1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE 64UL
33 #define HASH_MIN_SIZE 4U
34 #define BUCKET_LOCKS_PER_CPU 32UL
35
36 union nested_table {
37 union nested_table __rcu *table;
38 struct rhash_head __rcu *bucket;
39 };
40
head_hashfn(struct rhashtable * ht,const struct bucket_table * tbl,const struct rhash_head * he)41 static u32 head_hashfn(struct rhashtable *ht,
42 const struct bucket_table *tbl,
43 const struct rhash_head *he)
44 {
45 return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50
lockdep_rht_mutex_is_held(struct rhashtable * ht)51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56
lockdep_rht_bucket_is_held(const struct bucket_table * tbl,u32 hash)57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 spinlock_t *lock = rht_bucket_lock(tbl, hash);
60
61 return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67
nested_table_free(union nested_table * ntbl,unsigned int size)68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 const unsigned int len = 1 << shift;
72 unsigned int i;
73
74 ntbl = rcu_dereference_raw(ntbl->table);
75 if (!ntbl)
76 return;
77
78 if (size > len) {
79 size >>= shift;
80 for (i = 0; i < len; i++)
81 nested_table_free(ntbl + i, size);
82 }
83
84 kfree(ntbl);
85 }
86
nested_bucket_table_free(const struct bucket_table * tbl)87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89 unsigned int size = tbl->size >> tbl->nest;
90 unsigned int len = 1 << tbl->nest;
91 union nested_table *ntbl;
92 unsigned int i;
93
94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95
96 for (i = 0; i < len; i++)
97 nested_table_free(ntbl + i, size);
98
99 kfree(ntbl);
100 }
101
bucket_table_free(const struct bucket_table * tbl)102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 if (tbl->nest)
105 nested_bucket_table_free(tbl);
106
107 free_bucket_spinlocks(tbl->locks);
108 kvfree(tbl);
109 }
110
bucket_table_free_rcu(struct rcu_head * head)111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115
nested_table_alloc(struct rhashtable * ht,union nested_table __rcu ** prev,bool leaf)116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 union nested_table __rcu **prev,
118 bool leaf)
119 {
120 union nested_table *ntbl;
121 int i;
122
123 ntbl = rcu_dereference(*prev);
124 if (ntbl)
125 return ntbl;
126
127 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128
129 if (ntbl && leaf) {
130 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131 INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132 }
133
134 rcu_assign_pointer(*prev, ntbl);
135
136 return ntbl;
137 }
138
nested_bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
140 size_t nbuckets,
141 gfp_t gfp)
142 {
143 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
144 struct bucket_table *tbl;
145 size_t size;
146
147 if (nbuckets < (1 << (shift + 1)))
148 return NULL;
149
150 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
151
152 tbl = kzalloc(size, gfp);
153 if (!tbl)
154 return NULL;
155
156 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
157 false)) {
158 kfree(tbl);
159 return NULL;
160 }
161
162 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
163
164 return tbl;
165 }
166
bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
168 size_t nbuckets,
169 gfp_t gfp)
170 {
171 struct bucket_table *tbl = NULL;
172 size_t size, max_locks;
173 int i;
174
175 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
176 tbl = kvzalloc(size, gfp);
177
178 size = nbuckets;
179
180 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
181 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
182 nbuckets = 0;
183 }
184
185 if (tbl == NULL)
186 return NULL;
187
188 tbl->size = size;
189
190 max_locks = size >> 1;
191 if (tbl->nest)
192 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
193
194 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
195 ht->p.locks_mul, gfp) < 0) {
196 bucket_table_free(tbl);
197 return NULL;
198 }
199
200 INIT_LIST_HEAD(&tbl->walkers);
201
202 tbl->hash_rnd = get_random_u32();
203
204 for (i = 0; i < nbuckets; i++)
205 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
206
207 return tbl;
208 }
209
rhashtable_last_table(struct rhashtable * ht,struct bucket_table * tbl)210 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
211 struct bucket_table *tbl)
212 {
213 struct bucket_table *new_tbl;
214
215 do {
216 new_tbl = tbl;
217 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
218 } while (tbl);
219
220 return new_tbl;
221 }
222
