 	struct rhash_head *head;
536 
537 	if (!IS_ERR_OR_NULL(data))
538 		return ERR_PTR(-EEXIST);
539 
540 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
541 		return ERR_CAST(data);
542 
543 	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
544 	if (new_tbl)
545 		return new_tbl;
546 
547 	if (PTR_ERR(data) != -ENOENT)
548 		return ERR_CAST(data);
549 
550 	if (unlikely(rht_grow_above_max(ht, tbl)))
551 		return ERR_PTR(-E2BIG);
552 
553 	if (unlikely(rht_grow_above_100(ht, tbl)))
554 		return ERR_PTR(-EAGAIN);
555 
556 	pprev = rht_bucket_insert(ht, tbl, hash);
557 	if (!pprev)
558 		return ERR_PTR(-ENOMEM);
559 
560 	head = rht_dereference_bucket(*pprev, tbl, hash);
561 
562 	RCU_INIT_POINTER(obj->next, head);
563 	if (ht->rhlist) {
564 		struct rhlist_head *list;
565 
566 		list = container_of(obj, struct rhlist_head, rhead);
567 		RCU_INIT_POINTER(list->next, NULL);
568 	}
569 
570 	rcu_assign_pointer(*pprev, obj);
571 
572 	atomic_inc(&ht->nelems);
573 	if (rht_grow_above_75(ht, tbl))
574 		schedule_work(&ht->run_work);
575 
576 	return NULL;
577 }
578 
rhashtable_try_insert(struct rhashtable * ht,const void * key,struct rhash_head * obj)579 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
580 				   struct rhash_head *obj)
581 {
582 	struct bucket_table *new_tbl;
583 	struct bucket_table *tbl;
584 	unsigned int hash;
585 	spinlock_t *lock;
586 	void *data;
587 
588 	tbl = rcu_dereference(ht->tbl);
589 
590 	/* All insertions must grab the oldest table containing
591 	 * the hashed bucket that is yet to be rehashed.
592 	 */
593 	for (;;) {
594 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
595 		lock = rht_bucket_lock(tbl, hash);
596 		spin_lock_bh(lock);
597 
598 		if (tbl->rehash <= hash)
599 			break;
600 
601 		spin_unlock_bh(lock);
602 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
603 	}
604 
605 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
606 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
607 	if (PTR_ERR(new_tbl) != -EEXIST)
608 		data = ERR_CAST(new_tbl);
609 
610 	while (!IS_ERR_OR_NULL(new_tbl)) {
611 		tbl = new_tbl;
612 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
613 		spin_lock_nested(rht_bucket_lock(tbl, hash),
614 				 SINGLE_DEPTH_NESTING);
615 
616 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
617 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
618 		if (PTR_ERR(new_tbl) != -EEXIST)
619 			data = ERR_CAST(new_tbl);
620 
621 		spin_unlock(rht_bucket_lock(tbl, hash));
622 	}
623 
624 	spin_unlock_bh(lock);
625 
626 	if (PTR_ERR(data) == -EAGAIN)
627 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
628 			       -EAGAIN);
629 
630 	return data;
631 }
632 
rhashtable_insert_slow(struct rhashtable * ht,const void * key,struct rhash_head * obj)633 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
634 			     struct rhash_head *obj)
635 {
636 	void *data;
637 
638 	do {
639 		rcu_read_lock();
640 		data = rhashtable_try_insert(ht, key, obj);
641 		rcu_read_unlock();
642 	} while (PTR_ERR(data) == -EAGAIN);
643 
644 	return data;
645 }
646 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
647 
648 /**
649  * rhashtable_walk_enter - Initialise an iterator
650  * @ht:		Table to walk over
651  * @iter:	Hash table Iterator
652  *
653  * This function prepares a hash table walk.
654  *
655  * Note that if you restart a walk after rhashtable_walk_stop you
656  * may see the same object twice.  Also, you may miss objects if
657  * there are removals in between rhashtable_walk_stop and the next
658  * call to rhashtable_walk_start.
659  *
660  * For a completely stable walk you should construct your own data
661  * structure outside the hash table.
662  *
663  * This function may be called from any process context, including
664  * non-preemptable context, but cannot be called from softirq or
665  * hardirq context.
666  *
667  * You must call rhashtable_walk_exit after this function returns.