rhashtable_rehash_one(struct rhashtable * ht,unsigned int old_hash)223 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
224 {
225 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
226 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
227 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
228 int err = -EAGAIN;
229 struct rhash_head *head, *next, *entry;
230 spinlock_t *new_bucket_lock;
231 unsigned int new_hash;
232
233 if (new_tbl->nest)
234 goto out;
235
236 err = -ENOENT;
237
238 rht_for_each(entry, old_tbl, old_hash) {
239 err = 0;
240 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
241
242 if (rht_is_a_nulls(next))
243 break;
244
245 pprev = &entry->next;
246 }
247
248 if (err)
249 goto out;
250
251 new_hash = head_hashfn(ht, new_tbl, entry);
252
253 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
254
255 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
256 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
257 new_tbl, new_hash);
258
259 RCU_INIT_POINTER(entry->next, head);
260
261 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
262 spin_unlock(new_bucket_lock);
263
264 rcu_assign_pointer(*pprev, next);
265
266 out:
267 return err;
268 }
269
rhashtable_rehash_chain(struct rhashtable * ht,unsigned int old_hash)270 static int rhashtable_rehash_chain(struct rhashtable *ht,
271 unsigned int old_hash)
272 {
273 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
274 spinlock_t *old_bucket_lock;
275 int err;
276
277 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
278
279 spin_lock_bh(old_bucket_lock);
280 while (!(err = rhashtable_rehash_one(ht, old_hash)))
281 ;
282
283 if (err == -ENOENT) {
284 old_tbl->rehash++;
285 err = 0;
286 }
287 spin_unlock_bh(old_bucket_lock);
288
289 return err;
290 }
291
rhashtable_rehash_attach(struct rhashtable * ht,struct bucket_table * old_tbl,struct bucket_table * new_tbl)292 static int rhashtable_rehash_attach(struct rhashtable *ht,
293 struct bucket_table *old_tbl,
294 struct bucket_table *new_tbl)
295 {
296 /* Make insertions go into the new, empty table right away. Deletions
297 * and lookups will be attempted in both tables until we synchronize.
298 * As cmpxchg() provides strong barriers, we do not need
299 * rcu_assign_pointer().
300 */
301
302 if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
303 return -EEXIST;
304
305 return 0;
306 }
307
rhashtable_rehash_table(struct rhashtable * ht)308 static int rhashtable_rehash_table(struct rhashtable *ht)
309 {
310 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311 struct bucket_table *new_tbl;
312 struct rhashtable_walker *walker;
313 unsigned int old_hash;
314 int err;
315
316 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
317 if (!new_tbl)
318 return 0;
319
320 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
321 err = rhashtable_rehash_chain(ht, old_hash);
322 if (err)
323 return err;
324 cond_resched();
325 }
326
327 /* Publish the new table pointer. */
328 rcu_assign_pointer(ht->tbl, new_tbl);
329
330 spin_lock(&ht->lock);
331 list_for_each_entry(walker, &old_tbl->walkers, list)
332 walker->tbl = NULL;
333 spin_unlock(&ht->lock);
334
335 /* Wait for readers. All new readers will see the new
336 * table, and thus no references to the old table will
337 * remain.
338 */
339 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
340
341 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343
rhashtable_rehash_alloc(struct rhashtable * ht,struct bucket_table * old_tbl,unsigned int size)344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345 struct bucket_table *old_tbl,
346 unsigned int size)
347 {
348 struct bucket_table *new_tbl;
349 int err;
350
351 ASSERT_RHT_MUTEX(ht);
352
353 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354 if (new_tbl == NULL)
355 return -ENOMEM;
356
357 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358 if (err)
359 bucket_table_free(new_tbl);
360
361 return err;
362 }
363
364 /**
365 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366 * @ht: the hash table to shrink
367 *
368 * This function shrinks the hash table to fit, i.e., the smallest
369 * size would not cause it to expand right away automatically.
370 *
371 * The caller must ensure that no concurrent resizing occurs by holding
372 * ht->mutex.
373 *
374 * The caller must ensure that no concurrent table mutations take place.
375 * It is however valid to have concurrent lookups if they are RCU protected.
376 *
377 * It is valid to have concurrent insertions and deletions protected by per
378 * bucket locks or concurrent RCU protected lookups and traversals.
379 */
rhashtable_shrink(struct rhashtable * ht)380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383 unsigned int nelems = atomic_read(&ht->nelems);
384 unsigned int size = 0;
385
386 if (nelems)
387 size = roundup_pow_of_two(nelems * 3 / 2);
388 if (size < ht->p.min_size)
389 size = ht->p.min_size;
390
391 if (old_tbl->size <= size)
392 return 0;
393
394 if (rht_dereference(old_tbl->future_tbl, ht))
395 return -EEXIST;
396
397 return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399
rht_deferred_worker(struct work_struct * work)400 static void rht_deferred_worker(struct work_struct *work)
401 {
402 struct rhashtable *ht;
403 struct bucket_table *tbl;
404 int err = 0;
405
406 ht = container_of(work, struct rhashtable, run_work);
407 mutex_lock(&ht->mutex);
408
409 tbl = rht_dereference(ht->tbl, ht);
410 tbl = rhashtable_last_table(ht, tbl);
411
412 if (rht_grow_above_75(ht, tbl))
413 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415 err = rhashtable_shrink(ht);
416 else if (tbl->nest)
417 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418
419 if (!err || err == -EEXIST) {
420 int nerr;
421
422 nerr = rhashtable_rehash_table(ht);
423 err = err ?: nerr;
424 }
425
426 mutex_unlock(&ht->mutex);
427
428 if (err)
429 schedule_work(&ht->run_work);
430 }
431
rhashtable_insert_rehash(struct rhashtable * ht,struct bucket_table * tbl)432 static int rhashtable_insert_rehash(struct rhashtable *ht,
433 struct bucket_table *tbl)
434 {
435 struct bucket_table *old_tbl;
436 struct bucket_table *new_tbl;
437 unsigned int size;
438 int err;
439
440 old_tbl = rht_dereference_rcu(ht->tbl, ht);
441
442 size = tbl->size;
443
444 err = -EBUSY;
445
446 if (rht_grow_above_75(ht, tbl))
447 size *= 2;
448 /* Do not schedule more than one rehash */
449 else if (old_tbl != tbl)
450 goto fail;
451
452 err = -ENOMEM;
453
454 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
455 if (new_tbl == NULL)
456 goto fail;
457
458 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
459 if (err) {
460 bucket_table_free(new_tbl);
461 if (err == -EEXIST)
462 err = 0;
463 } else
464 schedule_work(&ht->run_work);
465
466 return err;
467
468 fail:
469 /* Do not fail the insert if someone else did a rehash. */
470 if (likely(rcu_access_pointer(tbl->future_tbl)))
471 return 0;
472
473 /* Schedule async rehash to retry allocation in process context. */
474 if (err == -ENOMEM)
475 schedule_work(&ht->run_work);
476
477 return err;
478 }
479
rhashtable_lookup_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,const void * key,struct rhash_head * obj)480 static void *rhashtable_lookup_one(struct rhashtable *ht,
481 struct bucket_table *tbl, unsigned int hash,
482 const void *key, struct rhash_head *obj)
483 {
484 struct rhashtable_compare_arg arg = {
485 .ht = ht,
486 .key = key,
487 };
488 struct rhash_head __rcu **pprev;
489 struct rhash_head *head;
490 int elasticity;
491
492 elasticity = RHT_ELASTICITY;
493 pprev = rht_bucket_var(tbl, hash);
494 rht_for_each_continue(head, *pprev, tbl, hash) {
495 struct rhlist_head *list;
496 struct rhlist_head *plist;
497
498 elasticity--;
499 if (!key ||
500 (ht->p.obj_cmpfn ?