668  */
rhashtable_walk_enter(struct rhashtable * ht,struct rhashtable_iter * iter)669 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
670 {
671 	iter->ht = ht;
672 	iter->p = NULL;
673 	iter->slot = 0;
674 	iter->skip = 0;
675 	iter->end_of_table = 0;
676 
677 	spin_lock(&ht->lock);
678 	iter->walker.tbl =
679 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
680 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
681 	spin_unlock(&ht->lock);
682 }
683 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
684 
685 /**
686  * rhashtable_walk_exit - Free an iterator
687  * @iter:	Hash table Iterator
688  *
689  * This function frees resources allocated by rhashtable_walk_init.
690  */
rhashtable_walk_exit(struct rhashtable_iter * iter)691 void rhashtable_walk_exit(struct rhashtable_iter *iter)
692 {
693 	spin_lock(&iter->ht->lock);
694 	if (iter->walker.tbl)
695 		list_del(&iter->walker.list);
696 	spin_unlock(&iter->ht->lock);
697 }
698 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
699 
700 /**
701  * rhashtable_walk_start_check - Start a hash table walk
702  * @iter:	Hash table iterator
703  *
704  * Start a hash table walk at the current iterator position.  Note that we take
705  * the RCU lock in all cases including when we return an error.  So you must
706  * always call rhashtable_walk_stop to clean up.
707  *
708  * Returns zero if successful.
709  *
710  * Returns -EAGAIN if resize event occured.  Note that the iterator
711  * will rewind back to the beginning and you may use it immediately
712  * by calling rhashtable_walk_next.
713  *
714  * rhashtable_walk_start is defined as an inline variant that returns
715  * void. This is preferred in cases where the caller would ignore
716  * resize events and always continue.
717  */
rhashtable_walk_start_check(struct rhashtable_iter * iter)718 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
719 	__acquires(RCU)
720 {
721 	struct rhashtable *ht = iter->ht;
722 	bool rhlist = ht->rhlist;
723 
724 	rcu_read_lock();
725 
726 	spin_lock(&ht->lock);
727 	if (iter->walker.tbl)
728 		list_del(&iter->walker.list);
729 	spin_unlock(&ht->lock);
730 
731 	if (iter->end_of_table)
732 		return 0;
733 	if (!iter->walker.tbl) {
734 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
735 		iter->slot = 0;
736 		iter->skip = 0;
737 		return -EAGAIN;
738 	}
739 
740 	if (iter->p && !rhlist) {
741 		/*
742 		 * We need to validate that 'p' is still in the table, and
743 		 * if so, update 'skip'
744 		 */
745 		struct rhash_head *p;
746 		int skip = 0;
747 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
748 			skip++;
749 			if (p == iter->p) {
750 				iter->skip = skip;
751 				goto found;
752 			}
753 		}
754 		iter->p = NULL;
755 	} else if (iter->p && rhlist) {
756 		/* Need to validate that 'list' is still in the table, and
757 		 * if so, update 'skip' and 'p'.
758 		 */
759 		struct rhash_head *p;
760 		struct rhlist_head *list;
761 		int skip = 0;
762 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
763 			for (list = container_of(p, struct rhlist_head, rhead);
764 			     list;
765 			     list = rcu_dereference(list->next)) {
766 				skip++;
767 				if (list == iter->list) {
768 					iter->p = p;
769 					iter->skip = skip;
770 					goto found;
771 				}
772 			}
773 		}
774 		iter->p = NULL;
775 	}
776 found:
777 	return 0;
778 }
779 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
780 
781 /**
782  * __rhashtable_walk_find_next - Find the next element in a table (or the first
783  * one in case of a new walk).
784  *
785  * @iter:	Hash table iterator
786  *
787  * Returns the found object or NULL when the end of the table is reached.
788  *
789  * Returns -EAGAIN if resize event occurred.
790  */
__rhashtable_walk_find_next(struct rhashtable_iter * iter)791 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
792 {
793 	struct bucket_table *tbl = iter->walker.tbl;
794 	struct rhlist_head *list = iter->list;
795 	struct rhashtable *ht = iter->ht;
796 	struct rhash_head *p = iter->p;
797 	bool rhlist = ht->rhlist;
798 
799 	if (!tbl)
800 		return NULL;
801 
802 	for (; iter->slot < tbl->size; iter->slot++) {
803 		int skip = iter->skip;
804 
805 		rht_for_each_rcu(p, tbl, iter->slot) {
806 			if (rhlist) {
807 				list = container_of(p, struct rhlist_head,
808 						    rhead);
809 				do {
810 					if (!skip)
811 						goto next;
812 					skip--;
813 					list = rcu_dereference(list->next);
814 				} while (list);
815 
816 				continue;
817 			}
818 			if (!skip)
819 				break;
820 			skip--;
821 		}
822 
823 next:
824 		if (!rht_is_a_nulls(p)) {
825 			iter->skip++;
826 			iter->p = p;
827 			iter->list = list;
828 			return rht_obj(ht, rhlist ? &list->rhead : p);
829 		}
830 
831 		iter->skip = 0;
832 	}
833 
834 	iter->p = NULL;
835 
836 	/* Ensure we see any new tables. */
837 	smp_rmb();
838 
839 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
840 	if (iter->walker.tbl) {
841 		iter->slot = 0;
842 		iter->skip = 0;
843 		return ERR_PTR(-EAGAIN);
844 	} else {
845 		iter->end_of_table = true;
846 	}
847 
848 	return NULL;
849 }
850 
851 /**
852  * rhashtable_walk_next - Return the next object and advance the iterator
853  * @iter:	Hash table iterator
854  *
855  * Note that you must call rhashtable_walk_stop when you are finished
856  * with the walk.