501 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
502 rhashtable_compare(&arg, rht_obj(ht, head)))) {
503 pprev = &head->next;
504 continue;
505 }
506
507 if (!ht->rhlist)
508 return rht_obj(ht, head);
509
510 list = container_of(obj, struct rhlist_head, rhead);
511 plist = container_of(head, struct rhlist_head, rhead);
512
513 RCU_INIT_POINTER(list->next, plist);
514 head = rht_dereference_bucket(head->next, tbl, hash);
515 RCU_INIT_POINTER(list->rhead.next, head);
516 rcu_assign_pointer(*pprev, obj);
517
518 return NULL;
519 }
520
521 if (elasticity <= 0)
522 return ERR_PTR(-EAGAIN);
523
524 return ERR_PTR(-ENOENT);
525 }
526
rhashtable_insert_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,struct rhash_head * obj,void * data)527 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
528 struct bucket_table *tbl,
529 unsigned int hash,
530 struct rhash_head *obj,
531 void *data)
532 {
533 struct rhash_head __rcu **pprev;
534 struct bucket_table *new_tbl;
535 struct rhash_head *head;
536
537 if (!IS_ERR_OR_NULL(data))
538 return ERR_PTR(-EEXIST);
539
540 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
541 return ERR_CAST(data);
542
543 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
544 if (new_tbl)
545 return new_tbl;
546
547 if (PTR_ERR(data) != -ENOENT)
548 return ERR_CAST(data);
549
550 if (unlikely(rht_grow_above_max(ht, tbl)))
551 return ERR_PTR(-E2BIG);
552
553 if (unlikely(rht_grow_above_100(ht, tbl)))
554 return ERR_PTR(-EAGAIN);
555
556 pprev = rht_bucket_insert(ht, tbl, hash);
557 if (!pprev)
558 return ERR_PTR(-ENOMEM);
559
560 head = rht_dereference_bucket(*pprev, tbl, hash);
561
562 RCU_INIT_POINTER(obj->next, head);
563 if (ht->rhlist) {
564 struct rhlist_head *list;
565
566 list = container_of(obj, struct rhlist_head, rhead);
567 RCU_INIT_POINTER(list->next, NULL);
568 }
569
570 rcu_assign_pointer(*pprev, obj);
571
572 atomic_inc(&ht->nelems);
573 if (rht_grow_above_75(ht, tbl))
574 schedule_work(&ht->run_work);
575
576 return NULL;
577 }
578
rhashtable_try_insert(struct rhashtable * ht,const void * key,struct rhash_head * obj)579 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
580 struct rhash_head *obj)
581 {
582 struct bucket_table *new_tbl;
583 struct bucket_table *tbl;
584 unsigned int hash;
585 spinlock_t *lock;
586 void *data;
587
588 tbl = rcu_dereference(ht->tbl);
589
590 /* All insertions must grab the oldest table containing
591 * the hashed bucket that is yet to be rehashed.
592 */
593 for (;;) {
594 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
595 lock = rht_bucket_lock(tbl, hash);
596 spin_lock_bh(lock);
597
598 if (tbl->rehash <= hash)
599 break;
600
601 spin_unlock_bh(lock);
602 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
603 }
604
605 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
606 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
607 if (PTR_ERR(new_tbl) != -EEXIST)
608 data = ERR_CAST(new_tbl);
609
610 while (!IS_ERR_OR_NULL(new_tbl)) {
611 tbl = new_tbl;
612 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
613 spin_lock_nested(rht_bucket_lock(tbl, hash),
614 SINGLE_DEPTH_NESTING);
615
616 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
617 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
618 if (PTR_ERR(new_tbl) != -EEXIST)
619 data = ERR_CAST(new_tbl);
620
621 spin_unlock(rht_bucket_lock(tbl, hash));
622 }
623
624 spin_unlock_bh(lock);
625
626 if (PTR_ERR(data) == -EAGAIN)
627 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
628 -EAGAIN);
629
630 return data;
631 }
632
rhashtable_insert_slow(struct rhashtable * ht,const void * key,struct rhash_head * obj)633 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
634 struct rhash_head *obj)
635 {
636 void *data;
637
638 do {
639 rcu_read_lock();
640 data = rhashtable_try_insert(ht, key, obj);
641 rcu_read_unlock();
642 } while (PTR_ERR(data) == -EAGAIN);
643
644 return data;
645 }
646 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
647
648 /**
649 * rhashtable_walk_enter - Initialise an iterator
650 * @ht: Table to walk over
651 * @iter: Hash table Iterator
652 *
653 * This function prepares a hash table walk.
654 *
655 * Note that if you restart a walk after rhashtable_walk_stop you
656 * may see the same object twice. Also, you may miss objects if
657 * there are removals in between rhashtable_walk_stop and the next
658 * call to rhashtable_walk_start.
659 *
660 * For a completely stable walk you should construct your own data
661 * structure outside the hash table.
662 *
663 * This function may be called from any process context, including
664 * non-preemptable context, but cannot be called from softirq or
665 * hardirq context.
666 *
667 * You must call rhashtable_walk_exit after this function returns.
668 */
rhashtable_walk_enter(struct rhashtable * ht,struct rhashtable_iter * iter)669 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
670 {
671 iter->ht = ht;
672 iter->p = NULL;
673 iter->slot = 0;
674 iter->skip = 0;
675 iter->end_of_table = 0;
676
677 spin_lock(&ht->lock);
678 iter->walker.tbl =
679 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
680 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
681 spin_unlock(&ht->lock);
682 }
683 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
684
685 /**
686 * rhashtable_walk_exit - Free an iterator
687 * @iter: Hash table Iterator
688 *
689 * This function frees resources allocated by rhashtable_walk_init.
690 */
rhashtable_walk_exit(struct rhashtable_iter * iter)691 void rhashtable_walk_exit(struct rhashtable_iter *iter)
692 {
693 spin_lock(&iter->ht->lock);
694 if (iter->walker.tbl)
695 list_del(&iter->walker.list);
696 spin_unlock(&iter->ht->lock);
697 }
698 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
699
700 /**
701 * rhashtable_walk_start_check - Start a hash table walk
702 * @iter: Hash table iterator
703 *
704 * Start a hash table walk at the current iterator position. Note that we take
705 * the RCU lock in all cases including when we return an error. So you must
706 * always call rhashtable_walk_stop to clean up.
707 *
708 * Returns zero if successful.
709 *
710 * Returns -EAGAIN if resize event occured. Note that the iterator
711 * will rewind back to the beginning and you may use it immediately
712 * by calling rhashtable_walk_next.
713 *
714 * rhashtable_walk_start is defined as an inline variant that returns
715 * void. This is preferred in cases where the caller would ignore
716 * resize events and always continue.
717 */
rhashtable_walk_start_check(struct rhashtable_iter * iter)718 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
719 __acquires(RCU)
720 {
721 struct rhashtable *ht = iter->ht;
722 bool rhlist = ht->rhlist;
723
724 rcu_read_lock();
725
726 spin_lock(&ht->lock);
727 if (iter->walker.tbl)
728 list_del(&iter->walker.list);
729 spin_unlock(&ht->lock);
730
731 if (iter->end_of_table)
732 return 0;
733 if (!iter->walker.tbl) {
734 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
735 iter->slot = 0;
736 iter->skip = 0;
737 return -EAGAIN;
738 }
739
740 if (iter->p && !rhlist) {
741 /*
742 * We need to validate that 'p' is still in the table, and
743 * if so, update 'skip'
744 */
745 struct rhash_head *p;
746 int skip = 0;
747 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
748 skip++;
749 if (p == iter->p) {
750 iter->skip = skip;
751 goto found;
752 }
753 }
754 iter->p = NULL;
755 } else if (iter->p && rhlist) {
756 /* Need to validate that 'list' is still in the table, and
757 * if so, update 'skip' and 'p'.
758 */
759 struct rhash_head *p;
760 struct rhlist_head *list;
761 int skip = 0;
762 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
763 for (list = container_of(p, struct rhlist_head, rhead);
764 list;
765 list = rcu_dereference(list->next)) {
766 skip++;
767 if (list == iter->list) {
768 iter->p = p;
769 iter->skip = skip;
770 goto found;
771 }
772 }
773 }
774 iter->p = NULL;
775 }
776 found:
777 return 0;
778 }
779 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
780
781 /**
782 * __rhashtable_walk_find_next - Find the next element in a table (or the first
783 * one in case of a new walk).
784 *
785 * @iter: Hash table iterator
786 *
787 * Returns the found object or NULL when the end of the table is reached.
788 *
789 * Returns -EAGAIN if resize event occurred.
790 */
__rhashtable_walk_find_next(struct rhashtable_iter * iter)791 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
792 {
793 struct bucket_table *tbl = iter->walker.tbl;
794 struct rhlist_head *list = iter->list;
795 struct rhashtable *ht = iter->ht;
796 struct rhash_head *p = iter->p;
797 bool rhlist = ht->rhlist;
798
799 if (!tbl)
800 return NULL;
801
802 for (; iter->slot < tbl->size; iter->slot++) {
803 int skip = iter->skip;
804
805 rht_for_each_rcu(p, tbl, iter->slot) {
806 if (rhlist) {
807 list = container_of(p, struct rhlist_head,
808 rhead);
809 do {
810 if (!skip)
811 goto next;
812 skip--;
813 list = rcu_dereference(list->next);
814 } while (list);
815
816 continue;
817 }
818 if (!skip)
819 break;
820 skip--;
821 }
822
823 next:
824 if (!rht_is_a_nulls(p)) {
825 iter->skip++;
826 iter->p = p;
827 iter->list = list;
828 return rht_obj(ht, rhlist ? &list->rhead : p);
829 }
830
831 iter->skip = 0;
832 }
833
834 iter->p = NULL;
835
836 /* Ensure we see any new tables. */
837 smp_rmb();
838
839 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
840 if (iter->walker.tbl) {
841 iter->slot = 0;
842 iter->skip = 0;
843 return ERR_PTR(-EAGAIN);
844 } else {
845 iter->end_of_table = true;
846 }
847
848 return NULL;
849 }
850
851 /**
852 * rhashtable_walk_next - Return the next object and advance the iterator
853 * @iter: Hash table iterator
854 *
855 * Note that you must call rhashtable_walk_stop when you are finished
856 * with the walk.