857  *
858  * Returns the next object or NULL when the end of the table is reached.
859  *
860  * Returns -EAGAIN if resize event occurred.  Note that the iterator
861  * will rewind back to the beginning and you may continue to use it.
862  */
rhashtable_walk_next(struct rhashtable_iter * iter)863 void *rhashtable_walk_next(struct rhashtable_iter *iter)
864 {
865 	struct rhlist_head *list = iter->list;
866 	struct rhashtable *ht = iter->ht;
867 	struct rhash_head *p = iter->p;
868 	bool rhlist = ht->rhlist;
869 
870 	if (p) {
871 		if (!rhlist || !(list = rcu_dereference(list->next))) {
872 			p = rcu_dereference(p->next);
873 			list = container_of(p, struct rhlist_head, rhead);
874 		}
875 		if (!rht_is_a_nulls(p)) {
876 			iter->skip++;
877 			iter->p = p;
878 			iter->list = list;
879 			return rht_obj(ht, rhlist ? &list->rhead : p);
880 		}
881 
882 		/* At the end of this slot, switch to next one and then find
883 		 * next entry from that point.
884 		 */
885 		iter->skip = 0;
886 		iter->slot++;
887 	}
888 
889 	return __rhashtable_walk_find_next(iter);
890 }
891 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
892 
893 /**
894  * rhashtable_walk_peek - Return the next object but don't advance the iterator
895  * @iter:	Hash table iterator
896  *
897  * Returns the next object or NULL when the end of the table is reached.
898  *
899  * Returns -EAGAIN if resize event occurred.  Note that the iterator
900  * will rewind back to the beginning and you may continue to use it.
901  */
rhashtable_walk_peek(struct rhashtable_iter * iter)902 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
903 {
904 	struct rhlist_head *list = iter->list;
905 	struct rhashtable *ht = iter->ht;
906 	struct rhash_head *p = iter->p;
907 
908 	if (p)
909 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
910 
911 	/* No object found in current iter, find next one in the table. */
912 
913 	if (iter->skip) {
914 		/* A nonzero skip value points to the next entry in the table
915 		 * beyond that last one that was found. Decrement skip so
916 		 * we find the current value. __rhashtable_walk_find_next
917 		 * will restore the original value of skip assuming that
918 		 * the table hasn't changed.
919 		 */
920 		iter->skip--;
921 	}
922 
923 	return __rhashtable_walk_find_next(iter);
924 }
925 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
926 
927 /**
928  * rhashtable_walk_stop - Finish a hash table walk
929  * @iter:	Hash table iterator
930  *
931  * Finish a hash table walk.  Does not reset the iterator to the start of the
932  * hash table.