857 *
858 * Returns the next object or NULL when the end of the table is reached.
859 *
860 * Returns -EAGAIN if resize event occurred. Note that the iterator
861 * will rewind back to the beginning and you may continue to use it.
862 */
rhashtable_walk_next(struct rhashtable_iter * iter)863 void *rhashtable_walk_next(struct rhashtable_iter *iter)
864 {
865 struct rhlist_head *list = iter->list;
866 struct rhashtable *ht = iter->ht;
867 struct rhash_head *p = iter->p;
868 bool rhlist = ht->rhlist;
869
870 if (p) {
871 if (!rhlist || !(list = rcu_dereference(list->next))) {
872 p = rcu_dereference(p->next);
873 list = container_of(p, struct rhlist_head, rhead);
874 }
875 if (!rht_is_a_nulls(p)) {
876 iter->skip++;
877 iter->p = p;
878 iter->list = list;
879 return rht_obj(ht, rhlist ? &list->rhead : p);
880 }
881
882 /* At the end of this slot, switch to next one and then find
883 * next entry from that point.
884 */
885 iter->skip = 0;
886 iter->slot++;
887 }
888
889 return __rhashtable_walk_find_next(iter);
890 }
891 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
892
893 /**
894 * rhashtable_walk_peek - Return the next object but don't advance the iterator
895 * @iter: Hash table iterator
896 *
897 * Returns the next object or NULL when the end of the table is reached.
898 *
899 * Returns -EAGAIN if resize event occurred. Note that the iterator
900 * will rewind back to the beginning and you may continue to use it.
901 */
rhashtable_walk_peek(struct rhashtable_iter * iter)902 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
903 {
904 struct rhlist_head *list = iter->list;
905 struct rhashtable *ht = iter->ht;
906 struct rhash_head *p = iter->p;
907
908 if (p)
909 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
910
911 /* No object found in current iter, find next one in the table. */
912
913 if (iter->skip) {
914 /* A nonzero skip value points to the next entry in the table
915 * beyond that last one that was found. Decrement skip so
916 * we find the current value. __rhashtable_walk_find_next
917 * will restore the original value of skip assuming that
918 * the table hasn't changed.
919 */
920 iter->skip--;
921 }
922
923 return __rhashtable_walk_find_next(iter);
924 }
925 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
926
927 /**
928 * rhashtable_walk_stop - Finish a hash table walk
929 * @iter: Hash table iterator
930 *
931 * Finish a hash table walk. Does not reset the iterator to the start of the
932 * hash table.
933 */
rhashtable_walk_stop(struct rhashtable_iter * iter)934 void rhashtable_walk_stop(struct rhashtable_iter *iter)
935 __releases(RCU)
936 {
937 struct rhashtable *ht;
938 struct bucket_table *tbl = iter->walker.tbl;
939
940 if (!tbl)
941 goto out;
942
943 ht = iter->ht;
944
945 spin_lock(&ht->lock);
946 if (tbl->rehash < tbl->size)
947 list_add(&iter->walker.list, &tbl->walkers);
948 else
949 iter->walker.tbl = NULL;
950 spin_unlock(&ht->lock);
951
952 out:
953 rcu_read_unlock();
954 }
955 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
956
rounded_hashtable_size(const struct rhashtable_params * params)957 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
958 {
959 size_t retsize;
960
961 if (params->nelem_hint)
962 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
963 (unsigned long)params->min_size);
964 else
965 retsize = max(HASH_DEFAULT_SIZE,
966 (unsigned long)params->min_size);
967
968 return retsize;
969 }
970
rhashtable_jhash2(const void * key,u32 length,u32 seed)971 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
972 {
973 return jhash2(key, length, seed);
974 }
975
976 /**
977 * rhashtable_init - initialize a new hash table
978 * @ht: hash table to be initialized
979 * @params: configuration parameters
980 *
981 * Initializes a new hash table based on the provided configuration
982 * parameters. A table can be configured either with a variable or
983 * fixed length key:
984 *
985 * Configuration Example 1: Fixed length keys
986 * struct test_obj {
987 * int key;
988 * void * my_member;
989 * struct rhash_head node;
990 * };
991 *
992 * struct rhashtable_params params = {
993 * .head_offset = offsetof(struct test_obj, node),
994 * .key_offset = offsetof(struct test_obj, key),
995 * .key_len = sizeof(int),
996 * .hashfn = jhash,
997 * };
998 *
999 * Configuration Example 2: Variable length keys
1000 * struct test_obj {
1001 * [...]
1002 * struct rhash_head node;
1003 * };
1004 *
1005 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1006 * {
1007 * struct test_obj *obj = data;
1008 *
1009 * return [... hash ...];
1010 * }
1011 *
1012 * struct rhashtable_params params = {
1013 * .head_offset = offsetof(struct test_obj, node),
1014 * .hashfn = jhash,
1015 * .obj_hashfn = my_hash_fn,
1016 * };
1017 */
rhashtable_init(struct rhashtable * ht,const struct rhashtable_params * params)1018 int rhashtable_init(struct rhashtable *ht,
1019 const struct rhashtable_params *params)
1020 {
1021 struct bucket_table *tbl;
1022 size_t size;
1023
1024 if ((!params->key_len && !params->obj_hashfn) ||
1025 (params->obj_hashfn && !params->obj_cmpfn))
1026 return -EINVAL;
1027
1028 memset(ht, 0, sizeof(*ht));
1029 mutex_init(&ht->mutex);
1030 spin_lock_init(&ht->lock);
1031 memcpy(&ht->p, params, sizeof(*params));
1032
1033 if (params->min_size)
1034 ht->p.min_size = roundup_pow_of_two(params->min_size);
1035
1036 /* Cap total entries at 2^31 to avoid nelems overflow. */
1037 ht->max_elems = 1u << 31;
1038
1039 if (params->max_size) {
1040 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1041 if (ht->p.max_size < ht->max_elems / 2)
1042 ht->max_elems = ht->p.max_size * 2;
1043 }
1044
1045 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1046
1047 size = rounded_hashtable_size(&ht->p);
1048
1049 if (params->locks_mul)
1050 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1051 else
1052 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1053
1054 ht->key_len = ht->p.key_len;
1055 if (!params->hashfn) {
1056 ht->p.hashfn = jhash;
1057
1058 if (!(ht->key_len & (sizeof(u32) - 1))) {
1059 ht->key_len /= sizeof(u32);
1060 ht->p.hashfn = rhashtable_jhash2;
1061 }
1062 }
1063
1064 /*
1065 * This is api initialization and thus we need to guarantee the
1066 * initial rhashtable allocation. Upon failure, retry with the
1067 * smallest possible size with __GFP_NOFAIL semantics.
1068 */
1069 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1070 if (unlikely(tbl == NULL)) {
1071 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1072 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1073 }
1074
1075 atomic_set(&ht->nelems, 0);
1076
1077 RCU_INIT_POINTER(ht->tbl, tbl);
1078
1079 INIT_WORK(&ht->run_work, rht_deferred_worker);
1080
1081 return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(rhashtable_init);
1084
1085 /**
1086 * rhltable_init - initialize a new hash list table
1087 * @hlt: hash list table to be initialized
1088 * @params: configuration parameters
1089 *
1090 * Initializes a new hash list table.
1091 *
1092 * See documentation for rhashtable_init.
1093 */
rhltable_init(struct rhltable * hlt,const struct rhashtable_params * params)1094 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1095 {
1096 int err;
1097
1098 err = rhashtable_init(&hlt->ht, params);
1099 hlt->ht.rhlist = true;
1100 return err;
1101 }
1102 EXPORT_SYMBOL_GPL(rhltable_init);
1103
rhashtable_free_one(struct rhashtable * ht,struct rhash_head * obj,void (* free_fn)(void * ptr,void * arg),void * arg)1104 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1105 void (*free_fn)(void *ptr, void *arg),
1106 void *arg)
1107 {
1108 struct rhlist_head *list;
1109
1110 if (!ht->rhlist) {
1111 free_fn(rht_obj(ht, obj), arg);
1112 return;
1113 }
1114
1115 list = container_of(obj, struct rhlist_head, rhead);
1116 do {
1117 obj = &list->rhead;
1118 list = rht_dereference(list->next, ht);
1119 free_fn(rht_obj(ht, obj), arg);
1120 } while (list);
1121 }
1122
1123 /**
1124 * rhashtable_free_and_destroy - free elements and destroy hash table
1125 * @ht: the hash table to destroy
1126 * @free_fn: callback to release resources of element
1127 * @arg: pointer passed to free_fn
1128 *
1129 * Stops an eventual async resize. If defined, invokes free_fn for each
1130 * element to releasal resources. Please note that RCU protected
1131 * readers may still be accessing the elements. Releasing of resources
1132 * must occur in a compatible manner. Then frees the bucket array.