933  */
rhashtable_walk_stop(struct rhashtable_iter * iter)934 void rhashtable_walk_stop(struct rhashtable_iter *iter)
935 	__releases(RCU)
936 {
937 	struct rhashtable *ht;
938 	struct bucket_table *tbl = iter->walker.tbl;
939 
940 	if (!tbl)
941 		goto out;
942 
943 	ht = iter->ht;
944 
945 	spin_lock(&ht->lock);
946 	if (tbl->rehash < tbl->size)
947 		list_add(&iter->walker.list, &tbl->walkers);
948 	else
949 		iter->walker.tbl = NULL;
950 	spin_unlock(&ht->lock);
951 
952 out:
953 	rcu_read_unlock();
954 }
955 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
956 
rounded_hashtable_size(const struct rhashtable_params * params)957 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
958 {
959 	size_t retsize;
960 
961 	if (params->nelem_hint)
962 		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
963 			      (unsigned long)params->min_size);
964 	else
965 		retsize = max(HASH_DEFAULT_SIZE,
966 			      (unsigned long)params->min_size);
967 
968 	return retsize;
969 }
970 
rhashtable_jhash2(const void * key,u32 length,u32 seed)971 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
972 {
973 	return jhash2(key, length, seed);
974 }
975 
976 /**
977  * rhashtable_init - initialize a new hash table
978  * @ht:		hash table to be initialized
979  * @params:	configuration parameters
980  *
981  * Initializes a new hash table based on the provided configuration
982  * parameters. A table can be configured either with a variable or
983  * fixed length key:
984  *
985  * Configuration Example 1: Fixed length keys
986  * struct test_obj {
987  *	int			key;
988  *	void *			my_member;
989  *	struct rhash_head	node;
990  * };
991  *
992  * struct rhashtable_params params = {
993  *	.head_offset = offsetof(struct test_obj, node),
994  *	.key_offset = offsetof(struct test_obj, key),
995  *	.key_len = sizeof(int),
996  *	.hashfn = jhash,
997  * };
998  *
999  * Configuration Example 2: Variable length keys
1000  * struct test_obj {
1001  *	[...]
1002  *	struct rhash_head	node;
1003  * };
1004  *
1005  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1006  * {
1007  *	struct test_obj *obj = data;
1008  *
1009  *	return [... hash ...];
1010  * }
1011  *
1012  * struct rhashtable_params params = {
1013  *	.head_offset = offsetof(struct test_obj, node),
1014  *	.hashfn = jhash,
1015  *	.obj_hashfn = my_hash_fn,
1016  * };
1017  */
rhashtable_init(struct rhashtable * ht,const struct rhashtable_params * params)1018 int rhashtable_init(struct rhashtable *ht,
1019 		    const struct rhashtable_params *params)
1020 {
1021 	struct bucket_table *tbl;
1022 	size_t size;
1023 
1024 	if ((!params->key_len && !params->obj_hashfn) ||
1025 	    (params->obj_hashfn && !params->obj_cmpfn))
1026 		return -EINVAL;
1027 
1028 	memset(ht, 0, sizeof(*ht));
1029 	mutex_init(&ht->mutex);
1030 	spin_lock_init(&ht->lock);
1031 	memcpy(&ht->p, params, sizeof(*params));
1032 
1033 	if (params->min_size)
1034 		ht->p.min_size = roundup_pow_of_two(params->min_size);
1035 
1036 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1037 	ht->max_elems = 1u << 31;
1038 
1039 	if (params->max_size) {
1040 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1041 		if (ht->p.max_size < ht->max_elems / 2)
1042 			ht->max_elems = ht->p.max_size * 2;
1043 	}
1044 
1045 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1046 
1047 	size = rounded_hashtable_size(&ht->p);
1048 
1049 	if (params->locks_mul)
1050 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1051 	else
1052 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1053 
1054 	ht->key_len = ht->p.key_len;
1055 	if (!params->hashfn) {
1056 		ht->p.hashfn = jhash;
1057 
1058 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1059 			ht->key_len /= sizeof(u32);
1060 			ht->p.hashfn = rhashtable_jhash2;
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * This is api initialization and thus we need to guarantee the
1066 	 * initial rhashtable allocation. Upon failure, retry with the
1067 	 * smallest possible size with __GFP_NOFAIL semantics.
1068 	 */
1069 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1070 	if (unlikely(tbl == NULL)) {
1071 		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1072 		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1073 	}
1074 
1075 	atomic_set(&ht->nelems, 0);
1076 
1077 	RCU_INIT_POINTER(ht->tbl, tbl);
1078 
1079 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1080 
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(rhashtable_init);
1084 
1085 /**
1086  * rhltable_init - initialize a new hash list table
1087  * @hlt:	hash list table to be initialized
1088  * @params:	configuration parameters
1089  *
1090  * Initializes a new hash list table.
1091  *
1092  * See documentation for rhashtable_init.