1133 *
1134 * This function will eventually sleep to wait for an async resize
1135 * to complete. The caller is responsible that no further write operations
1136 * occurs in parallel.
1137 */
rhashtable_free_and_destroy(struct rhashtable * ht,void (* free_fn)(void * ptr,void * arg),void * arg)1138 void rhashtable_free_and_destroy(struct rhashtable *ht,
1139 void (*free_fn)(void *ptr, void *arg),
1140 void *arg)
1141 {
1142 struct bucket_table *tbl, *next_tbl;
1143 unsigned int i;
1144
1145 cancel_work_sync(&ht->run_work);
1146
1147 mutex_lock(&ht->mutex);
1148 tbl = rht_dereference(ht->tbl, ht);
1149 restart:
1150 if (free_fn) {
1151 for (i = 0; i < tbl->size; i++) {
1152 struct rhash_head *pos, *next;
1153
1154 cond_resched();
1155 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1156 next = !rht_is_a_nulls(pos) ?
1157 rht_dereference(pos->next, ht) : NULL;
1158 !rht_is_a_nulls(pos);
1159 pos = next,
1160 next = !rht_is_a_nulls(pos) ?
1161 rht_dereference(pos->next, ht) : NULL)
1162 rhashtable_free_one(ht, pos, free_fn, arg);
1163 }
1164 }
1165
1166 next_tbl = rht_dereference(tbl->future_tbl, ht);
1167 bucket_table_free(tbl);
1168 if (next_tbl) {
1169 tbl = next_tbl;
1170 goto restart;
1171 }
1172 mutex_unlock(&ht->mutex);
1173 }
1174 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1175
rhashtable_destroy(struct rhashtable * ht)1176 void rhashtable_destroy(struct rhashtable *ht)
1177 {
1178 return rhashtable_free_and_destroy(ht, NULL, NULL);
1179 }
1180 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1181
rht_bucket_nested(const struct bucket_table * tbl,unsigned int hash)1182 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1183 unsigned int hash)
1184 {
1185 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1186 static struct rhash_head __rcu *rhnull =
1187 (struct rhash_head __rcu *)NULLS_MARKER(0);
1188 unsigned int index = hash & ((1 << tbl->nest) - 1);
1189 unsigned int size = tbl->size >> tbl->nest;
1190 unsigned int subhash = hash;
1191 union nested_table *ntbl;
1192
1193 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1194 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1195 subhash >>= tbl->nest;
1196
1197 while (ntbl && size > (1 << shift)) {
1198 index = subhash & ((1 << shift) - 1);
1199 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1200 tbl, hash);
1201 size >>= shift;
1202 subhash >>= shift;
1203 }
1204
1205 if (!ntbl)
1206 return &rhnull;
1207
1208 return &ntbl[subhash].bucket;
1209
1210 }
1211 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1212
rht_bucket_nested_insert(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash)1213 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1214 struct bucket_table *tbl,
1215 unsigned int hash)
1216 {
1217 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1218 unsigned int index = hash & ((1 << tbl->nest) - 1);
1219 unsigned int size = tbl->size >> tbl->nest;
1220 union nested_table *ntbl;
1221
1222 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1223 hash >>= tbl->nest;
1224 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1225 size <= (1 << shift));
1226
1227 while (ntbl && size > (1 << shift)) {
1228 index = hash & ((1 << shift) - 1);
1229 size >>= shift;
1230 hash >>= shift;
1231 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1232 size <= (1 << shift));
1233 }
1234
1235 if (!ntbl)
1236 return NULL;
1237
1238 return &ntbl[hash].bucket;
1239
1240 }
1241 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1242