1093  */
rhltable_init(struct rhltable * hlt,const struct rhashtable_params * params)1094 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1095 {
1096 	int err;
1097 
1098 	err = rhashtable_init(&hlt->ht, params);
1099 	hlt->ht.rhlist = true;
1100 	return err;
1101 }
1102 EXPORT_SYMBOL_GPL(rhltable_init);
1103 
rhashtable_free_one(struct rhashtable * ht,struct rhash_head * obj,void (* free_fn)(void * ptr,void * arg),void * arg)1104 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1105 				void (*free_fn)(void *ptr, void *arg),
1106 				void *arg)
1107 {
1108 	struct rhlist_head *list;
1109 
1110 	if (!ht->rhlist) {
1111 		free_fn(rht_obj(ht, obj), arg);
1112 		return;
1113 	}
1114 
1115 	list = container_of(obj, struct rhlist_head, rhead);
1116 	do {
1117 		obj = &list->rhead;
1118 		list = rht_dereference(list->next, ht);
1119 		free_fn(rht_obj(ht, obj), arg);
1120 	} while (list);
1121 }
1122 
1123 /**
1124  * rhashtable_free_and_destroy - free elements and destroy hash table
1125  * @ht:		the hash table to destroy
1126  * @free_fn:	callback to release resources of element
1127  * @arg:	pointer passed to free_fn
1128  *
1129  * Stops an eventual async resize. If defined, invokes free_fn for each
1130  * element to releasal resources. Please note that RCU protected
1131  * readers may still be accessing the elements. Releasing of resources
1132  * must occur in a compatible manner. Then frees the bucket array.
1133  *
1134  * This function will eventually sleep to wait for an async resize
1135  * to complete. The caller is responsible that no further write operations
1136  * occurs in parallel.
1137  */
rhashtable_free_and_destroy(struct rhashtable * ht,void (* free_fn)(void * ptr,void * arg),void * arg)1138 void rhashtable_free_and_destroy(struct rhashtable *ht,
1139 				 void (*free_fn)(void *ptr, void *arg),
1140 				 void *arg)
1141 {
1142 	struct bucket_table *tbl, *next_tbl;
1143 	unsigned int i;
1144 
1145 	cancel_work_sync(&ht->run_work);
1146 
1147 	mutex_lock(&ht->mutex);
1148 	tbl = rht_dereference(ht->tbl, ht);
1149 restart:
1150 	if (free_fn) {
1151 		for (i = 0; i < tbl->size; i++) {
1152 			struct rhash_head *pos, *next;
1153 
1154 			cond_resched();
1155 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1156 			     next = !rht_is_a_nulls(pos) ?
1157 					rht_dereference(pos->next, ht) : NULL;
1158 			     !rht_is_a_nulls(pos);
1159 			     pos = next,
1160 			     next = !rht_is_a_nulls(pos) ?
1161 					rht_dereference(pos->next, ht) : NULL)
1162 				rhashtable_free_one(ht, pos, free_fn, arg);
1163 		}
1164 	}
1165 
1166 	next_tbl = rht_dereference(tbl->future_tbl, ht);
1167 	bucket_table_free(tbl);
1168 	if (next_tbl) {
1169 		tbl = next_tbl;
1170 		goto restart;
1171 	}
1172 	mutex_unlock(&ht->mutex);
1173 }
1174 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1175 
rhashtable_destroy(struct rhashtable * ht)1176 void rhashtable_destroy(struct rhashtable *ht)
1177 {
1178 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1179 }
1180 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1181 
rht_bucket_nested(const struct bucket_table * tbl,unsigned int hash)1182 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1183 					    unsigned int hash)
1184 {
1185 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1186 	static struct rhash_head __rcu *rhnull =
1187 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1188 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1189 	unsigned int size = tbl->size >> tbl->nest;
1190 	unsigned int subhash = hash;
1191 	union nested_table *ntbl;
1192 
1193 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1194 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1195 	subhash >>= tbl->nest;
1196 
1197 	while (ntbl && size > (1 << shift)) {
1198 		index = subhash & ((1 << shift) - 1);
1199 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1200 						  tbl, hash);
1201 		size >>= shift;
1202 		subhash >>= shift;
1203 	}
1204 
1205 	if (!ntbl)
1206 		return &rhnull;
1207 
1208 	return &ntbl[subhash].bucket;
1209 
1210 }
1211 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1212 
rht_bucket_nested_insert(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash)1213 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1214 						   struct bucket_table *tbl,
1215 						   unsigned int hash)
1216 {
1217 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1218 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1219 	unsigned int size = tbl->size >> tbl->nest;
1220 	union nested_table *ntbl;
1221 
1222 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1223 	hash >>= tbl->nest;
1224 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1225 				  size <= (1 << shift));
1226 
1227 	while (ntbl && size > (1 << shift)) {
1228 		index = hash & ((1 << shift) - 1);
1229 		size >>= shift;
1230 		hash >>= shift;
1231 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1232 					  size <= (1 << shift));
1233 	}
1234 
1235 	if (!ntbl)
1236 		return NULL;
1237 
1238 	return &ntbl[hash].bucket;
1239 
1240 }
1241 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1242